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1 Abstract

Reliable estimation of cell state velocities (in gene expression space) has been largely hindered by
model presumptions which may not be true for all genes, followed by a highly inaccurate proce-
dure of inference of the assumed model parameters and visualization artifacts. Here we introduce
Exovelo, a velocity estimation method without the conventional gene-wise parameter fitting step
that actually allows de novo learning about the single-cell dynamics of cell differentiation beyond
geometrically inferred pseudotime methods. By adapting an appropriate data rescaling, Exovelo
makes the distributions of current and future cell state estimates to overlap, then visualizes the
expected cell state displacement in a joint embedding. Exovelo estimates velocities from pairs of
single-cell unspliced-spliced or metabolically unlabeled-labeled mRNA data, as we demonstrate
on simulation as well as datasets form cell-cycle and hematopiesis.
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2 Main

In the universe of single cell RNA sequencing (scRNAseq) every cell can only be sequenced
once and it is destroyed in the process. Consequently an individual cell state’s velocity cannot
be directly observed. However current sequencing techniques can distinguish between different
species of transcripts (spliced vs unspliced, or labeled vs unlabeled) and that distinction conveys
temporal information about the RNA transcript’s unique molecular identifier (UMI). The first
single-cell rna velocity estimation method was introduced by [1], with several follow-up methods
as well as critical views on the existing methodology [2, 3].

In this paper cell state refers to, depending on context, either the vector raw of RNA transcripts of
a cell, or to some transformation of it which may include some or all of the following stages: gene
selection, normalization, rescaling and log—transformation, PCA or some other linear dimensional
reduction. Cell state velocity or RNA welocity is the (estimated) vector with direction and
magnitude of change of a cell state, or the displacement in a cell state over a short time interval.

Current scRNAseq technologies in conjunction with tools such as Velocyto [1] allow the calling
of each UMI as (likely) spliced or unspliced. Unspliced RNA, also referred as precursor mRNA,
is converted to spliced RNA which is the final, mature form of the transcript by the process of
splicing. Under the assumption that splicing half life is significantly shorter than the mature
RNA half life, an unspliced RNA transcript is very likely to be newer than any spliced transcript.

The second type of quantification is made possible by metabolic labeling [1] in conjunction with
tools such as Dynast [5] . Without delving into the technical details of this techniques, the end
result is that each UMI in the dataset is either ’labeled’ or 'unlabeled’ where labeled implies that
the molecule had been transcribed within a known time interval before sequencing (the labeling
time interval), and an unlabeled molecule must had been transcribed prior to labeling start.
Labeled molecules are also called 'new RNA’ and unlabeled ones are called 'old RNA’.

Since the inception of the RNA velocity field by [I] a number of inference methods and their
associated tools have arisen. Most notable examples to our knowledge are Velocyto [1], scVelo [6],
VeloVAE [7], Dynamo [8] and k-velo / eco-velo [2]. With the exception eco-velo, all the other
models have an explicit underlying assumption that the dynamics of spliced and unspliced RNA
(and for the tools which also infer with labeled data, old and new RNA), follow a system of
ordinary differential equations (ODE) with fixed kinetic rate parameters. Some of these models
may add additional constraints such as on the number of switches a gene can undergo in a
dataset. In ”Eco-velo” there is no parameter fitting, however it has an underlying assumption
that degradation rate v equals splicing rate 8 and under this assumption unspliced RNA is
proportional to spliced RNA from 1/+ time units in the past. Moreover, Ecovelo similar to the
previous methods, treats velocities as ”arrows” rather than vectors with defined direction as well
as magnitude.

Here we propose ”Exovelo” which advances the parameter-free inference concept to a mature
tool ready for practical use. In the metabolic labeling case Exovelo normalized and scales the
total R and old O RNA so that after proper transformation O(t) = R(t — dt) where R,O are
the transformed, scaled modalities, t is the unknown latent time, and dt is the labeling time.
Similarly in the spliced/unspliced case Exovelo transforms and scales the spliced S and total R
modalities so that S(¢t) = R(t — dt). In this case dt is related to splicing half life but is not
exactly known.
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For visualizing the inferred velocity (more correctly displacement over an implicit or explicit
time interval) Exovelo creates joint embedding (JE) which is in our view the most faithful
visualization method, but also can create neighbor based which in our experiments produces
qualitatively similar results to JE (figure 1 a-d).

If we assume a diffusion-drift model for cell differentiation as proposed for example in [9], Exovelo
can optionally utilize that assumption to infer the drift component. To that end it uses a cell’s
neighbors velocities as a sample set for possible velocities the cell could have in order to infer
a mean field velocity for each cell representative of its drift component. Similarly the diffusion
magnitude can be estimated by calculating the variance of neighbouring cells velocities (figure
le).

In the following, we tested Exovelo on simulated data where ground truth is known and confirmed
it infers correct velocities even in a case where it cannot be done with kinetic parameter inference
using scVelo. Our test on the human retinal pigment epithelial-1 (RPE-1) dataset from Battich
et. al [10] shows that Exovelo produces very similar, and biologically correct results when used on
spliced /total and on unlabeled /total modalities, supporting the feasibility of Exovelo on datasets
which only have the splicing information and are not metabolically labeled. Finally we tested
Exovelo on bone marrow dataset [11] which is more challenging. We argue that even in this
case and considering the asymmetric differentiation and multiple possible differentiation paths
of hematopoietic stem cells Exovelo infers biologically relevant cell state velocities.
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Figure 1: Schematic summary of Exovelo methodology. (1a) Bimodal high dimensional unscaled
data. (1b) Rescaled high dimensional data. (1c) Mean field velocities based on neighbor
estimation (see also le). (1d) Reduced dimension visualization by joint embedding.
(le) Assuming that each cell and its estimated displacement is sampled from one single
trajectory, mean of displacement vectors of a cell’s neighbors approximates its drift
component, and their variance approximates its diffusion magnitude.
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3 Results

3.1 Simulated trajectory dataset

We tested Exovelo on simulated data where ground truth of time and splicing modalities are
known. The data comprises from a set of trajectories which all share the basic transcription
state at each time point but differ by random diffusion and random variations in the rates of
transcription degradation and splicing. In figure 2a — b we illustrate how per gene rescaling of
the two modalities can capture the shift between the current and future state of the cell both
in upregulation and downregulation phases of gene expression. Using the multi-dimensional
(i.e., several genes) displacement vector, Exovelo is able to infer the correct velocity direction
(figures 2c and 2d). The mean Pearson correlation coefficient between the real displacement and
inferred displacement is 0.83 for Exovelo. We also tested scVelo on the simulated data (figure 2e).
In our tests scVelo inferred the correct trajectory direction although with tiny velocities. That
was somewhat surprising given that the simulated transcription dynamics doesn’t match scVelo
assumptions with respect to constant rate parameters. In simulations where there are relatively
fast changes in gene dynamics as shown in the plots scVelo didn’t consistently infer the trajectory
direction.
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Figure 2: Simulated data of quasi-cyclical trajectory. (2a) After proper scaling, total RNA
reflects the ’future’ of spliced RNA in both its up— and its down-regulated phases.
(2b) The spliced modality shifted leftwards by splicing half life (log(2)/3) very closely
matches the ’total’ modality when 8 > ~, (v is the RNA degradation rate). The
assumption of constant rates is not a necessary requirement for Exovelo, however in
case where they are the phase difference is proportional to the splicing half-life. (2c)
JE PCA velocity plot. gray arrows: actual displacement. black: Exovelo’s estimated
displacement. The mean Pearson correlation coefficient between the two vector fields
is about 0.83. (2d) JE UMAP with inferred velocities by Exovelo shown in actual scale.
(2e) Same JE UMAP with velocities inferred and projected by scVelo. In all the quiver
plots cell time is indicated by viridis color map (purple: early, yellow : late).

3.2 RPE1 dataset

In the case of metabolically labeled data old (unlabeled) RNA is literally the remaining total
RNA from time point (¢ — dt) where t,dt are respectively the sequencing time and the labeling
duration. Exovelo applies the same method to spliced /unspliced modalities and it takes spliced
RNA is a proxy for 'old” RNA. However dt is unknown in the splicing case, and the time scale
itself varies between genes and possibly even for the same gene between cells.
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The dataset of immortalized retinal pigment (RPE1) cells from Battich et al. [12] contains infor-
mation both on splicing modalities as well as metabolic labeling with 6 labeling times. This is a
‘cell cycle’ dataset as the RPEL cells proliferate but don’t differentiate.

The cell cycle nature of the dataset is apparent in all the embeddings we tested (PCA, UMAP [13],
draw graph [14], diffusion map [15]).
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Figure 3: Cell state velocities of RPE1 cycling population. (3a) JE diffusion map with velocity
inferred from the labeling information. (3b) JE diffusion map with velocity inferred
from the splicing information. (3c¢) Inferred velocities in the labeling vs. splicing case,
shown on the first principle component with Pearson correlation coefficient of 0.9. (3d)
Vector norms of inferred cell state displacement tend to be larger with longer labeling
duration.

The main results are shown in figure 3. scVelo [6] was used for plotting of displacements inferred
by Exovelo. The results are consistent between labeling or splicing information and between
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different types of embeddings (PCA, diffusion map, UMAP, draw graph). The cells appear to
be cycling except for a subset of cells in the G1 phase which seems to be exiting the cell cycle
(perhaps to a resting g0 phase). The embedding in figures 3a and 3b were produced by joint
embedding on of the modalities which have been rescaled by Exovelo. Inferred displacement from
splicing and from labeling information show high correlation and produce similar drift directions;
figure 3¢ shows the correlation of their respective first principle components. As seen in figure 3d
inferred displacements of cells with longer labeling duration tend to have larger magnitude than
that of cells with shorter labeling time, as expected. The growth in magnitude with increasing
labeling time is sub-linear however the data had been log-transformed.

3.3 Human bonemarrow dataset

We next tested Exovelo on hematopoietic stem cells and progenitors (HSCs) dataset [11] which
has been analyzed also in [2]. Hematopoietic stem cells have proved challenging for RNA velocity
tools [8, 18]. Moreover one needs to consider what is the actual ground truth velocity and whether
it can be inferred at all in this case. HSCs are multipotent stem cells which give rise to all blood
cell types. When a mother HSC stem cells divides, its daughter cells, initially very similar to
each other, can each become any of the following cell types: 1) HSC. 2) multi potent progenitor
cell (MPP). 3) common lymphoid progenitor (CLP) 4) common myeloid progenitor (CMP).
Additionally there is a distinction between long term and short term HSCs with the latter being
more committed to differentiation. We show schematically in figure 4a, such a scenario that
cells from a similar state neighbourhoods may experience different drift forces towards multiple
directions.

HSCs are capable of self renewal. MPPs may lack self-renewal [19] but can further differentiate
into either the myeloid or lymphoid paths. MPPs (resp CLPs) are committed to the myeloid
(resp. lymphoid) path and give rise to any of the various cell types in each lineage.

Because of the self renewal capability of HSCs and the multiple possible differentiation paths the
'true’ RNA velocity field need not always be directed downstream the path of differentiation but
also in reverse (daughter cells returning into HSC stem cell state) or undetermined (velocities
in many directions cancel each other out). Clusters of cells with multiple differentiation paths
such as the 'precursor’ cell cluster may have very different transcription velocities at the single
cell velocity resolution, hence showing larger displacement variance than the more differenti-
ated downstream populations (figure 4b and 4c). We tested Exovelo on another Bone marrow
dataset [20] and observed similar patterns with larger diffusion near the pluripotent state and
larger drift downstream (figure 5 in the supplementary figures section).
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Figure 4: Hematopoietic stem cells and progenitors from human bone marrow. 4a An illustration
of cell differentiation process. A stem cell has the capacity to differentiate (by cell
division) into any 2-combination of the states which it directly connects to. 4b Velocity
variance is highest among the HSCs and tends to decline with differentiation. 4c
Exovelo JE UMAP. HSCs and precursor cells seem to be going in all sort of directions
including ”in reverse” whereas more differentiated cells tend to go further down their
branch.

4 Methods

4.1 Main concepts of Exovelo

In this section unless otherwise stated capital letters represent matrices of shape (n,m) where
rows are observations (cells) and columns are variables which depending on context are either
genes or variables in a reduced dimensions representation such as PCA. Specifically R, S,O
represent the total, unspliced, and old (unlabeled) RNA. Computations are done element-wise
unless otherwise stated. Assume for simplicity that all cells are sequenced at the same time t.
We consider the data matrices as functions of time, so that R(t) indicates the dataset at time
t. There is only information for one time point ¢ but there are 2 modalities either R(t),O(t) or
and R(t), S(t).
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4.2 Metabolic labeling case

Consider the metabolically labeled data case. Let dt be the labeling duration. Then O(t)
represents all the remaining total RNA which had been produced prior to the labeling begin at
time (¢t — dt).

O(t) = R(t — dt) exp(—T'(t)dt) (4.1)

Where I'(t) is a cell over gene matrix representing the RNA degradation rate for each cell for each
gene at time interval [t —dt, ¢]. Had there not be any degradation we would have O(t) = R(t—dt).
Exovelo seeks to transform R(t) and O(t) in a way that equation 4.1 will hold with I' = 1. If
RNA degradation rate is the same constant for all cells and for each gene in the dataset the
matrix I'(¢) becomes a (1,m) shaped constant vector . Equation 4.1 becomes:

O(t) = R(t — dt) exp(—~dt) (4.2)

In equation 4.2 every gene in O(t) is proportional to the corresponding gene in R(t — dt) with
fixed proportion O(t, g) « R(t — dt, g). In particular, the mean and standard deviation of every
gene in O(t) are proportional with the same fixed proportion to the corresponding gene’s mean
and standard deviation. Let O(t) and let R(t) be the rescaling of O(t) (resp.) R(t) so that each
gene is rescaled to 0 mean and 1 standard deviation. Then from the above discussion we have:

O(t) = R(t — dt) (4.3)

And from equation 4.3 we obtain the displacement estimation on the standardized data which is
a proxy of the RNA velocity:

V(t) = R(t) — R(t — dt) = R(t) — O(t) (4.4)

In case O, R are log transformed the proportional relation becomes a translation but after rescal-
ing (which amounts to centering followed by division by the std) equations 4.3 and 4.4 still hold
after log transformation followed by rescaling.

4.3 Splicing case

The splicing case is done exactly the same as the labeling case with S(t) used instead of O(t). In
this case dt is unknown and in principle it is different for each gene however we experimentally
observe that this approach works. Suppose that the splicing rate is greater than the degradation
rate S > 7 and in this case dt is in the order of magnitude of ~ 1/3. Under these assumptions
Any unspliced molecule from time t — dt or earlier is very likely to be spliced by time ¢ and
therefore S(t) consists substantially of all the remaining total RNA that existed at time ¢ — d¢:

S(t) = R(t — dt) exp(—dt) (4.5)

And from 4.5 the exact rescaling procedure as in the labeling case leads to:

10
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S(t) = R(t — dt) (4.6)
V(t) = R(t) — R(t — dt) = R(t) — 5(t) (4.7)

To see what is the optimal time scale dt = 7 for constant rates «, 3,7 the following rational is
use: 7 must optimize the following two conditions:

S(t) = R(t — 7) exp(—~T) (4.8a)
S(t) ~ R(t — ﬂ(%) (4.8b)

The first condition 4.8a is the same as 4.6 and the relation in the second condition 4.8b comes
from the ratios of S to R at their steady states limits. It follows therefore that:

Bt

exp(yT) = 3 (4.9)
T %log(l + %) (4.10)

~ %(%m(%)) (4.11)

~ % (4.12)

The calculation above used Taylors approximation for log(1l + «/f3) assuming that /5 is small.

4.4 Data transformation and rescaling

Let X and Y be the raw data cell over gene matrices where X represents the past modality (either
unlabeled or spliced) and Y the future modality (total RNA in either case). These undergo typical
preprocessing— filtering cells and genes with low count, sub-setting for highly variable genes etc.
and then size normalization. All these transformations preserve the proportionality of means
between X and Y. Log transformation is a subsequent, optional transformation before rescaling.
In metabolically labeled datasets which include more than one labeling time, rescaling is done
separately for each labeling time.

4.5 Diffusion-drift dynamics
Fokker-Planck equation and stochastic differential equations

Here we follow the formulation from [21]. It has been suggested for example by [9] that the
time development of the distribution of expressed RNA for a population of differentiating and

11
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proliferating cells P(x,t) can be described by the Fokker-Planck equation 4.13.

0] 0 10?2, ,
- — 2 4.13
O (Pla 1)) = 2 (ula, 1) Pl 1)) + 3 (0, 1) Pl 1) (113)
More generally equation 4.13 describes the motion of a random process X (t) — that is— for

every t, X (t) is a random vector with distribution P(x,t). The stochastic movement of X can
be described by the following stochastic differential equation:

dX(t)=X({t+dt) — X () = pu(X,t)dt + o(X,t)dW (4.14)

Where W is a Wiener process— a random process that models the integrated effect of noise or
diffusion and without it equation 4.14 would be a deterministic ODE. W has by definition the
following property:

AW (t) 2 W (t + dt) — W (t) ~ N(0,/|dt|T) (4.15)

Where I is the identity matrix.

In the scope of this paper X represents the RNA expression of a random cell in the dataset (after
feature selection, scaling etc.). In a scRNA-seq dataset there is no explicit information about
the latent time ¢ and had we tried to infer ¢ from the data it would inevitably be a function of
the cell state . Moreover it is reasonable to assume that cell state transition depends directly
only on the current cell state and not on the latent time. The model for d X is therefore reduced
into t-independent form:

dX = p(X)dt + o(X)dW (4.16)

Estimating the drift component

Exovelo obtains an estimation for every cell states displacement which contains both the drift
and the diffusion components. Specifically in the labeled case It uses R, O and equation 4.4 as
samples for X (t + dt), X (t),dX (t), or R, S and eq 4.7 in the splicing case.

In order to estimate the drift component Exovelo then applies equation 4.16. For every cell, the
displacements of it k nearest neighbors are taken as a sample for dX (¢) and the estimated drift
component dX (t) is the mean of these displacements.

4.6 Visualization
Joint embedding

Since Exovelo infers two cell states (past, future) for each cell which are first class citizens the
most reliable visualization for these states is a joint embedding (JE). In a JE an embedding is
created from the 2n cell states (n cells x 2 cell states). The ’velocity’ or more accurately the
displacement is the vector from the embedded past state to the embedded future state of each
cell. One advantage of a JE is that it is easier to catch failure, for example if Exovelo fails to
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properly rescale the two modalities then a strong batch effect will be noticeable in JE.

Projection

If projection of high cell state displacement into an existing embedding is desired we propose
the following method. Let X, Y be rescaled cell x (high dimension) data matrices representing
the ’past’ and 'future’ cell states of each cell. Let p: X — Z be any low dimensional projection
of X e.g. a UMAP. An arbitrary cell ¢ in the bimodal data can be represented as a vector pair
(2,c,ye) of its past and future states. Let Ny(z., X) represent the k nearest neighbors in X of
2. € X and Ng(y., X) the k nearest neighbors of y, again in X. Since y. is the "future’ of cell
¢ Ni(ye, X) is the set of its future neighbors. The projection we suggest is the shift in the
centers of masses between the two sets, namely the low dimensional representation v(x.) of
the velocity of c is:

> pa)-C Y o)) (4.17)

z; €ENg (2, X) Z;ENE(Ye, X)

As is the case with any velocity visualization these can be smoothen by taking mean over the
embedded velocities of a cell’s nearest neighbors. In our experiments this projection method
produces similar velocity plot to JE when projected into the same embedding (supplementary
figure 6).

5 Discussion

The introduction of single-cell RNA-velocity in [1] was widely praised by the computational
biology community, as it would enable the study of dynamic processes at the single-cell level,
surpassing the limitations of pseudotime methods, which only capture collective dynamics trends.
However existing approaches assume model dynamics details that are non-essential for velocity
estimation, but make the inference procedure non-transparent, error-prune and costly. Exovelo
aims for estimation of cell’s expected displacement in a given time interval, hence turning the
cell state velocity computation framework around, such that the dynamics can be meaningfully
characterized from estimated velocities rather than vice versa. Thus, in subsequent research,
models of cell differentiation dynamics (e.g., smooth or stochastic jump processes, asymmetric
cell division, etc.) could build on such less-biased estimated velocities.

Cell state embedding and cell state velocity should be linked and in our opinion a joint embedding
is the most faithful low dimensional representation for that reason. We caution not to rely
on velocity projection into an arbitrary embedding which might be based on different feature
selection, different normalization and metrics, and different local structure that was used for
velocity inference. For example there could be a situation where a cells’ nearest neighbors as
calculated used for projection are located in different clusters in different region of the embedding.
On the other hand if the embedding has the same local neighborhood as the high dimensional
manifold on which displacement is inferred then the Exovelo projection is very similar to a its
joint embedding, at least in our tests and also logically the computations in both cases are very
similar ( supplementary figure 5)
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There are some datasets that everything you try on them works. One such dataset is the
embryonic endocrine progenitors and differentiated pancreas cells [22]. Another such dataset is
of the human retinal pigment epithelial-1 [10]. The reason why these dataset are so ”easy” may
partially be technical, and partially that they are biologically less complicated than for example
Hematopoiesis. The pancreas cells have a simple lineage tree with basically a single split from
progenitors into the differentiated types. The RPE1 cells only cycle and don’t differentiate. On
the other hand with hematopiesis the lineage is much more complicated. There are multiple
branches, cells capable of self-renewal and possibly de-differentiation therefore the trajectories
are not one-way and distinct.

In future work, Exovelo’s approach could potentially be improved upon by adapting a more
sophisticated and fine-grained transformation, for example by factoring different cell clusters
separately.

RNA velocity still faces challenges both on the inference method level as well as the data origi-
nation level. While this paper deals exclusively with the former challenge, it is not a given that
datasets with splicing or labeling information are sufficiently accurate.

6 Code and data availability

The code including Exovelo python package and all three datasets mentioned in this paper are
available in the Haghverdil.ab github repository.

The RPEI1 dataset [10] was downloaded using Dynamo [8] and can be downloaded here.
The human bone marrow dataset [11] was downloaded using scVelo [6] and is available here.

The raw second Haematopoietic dataset [20] is accessible in the Gene Expression Omnibus (GEO)
under accession code GSE226824.
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7 Supplementary figures

7.1 Additional bone marrow dataset

(a) (b)
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Figure 5: (a) and (b) JE (smoothened) umap of Bonemarrow datasets from [20] and [11] showing
mean field velocities. (c) and (d) shows the velocity variance.

Figure panel 5 compares the results from same analysis on two different bone marrow datasets.
In both datasets there are HSCs going in the reverse direction. In both datasets there are semi
differentiated precursor cells with near zero mean field velocity which have non-zero variance.
In other words there are cells in these clusters which go in opposing and therefore no particular
tendency is observed. Cells in the more differentiated parts seem to move down their respective
branch. Variance is greatest in the HSCs and declines in conjunction with increase in differenti-
ation.
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7.2 Comparison of Exovelo projection with JE

(a) projection of inferred veloc- (b) JE (smoothened) (¢) Projection (smoothened)
ities into the bone marrow into the same embedding as
dataset. Compare with JE the ’old’ state in the JE

Figure 6
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