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 ABSTRACT 

 Oncogene  amplification  is  a  key  driver  of  cancer  pathogenesis  and  is  often  mediated  by 
 extrachromosomal  DNA  (ecDNA).  EcDNA  amplifications  are  associated  with  increased 
 pathogenicity  of  cancer  and  poorer  outcomes  for  patients.  EcDNA  can  be  detected  accurately 
 using  fluorescence  in  situ  hybridization  (FISH)  when  cells  are  arrested  in  metaphase.  However, 
 the  majority  of  cancer  cells  are  non-mitotic  and  must  be  analyzed  in  interphase,  where  it  is 
 difficult  to  discern  extrachromosomal  amplifications  from  chromosomal  amplifications.  Thus, 
 there  is  a  need  for  methods  that  accurately  predict  oncogene  amplification  status  from 
 interphase cells. 

 Here,  we  present  interSeg,  a  deep  learning-based  tool  to  cytogenetically  determine  the 
 amplification  status  as  EC-amp,  HSR-amp,  or  not  amplified  from  interphase  FISH  images.  We 
 trained  and  validated  interSeg  on  652  images  (40,446  nuclei).  Tests  on  215  cultured  cell  and 
 tissue  model  images  (9,733  nuclei)  showed  89%  and  97%  accuracy  at  the  nuclear  and  sample 
 levels,  respectively.  The  neuroblastoma  patient  tissue  hold-out  set  (67  samples  and  1,937 
 nuclei)  also  revealed  97%  accuracy  at  the  sample  level  in  detecting  the  presence  of  focal 
 amplification.  In  experimentally  and  computationally  mixed  images,  interSeg  accurately 
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 predicted  the  level  of  heterogeneity.  The  results  showcase  interSeg  as  an  important  method  for 
 analyzing oncogene amplifications. 

 INTRODUCTION 

 Oncogene  amplification  is  a  key  driver  of  cancer  pathogenesis  1  .  Focal  oncogene  amplifications 
 can  occur  within  specific  chromosomes  as  homogeneously  staining  regions  2,3  (HSR)  or  as 
 extrachromosomal  DNA  4  (ecDNA),  which  are  circular,  acentric  molecules  that  replicate 
 independently  and  segregate  randomly  in  daughter  cells  5  .  EcDNAs  are  present  in  a  third  of  all 
 samples,  and  in  two-thirds  of  cancer  subtypes  6  .  They  are  especially  frequent  in  glioblastoma  7  , 
 neuroblastoma  8  ,  and  esophageal  carcinoma  4,6  ,  but  have  also  been  detected  in  pre-cancerous 
 lesions  9  .  Compared  to  other  intrachromosomal  focal  amplifications,  ecDNAs  are  associated  with 
 increased  pathogenicity  of  cancer  and  poorer  outcomes  for  patients  6  .  Thus,  there  is  an 
 important  need  for  methods  and  tools  to  detect  focal  amplifications  in  tumor  cells  and  classify 
 their location as being intrachromosomal or extrachromosomal. 

 Sequence-based  methods  10,11  analyze  the  patterns  of  genomic  reads  sampled  from  a  tumor 
 genome  and  mapped  to  a  normal  reference  to  (a)  identify  copy  number  patterns  indicative  of 
 focal  amplification,  (b)  use  focally  amplified  regions  as  seeds,  and  (c)  utilize  discordantly 
 paired-reads  to  explore  the  fine  genomic  structure  of  focal  amplifications.  The  presence  of 
 discordant  reads  that  represent  a  cyclic  structure  are  highly  indicative  of  ecDNA  structure  6  . 
 Sequence-based  methods  can  also  reliably  distinguish  ecDNA  from  stable  chromosomal 
 amplifications  (displaying  as  HSRs)  formed  by  breakage  fusion  bridge  cycles  and  other 
 mechanisms  3  .  However,  HSRs  may  also  be  formed  when  ecDNA  re-integrate  into 
 chromosomes  in  response  to  the  cellular  environment  12  .  The  HSRs  formed  by  re-integrated 
 ecDNA  retain  their  sequence  features,  making  it  difficult  for  sequence-based  methods  to  predict 
 the amplification mechanism. 

 Fluorescent  and  DAPI  imaging  of  DNA  in  metaphase  spreads  are  currently  the  gold-standard  for 
 determining  the  location  (intra-  or  extrachromosomal)  of  focal  amplification.  EcDNAs  appear  as 
 hundreds  of  tiny  faint  DNA  particles,  detached  from  the  compacted  chromosomes  seen  in 
 metaphase.  Fluorescently  labeled  DNA  FISH  probes  for  specific  genes  can  additionally 
 determine  if  the  ecDNAs  carry  those  genes.  A  deep-learning  method,  ecSeg,  was  successfully 
 utilized  to  semantically  segment  images  of  metaphase  cells  and  annotate  the  pixels 
 representing  ecDNA  13  .  However,  capturing  cells  in  metaphase  requires  synchronization  of  cells, 
 which  is  typically  possible  only  in  cultured  cell  lines.  In  clinical  practice,  cells  are  harvested  from 
 patient  tumor  tissue  and  readily  archived  as  flash-frozen  tissue  sample,  or  as  formalin-fixed 
 paraffin-embedded  samples.  The  majority  of  cells  are  non-mitotic  and  must  be  analyzed  in 
 interphase,  where  the  DNA  is  loosely  arranged  inside  an  intact  nuclear  membrane.  This  makes 
 it extremely challenging to identify ecDNA, even for a trained eye. 

 In  this  work,  we  discern  HSR  and  ecDNA  amplifications  using  the  unique  fluorescent  staining 
 patterns  of  amplicons  in  interphase  nuclei.  We  present  interSeg,  a  deep  learning-based  tool  to 
 cytogenetically  determine  amplification  status  of  a  target  FISH  probe.  interSeg  relies  on  two 
 independent  deep  learning  modules:  ecSeg-c  and  ecSeg-i.  EcSeg-c  uses  centromeric  and 
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 target  FISH  probes  to  determine  if  the  target  is  amplified.  The  additional  centromeric  probe 
 provides  a  control  for  aneuploidy,  whole  genome  duplication  and  overlapping  cells,  which  may 
 result  in  higher  number  of  FISH  foci.  EcSeg-i  determines  the  mode  of  amplification  as  ecDNA  or 
 HSR, assuming focal amplification of the target, and requires only the target FISH probe. 

 RESULTS 

 We  modeled  ecDNA  detection  in  interphase  nuclei  as  a  problem  of  nuclear  classification,  where 
 each  interphase  nucleus  was  assigned  to  one  of  three  categories  (Figure  1a):  amplification  on 
 ecDNA  (‘EC-amp’);  intrachromosomal  amplification,  described  by  a  homogeneously  stained 
 region  (‘HSR-amp’);  or  no  amplification  of  the  target  probe  (‘no-amp’).  Each  cytogenetic  image 
 itself  contained  a  collection  of  interphase  nuclei  and  were  found  to  have  different  characteristics 
 depending  on  the  source.  Therefore,  we  first  collected  representative  cytogenetic  images  from 
 different sources to create a dataset. 

 Dataset overview 

 We  obtained  images  from  13  different  tissue  types  using  three  different  protocols  (Figure  1b). 
 ‘Cultured  cells’  refer  to  cells  grown  outside  of  their  natural  environment,  typically  in  a  culture, 
 and  plated  on  a  slide  prior  to  image  acquisition.  This  results  in  images  with  dissociated  and 
 sparse  nuclei.  ‘Tissue  models’  are  cells  obtained  from  xenografts,  which  are  tissues 
 transplanted  from  human  to  mouse,  then  biopsied  for  image  acquisition.  This  results  in  images 
 with  more  tightly  packed  cells.  ‘Patient  tissue’  corresponds  to  tightly  packed  cells  in  tissue 
 sections  from  tumor  biopsies  (Supplementary  Figure  1  and  Methods),  but  may  have  more 
 heterogeneity  and  a  higher  fraction  of  normal  tissue  cells.  We  obtained  231  cultured  cell  images 
 and  443  filtered  tissue  model  images  from  32  unique  cell  lines,  and  265  filtered  images  from 
 patient  derived  (see  Methods)  neuroblastoma  (NB)  samples.  In  addition,  we  utilized  60  ‘mixed’ 
 images  (765  nuclei)  from  a  special  tagging  experiment  designed  to  test  performance  in 
 heterogeneous samples containing both ecDNA and HSR (See Methods). 

 We  used  whole  genome  sequencing  (WGS)  to  identify  the  amplified  oncogene  in  the  cultured 
 cell  and  tissue  model  cell  lines,  as  described  in  earlier  publications  6  .  We  then  probed  for  these 
 amplified  genes  using  FISH  probes  in  DAPI  stained  metaphase  spreads  where  the 
 chromosomes  are  compacted,  and  the  nuclear  location  of  the  FISH  probe  can  be 
 unambiguously  determined.  This  provided  the  truth  set  for  whether  the  oncogene  was  amplified 
 on  ecDNA  or  HSR  6  .  A  few  cell  lines  were  probed  for  more  than  one  oncogene  (e.g.  H716  for 
 FGFR2  and  MYC  )  to  obtain  39  unique  cell  line-oncogene  pairs.  The  cell  line-oncogene  pairs 

 from  the  cultured  cell  lines  and  tissue-models  were  assigned  a  label  as  being  one  of ( 𝑙 ,  𝑔 )  𝐿 ( 𝑙 ,  𝑔 )
 EC-amp,  HSR-amp,  or  no-amp.  Correspondingly,  each  nucleus  with  a  fluorescent  label  for  gene 

 in  an  interphase  image  of  cell  line  also  received  the  label  ,  providing  us  with  a  data  set  𝑔  𝑙  𝐿 ( 𝑙 ,  𝑔 )
 of  nuclei  that  could  be  utilized  for  training,  validation,  and  testing.  For  example,  we  labeled  all 
 nuclei in the COLO320HSR cell line as HSR-amp for the oncogene  MYC  . 

 We  trained  ecSeg-i  and  ecSeg-c  separately.  For  ecSeg-i,  we  performed  a  50-50 
 training/validation  hold-out  set  split  on  the  231  cultured  cell  images,  and  a  75-25 
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 training/validation  hold-out  set  split  on  the  443  tissue  model  images.  In  total,  we  utilized  459 
 images  (35,096  nuclei)  for  training/validation,  and  215  images  for  hold-out  testing 
 (Supplementary  Table  1).  Finally,  we  utilized  the  NB  patient  tissue  images  as  analysis  sets  for 
 biological  interpretation  (265  images,  7,466  nuclei).  Notably,  the  trained  neural  networks  never 
 accessed  the  215  hold-out  test  images  from  cultured  cells  and  tissue  models,  60  mixed  images, 
 or the 265 patient tissue images during training or validation of ecSeg-i. 

 EcSeg-c  requires  centromeric  and  target  FISH  probes,  and  it  returns  a  classification  of 
 ‘focal-amp’  or  ‘no-focal-amp’  for  each  nucleus.  392  of  the  443  tissue  model  images  had  a 
 centromeric  probe  and  met  our  centromeric  quality  score  criterion.  We  labeled  images  with 
 HSR-amp  and  EC-amp  classifications  as  ‘focal-amp’  for  ecSeg-c  training.  Other  images  were 
 labeled  ‘no-focal-amp’.  Of  the  392  images,  95  images  (7,501  nuclei),  which  were  also  in  the 
 hold-out  set  of  ecSeg-i,  were  used  as  a  test  set  to  prevent  leakage.  The  remaining  297  images 
 (22,970  nuclei)  were  used  for  ecSeg-c  training/validation.  For  our  NB  patient  tissue  dataset,  260 
 of  the  265  NB  samples  met  our  centromeric  quality  criterion,  and  were  labeled  by  pathologists 
 as  ‘amplification’,  or  not.  The  NB  patient  tissue  image  dataset  was  split  75-25  into 
 training/validation (  5,350 nuclei from 193  images)  and hold-out set (  1,937 nuclei from 67  images). 

 InterSeg architecture overview 

 Recall  that  interSeg  has  two  distinct  modules:  ecSeg-i  and  ecSeg-c,  both  of  which  make 
 predictions  on  individual  nuclei  annotated  with  DAPI  and  FISH.  Therefore,  we  used  an  available 
 method,  NuSet  14  ,  to  first  segment  each  image  into  individual  nuclei  (Figure  2a).  These  individual 
 nuclei  are  fed  to  ecSeg-i  and  ecSeg-c.  Salient  features  and  data  filtering  issues  are  described 
 below, with details in methods. 

 EcSeg-i  and  ecSeg-c  are  both  based  on  the  DenseNet-121  architecture  15  (Methods). 
 DenseNet-121  is  a  densely  connected  network  with  exhaustive  skip  connections  between 
 convolutional  blocks,  enabling  feature-reuse  throughout  the  network.  The  feature  maps  of  all 
 previous  layers  were  concatenated  and  fed  as  input  to  the  current  layer,  making  it  densely 
 connected (Figure 2b). 

 The  original  DenseNet  has  a  final  classification  layer  with  1000  output  nodes,  corresponding  to 
 1000  ImageNet  16  classes.  In  our  version  of  DenseNet  for  ecSeg-i,  we  used  a  final  classification 
 layer  with  3  output  nodes  corresponding  to  the  three  output  classes:  EC-amp,  HSR-amp,  and 
 no-amp.  Notably,  we  also  experimented  with  training  a  DenseNet  from  scratch  and  training  with 
 a  network  pre-trained  on  ImageNet.  Although  both  networks  achieved  similar  accuracy 
 (F1-score  difference  of  0.1),  the  network  trained  from  scratch  converged  much  faster  (~50 
 epochs) than the pretrained network (~80 epochs). 

 Ec-Seg-i  returns  the  posterior  probability  of  the  membership  in  each  class  as  the  output  for  each 
 nucleus.  As  a  post-processing  step,  it  optionally  labels  each  nucleus  with  the  amplification 
 mechanism  with  the  greatest  posterior  probability  from  ecSeg-i.  Because  there  is  considerable 
 heterogeneity  in  ecDNA  counts  from  cell  to  cell,  most  scientists  make  predictions  based  on 
 groups  of  cells  rather  than  individual  cells.  Therefore,  we  additionally  generated  cell  line  level 
 metrics  by  employing  a  bootstrapping  approach  on  the  results  obtained  at  the  nucleus  level 
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 (Methods).  Briefly,  this  involved  selecting  10  cells  in  each  sampling  instance  and  determining 
 the  most  prevalent  amplification  mechanism  within  this  group.  This  process  was  iterated  100 
 times,  with  a  random  selection  of  10  cells  in  each  iteration.  The  outcome  of  this  iterative  process 
 was employed as the cell line level statistics. 

 EcSeg-i  assumes  that  any  amplification  of  the  target  is  a  focal  event.  However,  amplifications 
 can  also  occur  due  to  aneuploidies,  and  this  can  be  cytogenetically  tested  by  using  a 
 centromeric  probe.  We  trained  a  separate  neural  network  (  ecSeg-c  )  with  the  same 
 DenseNet121  architecture  as  ecSeg-i  (Supplementary  Figure  2).  For  each  nucleus,  ecSeg-c 
 predicts a binary classification label, focally amplified or not. 

 As  with  all  deep-learning  methods,  a  direct  and  intuitive  explanation  of  the  ecSeg-i  posterior 
 probabilities  output  is  not  available.  This  is  specifically  confounding  for  interphase  FISH  analysis 
 where  the  high  variability  from  cell  to  cell  makes  interpretation  difficult  even  for  the  trained  eye. 
 To  improve  interpretation,  we  implemented  a  second  module  called  stat-FISH  to  gather  statistics 
 that  provide  complementary  evidence  (Methods).  These  statistics  are  not  used  to  change  the 
 output  of  ecSeg-i,  but  are  provided  as  an  addendum  to  ecSeg-i  posterior  probabilities. 
 Importantly,  in  contrast  to  the  per-cell  posterior  probabilities  output  by  ecSeg-i,  stat-FISH  mimics 
 human  interpretation  by  analyzing  and  integrating  the  data  from  multiple  nuclei  (Supplementary 
 Figure 3). 

 Training and validation of interSeg modules 

 EcSeg-i  converged  on  the  training  data  after  50  epochs.  We  inspected  what  the  architecture 
 learned  by  visualizing  the  filters  of  the  first  convolution  layer  and  their  corresponding  7 ×  7 
 feature  maps  over  a  test  image.  We  observed  that  the  majority  of  the  filters  initially  learned  to 
 detect  small  circular  objects,  indicative  of  ecDNA  patterns  (Supplementary  Figure  4).  The 
 corresponding  feature  maps  show  that  the  network  is  able  to  immediately  separate  the 
 ecDNA-like  structures  from  the  background  noise,  affirming  that  the  network  is  learning  to 
 recognize the object of interest. 

 We  tested  the  robustness  of  interSeg  predictions  to  variation  of  image  acquisition,  by  artificially 
 distorting  the  images  (Methods),  including  shrinking,  enlarging,  and  rotating  (Supplementary 
 Figures  5-7).  In  each  case,  the  performance  remained  similar  or  identical  to  the  non-distorted 
 case.  We  also  tested  interSeg  after  changing  contrast  (Supplementary  Figures  8-9),  which  can 
 seriously  impact  intensity  of  the  fluorescent  signal.  In  a  good  image,  we  expect  to  see  a  bimodal 
 distribution  for  the  oncogenic  FISH  signal  with  a  vast  majority  of  pixels  with  very  low  intensity, 
 and  a  small  number  of  ‘true’  pixels  with  high  intensity  reflecting  real  probe  hybridization. 
 Lowering  the  contrast  did  not  change  the  bimodality,  but  raising  it  led  to  significant  bleeding  of 
 the  FISH  signal,  impacting  performance  for  HSR-amp  lines  but  not  EC-amp  lines 
 (Supplementary  Figures  8-9).  We  used  this  result  to  generate  a  quality  score  for  each  image 
 (Methods).  Three  of  the  tissue  model  test  images  were  marked  as  low  quality  based  on  this 
 method  and  were  removed  from  final  evaluation.  Notably,  the  patient  tissue  samples  were  used 
 only  for  hold-out  testing  of  ecSeg-i.  There  were  a  total  of  388  NB  patient  tissue  images  with 
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 pathologist  annotations  which  were  filtered  for  quality  and  for  an  annotation  of  ‘amplification’,  or 
 ‘no-amplification’ to yield 265 images used for testing of ecSeg-i. 

 We  also  observed  some  images  with  a  weak  but  uniform  centromeric  signal  (high  kurtosis  of 
 mean  nucleus  centromeric  intensity),  in  contrast  with  other  images  where  there  was  a  distinct 
 centromeric  signal,  with  high  but  varying  intensity  (low  kurtosis).  We  filtered  images  with  a 
 kurtosis  value  greater  than  3,  and  for  those  images  ecSeg-c  was  not  run,  and  only  ecSeg-i  was 
 used  to  make  calls.  Additionally,  we  also  defaulted  to  ecSeg-i  when  the  maximum  nucleus 
 centromeric  intensity  was  less  than  10  (using  a  0-255  scale),  as  these  nuclei  contain  little 
 centromeric  signal.  Of  the  265  NB  samples,  5  failed  these  centromeric  quality  score  criteria, 
 leaving  260  samples  remaining.  67  were  set  aside  as  a  hold-out  test  set  for  ecSeg-c,  and  193 
 were used for training and validation. 

 EcSeg-i and ecSeg-c accurately determine amplification mechanisms 

 In  cases  where  a  centromeric  probe  is  not  available,  InterSeg  defaults  to  running  ecSeg-i 
 (Figure  2a).  Therefore,  we  tested  ecSeg-i  and  ecSeg-c  independently.  EcSeg-i  was  tested  on 
 each  of  the  9,733  nuclei  from  the  118  cultured-cell  and  97  tissue  model  images  in  the  hold-out 
 test  data  set.  The  9,733  nuclei  included  1,539  with  no-amp,  3,497  nuclei  with  EC-amp,  and 
 4,697  nuclei  with  HSR-amp.  The  model  achieved  F1-scores  of  0.91  (recall:  0.91,  precision: 
 0.91)  for  no-amp,  0.87  (recall:  0.91,  precision:  0.84)  for  EC-amp,  and  0.88  (recall:  0.86, 
 precision:  0.91)  for  HSR-amp  nuclei  at  the  per-nucleus  identification  level  (Figure  3a).  These 
 results  are  conservative  estimates,  as  they  assume  uniform  amplification  within  each  cell  line, 
 despite the expected heterogeneity or lack of amplification in all cell lines. 

 Next,  we  tested  ecSeg-c.  EcSeg-c  was  trained  on  the  297  tissue  model  images  and  193  NB 
 patient  tissue  images  and  subsequently  tested  on  95  tissue  model  images  and  67  NB  patient 
 tissue  images,  as  described  earlier.  On  the  tissue  model  images,  we  obtained  a  nucleus-level 
 F1  score  of  0.95  (recall:  0.95,  precision:  0.94)  and  0.99  (recall:  0.99,  precision:  0.99)  on  the 
 no-amp  and  amp  classes  respectively.  For  the  NB  patient  tissue  test  subset,  ecSeg-c  obtained  a 
 0.78  F1  score  (recall:  0.92,  precision:  0.67)  on  the  no-amp  class  and  a  0.92  F1  score  (recall: 
 0.88,  precision:  0.98)  on  the  amp  class  at  the  per-nucleus  level.  For  sample-level  predictions 
 (Figure  3e),  we  observed  a  0.95  F1  Score  (recall:  1.0,  precision:  0.90)  on  no-amp  and  0.98  F1 
 Score (recall: 0.96, precision: 1.0)  on amp labels. 

 Notably,  because  we  did  not  have  metaphase  annotations  of  ecDNA  or  HSR  on  the  patient 
 tissue  images,  the  combined  interSeg  could  only  be  tested  on  the  cultured  cells  and  tissue 
 models.  On  the  118  cultured  cell  test  images  and  97  tissue  model  test  images,  interSeg 
 obtained  nucleus  level  F1  scores  of  0.92  (recall:  0.97,  precision:  0.88),  0.87  (recall:  0.91, 
 precision:  0.85),  and  0.89  (recall:  0.85,  precision:  0.93)  respectively  for  the  no-amp,  EC-amp, 
 and HSR-amp classes. 

 The  bootstrapped  version  of  interSeg  was  tested  100  times  on  each  of  the  39  cell  line-oncogene 
 pairs  to  obtain  single  predictions  for  each  pair.  It  correctly  predicted  the  majority  of  the 
 bootstrapped  trials  to  carry  the  expected  amplification  in  38  out  of  the  39  samples  overall 
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 (Figure  3b-d).  Even  in  the  non-bootstrapped  nuclear  level  predictions,  interSeg  predicted  more 
 than  60%  of  the  nuclei  as  EC-amp  in  all  15  ecDNA  cell  lines,  more  than  90%  of  the  cells  as 
 no-amp  in  all  3  no-amp  cell  lines,  and  at  least  50%  of  the  cells  as  HSR-amp  in  20  out  of  21  HSR 
 cell lines (Supplementary Figure 10 and Supplementary Table 2). 

 While  bootstrapping  eliminates  small  variability  due  to  mis-prediction  or  noise,  the  remaining 
 high  variability  in  certain  samples  suggested  heterogeneity  between  ecDNA  and  HSR.  For 
 example,  the  metaphase  cell  in  SF268  shows  two  HSR  amplifications.  However,  the  stat-FISH 
 data  shows  seven  distinct  FISH  foci  with  a  puncta  pattern  and  an  ecSeg-i  posterior  probability 
 indicative  of  EC-amp  (Supplementary  Figure  11).  In  contrast,  Supplementary  Figure  12  shows  a 
 second  SF268  nucleus  with  a  high  foci  count  of  9;  in  this  case,  ecSeg-i  predicted  the  nucleus  as 
 primarily  HSR-amplified  due  to  the  non-puncta  distribution  of  the  foci.  Similar  information  can  be 
 found for SN12C (Supplementary Figure 13). 

 InterSeg determines amplification heterogeneity between cell lines 

 To  test  interSeg  prediction  performance  for  heterogeneous  samples  containing  both  EC-amp 
 and  HSR-amp  cells,  we  first  created  artificial  composite  images  containing  both  ecDNA  and 
 HSR  amplifications  by  combining  the  cells  in  the  isogenic  lines  GBM39EC  and  GBM39HSR  with 
 the  FISH  probe  EGFR  .  For  the  GBM39HSR  cells  in  the  computationally  mixed  images,  we 
 observed  a  78%-22%-0%  split  between  HSR-amp,  ecDNA-amp,  and  no-amp  predictions 
 respectively.  This  mirrored  the  true  GBM39HSR  prediction  percentages,  which  are 
 81%-19%-0%  respectively.  A  statistical  test  could  not  distinguish  between  calls  made  on  the 
 pure  HSR  line  versus  the  HSR  labeled  cells  in  the  mixed  image  (chi-square  test  statistic: 
 2.3607,  P-value:  0.1244).  Similarly,  for  the  true  GBM39EC  cells  in  the  mixed  images,  we 
 observed  a  14%-86%-0%  split  between  HSR-amp,  EC-amp,  and  no-amp  predictions 
 respectively.  Once  again,  this  could  not  be  statistically  distinguished  from  the  pure  GBM39EC 
 cell  line,  where  the  interSeg  predictions  were  14%-86%-0%  HSR-amp,  ecDNA-amp,  and 
 no-amp respectively (chi-square test statistic: 0.0186, P-value: 0.8914). 

 We  repeated  the  experiment  after  concatenating  pairs  of  test  set  images  from  COLO320DM  and 
 COLO320HSR  with  an  absolute  mean  nuclei  area  difference  of  less  than  50  pixels.  This  is  a 
 harder  test  because  29%  of  the  cells  in  the  used  COLO320DM  images  were  predicted  to  be 
 HSR  with  a  breakdown  of  29%-71%-0%  for  HSR-amp,  ecDNA-amp,  and  no-amp.  Interestingly, 
 the  COLO320DM  cells  in  the  mixed  images  also  showed  a  similar  32%-68%-0%  distribution  for 
 HSR-amp,  ecDNA-amp,  and  no-amp  labels,  respectively  (chi-square  test  statistic:  1.7475, 
 P-value:  0.1862).  Similarly,  observed  predictions  for  COLO320HSR  cells  in  the  computationally 
 mixed  images  were  97%-2%-1%  for  HSR-amp,  ecDNA-amp,  no-amp,  respectively.  These 
 matched  the  interSeg  predictions  on  pure  COLO320HSR  which  were  96%-2%-2%  respectively 
 (chi-square test statistic: 0.3706, P-value: 0.8309). 

 Next,  we  also  tested  an  experimental  system  where  COLO320DM  and  COLO320HSR  cells 
 were  grown  on  the  same  plate.  An  mCherry  RFP  tag  was  used  to  mark  COLO320DM  cells.  A 
 green  DNA-FISH  probe  for  MYC  was  used  to  test  amplification  in  this  mixed  cell  population 
 (Methods).  However,  we  also  observed  that  the  RFP  tagging  accuracy  was  not  100%  and  there 
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 were  a  small  but  unknown  number  of  ecDNA  cells  that  were  not  tagged  (Supplementary  Figure 
 14).  Therefore,  we  utilized  a  latent  parameter  x  denoting  the  number  of  COLO320DM  cells  that 
 were  not  RFP  tagged.  Next,  we  computed  the  optimal  value  for  x  that  maximized  the  likelihood 
 of  the  observed  frequencies  seen  in  the  pure  cell  line  test  datasets  for  COLO320DM  and 
 COLO320HSR  (Methods).  At  x=6.14%  (which  would  imply  a  tagging  accuracy  of  93.86%),  we 
 observed  a  strong  correlation,  or  no  statistically  significant  difference  between  expected 
 heterogeneity  and  observed  heterogeneity  (chi-squared  test  statistic:  2.7252,  P-value:  0.4360). 
 Together,  these  results  illustrate  the  power  of  interSeg  in  predicting  amplification  mechanisms  in 
 the presence of heterogeneity. 

 Based  on  these  results,  we  decided  to  use  the  following  rule  based  on  predictions  after 
 bootstrapping:  A  cell  line  was  considered  to  be  no-amp  at  least  80%  of  the  cells  were  classified 
 as  no-amp;  as  HSR-amp  if  at  least  80%  of  the  cells  were  classified  as  HSR-amp;  as  EC-amp,  if 
 at  least  50%  of  cells  were  EC-amp.  Otherwise,  the  sample  was  classified  as  mixed  or 
 heterogeneous. 

 stat-FISH provides an explanation of amplification status. 

 Because  interSeg  uses  deep  neural  networks  to  determine  the  amplification  mode,  there  is 
 limited  insight  into  the  features  used  to  make  this  decision  (for  partial  information,  see 
 Supplementary  Figure  4).  Therefore,  we  analyzed  the  data  with  stat-FISH,  a  complementary 
 module  that  computes  statistics  of  the  distribution  of  oncogenic  foci  per  cell.  As  expected,  cells 
 with  EC-amp  had  higher  mean  and  variance  in  the  copy  number  signal  compared  to  HSR-amp 
 cells.  Only  40%  of  the  EC-amp  images  had  a  mean  <  10  and  variance  <  64,  in  contrast  to  97% 
 of  HSR-amp  images  with  those  properties  (Figure  4a  and  Supplementary  Table  4).  The  number 
 of  foci  and  the  total  FISH  signal  were  also  significantly  higher  in  EC-amp  cells,  whether 
 analyzed  across  all  cell  lines  (Figure  4b,c)  or  for  individual  pairs  (e.g.,  Figure  4d  and 
 Supplementary  Tables  5,  6,  7).  Despite  these  differences,  there  was  high  variability  in  the 
 number  and  spread  of  FISH  foci  across  samples.  The  maximum  accuracy  of  stat-FISH 
 amplification  status  prediction  on  the  test  samples,  across  different  cut-offs  of  mean  and 
 variance,  was  83%,  lower  than  the  97%  sample  accuracy  of  interSeg  (Supplementary  Table  8 
 and  Methods).  Thus,  while  stat-FISH  is  a  useful  complementary  method  that  allows  for  an 
 intuitive  understanding  of  amplification  modes,  it  lacks  the  predictive  power  of  the  deep  neural 
 network  of  interSeg,  which  may  be  correcting  for  signal-to-noise  ratio,  changing  morphologies, 
 and latent correlations. 

 stat-FISH allows for exploratory quantification of multiple oncogenes. 

 While  stat-FISH  cannot  predict  amplification  status  with  as  much  accuracy  as  interSeg,  it 
 nevertheless  provides  the  flexibility  for  additional  computations  that  are  not  easy  with  interSeg. 
 For  example,  we  used  stat-FISH  to  investigate  H716,  a  colorectal  cancer  cell  line  where 
 interSeg  predicted  EC-amp  for  two  distinct  probes,  corresponding  to  FGFR2  and  MYC  ,  for  each 
 investigated  cell  (Figure  4e  and  Supplementary  Table  3).  The  included  metaphase  in  the  figure 
 confirms  the  correctness  of  the  two  predictions  as  being  distinct  ecDNA.  We  next  quantified  the 
 FISH  signal  using  stat-FISH.  The  average  and  median  copy  number  signal  for  FGFR2  was  at  10 
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 and  9,  respectively,  similar  to  those  of  MYC  ,  which  were  9  and  10,  respectively.  Similar  to 
 metaphase,  we  also  found  examples  of  co-occurring  FGFR2  and  MYC  amplification  signals  that 
 showed  up  as  yellow  (  FGFR2  -green  and  MYC  -red).  The  stat-FISH  results  suggested  a  higher 
 count  of  FGFR2  ecDNA  relative  to  MYC  ,  and  the  individual  numbers  were  significantly  higher 
 than  co-occurrences  (Figure  4f).  However,  the  co-amplification  signal  was  also  strong,  and 
 significantly  higher  relative  to  chance  occurrence  (Mann-Whitney  U  test  P-value  1.6E-08; 
 Methods).  This  result  suggests  either  that  the  ecDNA  species  interact  17,18  or  the  existence  of 
 ecDNA that carry both  MYC  and  FGFR2  . 

 InterSeg determines heterogeneity of ecDNA in patient tissue samples. 

 Across  the  265  patient  tissue  NB  samples,  the  interSeg  predictions  were  167  EC-amp  (63%),  65 
 as  no-amp  (25%),  and  33  heterogeneous  (12%).  These  samples  were  previously  classified  by 
 pathologists  as  ‘amplification’  or  not  (Figure  5a),  where  ‘amplification’  included  the  EC-amp, 
 HSR-amp,  and  heterogeneous  calls  made  by  InterSeg.  Among  the  71  pathologist  annotated  ‘no 
 amplification’  samples,  interSeg  labeled  63  (89%)  as  no-amp,  5  (7%)  as  heterogeneous,  and  3 
 (4%)  as  EC-amp.  When  limited  to  the  test  samples,  interSeg  called  15  of  18  (83%)  as  no-amp, 
 and  3  (17%)  as  heterogeneous  (Supplementary  Figure  16).  Similarly,  among  the  194  pathologist 
 annotated  ‘amplification’  category,  interSeg  labeled  164  samples  (85%)  as  EC-amp,  28  (14%) 
 as  heterogeneous,  only  2  (1%)  as  no-amp.  When  limited  to  the  test  samples,  interSeg  called  41 
 of 49 (84%) as EC-Amp, 7 as heterogeneous (14%), and only 1 (2%) as no-amp. 

 Because  the  pathologists  used  a  binary  classification  between  focally  amplified  or  not,  we  also 
 tested  the  majority  call.  On  the  hold-out  NB  test  data  from  no-amplification  category,  interSeg 
 called  the  majority  class  as  no-amp  in  18  (100%)  of  18  samples.  Similarly,  in  the  focal 
 amplification  test  data,  interSeg  called  the  majority  class  as  amplified  in  46  (94%)  of  49 
 samples.  Moreover,  43  of  the  46  focal  amplification  calls  were  labeled  as  EC-amp,  consistent 
 with  the  high  prevalence  of  ecDNA  in  MYCN  amplified  neuroblastoma  samples  19  .  Thus,  the 
 interSeg  results  were  highly  consistent  with  pathologist  annotations,  but  provided  additional 
 information in terms of cellular heterogeneity, and mode of amplification. 

 To  further  validate  interSeg’s  prediction  accuracy,  we  gathered  a  set  of  hold-out  NB  test  samples 
 where  whole  genome  sequencing  (WGS)  data  had  been  acquired.  After  filtering  for  quality  score 
 and  removing  samples  with  fewer  than  5  nuclei,  11  NB  samples  remained  (Supplementary  Table 
 11).  The  Amplicon  Suite  pipeline  (AS)  is  routinely  used  to  identify  ecDNA  using  WGS  6,20  .  Upon 
 analyzing  the  WGS  data  with  AS,  10  samples  were  predicted  to  be  cyclic,  indicative  of  ecDNA 
 containing  MYCN  , and 1 showed no focal amplification. 

 9  of  the  10  AS  predicted  ecDNA  samples  were  also  predicted  by  interSeg  to  be  EC-amp  (Figure 
 5b).  For  the  one  remaining  AS  predicted  ecDNA  sample,  interSeg  predicted  heterogeneity,  with 
 49%  of  nuclei  as  HSR-amp,  42%  of  nuclei  as  EC-amp,  and  9%  of  the  nuclei  as  No-amp.  The 
 results  are  highly  concordant,  because  AS  makes  a  single  call  based  on  bulk  sequencing,  and 
 ecDNA  have  been  previously  observed  to  reintegrate  into  a  non-native  chromosomal  location. 
 One  sample  was  predicted  by  AS  as  carrying  no  focal  amplification,  and  interSeg  predicted 
 100% of the nuclei as no-amp. 
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 DISCUSSION AND CONCLUSION 

 Cytogenetically  identifying  the  amplification  mechanism  in  interphase  cells  is  an  important  and 
 incompletely  understood  problem.  Although  sequence-based  methods  can  reconstruct  focal 
 amplifications,  they  cannot  fully  capture  the  dynamic  nature  of  ecDNA  and  the  amplification 
 mechanism  of  a  cell’s  present  state.  Image-based  tools  can  accurately  reconstruct  ecDNA  in 
 fluorescently  stained  images  of  cells  in  metaphase  in  which  the  ecDNA  is  clearly  visible  as  tiny 
 DNA  particles  floating  separately  from  the  chromosomes.  However,  this  requires  sampling  of 
 cultured  or  mitotic  cells,  and  is  difficult  to  obtain  from  patient  tissue  images.  Patient  tissue 
 images  primarily  contain  densely  clustered  interphase  cells,  where  the  DNA  is  inside  an  intact 
 nuclear  membrane  and  loosely  wound.  Moreover,  ecDNA  counts  vary  from  cell  to  cell  and 
 include  many  cells  with  low  counts.  This  makes  it  extremely  challenging  to  discern  ecDNA  even 
 for  a  trained  eye.  Nevertheless,  on  multiple  data  sets  including  cultured  cells,  tissue  models, 
 and  patient  tissue,  and  on  experimentally  and  computationally  mixed  cells  containing  both 
 ecDNA  and  HSR  amplification,  interSeg  was  able  to  predict  heterogeneity  accurately,  and  works 
 well in models of tissue slices. 

 We  also  present  a  companion  method,  stat-FISH,  that  provides  interpretability  to  interSeg 
 results  and  provides  useful  statistics  for  deeper  analysis.  We  demonstrated  various  use  cases  of 
 interSeg+stat-FISH  in  predicting  amplification  status,  amplification  heterogeneity  between 
 EC-amp,  HSR-amp,  and  no-amp  cell  lines,  and  reconstructing  the  amplification  profile  of 
 multiple  oncogenes  within  a  single  cell.  Most  importantly,  we  show  that  interSeg  accurately 
 quantifies the amplification mechanism of patient tissue images. 

 InterSeg  is  flexible  enough  to  use  without  a  centromeric  probe,  but  we  recommend  using  it  with 
 a  centromeric  probe.  Also,  it  is  run  in  an  optional  bootstrap  mode,  which  smooths  the  nuclei 
 results  through  a  voting  mechanism.  The  bootstrap  mode  is  best  utilized  in  situations  where  no 
 heterogeneity  is  expected,  and  a  single  label  can  be  applied  to  the  entire  image.  In  the  presence 
 of  heterogeneity,  interSeg  should  be  run  in  a  non-bootstrapped  mode.  In  the  manuscript,  we 
 utilized  the  non-bootstrapped  mode  for  analysis  of  patient  tissues  and  the  heterogeneity 
 experiments, but provided data on both bootstrapped and non-bootstrapped runs. 

 Even  though  we  use  a  unified  model  for  cultured  cells,  tissue  models,  and  patient  tissue,  the 
 three  modes  are  quite  different.  Especially,  patient  tissues  often  contain  multiple  cell  types, 
 including  normal  cells.  Currently,  interSeg  does  not  correct  for  tumor  purity.  Additionally,  it  uses 
 a  third  party  tool  to  separate  individual  nuclei,  but  may  not  be  able  to  adequately  separate  tightly 
 packed  nuclei,  which  in  turn  could  influence  the  predictions  of  the  number  of  FISH  foci,  and  the 
 amplification  mechanism.  In  future  work,  we  will  experiment  with  interphase  cultured  cells  where 
 cells  are  cultured  on  a  cover  slip  and  are  not  perturbed  by  any  chemicals,  to  better  match  the 
 nuclear  distribution  of  ecDNA  on  patient  tissues.  InterSeg  corrects  for  problems  due  to  contrast 
 and  other  quality  control  issues  but  more  data  will  be  needed  to  understand  the  degradation  of 
 performance  on  lower  quality  data  sets.  Another  challenge  is  that  most  pathologists  do  not 
 distinguish  between  HSR  and  EC-amp  making  it  difficult  to  experimentally  validate  the 
 amplification  mode  (ecDNA/HSR)  on  patient  tissue.  Moreover,  whole  genome  sequencing 
 signatures  from  bulk  cells  also  cannot  distinguish  ecDNA  from  HSRs  formed  by  reintegration  of 
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 ecDNA  into  the  chromosomes  while  maintaining  their  structural  features.  These  are  all  areas  of 
 development  which  will  be  addressed  in  ongoing  and  future  work.  Despite  these  challenges, 
 interSeg  has  been  successfully  applied  to  hundreds  of  patient  tissue  images,  and  should  be  a 
 useful tool for analysis of focal amplification mechanisms. 

 METHODS 

 Image Acquisition Protocols 

 To  generate  the  cultured  cell  images,  we  arrested  the  cells  by  treating  them  with  Colcemid 
 (Karyomax)  at  a  final  concentration  of  0.1  μg/mL  for  1-5  hours.  Cells  were  collected,  washed 
 with  PBS,  and  re-suspended  in  75  mM  KCl  for  10-15  minutes  at  37  °C.  The  hypotonic  buffer 
 reaction  was  quenched  by  adding  an  equal  volume  of  Carnoy’s  Fixative  (3:1  Methanol:Glacial 
 Acetic  Acid).  Cells  were  centrifuged,  washed,  and  re-suspended  in  Carnoy’s  fixative  three  more 
 times.  They  were  then  re-suspended  in  100-400  μL  of  Carnoy’s  Fixative  and  dropped  onto 
 non-overlapping  sections  of  humidified  slides.  Slides  were  equilibrated  in  2x  SSC  and 
 dehydrated  in  an  ascending  alcohol  series  of  70%,  85%,  and  100%  ethanol  for  two  minutes 
 each.  The  appropriate  DNA  FISH  (Empire  Genomics)  probe  was  added  to  the  sample  and 
 placed  on  a  75  °C  slide  moat  for  3-5  minutes  to  melt  the  DNA.  Probe  hybridization  occurred  at 
 37  °C  in  a  humidified  slide  moat  for  4  hours  to  overnight.  Slides  were  washed  for  two  minutes 
 each  in  0.4x  SSC  and  2x  SSC/0.1%  Tween-20.  Slides  were  stained  with  DAPI,  washed  in  2x 
 SSC  and  ddH2O,  and  then  mounted  with  mounting  media  (ProLong  Gold  or  Vectashield).  Cover 
 slips  were  sealed  with  clear  nail  polish  to  prevent  drying  of  the  sample.  Images  were  captured 
 using  a  63x  objective  on  either  an  Olympus  BX43  wide-field  fluorescent  microscope  or  a  Leica 
 Thunder Imager. 

 The  tissue  model  images  were  derived  from  xenografts.  The  CytoCell  Tissue  Pretreatment  Kit 
 (LPS  100,  Oxford  Gene  Technology  IP  Ltd.)  was  used  for  heat  pretreatment  of  Formalin-Fixed, 
 Paraffin-Embedded  (FFPE)  tissue  prior  to  Fluorescence  In  Situ  Hybridization  (FISH).  All  FISH 
 probes  were  purchased  from  Empire  Genomics  Inc.  FFPE  slides  were  baked  at  50  °C  overnight, 
 deparaffinized  three  times  with  xylene  (1330-20-7,  Millipore  Sigma)  for  10  minutes  each,  and 
 immersed  in  100%  and  70%  ethanol  (64-17-5,  VWR  International  LLC)  for  2  minutes  each.  After 
 washing  in  water  for  2  minutes,  the  slides  were  incubated  in  a  pretreatment  solution  at  100  °C 
 for  40  minutes.  Slides  were  dehydrated  in  a  graded  ethanol  series  of  70%,  85%,  and  100%,  and 
 then  air-dried.  Next,  10  μL  of  probe  mixture  was  applied  to  the  hybridization  area,  cover-slipped, 
 and  sealed  with  CytoBond  coverslip  sealant  (2020-00-1,  SciGene  Corp.).  Slides  were  incubated 
 in  the  ThermoBrite  System  (Abbott)  at  80  °C  for  denaturation  and  hybridized  at  37  °C  for  16 
 hours.  After  gently  removing  the  coverslip  sealant,  the  slides  were  immersed  in  2x  SSC/0.1% 
 Tween-20  (V4261,  Promega  Corp.)  for  3  minutes  in  the  dark.  The  coverslips  were  slipped  off  the 
 slides  while  still  in  the  SSC  buffer.  Next,  slides  were  washed  in  0.4x  SSC  solution  at  73  °C  for  2 
 minutes,  transferred  to  water  for  1  minute,  air-dried  in  darkness,  and  stained  with  DAPI 
 (DFS500L,  Oxford  Gene  Technology  IP  Ltd.),  and  cover-slipped.  FISH  results  were  examined 
 with a Keyence fluorescence microscope (BZ-X800 model, Keyence Corp.). 

 Data pre-processing 
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 We  pre-processed  the  images  by  delineating  each  individual  intact  nucleus  in  the  image.  We 
 used  a  package  called  NuSeT  14  to  identify  and  segment  each  nucleus.  NuSeT  utilizes  multiple 
 neural  networks  to  identify  and  separate  each  nucleus,  even  in  dense,  overlapping  clusters.  We 
 drew  a  bounding  box  around  each  unique  nucleus,  cropped  the  region  to  the  bounding  box,  and 
 resized  the  crop  to  a  256  by  256  patch  (Figure  2a).  For  bounding  boxes  larger  than  256  by  256 
 pixels,  we  applied  a  sliding  window  approach  to  obtain  multiple  256  by  256  patches,  with  each 
 patch analyzed seperately. 

 For  the  ecSeg-c  model,  each  input  patch  contains  channels  corresponding  to  the  DAPI  probe, 
 centromeric  probe,  and  target  probe.  To  control  for  the  variation  in  brightness  between 
 channels,  we  uniformly  rescaled  the  DAPI  channel  to  the  range  0  to  1.  Additionally,  we  jointly 
 rescaled the target and centromeric probe to the range 0 to 1. 

 EcSeg-i and ecSec-c architecture 

 The  backbones  of  ecSeg-i  and  ecSeg-c  are  the  DenseNet-121  architecture  15  .  Densenet-121  is  a 
 121  layered  convolutional  neural  network  (CNN)  with  12  layers.  The  feature  maps  of  all  previous 
 layers  are  concatenated  and  fed  as  input  to  the  current  layer,  making  it  densely  connected.  The 
 primary  benefit  of  this  dense  connection  is  that  it  enables  deeper  layers  to  reuse  features 
 learned  in  earlier  layers  without  having  to  relearn  them.  Consequently,  a  DenseNet  uses  fewer 
 parameters than an equivalent vanilla CNN. 

 EcSeg-i  and  ecSeg-c  are  composed  of  four  dense  blocks  containing,  6,  12,  24,  and  16 
 convolutional  blocks,  respectively.  Each  convolutional  block  is  composed  of  6  sequential 
 operations:  batch  normalization  (BN),  a  rectified  linear  unit  (ReLU),  convolution,  BN,  1    ×  1 
 ReLU,  and  a  convolution.  The  dimensions  of  all  the  feature  maps  within  a  dense  block  are  kept 
 the  same  (i.e.  no  down-sampling)  but  the  number  of  filters  increases  by  a  growth  factor  .  𝑘 =  32 
 This makes it practical to concatenate the feature maps instead of summing them. 

 Each  convolutional  block  adds  32  additional  feature  maps.  In  total,  DenseNet-121  has  one 
 convolutional  layer,  58  convolutional  layers,  61  convolutional  layers,  4  7    ×  7  3    ×  3  1    ×  1 

 averaging pooling layers, 1 max pooling layer, and one fully connected layer. 

 The  original  DenseNet-121  used  a  final  classification  layer  containing  1000  output  nodes  as  it 
 was  trying  to  classify  1000  classes.  For  the  ecSeg-i  model,  we  use  a  final  classification  layer 
 containing  3  output  nodes  corresponding  to  the  three  output  classes:  EC-amp,  HSR-amp,  and 
 no-amp.  For  the  ecSeg-c  model,  we  use  a  final  classification  layer  with  2  output  nodes, 
 corresponding to the no-amp and Amp output classes. 

 Training Procedure 

 We  trained  both  the  ecSeg-i  and  ecSeg-c  models  on  4  GeForce  GTX  1080  Ti  GPUs  using  the 
 Adam  optimizer.  For  ecSeg-i,  we  used  a  patience  criterion  of  7,  and  a  learning  rate  of  1e-4.  If 
 the  validation  loss  did  not  improve  for  7  epochs  the  training  was  halted.  We  minimize  the 
 cross-entropy  loss  function  to  train  our  network.  We  trained  the  network  for  200  epochs  and 
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 found  that  the  model  converged  after  120  epochs.  To  find  the  optimal  architecture,  we 
 performed grid-search of the following hyperparameters. 

 When  training  the  ecSeg-c  model,  we  initialized  the  network  with  the  DenseNet121  weights 
 pretrained  on  the  ImageNet  dataset.  We  used  a  patience  criterion  of  7  epochs,  with  the 
 validation  set  area  under  the  curve  (AuC)  metric  as  the  early  stopping  criterion.  Additionally,  we 
 used  the  Adam  optimizer  with  a  learning  rate  of  5e-4,  and  minimized  the  binary  cross-entropy 
 loss.  To  control  for  class  imbalance,  we  applied  balanced  sampling  during  each  epoch  across 
 each  tissue  type  (tissue  model/patient  tissue)  and  amplification  type  (no-amp/amp)  pair.  We 
 assigned  equal  sampling  weight  to  each  of  the  4  tissue  type  pairs,  effectively  downsampling  the 
 majority  classes.  We  trained  the  ecSeg-c  network  for  200  epochs  and  observed  the  model 
 converge  after  18  epoch.  We  noted  that  less  training  epochs  were  needed  for  convergence  due 
 to  the  use  of  pretrained  initial  weights.  Similar  to  ecSeg-i,  we  performed  a  grid-search  for  the 
 used hyperparameters. 

 interSeg bootstrapping of cell predictions 

 We  note  that  each  experiment  typically  contains  several  images.  For  example,  Figure  3b 
 contains  933  viable  cells  across  6  images  of  the  DLD1  cell  line  with  MYC  staining.  Similarly,  we 
 found  368  viable  cells  across  6  images  of  the  NHDF  cell  line  with  MYC  staining.  To  address 
 variation  in  cell  and  image  counts,  we  applied  a  custom  bootstrapping  approach  as  follows. 
 First,  we  assigned  a  single  amplification  mechanism  for  each  cell  based  on  the  highest 
 likelihood  prediction  from  interSeg.  Next,  our  procedure  randomly  selected  10  cells  and 
 identified  the  predominant  amplification  mechanism  based  on  the  majority  vote.  We  iterated  this 
 process  100  times  to  produce  a  distribution  representing  the  overall  amplification  mechanism  of 
 the experiment. The original interSeg calls are also retained for comparison, etc. 

 Quality Score Filtering 

 For  each  image,  we  generate  an  oncogenic  probe  quality  score  which  indicates  whether  the 
 image  is  apt  for  interSeg.  We  first  bin  the  oncogenic  FISH  signal  into  50  buckets  based  on  their 
 pixel  intensities.  We  then  find  the  highest  peak  left  of  the  25th  bin  and  right  of  the  25th  bin.  We 
 find  the  peaks  by  simply  comparing  the  neighboring  values.  We  compute  the  quality  score,  ,  by  𝑄 
 dividing  the  leftmost  peak  (  )  by  the  rightmost  peak  (  ),  .  Images  with  ℎ 

 1 
 ℎ 

 2 
 𝑄 =  ℎ 

 1 
 /  ℎ 

 2 
 𝑄    <  0 .  2 

 were  marked  as  low  quality.  Additionally,  we  excluded  nuclei  with  a  mean  oncogenic  FISH  signal 
 below  0.05  from  both  the  interSeg  and  ecSeg-c  analyses,  as  these  nuclei  exhibited  extremely 
 low oncogenic FISH signal. 

 We  generated  a  centromeric  probe  quality  score  for  each  image  as  well,  based  on  the  kurtosis 
 of  the  mean  centromeric  intensity  per  nucleus.  Images  with  a  kurtosis  value  greater  than  3  were 
 marked  as  having  low  centromeric  probe  quality  and  were  excluded  from  ecSeg-c  analysis, 
 defaulting  to  evaluation  in  interSeg  target-channel-only  mode.  Additionally  nuclei  with  maximum 
 centromeric  pixel  intensity  less  than  10  were  also  excluded  from  ecSeg-c  analysis  and  defaulted 
 to the ecSeg-i prediction. 

 stat-FISH Segmentation Preprocessing 
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 We  employed  instance  segmentation  to  decrease  the  occurrence  of  overlapping  nuclei  receiving 
 an  inflated  foci  count.  We  utilized  the  min-cut  algorithm  to  transform  the  binary  segmentation 
 output  from  NuSeT  into  an  instance  segmentation.  To  separate  overlapping  nuclei,  we 
 generated  a  4-connectivity  pixel  graph  for  each  connected  component  in  the  NuSeT 
 segmentation.  To  identify  nucleus  centers,  we  applied  an  L1  distance  transformation  to  the 
 NuSeT  segmentation  and  selected  local  maximums  with  greater  than  a  10-pixel  distance  away 
 from  the  nearest  background  pixel.  For  a  given  connected  component,  we  determined  the 
 minimum  number  of  edges  to  be  removed  to  isolate  two  centers  in  the  pixel  graph.  We  applied 
 this  algorithm  to  all  connected  components  exceeding  1.25  times  the  median  connected 
 component  area  and  separated  them  based  on  a  flow  limit  of  60.  This  preprocessing  method 
 was  only  used  for  stat-FISH  and  not  interSeg,  since  stat-FISH  outputs  a  quantitative  rather  than 
 categorical prediction. 

 stat-FISH 

 Stat-FISH  looks  for  local  peaks  in  brightness  in  the  FISH  channel.  The  input  for  stat-FISH  is  a 
 single  8-bit  FISH-probe  channel,  and  its  corresponding  binary  image  representing  the  nuclei 
 segmentation  from  NuSeT.  To  establish  whether  a  given  pixel  is  classified  as  an  foci  (local 
 peak), we have three criteria: 

 1.  The  local  brightness  of  the  region  surrounding  the  pixel  must  be  greater  than  the  pixel 
 neighborhood 

 2.  The pixel brightness must be greater than a minimum brightness (  ).  𝑏 
 𝑚𝑖𝑛 

 3.  Classified foci must have a minimum size given by (  )  𝑠 
 𝑚𝑖𝑛 

 This model makes two assumptions: 

 1.  An isolated FISH amplification resembles an isotropic 2d Gaussian, with a diagonal 
 covariance matrix and standard deviation given by  , a preset parameter to the model. σ

 2.  For a given pixel (  ,  ) in a FISH amplification,  the relative intensity of the local pixel  𝑥 
 0 
    𝑦 

 0 

 neighborhood can be approximated with 

 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ( 𝑥 ,     𝑦 )   =     𝑐  𝑒 
−
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 2 σ 2 
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 Let  be a flattened gaussian kernel, and  be a flattened  pixel neighborhood in the  𝑔 
→

 𝑣 
→

 𝑛 ×  𝑛 

 image. The goal is to find the best approximation for  in the subspace spanned by  𝑣 
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 Using Gram-Schmidt orthogonalization, the orthonormal vectors of this subspace are { 𝑔 
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 Using criteria 1 and 2, we state that for a pixel to be classified as a FISH-foci: 
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 1.  , where  is a parameter to the model.  is the flattened pixel  𝑣 •  𝑔 
⊥

   ≥     𝑐 
 𝑚𝑖𝑛 

 𝑐 
 𝑚𝑖𝑛 

 𝑣 

 neighborhood surrounding (  ,  ) .  𝑥 
 0 
    𝑦 

 0 

 2.  , where  is a parameter to the model and represents the  𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ( 𝑥 
 0 
   ,     𝑦 

 0 
) ≥  𝑏 

 𝑚𝑖𝑛 
 𝑏 

 𝑚𝑖𝑛 

 minimum brightness. 

 Therefore,  to  filter  for  pixels  with  a  local  brightness  greater  than  the  surrounding  neighborhood, 
 we  convolve  the  image(using  valid  zero-padding)  with  the  2-d  vector  ,  and  threshold  by  .  𝑔 

⊥
 𝑐 

 𝑚𝑖𝑛 

 Additionally,  we  threshold  the  original  image  by  and  find  the  intersection  with  the  𝑏 
 𝑚𝑖𝑛 

 𝑐 
 𝑚𝑖𝑛 

 thresholding.  The  number  of  foci  returned  for  a  given  cell  is  the  number  of  connected 
 components  in  the  thresholded  2d  array  where  the  connected  component  pixel  size  is  .  To ≥  𝑠 

 𝑚𝑖𝑛 

 estimate  copy  number  for  a  given  nucleus,  we  calculated  the  ratio  of  the  number  of  oncogenic 
 foci  pixels  by  the  total  nucleus  pixel  area  as  a  percentage.  This  corresponds  to  the  total  area  of 
 the oncogenic FISH amplifications per nucleus normalized by nucleus area. 

 We  emphasize  that  stat-FISH  is  a  deterministic  tool  and  primarily  quantifies  the  visual  data  in 
 the  image.  It  does  not  accurately  determine  the  amplification  mechanism  in  every  case. 
 However,  it  is  useful  to  understand  the  interSeg  predictions,  and  is  used  in  conjunction  with 
 interSeg. 

 Image distortion 

 We  tested  the  robustness  of  interSeg  by  testing  against  distorted  images,  including  enlarging, 
 shrinking,  rotating,  and  modulating  their  contrast  (Supplementary  Figures  5-7).  We  chose  one 
 image  from  an  EC-amp  cell  line  and  one  from  an  HSR-amp  cell  line.  For  each  image,  we  shrunk 
 them  by  80%,  enlarged  to  1.2x  the  original  size,  rotated  them  45  degrees,  decreasing  the 
 contrast by 40%, and increasing the contrast by 40%. 

 Red  Fluorescence  Probe  tagging  for  generating  heterogeneous  samples  containing 
 ecDNA and HSR. 

 The  COLO320DM  and  COLO320HSR  cell  lines  used  in  the  study  are  clones  with  comparable 
 MYC  copy  numbers,  selected  from  cells  obtained  from  ATCC.  COLO320DM  H2B-mCherry  was 
 engineered  by  lentiviral  infection  of  H2B-mCherry  into  isogenic  COLO320DM  cells,  followed  by 
 sorting  of  mCherry-positive  cells.  Two  rounds  of  cell  sorting  were  performed  to  ensure  that 
 about 95% of the COLO320DM H2B-mCherry line were mCherry-positive. 

 Both  COLO320HSR  and  COLO320DM  H2B-mCherry  were  cultured  in  DMEM  supplemented 
 with  10%  FBS  and  penicillin-streptomycin.  One  million  cells  from  each  cell  line  were  harvested 
 at  70%-80%  confluency  and  fixed  with  4%  paraformaldehyde  for  10  minutes  at  room 
 temperature,  followed  by  two  washes  with  1x  PBS.  The  fixed  COLO320HSR  and  COLO320DM 
 H2B-mCherry  cells  were  mixed  at  a  1:1  ratio  and  cytospun  onto  an  imaging  slide  at  800  rpm  for 
 8 minutes using the low mode on a Thermo Scientific Cytospin 4 Centrifuge. 
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 Immunofluorescence  (IF)  of  mCherry  was  performed  on  the  slide  to  distinguish  between 
 COLO320HSR  and  COLO320DM  H2B-mCherry  cells.  DNA  FISH  targeting  MYC 
 (https://empiregenomics.com/product/16399)  was  performed  following  IF  to  detect  MYC 
 amplification. Images were acquired with a Leica SP8 LIGHTNING confocal microscope. 

 Estimation of RFP Tagging Accuracy in Hybrid COLO320 Experiment 

 Our goal in this analysis is to validate that the observed frequencies of predicted annotations 
 and mCherry status (tagged vs not tagged) match our expectations. The categories for each 
 nucleus are: 

 a.  mCherry tagged and EC-amp predicted 
 b.  not mCherry tagged and EC-amp predicted 
 c.  mCherry tagged and HSR-amp predicted 
 d.  not mCherry tagged and HSR-amp predicted 

 To determine whether a nucleus is mCherry tagged, we took the maximum mCherry brightness 
 over all of the pixels in the segmented nuclei. We classify a nucleus as mCherry tagged if its 
 maximum pixel intensity exceeds 10 pixel brightness. We selected the threshold of 10 pixel 
 brightness as it strikes a balance between precision and recall in the AuC Curve for both 
 HSR-amp and EC-amp cells (Supplementary Figure 15, Supplementary Table 14). Since we 
 used maximum pixel intensity as the threshold, we excluded nuclei near the boundary, as pixels 
 from these nuclei are missing. 

 Since mCherry is an RFP which is inserted into COLO320DM, we expect only the ecDNA-amp 
 nuclei to be tagged, given 100% mCherry tagging accuracy. 

 However, the mCherry tagging accuracy is likely lower than 100%, and this analysis aims to 
 estimate the number  of true ecDNA nuclei that  are not mCherry tagged.  𝑥 

 Let  represent the number of nuclei  that are not mCherry tagged and are mCherry  𝑁 
 ℎ 
   ,     𝑁 

 𝑒 

 tagged, respectively. 

 Let (  ,  ) be the counts of predicted  HSR-amp nuclei and EC-amp nuclei which are not  𝑐 
 ℎ 

 𝑐 
 𝑒 

 mCherry tagged. We observed that interSeg did not predict any of the nuclei in the mCherry 
 tagging experiment as no-amp. 

 Let  represent the probabilities of  an interSeg prediction (using only the target channel)  𝑝 
 ℎ 
,     𝑝 

 𝑒 

 being HSR-amp and ecDNA-amp respectively, given the cell is truly EC-amp and the interSeg 
 prediction is not no-amp. 

 Let  represent the probabilities of  an interSeg prediction (using only the target channel)  𝑞 
 ℎ 
,     𝑞 

 𝑒 

 being HSR-amp and EC-amp respectively, given the cell is truly HSR-amp and the interSeg 
 prediction is not no-amp. 

 Let  represent the observed predictions (EC-amp,  HSR-amp) from interSeg for all nuclei.  𝑜 
→
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 Let  represent the interSeg predictions on the subset of nuclei that are mCherry  𝑜 
→

 𝑚𝐶ℎ𝑒𝑟𝑟𝑦    (+)

 tagged. 

 Let  represent the mCherry status (not  mCherry tagged / mCherry tagged) for all nuclei.  𝑠 
→

 𝑚𝐶ℎ𝑒𝑟𝑟𝑦 

 =  𝑃 ( 𝑜 
→

    |     𝑥 ,     𝑠 
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)  𝑃 ( 𝑜 
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    |     𝑠 
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 ℎ 
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 𝑐 
 𝑒 
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 ℎ 
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 Since  is constant  with respect to  𝑃 ( 𝑜 
→

 𝑚𝐶ℎ𝑒𝑟𝑟𝑦    (+)
    |     𝑠 

→

 𝑚𝐶ℎ𝑒𝑟𝑟𝑦 
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− 𝑥    

 If we assume the prior that all valid values of  are equally likely, then the likelihood  0    ≤  𝑥    ≤     𝑁 
 ℎ 

 is proportional to the  above posterior.  𝑃 (    𝑥     |     𝑜 
→

,     𝑠 
→

 𝑚𝐶ℎ𝑒𝑟𝑟𝑦 
)

 Therefore the maximum likelihood estimate for x is given by 

 𝑥 = arg
 0 ≤ 𝑥 ≤ 𝑁 

 ℎ    

max
 𝑎 

 ℎ 
= 0 
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∑     𝑥 
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 In the hybrid images, (  ,  𝑐 
 ℎ 

 𝑐 
 𝑒 

)   =    ( 309 ,     28 )   

 Across our entire COLO320DM_MYC test dataset, (  𝑝 
 ℎ 
,     𝑝 

 𝑒 
)   = ( 0 .  2642 ,     0 .  7358 )   

 Across our entire COLO320HSR_MYC test dataset, (  𝑞 
 ℎ 
,     𝑞 

 𝑒 
)   = ( 0 .  9763 ,     0 .  0237 )   

 The value x, which represents the number of EC-amp nuclei which are not mCherry tagged, 
 maximizes the above likelihood when x=28 nuclei. 

 To test this x=28 nuclei prediction, we performed a chi-squared test on the expected vs 
 observed nuclei counts on the 4 categories (mCherry tagging status and interSeg prediction). 
 With a chi-squared test statistic of 2.7252 and a p-value of 0.4360, we observed no statistically 
 significant difference between the distribution of expected vs observed nuclei counts. 

 Given that 428 / 765 nuclei were mCherry tagged, this would mean that 28/(428+28)=6.14% 
 percent of true EC-amp were not mCherry tagged. This would therefore set the percentage of 
 true EC-amp nuclei that were thresholded as mCherry tagged at 93.86%. 
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 MAIN FIGURE CAPTIONS 

 Figure 1: Data overview and Analysis pipeline.  (a)  Examples of interphase cells with 
 EC-amp, HSR-amp, No-amp (  MYC  red, Centromere 8 green).  (b) Image acquisition protocols 
 for various tissue modalities. (c) Distribution of tissue types and image acquisition protocols in 
 analyzed cell lines and patient tissues, for the training and hold-out test set. 

 Figure 2: Tool pipeline.  (a) InterSeg pipeline with  2 submodules: ecSeg-i and ecSeg-c. TGT: 
 target FISH probe, and CEN: centromeric FISH probe. (b) EcSeg-i architecture based on 
 DenseNet-121. 

 Figure 3: Testset results.  (a) InterSeg F1-score on  cultured cell line and tissue model test set, 
 where n is the number of cells in each class. (b) Bootstrapped distribution of interSeg 
 amplification mechanism of no-amp cell lines. (c) Bootstrapped distribution of interSeg 
 amplification mechanism of EC-amp cell lines. (d) Bootstrapped distribution of interSeg 
 amplification mechanism of HSR-amp cell lines. (e) EcSeg-c evaluation on NB hold-out set. 

 Figure 4: Explaining amplification mechanism using Stat-FISH.  (a) Image-level mean and 
 variance of copy number signal for HSR-amp and EC-amp images. (b) Number of oncogene 
 foci per cell across all cell lines separated by EC-amp, HSR-amp, and no-amp. (c) Copy number 
 signal per cell across all cell lines separated by EC-amp, HSR-amp, and no-amp. (d) Copy 
 number signal of an EC-amp cell line (SNU16) and a HSR-amp cell line (HCC827) (e) Example 
 of probing multiple oncogenes within a metaphase/interphase spread in H716 (  MYC  red, 
 FGFR2  green). (f) Number of oncogene foci and copy  number signal of  FGFR2  and  MYC 
 oncogene for each cell in H716. 

 Figure  5:  Patient  Tissue  Results.  (a)  Non-bootstrapped  distribution  of  interSeg  amplification 
 mechanisms  across  all  NB  samples  with  pathologist  annotation.  The  samples  were  stratified  by 
 ‘no-amplification’  and  ‘amplification’  labels  annotated  by  pathologists.  Each  column  corresponds 
 to  a  single  patient,  and  the  bar  height  corresponds  to  the  proportion  of  cells  labeled  for  each 
 amplification  class  by  interSeg.  (b)  InterSeg  predictions  on  NB  test  set  samples  compared  with 
 calls based on Amplicon Suite analysis of Whole Genome Sequencing Data. 
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