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Abstract
Chronic non-communicable diseases pose a significant global health challenge, with the human gut microbiota emerging as a 
key player in several (patho) physiological functions, including immunity, metabolic homeostasis, and inflammation. While 
dysbiosis, or imbalance in taxonomy and function of gut microbiota, has been implicated in chronic kidney disease (CKD), 
whether it is a cause or consequence of the disease remains controversial. Understanding the gut microbiota’s role in CKD 
pathogenesis is essential for developing novel therapeutic interventions. CKD in children presents unique opportunities for 
studying disease-specific mechanisms due to the absence of comorbidities typically seen in adults, such as diabetes, obesity, 
and hypertension, although few studies exist. On the other hand, unlike the relatively stable gut microbiota of healthy adults, 
the infant’s microbiome undergoes significant development and maturation during the early years of life. Integrating knowl-
edge from both pediatric and adult populations may provide a comprehensive understanding of gut microbiota dysbiosis in 
CKD. This review aims to provide an overview of the gut microbiota’s development in healthy individuals and CKD patients 
and discusses how these findings can inform personalized treatment approaches to CKD.
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Introduction

Chronic non-communicable diseases are the leading cause of 
mortality in the world and pose a great threat to human health 
[1]. The human gut microbiota is a complex and dynamic 

ecosystem that naturally lives in a symbiotic relationship with 
the host. The commensal inhabitants of the gut are as numer-
ous as they are diverse: bacteria, viruses, archaea, and eukary-
otes together comprise the gut microbiome as  1014 microbes. 
Among these, Bacillota (e.g., Faecalibacterium, Roseburia, 
Ruminococcus, Eubacterium) and Bacteroidota (e.g., Bacte-
roides, Alistipes, Prevotella) dominate, followed by Actino-
mycetota (e.g., Bifidobacterium, Collinsella) and Pseudomon-
adota (e.g., Escherichia). These are accompanied to a much 
lesser extent by other phyla such as Synergistota, Verrucomi-
crobiota, Fusobacteriota, and Methanobacteriota [2–4].

Over the last decade, the gut microbiota has emerged as 
a key regulator of several physiological functions such as 
immunity, metabolic homeostasis, and inflammation [5–7]. 
Knowledge of the role of the gut microbiota, its develop-
ment, and host-microbial interactions in human health and 
disease has rapidly increased due to the advancement of 
modern molecular technologies. In particular, the standard-
ization of sampling methods, the depth of genomic analy-
sis, and the increasing biostatistical power of analyses have 
enabled us to describe the composition of the microbiota in 
more detail and understand more of its functions [8].

As in other chronic diseases, numerous studies in chronic 
kidney disease (CKD) have focused on the communication 
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between microbes and the host [9]. However, the role of dys-
biosis in the progression and cause of CKD is controversial 
[10, 11]. Whether dysbiosis itself is one of the initial causes 
or the consequence of CKD remains a topic of debate. The 
majority of studies are observational, limiting the ability 
to demonstrate causality and thus constraining therapeutic 
options. It is difficult to distinguish between features that are 
purely attributable to CKD and those that may be biased by 
environmental, dietary, and comorbidity-associated factors. 
To address the question of causality, most studies have been 
based mainly on experimental data. The use of fecal micro-
biota transfer (FMT) from CKD donors into germ-free ani-
mals may provide partial answers to this question [12, 13]. 
However, to translate these findings to humans and develop 
appropriate therapies, clinical studies are warranted.

In adults, CKD is mainly driven by diabetes and arterial 
hypertension, which could influence the gut microbiota com-
position and complicate the interpretation of specific CKD 
gut microbiota signatures. These comorbidities are usually 
absent in children with CKD. Thus, in the absence of con-
founding classical risk factors, dysbiosis is expected to be 
induced largely by CKD-specific mechanisms. In contrast 
to the mature intestinal microbiota of healthy adults, which 
appear relatively stable over time, the infant’s microbiome 
only establishes and matures during the first years of life. 
Therefore, combining our knowledge of the microbiota in 
children and adults with CKD could be an opportunity to 
highlight microbiota signatures specific to CKD and poten-
tially identify therapeutic targets independent of confound-
ing factors.

The aim of this review is multifaceted: first, to provide an 
overview of key differences of gut microbiota development 
in healthy life as compared to individuals with CKD, both 
in adult and pediatric stages. Of note, we aim to emphasize 
the role of host-related and environmental factors as poten-
tial confounding variables and describe quality standards for 
microbiota analysis. Second, we explore how these insights 
can inform the identification of new therapeutic targets, par-
ticularly by clarifying the potential role of gut microbiota in 
CKD-related pathophysiology.

The healthy gut microbiome 
across the lifespan

Aging significantly influences gut microbial communities, 
and recent research on the evolution of the gut microbiota 
across large populations, from newborns to elderly individu-
als, has highlighted various trajectories of the microbiota 
throughout the human lifespan (Fig. 1). The functions of 
the gut microbiome significantly impact childhood develop-
ment. In contrast to the relatively stable intestinal microbiota 
found in healthy adults, an infant’s microbiome evolves and 

matures throughout the early years of life [14, 15]. There-
fore, understanding the mechanisms that establish and sus-
tain a healthy microbiota composition is crucial. This is par-
ticularly important during the immediate postnatal and early 
infant periods when initial bacterial colonization occurs and 
the microbiota undergoes dynamic changes.

Of note, there is an ongoing discussion about when 
exactly first microbial colonization occurs. Although many 
studies have reported gut microbial colonization before 
birth, more recent investigations convincingly demonstrated 
that gut colonization does not occur in healthy fetuses before 
birth [17, 18]. The previous reports are likely the result of 
contamination between sample collection and processing, 
illustrating common pitfalls in the microbial analysis of low-
biomass specimens [19].

The early development and maturation of the gut micro-
biota are highly dynamic processes influenced by various 
perinatal conditions, including external factors (e.g., mode 
of delivery, type of feeding, antibiotic use, lifestyle, and 
geographic factors) and host factors [20]. The majority of 
studies have focused on the human gut microbiota in indi-
viduals from 0 to 3 years of age and in adulthood and the 

Fig. 1  Development of the gut microbiome in health and CKD. The 
developing gut microbiome undergoes distinct phases in early child-
hood (adapted from Stewart et al. [16]). The developmental (I, 3–14 
months) and transitional phase (II, 15–30 months) are characterized 
by an increase in microbiome diversity and richness with key micro-
biota developing in response to dietary modifications end environ-
mental interactions. By the age of 30 months, the composition of the 
microbiome remains relatively stable over decades in healthy indi-
viduals (III, > 30 months). Irrespective of the time of onset, CKD 
is characterized by a reduction in alpha diversity developing side by 
side with a loss of saccharolytic bacteria and a bloom of Proteobacte-
ria and pathobionts
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elderly, but very few in children from 3 to 18 years old, pos-
sibly due to difficulties obtaining samples commonly linked 
to ethical/practical issues particularly around puberty [21, 
22]. Based on these difficulties, during the first 3 years of 
life, the majority of the studies have revealed common pat-
terns of development across different countries [21, 22]. 
The microbiota develops from the initial inoculum, which 
is poor in microbial community structure and diversity, to a 
complex and diverse ecosystem during the first years of life. 
Over time, additional bacteria are incorporated generating 
an increasingly diverse bacterial ecosystem with significant 
resilience to exogenous perturbations [23]. Based on a large 
study including 903 infants from Germany, Finland, Swe-
den, and the USA, three distinct phases of gut microbiota 
development have been identified based on the dynamics 
of the most abundant phyla (Actinobacteria, Bacteroi-
detes, Firmicutes, Proteobacteria, and Verrucomicrobia) 
and changes in alpha diversity (i.e., microbial richness and 
balance, indicating ecosystem health) [16]. The phases are 
as follows (Fig. 1): a developmental phase (months 3–14) 
dominated by Bifidobacterium and further characterized by 
gradual changes in all detected phyla and a steady increase 
of alpha diversity (richness and Shannon’s diversity), a 
transitional phase (months 15–30) where only Bacteroi-
detes (further enrichment) and Proteobacteria (reduction) 
continue to develop while alpha diversity continues to grow, 
and a stable phase (31 months and beyond) where both the 
present phyla and alpha diversity stabilize. During the devel-
opmental phase, Bifidobacterium spp. dominate, whereas 
the stable phase features higher bacterial diversity with a 
predominance of Firmicutes. Even though the microbiota 
had acquired a configuration similar to that of the adult at 
the age of 5, it still has a lower community richness and 
lacks certain essential taxa at 5 years old present in the adult 
microbiota such as Methanobrevibacter and Christensenel-
laceae [24].These late colonizers correlate with increased 
alpha diversity in both children and adults [24]. It is impor-
tant to note that these studies also confirm that children have 
individual dynamics in the gut microbiota development tra-
jectory. All of this suggests that the complete maturation of 
the gut microbiota may take longer, particularly for certain 
microbial members. At the other end of the lifespan, most 
studies on patients over 65 years old have shown a decrease 
in both alpha and beta diversity (i.e., differences in microbial 
composition) compared to healthy adults [25]. While dif-
ferences in taxonomic composition and functional potential 
varied across studies, Akkermansia was consistently found 
to be relatively more abundant in the elderly, whereas Fae-
calibacterium, Bacteroidaceae, and Lachnospiraceae were 
relatively reduced [25]. The cross-sectional design of these 
studies limits definitive interpretations, highlighting the need 
for more longitudinal research in this population.

In conclusion, the early postnatal colonization process 
is vital for establishing the long-term composition of the 
microbiota, which in turn influences immune system matu-
ration, brain development, and overall body growth [22]. 
Increasing evidence suggests that alterations in the micro-
biota during this critical period are linked to negative health 
outcomes [26]. In particular, based on experiments involv-
ing fecal transplantation from young to aged animals [27], 
it is now evident that gut microbes and their metabolites 
(some of which can cross the blood–brain barrier) actively 
contribute to neurodevelopmental processes. These include 
the establishment of the blood–brain barrier, neurogenesis, 
microglial maturation, and myelination, profoundly influenc-
ing the transcriptional programming of several key brain 
regions as summarize by Dash et al. [28]. This highlights 
the importance of understanding the factors that can disrupt 
this maturation, as a healthy juvenile microbiota could be a 
promising target for preventing cardiovascular and degen-
erative diseases [27, 29]. However, there are currently no 
extensive studies exploring the relationship between gut 
microbiota dynamics and the incidence of CKD.

CKD gut microbiota studies

Gut microbiota composition in adults and children 
with CKD

For the past 15 years, accumulating studies have consist-
ently shown differences in the microbiome of patients with 
CKD compared to that of healthy individuals. To illustrate 
this, we have summarized in Table 1 original studies pub-
lished in English that primarily focused on alterations in 
keystone taxa and/or diversity in children and adults with 
CKD at various stages. Studies were excluded if they lacked 
a control group without kidney dysfunction or did not report 
eGFR values (except for patients on dialysis). However, 
these studies are largely limited by small sample sizes (fewer 
than 100 patients) and often rely on basic microbiota analy-
sis techniques, such as 16S rRNA sequencing. Furthermore, 
most do not adhere to recently proposed guidelines designed 
to ensure accurate analysis and interpretation of microbiota 
composition [9]. Key requirements include fecal sample-
specific parameters, such as the time since the last defecation 
and the Bristol Stool Form Scale, as well as the standardized 
collection of metadata, including treatment regimens and 
dietary habits. Additionally, the adoption of absolute micro-
biome quantification methods, as described by Vandeputte 
et al. [30], is strongly encouraged to significantly enhance 
the interpretability of microbiome changes.

Many studies observed a decrease in alpha diversity 
compared to healthy controls (Fig. 1). Almost all studies 
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highlighted a difference in beta diversity, showing distinct 
bacterial compositions in CKD as compared to healthy con-
trols [9, 48]. In terms of taxonomy, an increased abundance 
of the phyla Proteobacteria and Fusobacteria and the gen-
era Escherichia Shigella, Desulfovibrio, and Streptococcus, 
along with a lower abundance of the genera Roseburia, Fae-
calibacterium, Pyramidobacter, and Prevotella, have been 
observed frequently in adult patients with CKD. In children, 
although the number of studies is even more limited, the 
majority observed an increase in the phylum Proteobacte-
ria and genera Bacteroidaceae and a decrease in the genera 
Faecalibacterium and Bifidobacterium [49].

Based on these studies however, it is difficult to draw 
conclusions on specific gut microbiota modifications caused 
by CKD due to large variation in patient age at stool sample 
collection, different microbiological profiling methods, and 
inadequate control for potential confounders such as diet, 
physical activity, medical treatment, and comorbidities [49]. 
Also, most of the studies relied on amplicon sequencing that 
can characterize the gut microbiota at the genus level only 
and had limited sample size (< 100), primarily focusing on 
patients with kidney failure.

Although the differences in CKD patients may distinguish 
patients from heathy individuals, its usefulness as a bio-
marker has yet to be demonstrated. One study has shown that 
gut microbiota can discriminate cases of different severities 
from controls. These strategies were proven in a cohort of 
110 patients, using a control cohort and external validation 
[40]. However, while the KFRE (Kidney Failure Risk Equa-
tion) is clearly more powerful in discriminating severity, 
the key question is if microbiota composition may predict 
progression of CKD or CKD-related comorbidities, which 
would provide additional value to classical markers of kid-
ney function. Until now however, no studies have addressed 
this issue either in adult or pediatric patients, and future 
studies would have to consider the large inter-individual and 
geographical variability of the microbiome.

Gut‑derived metabolites in adults and children 
with CKD

The gut bacterial community plays a crucial role in regulat-
ing various aspects of metabolic disorders and subsequently 
also immunity through the production of a diverse array of 
metabolites. These bacterial metabolites range from small 
molecules to large macromolecules and include byprod-
ucts of bacterial metabolism, such as short-chain fatty 
acids (SCFAs) and molecules derived from aromatic amino 
acids (e.g., phenol and indole) or choline (trimethylamine 
N-oxide, TMAO). Additionally, complex macromolecules 
essential for bacterial integrity, such as peptidoglycan and 
lipopolysaccharides (LPS), are involved in these interactions 
[50–52].Ta

bl
e 

1 
 (c

on
tin

ue
d)

CK
D

 st
ag

e
St

ud
y 

po
pu

la
-

tio
n 

CK
D

 
(c

on
tro

l)

C
ou

nt
ry

M
ea

n 
ag

e 
(y

ea
rs

)
M

ea
n 

eG
FR

 (m
l/

m
in

/1
.7

3 
 m

2 )
Pr

ofi
lin

g 
m

et
ho

ds
A

lp
ha

 d
iv

er
si

ty
K

ey
 g

ut
-m

ic
ro

bi
ot

a 
m

et
ab

ol
ite

s
K

ey
 g

ut
 m

ic
ro

bi
ot

a 
co

m
po

si
tio

n 
(c

om
-

pa
re

d 
to

 c
on

tro
l)

Re
f

2–
4

72
 (2

0)
Ta

iw
an

63
.9

59
.9

Sh
ot

gu
n

↓
C

or
re

la
tio

n 
an

al
ys

es
 

am
on

g 
sy

ste
m

s-
le

ve
l 

m
ic

ro
bi

om
e,

 se
ru

m
 

m
et

ab
ol

om
e 

an
d 

im
m

un
e 

pa
ra

m
et

er
s 

re
ve

al
ed

 c
oo

rd
in

at
ed

 
ho

st–
m

ic
ro

be
 re

la
-

tio
ns

hi
ps

 in
 C

K
D

, 
in

cl
ud

in
g 

a 
ro

le
 o

f 
gu

t-d
er

iv
ed

 tr
yp

to
-

ph
an

 m
et

ab
ol

is
m

 
in

 B
 c

el
l i

m
m

un
ity

 
du

rin
g 

ki
dn

ey
 

im
pa

irm
en

t

↑A
bu

nd
an

ce
 o

f 
ca

rb
oh

yd
ra

te
 a

ct
iv

e 
en

zy
m

e 
(C

A
Zy

m
e)

 
ge

ne
s i

n 
gu

t

[4
7]

16
 s

RN
A 

16
S 

rib
os

om
al

 R
N

A
, C

K
D

 c
hr

on
ic

 k
id

ne
y 

di
se

as
e,

 D
M

A 
di

m
et

hy
la

m
in

e,
 e

G
FR

 e
sti

m
at

ed
 g

lo
m

er
ul

ar
 fi

ltr
at

io
n 

ra
te

, H
D

 h
em

od
ia

ly
si

s, 
IS

 in
do

xy
l s

ul
fa

te
, L

PS
 li

po
po

ly
sa

cc
ha

rid
e,

 N
D

 
no

 d
at

a,
 P

C
S 

p-
cr

es
yl

 su
lfa

te
, P

D
 p

er
ito

ne
al

 d
ia

ly
si

s, 
SC

FA
 sh

or
t-c

ha
in

 fa
tty

 a
ci

ds
, T

M
AO

 tr
im

et
hy

la
m

in
e 

N
-o

xi
de



Pediatric Nephrology 

Molecules typically excreted by healthy kidneys into the 
urine but retained in the body due to impaired kidney func-
tion are referred to as uremic retention molecules. Among 
these, those that induce detrimental clinical, biochemical, 
or biological effects are classified as uremic toxins. Across 
studies, the progression of CKD has consistently been linked 
to significant changes in gut-derived compounds, character-
ized by an accumulation of indoles, phenols, and TMAO 
(thus fitting the definition of uremic toxins), along with a 
reduction in SCFAs [53]. However, the serum concentration 
of these metabolites may not only reflect gut production. 
High levels of gut-derived compounds may also result from 
reduced kidney clearance and increased intestinal perme-
ability [54]. There are discrepancies regarding the specific 
contribution of gut microbiota to the significant increase in 
plasma uremic toxin levels. Gryp and colleagues [10] did not 
observe an increase in uremic precursor levels in fecal sam-
ples from CKD patients compared to healthy individuals, 
concluding that the elevation in plasma uremic toxins con-
centrations is largely due to decreased kidney function. Con-
versely, Wang and colleagues found a correlation in CKD 
patients between fecal uremic toxins precursors and plasma 
uremic toxins concentrations, as well as the abundance of 
genes encoding uremic toxin-synthesizing enzymes in the 
gut microbiota [12]. These differences may be attributed to 
varying methodological approaches but also highlight that 
both increased metabolite production and decreased kidney 
clearance are likely to contribute to the accumulation of det-
rimental microbial metabolites in CKD. Although data are 
very limited for children, a recent publication supports the 
role of enhanced microbial production in the accumulation 
of the uremic toxin TMAO [55].

Additionally, the presence of genes in the microbiota does 
not consider post-translational modifications. For example, 
sulfation of gut microbiota tryptophanase could reduce the 
activity of these enzymes [56]. Therefore, global studies 
combining dynamic and deep functional analysis of the gut 
are needed to determine the influence of the gut in all adults 
and children with CKD. By “dynamic analysis,” we refer 
to in vitro systems that facilitate real-time measurement of 
microbial activity, interactions under varying conditions, 
and the effects of post-translational modifications. “Deep 
functional analysis” entails detailed investigations using 
shotgun metagenomic approaches to examine microbial 
genes, pathways, and their functions, providing a compre-
hensive understanding of their roles in disease.

Another question is whether age influences plasma gut 
microbiota-derived metabolite concentrations, which is dif-
ficult to investigate. Substantial differences can be expected 
compared to adults, since children have larger body water 
volumes and lower circulating proteins, higher protein and 
caloric needs per kilogram of body weight, a different pat-
tern of underlying kidney disease, and maturational changes 

in organic solute transport at the proximal tubule, along 
with significant modifications of gut microbiota [57]. To 
investigate this, in a large study of children with CKD (n = 
609) and on hemodialysis (n = 170) [58], age was found 
to contribute to plasma-bound uremic toxins (PBUTs) such 
as p-cresyl sulfate (PCS) and indoxyl sulfate (IS) levels, as 
previously demonstrated in the adult CKD population [59]. 
Remarkably, while age-dependency of IS and PCS was also 
found in healthy adults, no positive correlation between age 
and PBUTs in healthy children was found, suggesting a dif-
ferent basis of age-dependency of PBUTs in adults versus 
children [60, 61]. Therefore, it is unlikely that the distribu-
tion, inter-compartmental clearance, removal pattern dur-
ing dialysis, and retention profile of uremic toxins would 
be identical to those in adults [57]. All of this confirms that 
we cannot simply transpose data on the distribution of ure-
mic toxins from adults to children, and specific studies are 
needed.

The gut microbiome as a modifiable risk factor 
and treatment target in CKD

Microbial metabolites are known to associate with comor-
bidities in CKD, such as cardiovascular disease [58, 62]. 
Animal models have established a functional relationship 
between accumulated metabolites (IS, PCS, TMAO) and 
cardiovascular disease [63–65], suggesting that modulating 
the microbiome in CKD could be a promising therapeutic 
target to dampen not only CKD progression but also the 
burden of frequent and life-limiting comorbidities.

Looking at clinically established procedures, such inter-
ventions (summarized in Fig. 2) include dietary changes 
[66], such as high fiber diet, but also more specific strategies, 
i.e., prebiotics (nonviable dietary substances that modulate 
the microbiota) [67], probiotics (live microorganisms) [68, 
69], postbiotics (bacterial metabolites) [70], and synbiotics 

Fig. 2  Microbiome-targeting therapies to attenuate progression of 
CKD-related comorbidities. Various therapeutic interventions have 
been investigated or are under development to modulate the com-
position and the functional properties of the gut microbiota in CKD 
(including antibiotics, pre-/pro- and synbiotics as well as microbiota 
transfer). In addition, the clearance of toxic metabolites, which accu-
mulate because of impaired kidney function by intensifying dialysis 
or reducing the uptake, as well as the supplementation of beneficial 
metabolites (postbiotics) are promising strategies
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(a combination of prebiotics and probiotics) [71]. Numerous 
proof-of-concept studies attest to the potential benefits of 
probiotics and prebiotics consumption in modulating the gut 
microbiota of CKD patients [67, 69, 72]. However, a recent 
meta-analysis found limited evidence supporting biotic sup-
plementation in adult CKD management, likely due to the 
empirical selection of both prebiotic and probiotic strains, 
guided by their effects in other diseases or the use of avail-
able strains, rather than systematic scientific investigation 
[73]. The key question is how to select appropriate strains 
to limit kidney function degradation.

Studies consistently demonstrate that the survival, safety, 
and efficacy of probiotic candidates are both strain-specific 
and disease-specific, meaning their benefits cannot be gen-
eralized [67, 69, 72, 73]. For instance, strains with urease 
activity can increase the production of  NH3/NH4OH, which 
damages epithelial tight junctions and may allow endotoxins 
and uremic toxins to enter the bloodstream. To address such 
challenges, regulatory agencies have established guidelines 
for evaluating new probiotic or synbiotic candidates. These 
guidelines incorporate in silico, ex vivo, and in vivo stud-
ies, with genomics serving as a key tool for rapid screen-
ing [74]. However, these advanced approaches have not 
yet been applied in the context of CKD. In the meantime, 
other approaches have been proposed. For example, Li et al. 
reported that Faecalibacterium prausnitzii depletion in CKD 
patients was associated with impaired kidney function, and 
supplementation improved outcomes [75]. Similarly, Zhu 
et al. demonstrated that Lactobacillus casei Zhang, selected 
for its immune-modulating properties, enhanced SCFA 
levels and improved kidney function in CKD patients [76]. 
These findings highlight the need for a more rigorous and 
standardized process in probiotic research, particularly for 
CKD, to ensure the effective selection and application of 
strains. Also, considering the high inter-individual differ-
ences in the microbiota, one could speculate that designing 
individual combinations of pre- and probiotics may be more 
effective. However, reliable biomarkers to select individual 
regimens are still lacking and will be of interest in future 
studies. For children with CKD, it remains to be elucidated 
whether microbiome-targeted approaches are effective in 
pediatric CKD given the lack of rigorous study [77].

An alternative approach focuses on targeting specific gut 
bacterial enzymes with inhibitors. For instance, the small 
molecule 3,3-dimethyl-1-butanol (DMB), which mimics the 
structure of choline, functions as a potent inhibitor of TMA 
lyase. By blocking the activity of TMA lyase, DMB signifi-
cantly reduces the production of TMA and subsequently the 
formation of the deleterious metabolite TMAO [78].

In experimental animal and preliminary clinical stud-
ies, other methods to influence the microbiota or the sys-
temic concentrations of bacterial metabolites show prom-
ising results. These include deeper manipulation of the 

microbiome by antibiotic depletion, as carried out in many 
animal models [79] and in small cohorts of patients with 
kidney failure [80], or complete transfer of a different 
microbiome by FMT. Experimental data suggest that FMT 
is efficient to reduce uremic toxins production but the clini-
cal impact must be demonstrated in patients with CKD [13, 
81]. Some recent studies are encouraging, as it was recently 
shown that FMT promotes tolerance to stem cell transplan-
tation by induction of regulatory immunity [82]—an effect 
that might also be beneficial in CKD to lower the established 
inflammatory burden that is known to contribute to disease 
progression and comorbidities [83].

In another approach, spherical carbon adsorbent (e.g., 
AST- 120) was administered orally to patients with CKD to 
lower the intestinal uptake of uremic toxins. Although there 
were no serious side effects, strong evidence on the effec-
tiveness of oral adsorbents is still lacking and has not been 
tested in the pediatric population [84]. Further improve-
ments of this approach are on the way, mainly aiming at 
a more selective and effective absorption of uremic toxin 
precursors in the gut [85]. As most of the circulating uremic 
toxins are bound to plasma proteins, the removal of PBUT 
remains challenging [86], but could be improved by novel 
adsorption-based hemodialysis technologies [87].

Taken together, these interventions might extend the set 
of tools to modulate the gut microbiota and uremic toxin 
burden and its effects on the host and could significantly 
enhance patient care in the future. Until then, however, thor-
ough large-scale clinical studies of patients with CKD of 
multiple age ranges will have to be carried out to test their 
feasibility, safety and efficacy.

Gut microbiome and CKD: lessons to be 
learned for children and adults

Gut‑kidney axis across the lifespan—changes 
in the microbiome as a predictor of long‑term 
kidney outcome?

Much of our knowledge about the structure, function, and 
dynamics of the human gut microbiome is generally based 
on cross-sectional or short-term longitudinal studies [88]. 
It was evidenced, however, that insults early in life can 
lead to kidney reprogramming that is known to contribute 
to CKD development later in life [89]. Various hypoth-
eses were proposed to explain this phenomenon, includ-
ing the thrifty phenotype hypothesis, predictive adaptive 
responses, and the catch-up growth hypothesis [90]. After 
birth, the development of the microbiome is highly diverse 
and depends on a plethora of factors that include, amongst 
others, nutritional factors, such as breastfeeding [91]. 
Recent data suggest that early lifestyle, medical conditions, 
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and diet impact the microbiome not only for a short period 
of time but rather shape the microbiome for decades, if not 
even the rest of life [92]. It is, hence, tempting to speculate 
whether early alterations of the microbiome may contrib-
ute to the development of chronic diseases associated with 
dysbiotic microbiota, especially CKD, later in life. Not-
withstanding, longitudinal studies backing such associa-
tions are lacking and will also have to be supplemented by 
mechanistic analyses.

Exploring the causality further: the egg 
or the chicken?

Both adult patients and children with CKD present dif-
ferent advantages and limitations for studying the direct 
impact of the disease on gut microbiota, as summarized in 
Fig. 3. Growth and puberty, unique to pediatric patients, 
significantly influence gut microbiota composition. While 
CKD in children is primarily due to congenital anomalies 
of the kidney and urinary tract (CAKUT) and hereditary 
kidney diseases [93], kidney failure in adults is mainly 
caused by conditions such as glomerulopathies (e.g., dia-
betic nephropathy, hypertension) and autosomal dominant 
polycystic kidney disease [1], with hypertension and diabe-
tes also strongly influencing the gut microbiota [94]. Given 
that kidney organic anion transporters play a critical role 
in determining PBUTs plasma levels in CKD, tubulopa-
thies could strongly modify uremic toxin metabolism and 
may, therefore, limit applicability of results from affected 

patients to patients with other underlying primary condi-
tion [95].

By combining a comparative approach (between “young” 
and “old”) that balances the limitations of both populations, 
we may determine which key bacterial taxa prevent or pro-
mote disease onset. For example, patients with CKD (both 
children and adults) demonstrate a noticeable reduction in 
the abundance of bacteria responsible for generating SCFAs, 
such as Faecalibacterium prausnitzii, which is associated 
with low fecal concentrations of butyrate [75, 96]. SCFAs 
are instrumental in maintaining intestinal mucosal integrity, 
regulating metabolism, controlling energy expenditure, and 
modulating the immune system [97]. These data suggest that 
these bacteria, or their metabolites (such as butyrate), could 
be promising therapeutic targets in CKD, as suggested by 
preclinical data, where Faecalibacterium prausnitzii and 
butyrate improve kidney function [75, 76, 98].

So far, most studies focus on the impact of the microbi-
ome on the host. It may, however, be short-sighted to omit 
the bi-directionality of microbiota-host interaction and 
recent data pinpoint that host factors, and not only exog-
enous determinants like diet, medication and environment, 
also shape the microbiome. In CKD, the accumulation of 
urea was proposed to contribute to the altered proteolysis-
skewed fermentation pattern that favors the production of 
gut-derived uremic toxins by increasing the intestinal pH 
[54, 77, 99]. Moreover, inflammation and cardiovascular 
events, potentially also via inflammatory activation, were 
shown to significantly alter the microbiome. Experimental 
myocardial infarction in mice led to a depletion of Lactoba-
cillus and Prevotella [100]—features also known in CKD 
patients [62, 77]. Beyond compositional changes, it was 
demonstrated that loss of the cytokines IL-22 or IL-23 pro-
pels TMAO production in mice and can thereby aggravate 
the cardiovascular phenotype [101]. Considering that both 
inflammation and cardiovascular disease are highly prevalent 
in CKD, future studies will have to delineate if these find-
ings are also applicable in CKD and may pave the way to 
a deeper understanding of dysbiosis development in CKD 
and subsequent identification of novel therapeutic targets.

Improving and refining our main objectives for gut 
microbiota research

Microbiome research forms a rapidly growing field and 
has provided many compelling and insightful studies in 
recent years. Notwithstanding, the complexity of micro-
biome-host interactions has left many gaps of knowledge 
thus far and especially obscures the identification of spe-
cific mechanisms impacting how the microbiome impacts 
host health. Moreover, the primary endpoints of studies 
in children and adults with CKD differ significantly. The 
low mortality rates in children with CKD [102] make 

Fig. 3  Pediatric and adult studies on CKD. The fundamental dif-
ferences between pediatric and adult CKD studies are summarized, 
illustrating the dominant role of host and genetic factors in pediat-
ric CKD in comparison to environmental factors and comorbidities 
characterizing adult CKD. Specific advantages, potential pitfalls, and 
obstacles are highlighted for studies in both pediatric and adult CKD 
patients
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using mortality as a primary endpoint in pediatric studies 
less relevant or at least insufficient. In contrast, endpoints 
such as neurocognition, brain development, and growth, 
which are less studied in adults, are particularly relevant 
for children. Based on these observations, several stud-
ies in recent years have explored the association between 
plasma gut-derived metabolites and patient-centered out-
comes (i.e., quality of life, symptom severity, and treat-
ment satisfaction) in patients CKD [103–105], but more 
research is needed, particularly regarding psychological 
outcomes. Similar studies should be conducted to explore 
the association between gut microbiota composition and 
psychological aspects.

In the adult population, there is increasing knowledge 
about the relevant contribution of microbial dysbiosis on 
health and disease [106, 107]. In line with the high inci-
dence and prevalence of CKD and CKD-related comor-
bidities in adults, interventional studies need to address 
hard clinical endpoints in addition to reporting of benefi-
cial effects of microbiome-centered therapies on the host 
metabolism [108]. On the other hand, studies in pediatric 
patients might be more effective in deciphering the CKD-
specific interplay between the gut microbiome and host 
metabolism and immunity, as confounding comorbidities 
are usually absent. The assessment of early cardiovascular 
damage, for instance carotid intima-media thickness and 
pulse wave velocity, can provide additional information on 
the CKD-specific toxicity on the cardiovascular systems in 
children with CKD [58].

Concerning growth, it is now widely accepted that 
disturbances in gut microbiota development, particularly 
during the first 2 years of life, can affect growth trajec-
tories [109]. The absence of gut microbiota or dysbio-
sis negatively impacts circulating levels of Insulin-like 
Growth Factor 1 (IGF-1) in germ-free mice [110]. Micro-
bial stimulation supports the activity of the somatotropic 
axis in juveniles by improving the growth hormone (GH) 
sensitivity of peripheral tissues and increasing circulating 
levels of IGF-1. In CKD, a state of GH/IGF-1 resistance 
is well known and primarily results in growth disorders 
in children [110]. However, consequences of GH/IGF-1 
resistance in adults with CKD are equally severe, lead-
ing to muscle atrophy, protein energy wasting, and lower 
bone density, all correlated with cardiovascular events and 
mortality, underscoring its central role in CKD pathol-
ogy [111, 112]. However, the role of gut microbiota in 
this pathophysiological pathway was not studied in adults 
until now. Therefore, a better understanding of the role of 
gut microbiota in GH/IGF-1 resistance in children could 
help maintain nutritional status and regular growth in 
this specific population and should be translated to adults 
with CKD to investigate its potential importance for severe 
CKD-associated comorbidities.

Conclusion

This review highlights a significant gap in knowledge 
regarding the intestinal microbiota in CKD, particularly in 
the pediatric population, where studies are often limited by 
small sample sizes and a lack of depth in analyses and bioin-
formatics tools. This insufficient understanding has resulted 
in the empirical use of therapeutic strategies to modulate the 
microbiota. It is important to note, as children have several 
peculiarities, the translation of adult knowledge on uremic 
toxic production and gut microbiota composition to child-
hood might be skewed. On the other hand, we are convinced 
that gut microbiota research in the pediatric population com-
prises additive value in clinically elucidating the intrinsic 
toxicity of gut microbiota for all CKD patients including 
adults and the elderly. Subsequently, better understanding of 
gut microbiota toxicity by gut microbiota-derived metabo-
lites offers a robust pathophysiological underpinning for the 
development of novel dietary and pharmacological inter-
ventions, with the goal not only to improve the health of 
patients with CKD but, hopefully, also prevent its progres-
sion to kidney failure.
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