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25 ABSTRACT

26 Oncogene amplification is a key driver of cancer pathogenesis and is often mediated by
27 extrachromosomal DNA (ecDNA). EcDNA amplifications are associated with increased
28 pathogenicity of cancer and poorer outcomes for patients. ECDNA can be detected accurately
29 using fluorescence in situ hybridization (FISH) when cells are arrested in metaphase. However,
30 the maijority of cancer cells are non-mitotic and must be analyzed in interphase, where it is
31 difficult to discern extrachromosomal amplifications from chromosomal amplifications. Thus,
32 there is a need for methods that accurately predict oncogene amplification status from
33 interphase cells.

34 Here, we present interSeg, a deep learning-based tool to cytogenetically determine the
35 amplification status as EC-amp, HSR-amp, or not amplified from interphase FISH images. We
36 trained and validated interSeg on 652 images (40,446 nuclei). Tests on 215 cultured cell and
37 tissue model images (9,733 nuclei) showed 89% and 97% accuracy at the nuclear and sample
38 levels, respectively. The neuroblastoma patient tissue hold-out set (67 samples and 1,937
39 nuclei) also revealed 97% accuracy at the sample level in detecting the presence of focal
40 amplification. In experimentally and computationally mixed images, interSeg accurately
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41 predicted the level of heterogeneity. The results showcase interSeg as an important method for
42 analyzing oncogene amplifications.

43 INTRODUCTION

44 Oncogene amplification is a key driver of cancer pathogenesis'. Focal oncogene amplifications
45 can occur within specific chromosomes as homogeneously staining regions?® (HSR) or as
46 extrachromosomal DNA* (ecDNA), which are circular, acentric molecules that replicate
47 independently and segregate randomly in daughter cells®. ECDNAs are present in a third of all
48 samples, and in two-thirds of cancer subtypes®. They are especially frequent in glioblastoma’,
49 neuroblastoma®, and esophageal carcinoma*®, but have also been detected in pre-cancerous
50 lesions®. Compared to other intrachromosomal focal amplifications, ecDNAs are associated with
51 increased pathogenicity of cancer and poorer outcomes for patients®. Thus, there is an
52 important need for methods and tools to detect focal amplifications in tumor cells and classify
53 their location as being intrachromosomal or extrachromosomal.

54 Sequence-based methods''"" analyze the patterns of genomic reads sampled from a tumor
55 genome and mapped to a normal reference to (a) identify copy number patterns indicative of
56 focal amplification, (b) use focally amplified regions as seeds, and (c) utilize discordantly
57 paired-reads to explore the fine genomic structure of focal amplifications. The presence of
58 discordant reads that represent a cyclic structure are highly indicative of ecDNA structure®.
59 Sequence-based methods can also reliably distinguish ecDNA from stable chromosomal
60 amplifications (displaying as HSRs) formed by breakage fusion bridge cycles and other
61 mechanisms®. However, HSRs may also be formed when ecDNA re-integrate into
62 chromosomes in response to the cellular environment'>. The HSRs formed by re-integrated
63 ecDNA retain their sequence features, making it difficult for sequence-based methods to predict
64 the amplification mechanism.

65 Fluorescent and DAPI imaging of DNA in metaphase spreads are currently the gold-standard for
66 determining the location (intra- or extrachromosomal) of focal amplification. ECONAs appear as
67 hundreds of tiny faint DNA particles, detached from the compacted chromosomes seen in
68 metaphase. Fluorescently labeled DNA FISH probes for specific genes can additionally
69 determine if the ecDNAs carry those genes. A deep-learning method, ecSeg, was successfully
70 utilized to semantically segment images of metaphase cells and annotate the pixels
71 representing ecDNA'3. However, capturing cells in metaphase requires synchronization of cells,
72 which is typically possible only in cultured cell lines. In clinical practice, cells are harvested from
73 patient tumor tissue and readily archived as flash-frozen tissue sample, or as formalin-fixed
74 paraffin-embedded samples. The majority of cells are non-mitotic and must be analyzed in
75 interphase, where the DNA is loosely arranged inside an intact nuclear membrane. This makes
76 it extremely challenging to identify ecDNA, even for a trained eye.

77 In this work, we discern HSR and ecDNA amplifications using the unique fluorescent staining
78 patterns of amplicons in interphase nuclei. We present interSeg, a deep learning-based tool to
79 cytogenetically determine amplification status of a target FISH probe. interSeg relies on two
8o independent deep learning modules: ecSeg-c and ecSeg-i. EcSeg-c uses centromeric and
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81 target FISH probes to determine if the target is amplified. The additional centromeric probe
82 provides a control for aneuploidy, whole genome duplication and overlapping cells, which may
83 result in higher number of FISH foci. EcSeg-i determines the mode of amplification as ecDNA or
84 HSR, assuming focal amplification of the target, and requires only the target FISH probe.

85 RESULTS

86 We modeled ecDNA detection in interphase nuclei as a problem of nuclear classification, where
87 each interphase nucleus was assigned to one of three categories (Figure 1a): amplification on
88 ecDNA (‘EC-amp’); intrachromosomal amplification, described by a homogeneously stained
89 region (‘HSR-amp’); or no amplification of the target probe (‘no-amp’). Each cytogenetic image
90 itself contained a collection of interphase nuclei and were found to have different characteristics
91 depending on the source. Therefore, we first collected representative cytogenetic images from
92 different sources to create a dataset.

93 Dataset overview

94 We obtained images from 13 different tissue types using three different protocols (Figure 1b).
95 ‘Cultured cells’ refer to cells grown outside of their natural environment, typically in a culture,
96 and plated on a slide prior to image acquisition. This results in images with dissociated and
97 sparse nuclei. ‘Tissue models’ are cells obtained from xenografts, which are tissues
98 transplanted from human to mouse, then biopsied for image acquisition. This results in images
99 with more tightly packed cells. ‘Patient tissue’ corresponds to tightly packed cells in tissue
100 sections from tumor biopsies (Supplementary Figure 1 and Methods), but may have more
101 heterogeneity and a higher fraction of normal tissue cells. We obtained 231 cultured cell images
102 and 443 filtered tissue model images from 32 unique cell lines, and 265 filtered images from
103 patient derived (see Methods) neuroblastoma (NB) samples. In addition, we utilized 60 ‘mixed’
104 images (765 nuclei) from a special tagging experiment designed to test performance in
105 heterogeneous samples containing both ecDNA and HSR (See Methods).

106 We used whole genome sequencing (WGS) to identify the amplified oncogene in the cultured
107 cell and tissue model cell lines, as described in earlier publications®. We then probed for these
108 amplified genes using FISH probes in DAPI| stained metaphase spreads where the
109 chromosomes are compacted, and the nuclear location of the FISH probe can be
110 unambiguously determined. This provided the truth set for whether the oncogene was amplified
111 on ecDNA or HSR®. A few cell lines were probed for more than one oncogene (e.g. H716 for
112 FGFR2 and MYC) to obtain 39 unique cell line-oncogene pairs. The cell line-oncogene pairs
113 (1, g) from the cultured cell lines and tissue-models were assigned a label L(l, g) as being one of
114 EC-amp, HSR-amp, or no-amp. Correspondingly, each nucleus with a fluorescent label for gene
115 g in an interphase image of cell line [ also received the label L(l, g), providing us with a data set
116 of nuclei that could be utilized for training, validation, and testing. For example, we labeled all
117 nuclei in the COLO320HSR cell line as HSR-amp for the oncogene MYC.

118 We trained ecSeg-i and ecSeg-c separately. For ecSeg-i, we performed a 50-50
119 training/validation hold-out set split on the 231 cultured cell images, and a 75-25
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120 training/validation hold-out set split on the 443 tissue model images. In total, we utilized 459
121 images (35,096 nuclei) for training/validation, and 215 images for hold-out testing
122 (Supplementary Table 1). Finally, we utilized the NB patient tissue images as analysis sets for
123 biological interpretation (265 images, 7,466 nuclei). Notably, the trained neural networks never
124 accessed the 215 hold-out test images from cultured cells and tissue models, 60 mixed images,
125 or the 265 patient tissue images during training or validation of ecSeg-i.

126 EcSeg-c requires centromeric and target FISH probes, and it returns a classification of
127 ‘focal-amp’ or ‘no-focal-amp’ for each nucleus. 392 of the 443 tissue model images had a
128 centromeric probe and met our centromeric quality score criterion. We labeled images with
129 HSR-amp and EC-amp classifications as ‘focal-amp’ for ecSeg-c training. Other images were
130 labeled ‘no-focal-amp’. Of the 392 images, 95 images (7,501 nuclei), which were also in the
131 hold-out set of ecSeg-i, were used as a test set to prevent leakage. The remaining 297 images
132 (22,970 nuclei) were used for ecSeg-c training/validation. For our NB patient tissue dataset, 260
133 of the 265 NB samples met our centromeric quality criterion, and were labeled by pathologists
134 as ‘amplification’, or not. The NB patient tissue image dataset was split 75-25 into
135 training/validation (5,350 nuclei from 193 images) and hold-out set (1,937 nuclei from 67 images).

136 InterSeg architecture overview

137 Recall that interSeg has two distinct modules: ecSeg-i and ecSeg-c, both of which make
138 predictions on individual nuclei annotated with DAPI and FISH. Therefore, we used an available
139 method, NuSet™, to first segment each image into individual nuclei (Figure 2a). These individual
140 nuclei are fed to ecSeg-i and ecSeg-c. Salient features and data filtering issues are described
141 below, with details in methods.

142 EcSeg-i and ecSeg-c are both based on the DenseNet-121 architecture’ (Methods).
143 DenseNet-121 is a densely connected network with exhaustive skip connections between
144 convolutional blocks, enabling feature-reuse throughout the network. The feature maps of all
145 previous layers were concatenated and fed as input to the current layer, making it densely
146 connected (Figure 2b).

147 The original DenseNet has a final classification layer with 1000 output nodes, corresponding to
148 1000 ImageNet'® classes. In our version of DenseNet for ecSeg-i, we used a final classification
149 layer with 3 output nodes corresponding to the three output classes: EC-amp, HSR-amp, and
150 no-amp. Notably, we also experimented with training a DenseNet from scratch and training with
151 a network pre-trained on ImageNet. Although both networks achieved similar accuracy
152 (F1-score difference of 0.1), the network trained from scratch converged much faster (~50
153 epochs) than the pretrained network (~80 epochs).

154 Ec-Seg-i returns the posterior probability of the membership in each class as the output for each
155 nucleus. As a post-processing step, it optionally labels each nucleus with the amplification
156 mechanism with the greatest posterior probability from ecSeg-i. Because there is considerable
157 heterogeneity in ecDNA counts from cell to cell, most scientists make predictions based on
158 groups of cells rather than individual cells. Therefore, we additionally generated cell line level
159 metrics by employing a bootstrapping approach on the results obtained at the nucleus level
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160 (Methods). Briefly, this involved selecting 10 cells in each sampling instance and determining
161 the most prevalent amplification mechanism within this group. This process was iterated 100
162 times, with a random selection of 10 cells in each iteration. The outcome of this iterative process
163 was employed as the cell line level statistics.

164 EcSeg-i assumes that any amplification of the target is a focal event. However, amplifications
165 can also occur due to aneuploidies, and this can be cytogenetically tested by using a
166 centromeric probe. We ftrained a separate neural network (ecSeg-c) with the same
167 DenseNet121 architecture as ecSeg-i (Supplementary Figure 2). For each nucleus, ecSeg-c
168 predicts a binary classification label, focally amplified or not.

169 As with all deep-learning methods, a direct and intuitive explanation of the ecSeg-i posterior
170 probabilities output is not available. This is specifically confounding for interphase FISH analysis
171 where the high variability from cell to cell makes interpretation difficult even for the trained eye.
172 To improve interpretation, we implemented a second module called stat-FISH to gather statistics
173 that provide complementary evidence (Methods). These statistics are not used to change the
174 output of ecSeg-i, but are provided as an addendum to ecSeg-i posterior probabilities.
175 Importantly, in contrast to the per-cell posterior probabilities output by ecSeg-i, stat-FISH mimics
176 human interpretation by analyzing and integrating the data from multiple nuclei (Supplementary
177 Figure 3).

178 Training and validation of interSeg modules

179 EcSeg-i converged on the training data after 50 epochs. We inspected what the architecture
180 learned by visualizing the 7 x 7 filters of the first convolution layer and their corresponding
181 feature maps over a test image. We observed that the majority of the filters initially learned to
182 detect small circular objects, indicative of ecDNA patterns (Supplementary Figure 4). The
183 corresponding feature maps show that the network is able to immediately separate the
184 ecDNA-like structures from the background noise, affirming that the network is learning to
185 recognize the object of interest.

186 We tested the robustness of interSeg predictions to variation of image acquisition, by artificially
187 distorting the images (Methods), including shrinking, enlarging, and rotating (Supplementary
188 Figures 5-7). In each case, the performance remained similar or identical to the non-distorted
189 case. We also tested interSeg after changing contrast (Supplementary Figures 8-9), which can
190 seriously impact intensity of the fluorescent signal. In a good image, we expect to see a bimodal
191 distribution for the oncogenic FISH signal with a vast majority of pixels with very low intensity,
192 and a small number of ‘true’ pixels with high intensity reflecting real probe hybridization.
193 Lowering the contrast did not change the bimodality, but raising it led to significant bleeding of
194 the FISH signal, impacting performance for HSR-amp lines but not EC-amp lines
195 (Supplementary Figures 8-9). We used this result to generate a quality score for each image
196 (Methods). Three of the tissue model test images were marked as low quality based on this
197 method and were removed from final evaluation. Notably, the patient tissue samples were used
198 only for hold-out testing of ecSeg-i. There were a total of 388 NB patient tissue images with
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199 pathologist annotations which were filtered for quality and for an annotation of ‘amplification’, or
200 ‘no-amplification’ to yield 265 images used for testing of ecSeg-i.

201 We also observed some images with a weak but uniform centromeric signal (high kurtosis of
202 mean nucleus centromeric intensity), in contrast with other images where there was a distinct
203 centromeric signal, with high but varying intensity (low kurtosis). We filtered images with a
204 kurtosis value greater than 3, and for those images ecSeg-c was not run, and only ecSeg-i was
205 used to make calls. Additionally, we also defaulted to ecSeg-i when the maximum nucleus
206 centromeric intensity was less than 10 (using a 0-255 scale), as these nuclei contain little
207 centromeric signal. Of the 265 NB samples, 5 failed these centromeric quality score criteria,
208 leaving 260 samples remaining. 67 were set aside as a hold-out test set for ecSeg-c, and 193
209 were used for training and validation.

210 EcSeg-i and ecSeg-c accurately determine amplification mechanisms

211 In cases where a centromeric probe is not available, InterSeg defaults to running ecSeg-i
212 (Figure 2a). Therefore, we tested ecSeg-i and ecSeg-c independently. EcSeg-i was tested on
213 each of the 9,733 nuclei from the 118 cultured-cell and 97 tissue model images in the hold-out
214 test data set. The 9,733 nuclei included 1,539 with no-amp, 3,497 nuclei with EC-amp, and
215 4,697 nuclei with HSR-amp. The model achieved F1-scores of 0.91 (recall: 0.91, precision:
216 0.91) for no-amp, 0.87 (recall: 0.91, precision: 0.84) for EC-amp, and 0.88 (recall: 0.86,
217 precision: 0.91) for HSR-amp nuclei at the per-nucleus identification level (Figure 3a). These
218 results are conservative estimates, as they assume uniform amplification within each cell line,
219 despite the expected heterogeneity or lack of amplification in all cell lines.

220 Next, we tested ecSeg-c. EcSeg-c was trained on the 297 tissue model images and 193 NB
221 patient tissue images and subsequently tested on 95 tissue model images and 67 NB patient
222 tissue images, as described earlier. On the tissue model images, we obtained a nucleus-level
223 F1 score of 0.95 (recall: 0.95, precision: 0.94) and 0.99 (recall: 0.99, precision: 0.99) on the
224 no-amp and amp classes respectively. For the NB patient tissue test subset, ecSeg-c obtained a
225 0.78 F1 score (recall: 0.92, precision: 0.67) on the no-amp class and a 0.92 F1 score (recall:
226 0.88, precision: 0.98) on the amp class at the per-nucleus level. For sample-level predictions
227 (Figure 3e), we observed a 0.95 F1 Score (recall: 1.0, precision: 0.90) on no-amp and 0.98 F1
228 Score (recall: 0.96, precision: 1.0) on amp labels.

229 Notably, because we did not have metaphase annotations of ecDNA or HSR on the patient
230 tissue images, the combined interSeg could only be tested on the cultured cells and tissue
231 models. On the 118 cultured cell test images and 97 tissue model test images, interSeg
232 obtained nucleus level F1 scores of 0.92 (recall: 0.97, precision: 0.88), 0.87 (recall: 0.91,
233 precision: 0.85), and 0.89 (recall: 0.85, precision: 0.93) respectively for the no-amp, EC-amp,
234 and HSR-amp classes.

235 The bootstrapped version of interSeg was tested 100 times on each of the 39 cell line-oncogene
236 pairs to obtain single predictions for each pair. It correctly predicted the majority of the
237 bootstrapped trials to carry the expected amplification in 38 out of the 39 samples overall
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238 (Figure 3b-d). Even in the non-bootstrapped nuclear level predictions, interSeg predicted more
239 than 60% of the nuclei as EC-amp in all 15 ecDNA cell lines, more than 90% of the cells as
249 no-amp in all 3 no-amp cell lines, and at least 50% of the cells as HSR-amp in 20 out of 21 HSR
241 cell lines (Supplementary Figure 10 and Supplementary Table 2).

242 While bootstrapping eliminates small variability due to mis-prediction or noise, the remaining
243 high variability in certain samples suggested heterogeneity between ecDNA and HSR. For
244 example, the metaphase cell in SF268 shows two HSR amplifications. However, the stat-FISH
245 data shows seven distinct FISH foci with a puncta pattern and an ecSeg-i posterior probability
246 indicative of EC-amp (Supplementary Figure 11). In contrast, Supplementary Figure 12 shows a
247 second SF268 nucleus with a high foci count of 9; in this case, ecSeg-i predicted the nucleus as
248 primarily HSR-amplified due to the non-puncta distribution of the foci. Similar information can be
249 found for SN12C (Supplementary Figure 13).

250 InterSeg determines amplification heterogeneity between cell lines

251 To test interSeg prediction performance for heterogeneous samples containing both EC-amp
252 and HSR-amp cells, we first created artificial composite images containing both ecDNA and
253 HSR amplifications by combining the cells in the isogenic lines GBM39EC and GBM39HSR with
254 the FISH probe EGFR. For the GBM39HSR cells in the computationally mixed images, we
255 observed a 78%-22%-0% split between HSR-amp, ecDNA-amp, and no-amp predictions
256 respectively. This mirrored the true GBM39HSR prediction percentages, which are
257 81%-19%-0% respectively. A statistical test could not distinguish between calls made on the
258 pure HSR line versus the HSR labeled cells in the mixed image (chi-square test statistic:
259 2.3607, P-value: 0.1244). Similarly, for the true GBM39EC cells in the mixed images, we
260 observed a 14%-86%-0% split between HSR-amp, EC-amp, and no-amp predictions
261 respectively. Once again, this could not be statistically distinguished from the pure GBM39EC
262 cell line, where the interSeg predictions were 14%-86%-0% HSR-amp, ecDNA-amp, and
263 no-amp respectively (chi-square test statistic: 0.0186, P-value: 0.8914).

264 We repeated the experiment after concatenating pairs of test set images from COLO320DM and
265 COLO320HSR with an absolute mean nuclei area difference of less than 50 pixels. This is a
266 harder test because 29% of the cells in the used COLO320DM images were predicted to be
267 HSR with a breakdown of 29%-71%-0% for HSR-amp, ecDNA-amp, and no-amp. Interestingly,
268 the COLO320DM cells in the mixed images also showed a similar 32%-68%-0% distribution for
269 HSR-amp, ecDNA-amp, and no-amp labels, respectively (chi-square test statistic: 1.7475,
270 P-value: 0.1862). Similarly, observed predictions for COLO320HSR cells in the computationally
271 mixed images were 97%-2%-1% for HSR-amp, ecDNA-amp, no-amp, respectively. These
272 matched the interSeg predictions on pure COLO320HSR which were 96%-2%-2% respectively
273 (chi-square test statistic: 0.3706, P-value: 0.8309).

274 Next, we also tested an experimental system where COLO320DM and COLO320HSR cells
275 were grown on the same plate. An mCherry RFP tag was used to mark COLO320DM cells. A
276 green DNA-FISH probe for MYC was used to test amplification in this mixed cell population
277 (Methods). However, we also observed that the RFP tagging accuracy was not 100% and there
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278 were a small but unknown number of ecDNA cells that were not tagged (Supplementary Figure
279 14). Therefore, we utilized a latent parameter x denoting the number of COLO320DM cells that
280 were not RFP tagged. Next, we computed the optimal value for x that maximized the likelihood
281 of the observed frequencies seen in the pure cell line test datasets for COLO320DM and
282 COLO320HSR (Methods). At x=6.14% (which would imply a tagging accuracy of 93.86%), we
283 observed a strong correlation, or no statistically significant difference between expected
284 heterogeneity and observed heterogeneity (chi-squared test statistic: 2.7252, P-value: 0.4360).
285 Together, these results illustrate the power of interSeg in predicting amplification mechanisms in
286 the presence of heterogeneity.

287 Based on these results, we decided to use the following rule based on predictions after
288 bootstrapping: A cell line was considered to be no-amp at least 80% of the cells were classified
289 as no-amp; as HSR-amp if at least 80% of the cells were classified as HSR-amp; as EC-amp, if
290 at least 50% of cells were EC-amp. Otherwise, the sample was classified as mixed or
291 heterogeneous.

292 stat-FISH provides an explanation of amplification status.

293 Because interSeg uses deep neural networks to determine the amplification mode, there is
294 limited insight into the features used to make this decision (for partial information, see
295 Supplementary Figure 4). Therefore, we analyzed the data with stat-FISH, a complementary
296 module that computes statistics of the distribution of oncogenic foci per cell. As expected, cells
297 with EC-amp had higher mean and variance in the copy number signal compared to HSR-amp
298 cells. Only 40% of the EC-amp images had a mean < 10 and variance < 64, in contrast to 97%
299 of HSR-amp images with those properties (Figure 4a and Supplementary Table 4). The number
300 of foci and the total FISH signal were also significantly higher in EC-amp cells, whether
301 analyzed across all cell lines (Figure 4b,c) or for individual pairs (e.g., Figure 4d and
302 Supplementary Tables 5, 6, 7). Despite these differences, there was high variability in the
303 number and spread of FISH foci across samples. The maximum accuracy of stat-FISH
304 amplification status prediction on the test samples, across different cut-offs of mean and
305 variance, was 83%, lower than the 97% sample accuracy of interSeg (Supplementary Table 8
306 and Methods). Thus, while stat-FISH is a useful complementary method that allows for an
307 intuitive understanding of amplification modes, it lacks the predictive power of the deep neural
308 network of interSeg, which may be correcting for signal-to-noise ratio, changing morphologies,
309 and latent correlations.

310 stat-FISH allows for exploratory quantification of multiple oncogenes.

311 While stat-FISH cannot predict amplification status with as much accuracy as interSeg, it
312 nevertheless provides the flexibility for additional computations that are not easy with interSeg.
313 For example, we used stat-FISH to investigate H716, a colorectal cancer cell line where
314 interSeg predicted EC-amp for two distinct probes, corresponding to FGFR2 and MYC, for each
315 investigated cell (Figure 4e and Supplementary Table 3). The included metaphase in the figure
316 confirms the correctness of the two predictions as being distinct ecDNA. We next quantified the
317 FISH signal using stat-FISH. The average and median copy number signal for FGFR2 was at 10
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318 and 9, respectively, similar to those of MYC, which were 9 and 10, respectively. Similar to
319 metaphase, we also found examples of co-occurring FGFR2 and MYC amplification signals that
320 showed up as yellow (FGFR2-green and MYC-red). The stat-FISH results suggested a higher
321 count of FGFR2 ecDNA relative to MYC, and the individual numbers were significantly higher
322 than co-occurrences (Figure 4f). However, the co-amplification signal was also strong, and
323 significantly higher relative to chance occurrence (Mann-Whitney U test P-value 1.6E-08;
324 Methods). This result suggests either that the ecDNA species interact'”'® or the existence of
325 ecDNA that carry both MYC and FGFR2.

326 InterSeg determines heterogeneity of ecDNA in patient tissue samples.

327 Across the 265 patient tissue NB samples, the interSeg predictions were 167 EC-amp (63%), 65
328 as no-amp (25%), and 33 heterogeneous (12%). These samples were previously classified by
329 pathologists as ‘amplification’ or not (Figure 5a), where ‘amplification’ included the EC-amp,
330 HSR-amp, and heterogeneous calls made by InterSeg. Among the 71 pathologist annotated ‘no
331 amplification’ samples, interSeg labeled 63 (89%) as no-amp, 5 (7%) as heterogeneous, and 3
332 (4%) as EC-amp. When limited to the test samples, interSeg called 15 of 18 (83%) as no-amp,
333 and 3 (17%) as heterogeneous (Supplementary Figure 16). Similarly, among the 194 pathologist
334 annotated ‘amplification’ category, interSeg labeled 164 samples (85%) as EC-amp, 28 (14%)
335 as heterogeneous, only 2 (1%) as no-amp. When limited to the test samples, interSeg called 41
336 of 49 (84%) as EC-Amp, 7 as heterogeneous (14%), and only 1 (2%) as no-amp.

337 Because the pathologists used a binary classification between focally amplified or not, we also
338 tested the majority call. On the hold-out NB test data from no-amplification category, interSeg
339 called the majority class as no-amp in 18 (100%) of 18 samples. Similarly, in the focal
340 amplification test data, interSeg called the majority class as amplified in 46 (94%) of 49
341 samples. Moreover, 43 of the 46 focal amplification calls were labeled as EC-amp, consistent
342 with the high prevalence of ecDNA in MYCN amplified neuroblastoma samples'®. Thus, the
343 interSeg results were highly consistent with pathologist annotations, but provided additional
344 information in terms of cellular heterogeneity, and mode of amplification.

345 To further validate interSeg’s prediction accuracy, we gathered a set of hold-out NB test samples
346 where whole genome sequencing (WGS) data had been acquired. After filtering for quality score
347 and removing samples with fewer than 5 nuclei, 11 NB samples remained (Supplementary Table
348 11). The Amplicon Suite pipeline (AS) is routinely used to identify ecDNA using WGS®2°. Upon
349 analyzing the WGS data with AS, 10 samples were predicted to be cyclic, indicative of ecDNA
350 containing MYCN, and 1 showed no focal amplification.

351 9 of the 10 AS predicted ecDNA samples were also predicted by interSeg to be EC-amp (Figure
352 5b). For the one remaining AS predicted ecDNA sample, interSeg predicted heterogeneity, with
353 49% of nuclei as HSR-amp, 42% of nuclei as EC-amp, and 9% of the nuclei as No-amp. The
354 results are highly concordant, because AS makes a single call based on bulk sequencing, and
355 ecDNA have been previously observed to reintegrate into a non-native chromosomal location.
356 One sample was predicted by AS as carrying no focal amplification, and interSeg predicted
357 100% of the nuclei as no-amp.
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358 DISCUSSION AND CONCLUSION

359 Cytogenetically identifying the amplification mechanism in interphase cells is an important and
360 incompletely understood problem. Although sequence-based methods can reconstruct focal
361 amplifications, they cannot fully capture the dynamic nature of ecDNA and the amplification
362 mechanism of a cell’s present state. Image-based tools can accurately reconstruct ecDNA in
363 fluorescently stained images of cells in metaphase in which the ecDNA is clearly visible as tiny
364 DNA particles floating separately from the chromosomes. However, this requires sampling of
365 cultured or mitotic cells, and is difficult to obtain from patient tissue images. Patient tissue
366 images primarily contain densely clustered interphase cells, where the DNA is inside an intact
367 nuclear membrane and loosely wound. Moreover, ecDNA counts vary from cell to cell and
368 include many cells with low counts. This makes it extremely challenging to discern ecDNA even
369 for a trained eye. Nevertheless, on multiple data sets including cultured cells, tissue models,
370 and patient tissue, and on experimentally and computationally mixed cells containing both
371 ecDNA and HSR amplification, interSeg was able to predict heterogeneity accurately, and works
372 well in models of tissue slices.

373 We also present a companion method, stat-FISH, that provides interpretability to interSeg
374 results and provides useful statistics for deeper analysis. We demonstrated various use cases of
375 interSeg+stat-FISH in predicting amplification status, amplification heterogeneity between
376 EC-amp, HSR-amp, and no-amp cell lines, and reconstructing the amplification profile of
377 multiple oncogenes within a single cell. Most importantly, we show that interSeg accurately
378 quantifies the amplification mechanism of patient tissue images.

379 InterSegq is flexible enough to use without a centromeric probe, but we recommend using it with
380 a centromeric probe. Also, it is run in an optional bootstrap mode, which smooths the nuclei
381 results through a voting mechanism. The bootstrap mode is best utilized in situations where no
382 heterogeneity is expected, and a single label can be applied to the entire image. In the presence
383 of heterogeneity, interSeg should be run in a non-bootstrapped mode. In the manuscript, we
384 utilized the non-bootstrapped mode for analysis of patient tissues and the heterogeneity
385 experiments, but provided data on both bootstrapped and non-bootstrapped runs.

386 Even though we use a unified model for cultured cells, tissue models, and patient tissue, the
387 three modes are quite different. Especially, patient tissues often contain multiple cell types,
388 including normal cells. Currently, interSeg does not correct for tumor purity. Additionally, it uses
389 a third party tool to separate individual nuclei, but may not be able to adequately separate tightly
390 packed nuclei, which in turn could influence the predictions of the number of FISH foci, and the
391 amplification mechanism. In future work, we will experiment with interphase cultured cells where
392 cells are cultured on a cover slip and are not perturbed by any chemicals, to better match the
393 nuclear distribution of ecDNA on patient tissues. InterSeg corrects for problems due to contrast
394 and other quality control issues but more data will be needed to understand the degradation of
395 performance on lower quality data sets. Another challenge is that most pathologists do not
396 distinguish between HSR and EC-amp making it difficult to experimentally validate the
397 amplification mode (ecDNA/HSR) on patient tissue. Moreover, whole genome sequencing
398 signatures from bulk cells also cannot distinguish ecDNA from HSRs formed by reintegration of
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399 ecDNA into the chromosomes while maintaining their structural features. These are all areas of
400 development which will be addressed in ongoing and future work. Despite these challenges,
401 interSeg has been successfully applied to hundreds of patient tissue images, and should be a
402 useful tool for analysis of focal amplification mechanisms.

403 METHODS

404 Image Acquisition Protocols

405 To generate the cultured cell images, we arrested the cells by treating them with Colcemid
406 (Karyomax) at a final concentration of 0.1 pug/mL for 1-5 hours. Cells were collected, washed
407 with PBS, and re-suspended in 75 mM KCI for 10-15 minutes at 37 °C. The hypotonic buffer
408 reaction was quenched by adding an equal volume of Carnoy’s Fixative (3:1 Methanol:Glacial
409 Acetic Acid). Cells were centrifuged, washed, and re-suspended in Carnoy’s fixative three more
410 times. They were then re-suspended in 100-400 pyL of Carnoy’s Fixative and dropped onto
411 non-overlapping sections of humidified slides. Slides were equilibrated in 2x SSC and
412 dehydrated in an ascending alcohol series of 70%, 85%, and 100% ethanol for two minutes
413 each. The appropriate DNA FISH (Empire Genomics) probe was added to the sample and
414 placed on a 75 °C slide moat for 3-5 minutes to melt the DNA. Probe hybridization occurred at
415 37 °C in a humidified slide moat for 4 hours to overnight. Slides were washed for two minutes
416 each in 0.4x SSC and 2x SSC/0.1% Tween-20. Slides were stained with DAPI, washed in 2x
417 SSC and ddH20, and then mounted with mounting media (ProLong Gold or Vectashield). Cover
418 slips were sealed with clear nail polish to prevent drying of the sample. Images were captured
419 using a 63x objective on either an Olympus BX43 wide-field fluorescent microscope or a Leica
420 Thunder Imager.

421 The tissue model images were derived from xenografts. The CytoCell Tissue Pretreatment Kit
422 (LPS 100, Oxford Gene Technology IP Ltd.) was used for heat pretreatment of Formalin-Fixed,
423 Paraffin-Embedded (FFPE) tissue prior to Fluorescence In Situ Hybridization (FISH). All FISH
424 probes were purchased from Empire Genomics Inc. FFPE slides were baked at 50 °C overnight,
425 deparaffinized three times with xylene (1330-20-7, Millipore Sigma) for 10 minutes each, and
426 immersed in 100% and 70% ethanol (64-17-5, VWR International LLC) for 2 minutes each. After
427 washing in water for 2 minutes, the slides were incubated in a pretreatment solution at 100 °C
428 for 40 minutes. Slides were dehydrated in a graded ethanol series of 70%, 85%, and 100%, and
429 then air-dried. Next, 10 uL of probe mixture was applied to the hybridization area, cover-slipped,
430 and sealed with CytoBond coverslip sealant (2020-00-1, SciGene Corp.). Slides were incubated
431 in the ThermoBrite System (Abbott) at 80 °C for denaturation and hybridized at 37 °C for 16
432 hours. After gently removing the coverslip sealant, the slides were immersed in 2x SSC/0.1%
433 Tween-20 (V4261, Promega Corp.) for 3 minutes in the dark. The coverslips were slipped off the
434 slides while still in the SSC buffer. Next, slides were washed in 0.4x SSC solution at 73 °C for 2
435 minutes, transferred to water for 1 minute, air-dried in darkness, and stained with DAPI
436 (DFS500L, Oxford Gene Technology IP Ltd.), and cover-slipped. FISH results were examined
437 with a Keyence fluorescence microscope (BZ-X800 model, Keyence Corp.).

438 Data pre-processing
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439 We pre-processed the images by delineating each individual intact nucleus in the image. We
440 used a package called NuSeT'™ to identify and segment each nucleus. NuSeT utilizes multiple
441 neural networks to identify and separate each nucleus, even in dense, overlapping clusters. We
442 drew a bounding box around each unique nucleus, cropped the region to the bounding box, and
443 resized the crop to a 256 by 256 patch (Figure 2a). For bounding boxes larger than 256 by 256
444 pixels, we applied a sliding window approach to obtain multiple 256 by 256 patches, with each
445 patch analyzed seperately.

446 For the ecSeg-c model, each input patch contains channels corresponding to the DAPI probe,
447 centromeric probe, and target probe. To control for the variation in brightness between
448 channels, we uniformly rescaled the DAPI channel to the range 0 to 1. Additionally, we jointly
449 rescaled the target and centromeric probe to the range 0 to 1.

450 EcSeg-i and ecSec-c architecture

451 The backbones of ecSeg-i and ecSeg-c are the DenseNet-121 architecture'. Densenet-121 is a
452 121 layered convolutional neural network (CNN) with 12 layers. The feature maps of all previous
453 layers are concatenated and fed as input to the current layer, making it densely connected. The
454 primary benefit of this dense connection is that it enables deeper layers to reuse features
455 learned in earlier layers without having to relearn them. Consequently, a DenseNet uses fewer
456 parameters than an equivalent vanilla CNN.

457 EcSeg-i and ecSeg-c are composed of four dense blocks containing, 6, 12, 24, and 16
458 convolutional blocks, respectively. Each convolutional block is composed of 6 sequential
459 operations: batch normalization (BN), a rectified linear unit (ReLU), 1 x 1 convolution, BN,
460 ReLU, and a convolution. The dimensions of all the feature maps within a dense block are kept
461 the same (i.e. no down-sampling) but the number of filters increases by a growth factor k = 32.
462 This makes it practical to concatenate the feature maps instead of summing them.

463 Each convolutional block adds 32 additional feature maps. In total, DenseNet-121 has one
464 7 x 7 convolutional layer, 58 3 x 3 convolutional layers, 61 1 X 1 convolutional layers, 4
465 averaging pooling layers, 1 max pooling layer, and one fully connected layer.

466 The original DenseNet-121 used a final classification layer containing 1000 output nodes as it
467 was trying to classify 1000 classes. For the ecSeg-i model, we use a final classification layer
468 containing 3 output nodes corresponding to the three output classes: EC-amp, HSR-amp, and
469 no-amp. For the ecSeg-c model, we use a final classification layer with 2 output nodes,
470 corresponding to the no-amp and Amp output classes.

471 Training Procedure

472 We trained both the ecSeg-i and ecSeg-c models on 4 GeForce GTX 1080 Ti GPUs using the
473 Adam optimizer. For ecSeg-i, we used a patience criterion of 7, and a learning rate of 1e-4. If
474 the validation loss did not improve for 7 epochs the training was halted. We minimize the
475 cross-entropy loss function to train our network. We trained the network for 200 epochs and
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476 found that the model converged after 120 epochs. To find the optimal architecture, we
477 performed grid-search of the following hyperparameters.

478 When training the ecSeg-c model, we initialized the network with the DenseNet121 weights
479 pretrained on the ImageNet dataset. We used a patience criterion of 7 epochs, with the
480 validation set area under the curve (AuC) metric as the early stopping criterion. Additionally, we
481 used the Adam optimizer with a learning rate of 5e-4, and minimized the binary cross-entropy
482 loss. To control for class imbalance, we applied balanced sampling during each epoch across
483 each tissue type (tissue model/patient tissue) and amplification type (no-amp/amp) pair. We
484 assigned equal sampling weight to each of the 4 tissue type pairs, effectively downsampling the
485 maijority classes. We trained the ecSeg-c network for 200 epochs and observed the model
486 converge after 18 epoch. We noted that less training epochs were needed for convergence due
487 to the use of pretrained initial weights. Similar to ecSeg-i, we performed a grid-search for the
488 used hyperparameters.

489 interSeg bootstrapping of cell predictions

490 We note that each experiment typically contains several images. For example, Figure 3b
491 contains 933 viable cells across 6 images of the DLD1 cell line with MYC staining. Similarly, we
492 found 368 viable cells across 6 images of the NHDF cell line with MYC staining. To address
493 variation in cell and image counts, we applied a custom bootstrapping approach as follows.
494 First, we assigned a single amplification mechanism for each cell based on the highest
495 likelihood prediction from interSeg. Next, our procedure randomly selected 10 cells and
496 identified the predominant amplification mechanism based on the majority vote. We iterated this
497 process 100 times to produce a distribution representing the overall amplification mechanism of
498 the experiment. The original interSeg calls are also retained for comparison, etc.

499 Quality Score Filtering

500 For each image, we generate an oncogenic probe quality score which indicates whether the
501 image is apt for interSeg. We first bin the oncogenic FISH signal into 50 buckets based on their
502 pixel intensities. We then find the highest peak left of the 25th bin and right of the 25th bin. We
503 find the peaks by simply comparing the neighboring values. We compute the quality score, Q, by
504 dividing the leftmost peak (hl) by the rightmost peak (hz), Q= hl/hz. Images with Q < 0.2

505 were marked as low quality. Additionally, we excluded nuclei with a mean oncogenic FISH signal
506 below 0.05 from both the interSeg and ecSeg-c analyses, as these nuclei exhibited extremely
507 low oncogenic FISH signal.

508 We generated a centromeric probe quality score for each image as well, based on the kurtosis
509 of the mean centromeric intensity per nucleus. Images with a kurtosis value greater than 3 were
510 marked as having low centromeric probe quality and were excluded from ecSeg-c analysis,
511 defaulting to evaluation in interSeg target-channel-only mode. Additionally nuclei with maximum
512 centromeric pixel intensity less than 10 were also excluded from ecSeg-c analysis and defaulted
513 to the ecSeg-i prediction.

514 stat-FISH Segmentation Preprocessing
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515 We employed instance segmentation to decrease the occurrence of overlapping nuclei receiving
516 an inflated foci count. We utilized the min-cut algorithm to transform the binary segmentation
517 output from NuSeT into an instance segmentation. To separate overlapping nuclei, we
518 generated a 4-connectivity pixel graph for each connected component in the NuSeT
519 segmentation. To identify nucleus centers, we applied an L1 distance transformation to the
520 NuSeT segmentation and selected local maximums with greater than a 10-pixel distance away
521 from the nearest background pixel. For a given connected component, we determined the
522 minimum number of edges to be removed to isolate two centers in the pixel graph. We applied
523 this algorithm to all connected components exceeding 1.25 times the median connected
524 component area and separated them based on a flow limit of 60. This preprocessing method
525 was only used for stat-FISH and not interSeg, since stat-FISH outputs a quantitative rather than
526 categorical prediction.

527 stat-FISH

528 Stat-FISH looks for local peaks in brightness in the FISH channel. The input for stat-FISH is a
529 single 8-bit FISH-probe channel, and its corresponding binary image representing the nuclei
530 segmentation from NuSeT. To establish whether a given pixel is classified as an foci (local
531 peak), we have three criteria:

532 1. The local brightness of the region surrounding the pixel must be greater than the pixel
533 neighborhood

534 2. The pixel brightness must be greater than a minimum brightness (bmin).

535 3. Classified foci must have a minimum size given by (Smin)

536 This model makes two assumptions:

537 1. Anisolated FISH amplification resembles an isotropic 2d Gaussian, with a diagonal
538 covariance matrix and standard deviation given by o, a preset parameter to the model.
539 2. For a given pixel (x0 , yo) in a FISH amplification, the relative intensity of the local pixel

540 neighborhood can be approximated with

) oy’

541 intensity(x, y) = ce 2’ +d

542 Let gbe a flattened gaussian kernel, and ;be a flattened n x n pixel neighborhood in the
543 image. The goal is to find the best approximation for ; in the subspace spanned by {5, T}

544 Using Gram-Schmidt orthogonalization, the orthonormal vectors of this subspace are {El, %I}

2

- - n >
545 Where g, = normalized(g — (Y %) 1)
i=1
546 The best approximation for ;is cgﬁl + %i) with ¢ = 17 . g_;, d = ; . %T

547 Using criteria 1 and 2, we state that for a pixel to be classified as a FISH-foci:
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548 1.v e g, zc_ ., where c is a parameter to the model. v is the flattened pixel

549 neighborhood surrounding (x0 , yo) .

550 2. intensity(x , y) 2b__, where b is a parameter to the model and represents the
551 minimum brightness.

552 Therefore, to filter for pixels with a local brightness greater than the surrounding neighborhood,
553 we convolve the image(using valid zero-padding) with the 2-d vector g, and threshold by C

554 Additionally, we threshold the original image by bmin and find the intersection with the c

555 thresholding. The number of foci returned for a given cell is the number of connected
556 components in the thresholded 2d array where the connected component pixel size is > S To

557 estimate copy number for a given nucleus, we calculated the ratio of the number of oncogenic
558 foci pixels by the total nucleus pixel area as a percentage. This corresponds to the total area of
559 the oncogenic FISH amplifications per nucleus normalized by nucleus area.

560 We emphasize that stat-FISH is a deterministic tool and primarily quantifies the visual data in
561 the image. It does not accurately determine the amplification mechanism in every case.
562 However, it is useful to understand the interSeg predictions, and is used in conjunction with
563 interSeg.

564 Image distortion

565 We tested the robustness of interSeg by testing against distorted images, including enlarging,
566 shrinking, rotating, and modulating their contrast (Supplementary Figures 5-7). We chose one
567 image from an EC-amp cell line and one from an HSR-amp cell line. For each image, we shrunk
568 them by 80%, enlarged to 1.2x the original size, rotated them 45 degrees, decreasing the
569 contrast by 40%, and increasing the contrast by 40%.

570 Red Fluorescence Probe tagging for generating heterogeneous samples containing
571 ecDNA and HSR.

572 The COLO320DM and COLO320HSR cell lines used in the study are clones with comparable
573 MYC copy numbers, selected from cells obtained from ATCC. COLO320DM H2B-mCherry was
574 engineered by lentiviral infection of H2B-mCherry into isogenic COLO320DM cells, followed by
575 sorting of mCherry-positive cells. Two rounds of cell sorting were performed to ensure that
576 about 95% of the COLO320DM H2B-mCherry line were mCherry-positive.

577 Both COLO320HSR and COLO320DM H2B-mCherry were cultured in DMEM supplemented
578 with 10% FBS and penicillin-streptomycin. One million cells from each cell line were harvested
579 at 70%-80% confluency and fixed with 4% paraformaldehyde for 10 minutes at room
580 temperature, followed by two washes with 1x PBS. The fixed COLO320HSR and COLO320DM
581 H2B-mCherry cells were mixed at a 1:1 ratio and cytospun onto an imaging slide at 800 rpm for
582 8 minutes using the low mode on a Thermo Scientific Cytospin 4 Centrifuge.
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583 Immunofluorescence (IF) of mCherry was performed on the slide to distinguish between
584 COLO320HSR and COLO320DM H2B-mCherry cells. DNA FISH targeting MYC
585 (https://empiregenomics.com/product/16399) was performed following IF to detect MYC
586 amplification. Images were acquired with a Leica SP8 LIGHTNING confocal microscope.

587 Estimation of RFP Tagging Accuracy in Hybrid COLO320 Experiment

588 Our goal in this analysis is to validate that the observed frequencies of predicted annotations
589 and mCherry status (tagged vs not tagged) match our expectations. The categories for each
590 nucleus are:

591 a. mCherry tagged and EC-amp predicted

592 b. not mCherry tagged and EC-amp predicted

593 c. mCherry tagged and HSR-amp predicted

594 d. not mCherry tagged and HSR-amp predicted

595 To determine whether a nucleus is mCherry tagged, we took the maximum mCherry brightness
596 over all of the pixels in the segmented nuclei. We classify a nucleus as mCherry tagged if its
597 maximum pixel intensity exceeds 10 pixel brightness. We selected the threshold of 10 pixel

598 brightness as it strikes a balance between precision and recall in the AuC Curve for both

599 HSR-amp and EC-amp cells (Supplementary Figure 15, Supplementary Table 14). Since we
600 used maximum pixel intensity as the threshold, we excluded nuclei near the boundary, as pixels
601 from these nuclei are missing.

602 Since mCherry is an RFP which is inserted into COLO320DM, we expect only the ecDNA-amp
603 nuclei to be tagged, given 100% mCherry tagging accuracy.

604 However, the mCherry tagging accuracy is likely lower than 100%, and this analysis aims to
605 estimate the number x of true ecDNA nuclei that are not mCherry tagged.
606 Let Nh, Ne represent the number of nuclei that are not mCherry tagged and are mCherry

607 tagged, respectively.

608 Let (ch, Ce) be the counts of predicted HSR-amp nuclei and EC-amp nuclei which are not

609 mCherry tagged. We observed that interSeg did not predict any of the nuclei in the mCherry
610 tagging experiment as no-amp.

611 Let P, P, represent the probabilities of an interSeg prediction (using only the target channel)
612 being HSR-amp and ecDNA-amp respectively, given the cell is truly EC-amp and the interSeg
613 prediction is not no-amp.

614 Let q, 4, represent the probabilities of an interSeg prediction (using only the target channel)

615 being HSR-amp and EC-amp respectively, given the cell is truly HSR-amp and the interSeg
616 prediction is not no-amp.

617 Let ;represent the observed predictions (EC-amp, HSR-amp) from interSeg for all nuclei.


https://doi.org/10.1101/2025.06.23.661188
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.06.23.661188; this version posted June 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

618 Let ;m 9 represent the interSeg predictions on the subset of nuclei that are mCherry

Cherry (
619 tagged.

620 Let ;mc y represent the mCherry status (not mCherry tagged / mCherry tagged) for all nuclei.

herr

- - - - X N —x
- x " a ~x—-a, c-a _C+a-x
621 P(O l X SmCherry) P(OmCherry +) | SmCherry) [az=:0 (ah) (Ch_ah) ph pe qh qe ]
h
. - - . .
622 Since P(omChmy @ | SmCherry) is constant with respect to x

x
N —x
x h a, ~x—a, c,~a, ce+ah—x
623 3, (ah)(ch—ah)ph p, "q," "q,

ah=0
624 If we assume the prior that all valid values of 0 < x < Nh are equally likely, then the likelihood

625 P(x | o, smChmy) is proportional to the above posterior.

626 Therefore the maximum likelihood estimate for x is given by

X
N —x — — -
x n a x—a c.—a c ta —x
627 X = arg max (a)(ch—ah)phhpe "q, " tq, "

0<x<N, a=0 \'" e
628 In the hybrid images, (Ch’ Ce) = (309, 28)
629 Across our entire COLO320DM_MYC test dataset, (ph, pe) = (0.2642, 0.7358)
630 Across our entire COLO320HSR_MYC test dataset, (qh, qe) = (0.9763, 0.0237)

631 The value x, which represents the number of EC-amp nuclei which are not mCherry tagged,
632 maximizes the above likelihood when x=28 nuclei.

633 To test this x=28 nuclei prediction, we performed a chi-squared test on the expected vs

634 observed nuclei counts on the 4 categories (mCherry tagging status and interSeg prediction).
635 With a chi-squared test statistic of 2.7252 and a p-value of 0.4360, we observed no statistically
636 significant difference between the distribution of expected vs observed nuclei counts.

637 Given that 428 / 765 nuclei were mCherry tagged, this would mean that 28/(428+28)=6.14%
638 percent of true EC-amp were not mCherry tagged. This would therefore set the percentage of
639 true EC-amp nuclei that were thresholded as mCherry tagged at 93.86%.
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701 MAIN FIGURE CAPTIONS

702 Figure 1: Data overview and Analysis pipeline. (a) Examples of interphase cells with

703 EC-amp, HSR-amp, No-amp (MYC red, Centromere 8 green). (b) Image acquisition protocols
704 for various tissue modalities. (c) Distribution of tissue types and image acquisition protocols in
705 analyzed cell lines and patient tissues, for the training and hold-out test set.

706 Figure 2: Tool pipeline. (a) InterSeg pipeline with 2 submodules: ecSeg-i and ecSeg-c. TGT:
707 target FISH probe, and CEN: centromeric FISH probe. (b) EcSeg-i architecture based on
708 DenseNet-121.

709 Figure 3: Testset results. (a) InterSeg F1-score on cultured cell line and tissue model test set,
710 where n is the number of cells in each class. (b) Bootstrapped distribution of interSeg

711 amplification mechanism of no-amp cell lines. (c) Bootstrapped distribution of interSeg

712 amplification mechanism of EC-amp cell lines. (d) Bootstrapped distribution of interSeg

713 amplification mechanism of HSR-amp cell lines. (e) EcSeg-c evaluation on NB hold-out set.

714 Figure 4: Explaining amplification mechanism using Stat-FISH. (a) Image-level mean and
715 variance of copy number signal for HSR-amp and EC-amp images. (b) Number of oncogene

716 foci per cell across all cell lines separated by EC-amp, HSR-amp, and no-amp. (c) Copy number
717 signal per cell across all cell lines separated by EC-amp, HSR-amp, and no-amp. (d) Copy

718 number signal of an EC-amp cell line (SNU16) and a HSR-amp cell line (HCC827) (e) Example
719 of probing multiple oncogenes within a metaphase/interphase spread in H716 (MYC red,

720 FGFRZ2 green). (f) Number of oncogene foci and copy number signal of FGFR2 and MYC

721 oncogene for each cell in H716.

722 Figure 5: Patient Tissue Results. (a) Non-bootstrapped distribution of interSeg amplification
723 mechanisms across all NB samples with pathologist annotation. The samples were stratified by
724 ‘no-amplification’ and ‘amplification’ labels annotated by pathologists. Each column corresponds
725 to a single patient, and the bar height corresponds to the proportion of cells labeled for each
726 amplification class by interSeg. (b) InterSeg predictions on NB test set samples compared with
727 calls based on Amplicon Suite analysis of Whole Genome Sequencing Data.
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