medRxiv preprint doi: https://doi.org/10.1101/2025.06.26.25330331; this version posted June 26, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

1  Machine Learning Identifies Microbiome and Clinical Predictors of Sustained Weight Loss Following

2  Prolonged Fasting

4  Gelsomina N. Kaufhold“***, Theda U. P. Bartolomaeus“*>**, Kristin Kraker"***  Till Schiitte™***,
5  SakshiKamboj’,  Ulrike Lober™*>*,  Gabriele Rahn',  Victoria McParland™*®, Lena Braun®,

6 Lajos Marko™>>* Matanat Mammadli?, Alexander Krannich’, Lina S. Bahr*??,

1,234

7 Friederike Gutmann , Friedemann Paull'z'a, Nicola Wilck1’3'4'6, Alma Zerneckes, Peter J. Oefners,

8  Wolfram Gronwald®, Dominik N. Miiller">**,  Sofia K. Forslund-Startceva™*>*°, Sylvia Béhringl'z's'*,

3,4,8,1 1,2,3%

9 Hendrik Bartolomaeus , Nadja Siebert
10

11 ‘Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universititsmedizin
12 Berlin and Max Delbriick Center for Molecular Medicine, Berlin, Germany

13 *Charité-Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin and Humboldt-
14 Universitat zu Berlin, Berlin, Germany.

15 *Max Delbriick Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
16  “DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany

17  “Institute of Functional Genomics, University of Regensburg, Regensburg, Germany

18  °Department of Nephrology and Internal Intensive Care Medicine, Charité —Universititsmedizin
19  Berlin, Germany.

20  ’BioStats GmbH, Nauen, Germany

21 ®Institute of Experimental Biomedicine, University Hospital Wiirzburg, Germany.

22 SStructural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL),
23 Heidelberg, Germany.

24

25  *contributed equally

26  Tjointly supervised the work

27 Correspondence: bartolomae h@ukw.de

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.


https://doi.org/10.1101/2025.06.26.25330331
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.06.26.25330331; this version posted June 26, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

28  Abstract

29  Prolonged fasting may benefit metabolic health, but data in healthy individuals remain
30 limited. We performed a randomized, waitlist-controlled study (LEANER study), with 38
31  healthy participants completing a 5-day-fasting intervention with 12-week follow-up. Fasting
32  acutely lowered body mass index (BMI), via fat mass loss. These changes partially persisted
33  at follow-up. Fasting altered the gut microbiome composition and induced metabolite shifts
34  in plasma and feces. Changes to gut microbiome alpha diversity after fasting correlated with
35 baseline microbiome diversity. Long-term BMI response at follow-up could be predicted
36  through machine learning (ML) using baseline microbiome and clinical data, highlighting an
37 unknown Faecalibacterium sp., Oscillibacter sp. 50 27, LDL cholesterol, and systolic blood
38 pressure as key predictors. This ML model was validated in independent patient cohorts with
39  metabolic syndrome and multiple sclerosis. These findings support prolonged fasting as an
40 effective metabolic intervention and demonstrate that individual responses to fasting
41  interventions can be predicted using pre-intervention features.

42

43  Trial registration: ClinicalTrials.gov, NCT04452916. Registered on June 26, 2020

44

45  Key words: fasting, gut microbiome, weight loss, machine learning, personalized nutrition,

46  precision medicine
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47  Introduction

48 Fasting interventions have gained renewed attention for their potential to modulate
49  metabolism, reshape the gut microbiome, and promote healthy aging’. While fasting
50 protocols vary widely from time-restricted eating to fasting-mimicking diets®, and prolonged
51 food abstinence lasting up to several weeks (up to 26 days)’, the underlying principle is
52  consistent: transient caloric deprivation triggers coordinated physiological responses that
53  may confer long-term health benefits®.

54  Evidence from patient populations, including those with metabolic syndrome’, autoimmune
55 diseases®’, and cancer®, suggests that fasting can influence key regulatory pathways such as
56  autophagy, insulin sensitivity, and oxidative stress’. In individuals with metabolic syndrome,
57  we previously demonstrated that a 5-day fast atop a DASH (Dietary Approaches to Stop
58 Hypertension) diet induced profound and coordinated changes in gut microbiome
59  composition and immune cell states most of which were reversed at 12 weeks follow-up”.
60  Using immune cell population or microbiome profiles, we developed models that predicted
61 long-term antihypertensive effects, supporting the concept of data-driven stratification®.

62 In parallel, gut microbiome profiling has emerged as a powerful tool for personalized

63  medicine’. Microbial signatures have been linked to energy metabolism®®, weight

11,12 13,14

64  regulation™™", and immune modulation™™"". Personalized dietary approaches that account
65 for microbiome composition have demonstrated superior outcomes in metabolic control®.
66  Emerging applications extend to autoimmune, neuropsychiatric, and oncologic indications,
67  underscoring the potential of microbiome-informed strategies in precision medicine®*”.

68 Despite these advances, the long-term effects of prolonged fasting in healthy individuals

69 remain poorly characterized. Most existing studies rely on non-randomized designs, lack

70 adequate control groups, or fail to include follow-up assessments. Furthermore, many
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71 interventions are performed in multimodal clinical settings involving exercise, psychological
72 support, and dietary coaching®, making it difficult to isolate the effect of fasting alone.

73  Here, we present a randomized, waitlist-controlled study investigating the effects of a 5-day
74  prolonged fasting intervention in healthy adults, with follow-up assessments at 12 weeks. We
75  integrated clinical, microbiome, and metabolome profiling to characterize immediate and
76  long-term physiological responses. Using machine learning, we show that sustained weight
77  loss can be predicted from baseline microbiome and clinical features. The results that were
78 validated in independent cohorts with metabolic syndrome and multiple sclerosis. Our
79 findings offer mechanistic insight into fasting responses and support the potential of
80  microbiome-informed strategies for personalized lifestyle interventions.

81


https://doi.org/10.1101/2025.06.26.25330331
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.06.26.25330331; this version posted June 26, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

82  Results

83  Prolonged fasting affects energy expenditure and long-term weight loss

84  Thirty-eight healthy participants were recruited for a 5-day prolonged fasting intervention
85  (Figure 1a). As fasting interventions cannot be blinded, we decided to use a waiting list
86 control to account for physiological fluctuations within a 12-week timeframe while
87  maximizing the number of participants undergoing prolonged fasting (Figure 1A). Baseline
88  characteristics are shown in Table 1.

89  Of the 38 participants, 83% reported fasting-related adverse events (AE) (Table S1). All AE
90 were mild and transient and did not necessitate discontinuation of fasting. Blood glucose and
91  B-hydroxybutyrate levels were measured each morning and evening during the five-day
92 fasting period (days 1-5), confirming that all participants adhered closely to the study
93  protocol (Figure Sla, b). We observed a diurnal rhythm with higher BHB but lower glucose
94  concentrations in the morning compared to the evening (Figure Sla, b). Continuous
95 interstitial glucose monitoring during the five-day fasting period, compared with baseline
96 measurements and waiting-list controls, confirmed a dynamic reduction in glucose levels
97  over the course of the fast. (Figure 1b). Following refeeding the glucose levels normalized;
98 however, between days 2 and 4 post-fast, blood glucose concentrations were elevated
99 throughout the day (06:00-22:00) compared with baseline measurements (Figure 1c).

100  Our predefined endpoint was a change in resting energy expenditure (REE). Prolonged fasting
101  acutely reduced REE by 62 kcal/d, suggesting a fasting-induced, energy-preserving
102  mechanism (Figure 1d, Supplementary Data 1). We did not observe alterations in REE
103  between the two baseline timepoints of waiting list controls (Figure 1d). Since REE was the
104  defined endpoint, we performed a linear mixed model showing that lean mass (p < 0.001)

105 and not self-reported sex significantly influenced REE at all visits, including post-fasting
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106  (Figure S2). Following the five-day fast, respiratory exchange ratios (RER) declined
107  significantly (Figure 1e), paralleling a peak in BHB concentrations on day 5 (Figure S1b). All
108 those metabolic makers returned to baseline by 12 weeks post-fast.

109  Furthermore, we observed that prolonged fasting reduced BMI (Figure 1f). This decrease was
110  partly reversed after 12 weeks follow-up (Figure 1f). Body composition analysis attributed
111  this incomplete return towards baseline BMI predominantly to a reduction in fat mass
112 (Figure 1g, S1g). Of note, the absolute and relative reduction of body fat was accompanied
113 by areduction in lean mass during fasting that completely reverted at follow-up (Figure S1h).
114  Prolonged fasting reduced waist-to-hip ratio and diastolic blood pressure while increasing
115  heart rate, findings which are consistent with a previously published study in metabolic
116  syndrome (Figure S1d-g). In contrast to metabolic syndrome patients’, the healthy
117  participants in this study did not exhibit sustained blood-pressure reductions (Figure Sle, f).
118  Taken together, these results demonstrate that prolonged fasting is well tolerated in healthy
119 individuals, yielding sustained reductions in BMI and fat mass, while most metabolic and
120  hemodynamic parameters return to baseline during the 12-week follow-up.

121

122 Prolonged fasting induces large short-term and small long-term changes in gut microbiome
123 composition

124  To assess the natural fluctuation of the gut microbiome composition, we analyzed changes
125  between the two baseline samples (baseline 0 and baseline 1) from the waiting list control
126  (Figure 1a). Microbial alpha diversity, measured as Shannon index, and microbiome
127  composition quantified by Bray-Curtis dissimilarity did not differ significantly between the
128  two baseline samples (Figure S3a, b). Shannon index remained stable across all study visits

129  (Figure 2a). In contrast, individual trajectories in response to fasting varied markedly (Figure
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130  2a). Interestingly, short-term (post-fasting) and long-term (follow-up) changes in alpha-
131  diversity correlated negatively with alpha-diversity at baseline, implicating baseline
132  differences in microbiome composition as relevant predictors of fasting-induced microbiome
133  changes (Figure 2b, c). Bray-Curtis dissimilarity-based multivariate analysis of the taxonomic
134  composition demonstrated a significant shift in microbial community composition in
135 response to fasting that partially reversed during the follow-up period (Figure 2d). Consistent
136  with the observed shift in the multivariate analysis, fasting induced significant changes in
137  several bacterial species that reversed during follow-up. For example, Roseburia sp. inserta
138  sedis and Bifidobacterium adolescentis decreased after the fasting period but increased at
139  follow-up, whereas Faecalibacterium sp. CAG-74 showed the opposite pattern (Figure 2e,
140  S3c, Supplementary Data 2). In contrast, only seven taxa exhibited sustained abundance
141  changes (Figure S3c).

142 Next, we analyzed gut-specific metabolic modules using GOmixer. Again, fasting induced
143  pronounced alterations that largely reverted to baseline during follow-up (Figure 2f). Only for
144  three modules, ketone body synthesis, osmoprotectant transport system, and
145  N-acetylneuraminate and N-acetylmannosamine degradation, fasting induced a long-lasting
146  increase when comparing baseline to follow-up (Figure 2f, Figure S4a, Supplementary Data
147  3).

148  Overall, prolonged fasting induces pronounced compositional shifts in the gut microbiome
149  which were largely reversed upon refeeding, resulting in minimal long-term deviations from
150 baseline at the 12-week follow-up. Notably, baseline alpha diversity metrics correlate with
151  the magnitude of alpha diversity changes both immediately after fasting and at follow-up.
152

153  Prolonged fasting alters plasma and fecal metabolome
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154  We performed nuclear magnetic resonance (NMR) spectroscopy on plasma and fecal
155  samples to assess the impact of fasting, and its associated microbiome shifts on the fecal and
156  host metabolome. Principal coordinate analysis (PCA), centered on baseline values to
157  characterize post-fast changes and on post-fast values to characterize follow-up effects,
158 revealed plasma metabolome trajectories analogous to those observed in the gut
159  microbiome (Figure S4b). In line, we observed significant alterations between baseline,
160 fasting, and follow-up, with most changes reversed at follow-up (Figure S4c, Supplementary
161 Data 4). In plasma, only valine, glycine, tyrosine, and pyruvic acid exhibited sustained
162  increases from baseline to follow-up, indicating lasting effects of fasting on these metabolites
163 (Figure S4b, c).

164  Fecal metabolite profiling again revealed a pattern of alteration and reversion to baseline
165  (Figure S4d). Contradicting other previous reports on short-chain fatty acids (SCFA) in
166  fasting®, we observed a decrease in butyrate during fasting, which was non-significant at
167  follow-up (Figure S4e, Supplementary Data 5). The only long-term effect observed in our data
168 was a decrease in choline from baseline to fasting (Figure S4e).

169 In conclusion, NMR-based metabolomics of plasma shows more consistent alterations as
170 compared to the fecal metabolome, which might be due to the different matrix or
171  intraindividual variations in gut microbiome composition.

172

173 Prediction of sustained BMI response by multi-omics machine learning

174  Since we observed strong intraindividual differences in response to prolonged fasting across
175 most data layers, we aimed to investigate whether the clinical response to fasting can be
176  predicted from baseline data. Since BMI showed the overall strongest long-term effect of the

177  analyzed clinical data (Figure 1), we focused on the long-term weight loss phenotype. Using
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178  the waiting list control, we estimated the normal fluctuation of BMI within 12 weeks of study
179  participation. Normal fluctuation in BMI was defined as mean + two standard deviations
180  (SD)™, in our case -0.008 + 0.32 kg/m?. With this threshold, we identified 38% BMI long-term
181 responders and 62% BMI non-responders to prolonged fasting. In order to cross-validate our
182  model in publicly available datasets we focused on microbiome and clinical features over
183  NMR metabolomics™'’. A random forest classifier was trained on 87 features including the 50
184  most abundant species, candidate species and pathways from previous studies on prolonged
185 fasting, as well as relevant clinical metadata (Supplementary Data 6) using 80% of our data.
186  To account for the small sample size, we used leave-one-out cross-validation. The model was
187  evaluated on the remaining 20% of the dataset that was held out during training (Figure 3a).
188  The initial model achieved 66.7% accuracy with 100% sensitivity in identifying responders in
189 the test dataset. To optimize performance, we then selected key predictors using random-
190 forest feature importance, the Boruta algorithm, and backward feature elimination
191  (Figure 3b, S5c). This analysis indicated four key predictors: LDL, systolic blood pressure (BP),
192  Faecalibacterium sp. incerta sedis and Oscillibacter sp. 57_20. Those four features were used
193  to train the final model on 80% of the dataset. The refined model demonstrated improved
194  performance, achieving 83.3 % accuracy, an 80% positive predictive value, and a 100%
195 negative predictive value (Figure S5a).

196 Baseline BMI can confound weight loss predictions, so we tested for collinearity and
197  correlations between baseline BMI and our four selected features none of which reached
198  significance (Figure 3c). To further test if our four features are mere surrogate markers of
199  baseline BMI, we incorporated baseline BMI into the model which did not improve predictive

200 accuracy (Figure S5b). Furthermore, Oscillibacter sp. 57_20 remained the most important
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201  feature. These results confirm that our final model captured biologically relevant signals
202  beyond simple baseline BMI effects.

203  Finally, we examined the abundance patterns of the model’s key features within our cohort.
204  Responders exhibited significantly higher levels of Oscillibacter sp. 57_20 (Figure 3d), while
205 the identified Faecalibacterium sp. showed no significant difference (Figure 3f). Although
206  important for responder identification, we observed no significant differences in systolic
207  blood pressure or plasma LDL levels between responders and non-responders (Figure 3e, g).
208  Taken together, we identified four (two clinical and two microbiome) features that hold the
209 potential to predict long-term weight loss in response to prolonged fasting interventions.
210  Although our model performed robustly on the 20 % hold-out set, these results were
211  achieved in a very limited cohort size.

212

213 Validation in available datasets of patients with co-morbidities

214  To address this limitation, we next applied our model to our published metabolic syndrome
215  cohort in which patients underwent either a five-day fasting regimen followed by a DASH
216  diet or a DASH diet alone (Figure 4a)>. The study outcomes were assessed 12 weeks post-
217  intervention, mirroring our study’s timeline. Given the greater BMI variability expected in
218 metabolic syndrome patients, we again quantified BMI fluctuation from the DASH only group
219  and subsequently defined long-term responders with a BMI reduction exceeding 0.8 kg/m>.
220  Remarkably, our trained model predicted sustained weight loss in this study with an AUC of
221  0.85 (Figure 4b). Our model correctly classified 19 (82.6% [61.2 — 95.1%] accuracy) of the 23
222 patients and with a sensitivity and specificity of 85.7 % and 81.3 %, respectively (Figure 4b).
223 Furthermore, patients classified as responders showed a significantly higher BMI reduction at

224 12 weeks follow-up compared to non-responders (Figure 4c, d). Consistent with our
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225  healthy-participant cohort, the model’s predictive features exhibited only weak correlations
226  with baseline BMI, underscoring their independence from initial body mass (Fig. 4e). In
227  univariate analyses, none of the features differed significantly at baseline between
228  responders and non-responders (Figure 4f-i).

229  As further validation, we selected a recent nutritional intervention trial in multiple sclerosis
230 patients, the majority of whom exhibited normal metabolic profiles (obesity in one patient,
231  hypertension in two patients, high LDL in four patients) ’. Notably, the study design differed
232  substantially. Patients completed two prolonged fasting cycles, interspersed with an interim
233 period of intermittent fasting (14 hrs/ day), and follow-up assessments were conducted nine
234  months apart (Figure 5a). As the control arm of this study included dietary counseling,
235  following the dietary recommendations of the German Society of Nutrition, we did not use it
236  to define average BMI shifts over nine months. Therefore, we could not calculate specificity
237  or sensitivity. Nevertheless, patients classified as responders by our model experienced
238  significantly greater weight loss than those classified as non-responders (Figure 5b). Again,
239  no significant correlations between model parameters and baseline BMI were detected in
240  this cohort (Figure 5c). Similar to the current cohort, levels of Oscillibacter sp. 50_27 were
241  significantly higher in responders (Figure 5e. The other features did not differ significantly
242  (Figure 5f-h).

243  Our findings indicate that baseline patient characteristics determine the magnitude of long-
244  term weight response to prolonged fasting interventions. Furthermore, the predictive model|,
245  initially developed in healthy subjects, retained robust performance when applied to both
246  individuals with metabolic syndrome and to a regimen involving two separate prolonged-
247  fasting episodes.

248
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249  Metabolite associations with Oscillibacter sp. 57_20 and Faecalibacterium sp. incertae sedis
250 Since both the Oscillibacter sp. 57_20 and the Faecalibacterium sp. identified in this study
251  were predictive of weight loss, we wanted to further understand the potential metabolite
252  profile associated with these bacteria. Therefore, we performed an exploratory correlation
253 analysis with the fecal metabolome across all visit data while blocking the visit information™.
254  We found significant associations of Faecalibacterium sp. with butyrate, tryptophan, and
255  uridine (Figure 6a-c, Supplementary Data 7) as well as of Oscillibacter sp. 57_20 with glycerol
256 and methionine, and for uridine without reaching statistical significance (Figure 6d-f,
257  Supplementary Data 8). In summary, our data suggest that the bacterial species important
258  for the classification of long-term body weight responders modulate the metabolomic output
259  of the fecal microbiome.

260
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261  Discussion

262  Our data show that prolonged fasting leads to long-term body weight and body fat reduction
263 after 12 weeks. Interindividual variability in response to dietary interventions poses a major
264  challenge in lifestyle interventions. Large-scale studies have shown that both host and
265  microbial factors shape individual metabolic responses, emphasizing the need for precision

266  strategies™?°

. Using baseline microbiome and clinical data, we can predict individuals who
267  will respond to fasting with sustained weight loss, defined as a BMI reduction lower than the
268 mean minus two standard deviations of the waiting list control. Using available data from
269  similar interventions in patients with metabolic syndrome and patients with multiple
270  sclerosis, we could validate our data-driven classification approach. While Faecalibacterium
271  sp. incertae sedis and Oscillibacter sp. 57_20, were important for BMI response prediction,
272  most of the microbiome and metabolome features were characterized by transient shifts
273  induced by fasting, with subsequent return to pre-intervention states. Taken together, our
274  data implicate gut microbiota in long-term BMI changes post fasting and suggest conserved
275  effects of fasting regardless of health status.

276  On host level, prolonged fasting led to strong changes of multiple cardiometabolic risk factors
277  like LDL cholesterol, waist-to-hip ratio, and systolic and diastolic blood pressure. However, at
278 12 weeks follow-up these changes mainly reverted, indicating that prolonged fasting does
279  not exert a sustained effect in healthy individuals. These data differ from in patients with
280  metabolic syndrome with values above the healthy range®. Interestingly, while blood glucose
281  dropped during fasting, it increased upon refeeding during the day (6am to 10pm). Since
282  values at night (10pm to 6am) did not increase, our data suggest a mildly disturbed glucose
283  handling for the early days post-fasting. A similar phenotype was reported in the literature in

21,22

284  response to standardized meal intakes after prolonged fasting”™*“. This was attributed to the
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285  metabolism successfully switching to fatty acid and ketone oxidation and postprandial
286  carbohydrate oxidation was reduced leading to higher plasma glucose levels®. Since a strong
287  metabolic phenotype was expected, REE reduction was our predefined endpoint. REE in

23-25 .
Our data shows an overall similar

288  fasting was studied previously mainly in healthy men
289  but smaller effect, which might be due to the inclusion of healthy women and a broader
290 range of lean masses. Levels of REE reduction after 24h caloric deprivation was previously
291  associated with weight gain after 6 months in healthy individuals®®. We could not confirm
292  these findings in our cohort for long-term weight changes after 3 months using the changes
293  in REE after 5 days of fasting (Figure S6). However, using a combination of clinical and
294  microbiome data, we were successful in predicting long-term weight loss.

295  We have shown in the past the microbiome and immune data can predict blood pressure
296  reduction in patients with metabolic syndrome in response to fasting®. In contrast, our study
297 in healthy participants revealed only modest effects on blood pressure. Given the well-
298  established impact of fasting on weight managemen?®’, we applied a data-driven approach
299 that involved clustering participants based on BMI changes and employing a random forest
300 classifier. Our initial model, which incorporated 83 features, demonstrated high sensitivity
301 but limited specificity, iterative feature selection enabled us to identify Faecalibacterium sp.
302 incertae sedis, Oscillibacter sp. 57_20, plasma LDL levels, and systolic blood pressure as key
303 predictors. Notably, independent validations highlighted the robustness and generalizability
304  of our approach. In the Maifeld et al. cohort®, which featured a similar study design in
305 patients with metabolic syndrome, we observed an 82.6% of responders were correctly
306 identified. In the Bahr et al. cohort'’, with a different study design incorporating intermittent
307 fasting in patients with multiple sclerosis, predicted responders exhibited higher weight loss.

308 These external validations not only reinforce the reliability of our predictive model but also
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309 suggest that the gut microbiome changes associated with fasting responses are conserved
310 across diverse populations, from healthy individuals to those with metabolic disorders and
311 autoimmune disease, thereby broadening the potential applicability of fasting-based
312  interventions for weight management and metabolic health.

313  Given that baseline BMI is typically a key predictor of weight loss, we assessed its
314  confounding effect on fasting-induced BMI changes. Oscillibacter sp. 57_20 remained the
315 stronger predictor even when baseline BMI was included in the model, indicating that this
316  microbial species may exert an independent influence on weight regulation during fasting.
317  While we cannot fully exclude potential confounding or correlations between baseline BMI
318 and microbiome composition, to our knowledge, no prior study has directly linked
319  Oscillibacter sp. 57_20 with weight regulation. However, Oscillibacter sp. 57_20 was recently
320 identified as a keystone taxon in a similar prolonged fasting study in healthy individuals,
321  where it was implicated in the production of indole-3-propionate (13P)*, a protective
322  metabolite in cardiometabolic disease®®. Future research is needed to explore the
323  mechanistic role of Oscillibacter spp. in host metabolism and its potential relevance in
324  personalized fasting interventions.

325  Faecalibacterium spp. are known SCFA producers®. In line, our data shows that the
326 abundance of our specific Faecalibacterium sp. associates with fecal butyrate levels. As
327  described previously for other Faecalibacterium spp.*', the identified Faecalibacterium sp.
328  correlates with fecal tryptophan. Tryptophan can be catabolized by gut microbiota to indole
329  metabolites®® Unfortunately, due to the resolution of NMR metabolomics, we could not
330 detect specific indole metabolites like I3P. However, our data implicate that both bacteria

331  might interact in the production of tryptophan catabolites.
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332 Both the Faecalibacterium sp. identified in this study and the Oscillibacter sp. 57_20
333  correlate with the nucleoside uridine. Uridine can adaptively regulate food intake in healthy

334  participants®®. Furthermore, experimental evidence show that blood uridine levels reflect the

34,35 34,36 |

335  nutritional status of mice with high uridine levels as indicators of catabolic states n
336 line, dietary supplementation of uridine enhanced hunger and increased caloric intake®>.
337  Microbial metabolism of uridine suggests a potential role of a gut-brain axis or influence on
338  satiety’’ in long-term BMI responders. Unfortunately, the literature concerning the other
339 metabolites of interest correlating with Oscillibacter sp. 57_20, glycerol and methionine is
340 sparse. While we controlled our analysis for abundance shifts at different visits, we could not
341  control the false discovery rate in this exploratory setting. Future confirmatory studies are
342  needed to further investigate the metabolite spectra of the identified Faecalibacterium sp.
343  and Oscillibacter sp. 57_20.

344  Overall, the gut microbiome and metabolome exhibited a consistent pattern of fasting-

345  induced alterations and nearly complete reversion to baseline at follow-up. Previous studies

38-40
, aS

346  have consistently reported an enrichment of beneficial bacteria such as F. prausnitzii

347  well as Roseburia and Coprococcus species, other known SCFA producers*'™*

. Our data only
348  partly overlaps with these reports, as we observed no alterations to F. prausnitzii, alongside a
349  decrease in Roseburia spp. and Coprococcus spp. However, we observed an increase in one
350  Butyricicoccus sp., known butyrate producers. Our functional analysis revealed an increase in
351 propionate production via kinase pathways, pointing towards an elevated SCFA production
352  potentials from coordinated activity across broader microbial community rather than single
353  species effects. The discrepancy with earlier findings may be attributed to our study's healthy

354  cohort, in which baseline levels of F. prausnitzii are likely already well-balanced. This suggests

355 that fasting might predominantly restore disturbed bacterial populations rather than altering
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356 already stable communities. Suggest that fasting primarily restores imbalanced microbial
357  populations, rather than reshaping already stable communities.** Interestingly and consistent

358 previous studies, we did not observe overall change in alpha diversity>*.

However,
359 participants with lower baseline alpha diversity responded with a long-lasting increase to the
360 fasting intervention. High microbial diversity stabilizes microbiota functions during
361  perturbations™. In diseases usually associated with lower alpha diversity, such as obesity,
362  other fasting interventions increase alpha diversity®. Together, these studies reinforce the
363  hypothesis that fasting effects on alpha diversity are more pronounced in individuals with a
364 reduced microbial diversity. However, low baseline alpha diversity may also arise from
365 unaccounted external influences (e.g., lifestyle habits immediately preceding the
366  measurement).

367 Despite these promising results, our study has several limitations. First, the lack of
368 comprehensive documentation on dietary intake following the fasting intervention. Whether
369  significant weight loss was solely due to fasting or also influenced by subsequent dietary
370 modifications, a common limitation in caloric restriction studies, cannot be determined.
371  From a computational perspective, the relatively small sample size, particularly the initial test
372  dataset after splitting, poses challenges for the random forest model and feature selection®’.
373 However, the validation in two independent cohort shows the robustness of our approach®.
374 In conclusion, our study provides compelling evidence that fasting induces substantial yet
375 reversible changes in the gut microbiome and host metabolic profiles. Importantly, a subset
376  of individuals experiences sustained weight loss. The integration of microbial and clinical
377 data not only enhanced our predictive capabilities but also unveiled novel associations, such

378 as the independent role of Oscillibacter sp. 57_20 and Faecalibacterium sp. incertae sedis in

379  weight regulation. Despite limitations related to dietary documentation and sample size,
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380 these findings pave the way for future research aimed at refining personalized fasting
381 interventions. Ultimately, our work underscores the promise of leveraging gut microbiome
382 insights to tailor dietary strategies for improved metabolic health and weight management.

383
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384  Methods

385  Study design

386 We performed a randomized, waitlist-controlled study (LEANER study, ClinicalTrials.gov;
387 NCT04452916) carried out at the Experimental and Clinical Research Center of Charité —
388 Universitdtsmedizin in Berlin, from November 2020 to December 2022. The study protocol
389 was approved by the institutional review board of Charité — Universitdtsmedizin Berlin
390 (EA1/033/20) and all participants provided written informed consent before entering the
391  study. We collected and managed study data using REDCap electronic data capture tools

392  hosted at Charité — Universititsmedizin Berlin**>°

. This study was exploratory, and we did not
393 calculate a pre-determined sample size. Instead, the size of the recruited cohort was
394  determined based on methodological and feasibility considerations. A general overview of
395  the study is provided in Fig. 1a.

396

397  Eligibility criteria

398 We included individuals aged 20-50, who were assigned male or female at birth and
399 identified as men and women, respectively; with a body mass index between 20-30 kg/m”.
400  Exclusion criteria were heart, lung, liver, and kidney diseases requiring medical intervention,
401  prescribed medication (except oral contraceptives), postoperative phases, current or chronic
402  infection, antibiotic treatment or a fasting week within the last 6 months, habitual use of
403  dietary supplements, food intolerances, > 2 kg body weight change within the last month,
404  pregnancy, lactation, vegan diet, smoking, drug, or alcohol abuse.

405

406 Intervention
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407  Participants received oral and written instructions on the method of prolonged fasting.
408  Expert guidance was provided by experienced nutritionists and certified fasting counselors in
409  a group setting with 5-10 participants per group. After sufficient instruction, the fasting was
410 performed individually at home, with the possibility of reaching out to the counselor at any
411 time or to connect with other group members (if patients gave consent to share this
412  information). Participants were encouraged but not required to take time off during this
413  week. Fasting was preceded by one preparation day, on which participants consumed a low-
414  calorie, fiber-rich diet, e.g. fruits, vegetables, potatoes, rice, oats.

415  During the five fasting days, participants were allowed to consume 200-250 kcal/d through
416  vegetable juices and vegetable broths. Herbal teas and water could be consumed ad libitum.
417 At the morning of fasting day 6, we performed the study visit and patients were instructed
418  for the refeeding phase. A detailed fasting plan including refeeding recommendation is
419  provided as Supplementary Table S2.

420

421  Randomization

422  We assigned participants randomly according to a locked list created by www.randomizer.at

423  (two treatments: waiting, fasting; 1 factor: self-reported sex; permuted blocks; block sizes 4,
424 2, 6, 4). Due to the nature of the intervention and the wait-list design, blinding was not
425  possible.

426

427  Outcome measures

428  We established all outcome measures in advance and did not adapt them during or after the
429  study. The primary outcome measure was resting energy expenditure (REE in kcal/d) after 5

430 days of fasting vs. baseline 1 assessed by indirect calorimetry. Secondary outcomes were
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431  body composition, cardiovascular parameters, various routine blood parameters, glucose
432 variability, gut metagenome, fecal and plasma metabolome. In addition, we assessed
433  compliance and safety of fasting.

434

435  Study center assessments

436  The waiting group underwent assessments four times, the fasting group three times. The
437  fasting group had one baseline visit (baseline 1) and started the intervention within two to
438  eleven days afterwards, the waiting group had two baseline visits with a 12-week waiting
439  period in between (baseline 0 and baseline 1) and also started the intervention within a
440  maximum of 11 days after baseline 1. These two baselines allowed detection of random time
441  effects on the assessed outcome measures. For both groups, the next visit was on the
442  morning of the sixth fasting day directly before breaking the fast (fasting). To assess medium-
443  term effects of fasting, there was another visit after 12 weeks (follow-up). Except for the
444  additional baseline 0 in the waiting group, all assessments were identical between the
445  groups. All examinations described hereafter were performed at all study visits.

446  Assessments commenced in the morning following a 12-hour overnight fast. Participants
447  were instructed to abstain from caffeine, alcohol, and vigorous exercise for 24 hours prior to
448  the assessments.

449  Venous blood was drawn and sent to an accredited laboratory (Labor Berlin, Berlin,
450 Germany) that measured parameters of glucose and lipid metabolism, blood count,
451  electrolytes, liver enzymes, uric acid, CRP, and renal function according to international

452  standards.
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453  We measured waist and hip circumference to calculate waist-to-hip ratio and determined
454  body composition {lean and fat mass) by air displacement plethysmography (Bod Pod, Life
455  Measurements, Inc., Concord, CA).

456  Indirect calorimetry was conducted following a 30 min resting period while in a supine
457  position within a thermoneutral environment for a duration of 30 min (Quark RMR, COSMED,
458 ltaly). REE and respiratory exchange ratio (RER) were calculated from oxygen consumption
459  and carbon dioxide production as described elsewhere.™

460  Office blood pressure and heart rate were determined by five automated measurements
461  within 10 min with an upper arm cuff (Mobil-o-Graph, I.E.M. GmbH, Stolberg, Germany) in
462  the absence of study personnel.

463

464  Fecal samples

465 At each study visit, participants received two stool collection kits and were asked to collect
466  two samples from one stool at home as soon as possible following the study visit. One
467 sample was used for gut metagenome sequencing (OMNIgene Gut, DNA Genotek, Ottawa,
468 Canada) and the other for metabolome analysis (OMNImet Gut, DNA Genotek, Ottawa,
469  Canada). These kits allow shipment without cooling to the study center. Participants sent the
470  tubes to the study center at room temperature, where they were stored at - 80°C until
471  further processing.

472

473  Glucose sensors

474  We assessed glucose variability by continuous glucose monitoring over 14 days. For this,
475  participants wore a glucose sensor that measured interstitial glucose concentrations in the

476  subcutaneous tissue of the dorsal upper arm every 15 min (FreeStyle Libre Pro, Abbott,
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477  Chicago, IL, USA). In contrast to the use of these sensors in diabetic patients, participants in
478  this study could not see their values during the measurement. Baseline assessment was done
479  only in the waiting group directly following baseline visit 0. Additionally, fasting assessment
480 was done in all participants during preparation, fasting and refeeding.

481

482  Ketone and glucose measurements

483  On the five fasting days, participants independently measured their blood concentration of
484  beta-hydroxybutyrate (BHB) and glucose twice daily using a handheld glucometer (Freestyle
485  Precision Neo, Abbott, Chicago, IL, USA), and recorded their values in a provided protocol. In
486  addition, values were stored on the device and read out later in the study center, providing
487  an objective measure of compliance.

488

489  Fecal metagenomic sequencing

490 DNA isolation

491 DNA was isolated using ZymoBIOMICS DNA Miniprep Kit (ZymoReseach Europe GmbH,
492  Freiburg, Germany). In short, an aliquot of 250 L of stool sample from the OMNIgene Gut
493  tube was added to a ZR BasingBead Lysis Tube. The following extraction was done according
494  to the manufacturer’s instructions. DNA was eluted in 100 pL RNase/DNase-free water and
495  collected in a 1.5 mL Eppendorf Tube. Total DNA concentration was measured using
496  NanoDrop ND-1000 (Peglab Biotechnologie GmbH, Erlangen, Germany). Isolated DNA was
497  stored at - 80°C>*.

498

499  Shotgun metagenomics
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500 Isolated DNA was shipped on dry ice to Novogene (Cambridge, UK) for shotgun metagenomic
501 DNA sequencing. In short, DNA was fragmented and subsequently underwent end repair and
502 phosphorylation. After A-tailing, adapter ligation was performed. Then 150 bp paired-ending
503 sequencing was performed on the Illumina Novaseq 6000 platform with an aimed data
504  collection of 6Gb raw data.

505

506  Microbiome data processing

507 Sequencing reads were mapped to the mOTUv2 (version 2.6) database, and read counts
508 were subsequently rarefied using the RTK R package (version 0.2.6.1) to standardize
509 sequencing depth across samples. Rarefaction involves randomly subsampling reads to
510 match the sample with the lowest read depth, thereby mitigating biases introduced by
511 variable sequencing depth and enabling reliable comparisons across cohorts. For the LEANER
512  (healthy) cohort, a cutoff of 3,859 reads was applied, resulting in the exclusion of one sample
513  due to insufficient sequencing depth. The same threshold was used for the Maifeld cohort®,
514  where one sample was also excluded. In the Bahr dataset®, applying the same rarefaction
515 criteria led to the exclusion of one sample. This consistent approach enabled reliable
516  comparisons across cohorts and increased the robustness of downstream analyses.

517

518 Plasma metabolomics

519  Collection of plasma

520 Venous blood was collected in Vacutainer® EDTA tubes (BD, Heidelberg, Germany) and
521  immediately put on crushed ice for 30 min and then centrifuged (3,000 g, 4°C, 10 min).
522 Plasma was collected and stored at - 80°C.

523


https://doi.org/10.1101/2025.06.26.25330331
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.06.26.25330331; this version posted June 26, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

524  Preparation of plasma for nuclear magnetic resonance spectroscopy (NMR)

525  Plasma samples were prepared with a robotic system (SamplePro Tube, Bruker BioSpin
526  GmbH, Ettlingen, Germany) by mixing 287 pL plasma with 287 pL IVDr buffer (Bruker BioSpin
527  GmbH, Ettlingen, Germany) and adding 10 pL formic acid (240 mM) as internal standard.

528

529  NMR measurement of plasma

530 All NMR experiments were performed on a 600 MHz Bruker Avance lll spectrometer, using a
531  triple resonance (‘H, ©*C, N, *H lock) helium cooled cryoprobe with z-gradient. Samples
532  were handled by an automatic Bruker SamplelJet sample changer (Bruker Biospin GmbH,
533  Ettlingen, Germany). Tuning and matching of the probe as well as locking and shimming of
534  the sample were performed automatically. Following the Bruker IVDr protocol for plasma
535  measurements, for each sample four different types of *H NMR spectra were acquired at 310
536 K {1D NOESY, 2D JRES, 1D CPMG, and 1D spin echo diffusion spectrum).

537

538  Data analysis of plasma NMR spectra

539  From the collected spectra of each specimen, 41 smaller, non-lipoprotein metabolites were
540  automatically identified and quantified using the Bruker IVDr Quantification in Plasma/Serum
541  B.l.Quant-PSTM platform. Of note, only metabolites levels not bound to proteins were
542  determined. Additionally, 112 lipoprotein parameters including various lipoprotein fractions,
543  classes and subfractions were identified and quantified using the Bruker IVDr Lipoprotein
544  Subclass Analysis B.I.LISATM platform.

545

546  Stool metabolomics

547  Drying of stool samples


https://doi.org/10.1101/2025.06.26.25330331
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.06.26.25330331; this version posted June 26, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

548  Fecal samples from OMNImet Gut tubes were processed for metabolomics. Fecal samples (1
549  mL) were dissociated two times after adding 2.5 mL 70% isopropanol using C tubes with the
550 gentleMACS OctoDissociator (Miltenyi Biotec, Bergisch Gladbach, Germany). Aliquots of
551  dissociated samples were covered with perforated Parafilm and dried overnight in a vacuum
552  concentrator (Concentrator 5301, Eppendorf, Hamburg, Germany). Dried samples were
553  stored at - 80°C.

554

555 Preparation of stool for NMR

556  Dried stool samples were resuspended in 600 pL (< 10 mg dry weight), 800 uL (10-40 mg dry
557  weight) or 1,000 pL (> 40 mg dry weight) of double distilled water and 10 pL of an extraction
558 standard (Nicotinic acid at 80 mmol/L) were added. Samples were centrifuged three times
559 (12000 x g, 4 °C, 10 min) and supernatants were transferred into a fresh vial after each
560 centrifugation in order to remove particles. Of the final supernatant, 400 uL were mixed with
561 200 pL of 0.1 mol/L phosphate buffer (pH 7.4) and 50 pL of a 0.75% (w/v) solution of 3-
562  trimethylsilyl-2,2,3,3-tetradeuteropropionate (TSP; Sigma-Aldrich, Taufkirchen, Germany),
563  which served as an internal standard, in deuterium oxide.

564

565  NMR measurements of stool

566 NMR experiments were conducted on the same NMR spectrometer as described for the
567  plasma analyses. Before measurement, each sample was allowed to equilibrate for 300 sec in
568 the magnet, and the probe was automatically locked, tuned, matched, and shimmed. One-
569 dimensional 1H NMR spectra were obtained at 298 K using a nuclear Overhauser
570 enhancement spectroscopy pulse sequence with solvent signal suppression by pre-saturation

571  during relaxation and mixing time. For each spectrum, 512 scans were collected into 65,536
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572  data points over a 20-ppm (parts/million) spectral width using a relaxation delay of 4 sec, an
573  acquisition time of 2.66 sec, and a mixing time of 0.01 sec. Spectra were automatically
574  Fourier transformed and phase and baseline corrected.

575

576  Data analysis of stool NMR spectra

577 In each spectrum, a set of 41 metabolites were semi-automatically identified and relative to
578  the TSP reference signal quantified using the CHENOMX 9.02 (Chenomx Inc, Edmonton,
579 Canada) software suite. To account of potential losses during sample preparation resulting
580 data was adjusted to the extraction standard and normalized to dry weight.

581

582  Statistical analysis

583  Descriptive statistics for interval variables are presented as mean + standard deviation or
584  median with interquartile range (IQR). For comparisons of delta BMI between responders
585 and non-responders, normality of variable distributions was assessed by visual check of
586 histograms and gqg-plots. Mann-Whitney U-test or T-test was used as appropriate. For all
587  other data, comparisons between independent groups were performed using the Mann-
588  Whitney U test, and paired samples were compared using the Wilcoxon signed-rank test.
589  Where applicable, p-values were adjusted for multiple comparisons using either the Holm
590 method (for family-wise error control) or the Benjamini-Hochberg (BH) procedure (for false
591  discovery rate control), depending on the analytical objective.

592  Permutational Multivariate Analysis of Variance (PERMANOVA) was used to test for
593  multivariate compositional differences between groups and visits.

594  To evaluate the relationship between bacterial abundance and metabolite concentrations

595  while accounting for visit timepoint, we performed permutation-based conditional
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independence tests. Specifically, for each metabolite, its association with Oscillibacter sp.
57 20 and Faecalibacterium sp. incertae sedis was tested while conditioning on the visit
variable, using the R package coin (version 1.4.3) with 10,000 permutations. Resulting p-
values were corrected for multiple testing using the Benjamini-Hochberg false discovery rate
(FDR) method.

Statistical significance was defined as p < 0.05 or q < 0.1, where applicable.
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602  Data and code availability
603  All code, data, and scripts used in this study have been made publicly available. The code,
604  scripts and processed raw data can be accessed on Zenodo

605  (doi: https://doi.org/10.5281/zen0d0.15696891). Raw sequencing data will be deposited in

606  the NCBI database upon publication.

607
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Tables

Table 1. Baseline characteristics of healthy participants depending on their randomization to
fasting and waiting control arm. Data are given as means (SD). p-values fasting vs. waiting by
t-test. BMI, body mass index; eGFR, estimated glomerular filtration rate; ALT, alanine
aminotransferase; TSH, thyroid-stimulating hormone; CRP, C-reactive protein; HbAlc,

glycated hemoglobin.

Variable All Fasting Waiting P value
Number (n) 38 19 19

Sex, female 19/38(50%) | 9/19(47%) | 10/19(53%) | >0.9
Age (years) 38(8) 39 (9) 36 (8) 0.4
BMI (kg/m?) 25.1(2.5) 25.0(2.7) 25.2 (2.3) 0.7
?r(le/F:nin/1.73m2) 102 (14) 98 (12) 106 (15) 0.1
ALT (U/1) 23.1(8.1) 23.0(8.2) 23.2(8.2) 0.2
TSH (mU/1) 1.70 (0.84) 1.77 (0.91) 1.64(0.77) | 0.6
CRP (mg/dI) 0.98 (0.87) 0.78 (0.28) 1.17 (1.17) 0.2
Cholesterol (mg/dl) 182 (36) 189 (35) 175 (36) 0.2
HbA1c (mmol/mol) 33.2(2.8) 34.2 (2.6) 32.3(2.7) 0.03
Hemoglobin (g/dl) 14.0(1.3) 13.8(1.3) 14.2 (1.2) 0.41
M"f)e blood count 546(1.02) |5.56(0.96) |5.37(1.09) |06
Thrombocytes (uL™) 240 (42) 238 (63) 239 (54) 0.9
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651  Figure 1. Physiological effects of prolonged fasting in healthy individuals. a) Schematic

652 overview of the randamized waitlist-controlled trial. A total of 38 healthv narticinants were
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653  recruited. The first 19 participants immediately underwent prolonged fasting, while the
654  remaining 19 served as a waitlist control group. After the initial intervention period, the
655  waitlist group also underwent the same prolonged fasting protocol, resulting in a complete
656  dataset of 38 participants undergoing prolonged fasting. The fasting intervention consisted of
657  a 5-day period with 250 kcal/day, preceded and followed by baseline and follow-up visits at
658 days O, 5, and 90. Stool, blood, and clinical data were collected at each visit. The waitlist
659  group was assessed at an additional baseline {day -90) to control for temporal fluctuations.
660 b) Glucose time series measured by continuous intradermal monitoring starting one day
661  prior to fasting (pink) or at baseline for the waiting list control (grey). ¢) Quantification of
662  absolute changes in mmol/L during the mean daytime (6am to 10pm) glucose levels (top)
663 and night (10pm to 6am) glucose levels (bottom) as changes compared to the individual
664  baseline (day 1). Paired t-test with Benjamini-Hochberg false discovery rate correction (BH-
665  FDR), *g<0.1, **q < 0.01, ***qg < 0.001. d) Resting energy expenditure (REE), e) respiratory
666  exchange ratio (RER), f) body mass index (BMI), and g) body fat percentage at the different
667  study visits. Each point represents one participant, lines connect individuals, boxplot (middle)
668  for all participants, violins (right side) and dots coloured by sex. P-values are from Wilcoxon
669  signed-rank tests and were corrected using the Holm method.

670
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Figure 2. Prolonged fasting induces transient alterations in gut microbiome composition

and function. a) Alpha diversity as measured by Shannon index for the study visits.

Correlation of Shannon index at baseline with changes in Shannon index immediately b)

post-fasting and ¢) at 12-week follow-up, indicating that baseline diversity predicts

microbiome responsiveness. d) Principal coordinate analysis (PCoA) based on Bray—Curtis

dissimilarity (naive, left) and centered on baseline visit for fasting effect and on fasting visit
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678  for post-fasting effect (right) show a transient shift in overall microbial composition after
679  fasting (pink), which partially reverts at follow-up (blue). Ellipses represent 95% confidence
680 intervals p-values from PERMANOVA. Dot plots showing differential abundant e) species
681 (taxonomic level) and f) gut metabolic modules (functional level). Dots show fasting effects,
682  follow-up effects and study effects, transparency indicates non-significant findings (q>0.1),
683  dot size shows absolute Cliff’s delta, color shows directionality. Significance by Wilcoxon
684  signed-rank test with Benjamini—-Hochberg false discovery rate correction.

685
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687  Figure 3. Machine learning model predicts sustained BMI response to prolonged fasting
688  using clinical and microbiome features. a) Schematic overview of the multi-omics feature
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689  selection and classification pipeline. Baseline species abundances, clinical metadata, and
690 functional modules were used to train a random forest classifier. Important features were
691  selected through recursive feature elimination, Boruta algorithm, and backward selection. b)
692  Final model includes four top-ranked features: Faecalibacterium sp. incertae sedis,
693  Oscillibacter sp. 57_20, LDL cholesterol, and systolic blood pressure. ¢) Correlation heatmap
694  of the selected features showing independence from baseline BMI. R-values from Spearman
695  correlation d) Boxplots of the four selected features at baseline, comparing BMI responders
696 and non-responders, dots show individual patients. P-values by Mann-Whitney-U-test.
697  Oscilli, Oscillibacter sp. 57 _20; Faecali, Faecalibacterium sp. incertae sedis; LDL, Low-density
698 lipoprotein cholesterol; sys BP, systolic blood pressure.

699
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701  Figure 4. Validation of BMI response prediction model in a fasting cohort of patients with
702  metabolic syndrome. a) Schematic of the Maifeld et al. (2021) study: 5-day fasting followed
703 by a DASH diet in individuals with metabolic syndrome (n = 38), with BMI follow-up after 12
704  weeks. b) Receiver operating characteristic (ROC) curve of model performance in the Maifeld
705  cohort, showing good predictive accuracy (AUC = 0.85). ¢) BMI reduction at follow-up of
706  patients classified as responder or non-responder by the prediction model. p-value by one-
707  tailed unpaired t-test. d) BMI over the course of the study, split by participants classified as
708 responders or non-responders. Each point represents a participant. P-values are from paired
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709  Wilcoxon signed-rank tests and were corrected for multiple comparisons using the
710 Benjamini-Hochberg false discovery rate (FDR-BH) method. e) Correlation heatmap of model
711 features (Oscillibacter sp. 57 20, Faecalibacterium sp. incertae sedis, LDL, systolic blood
712 pressure) within the Maifeld dataset. Features used for classification at baseline: f)
713 Oscillibacter sp. 57_20, g) Faecalibacterium sp. incertae sedis, h) LDL, and i) systolic blood
714  pressure. Oscilli, Oscillibacter sp. 57 _20; Faecali, Faecalibacterium sp. incertae sedis; LDL,
715  Low-density lipoprotein cholesterol; sys BP, systolic blood pressure.

716


https://doi.org/10.1101/2025.06.26.25330331
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.06.26.25330331; this version posted June 26, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

a% ' @ Bahretal, 2024

) intermittent _ intermittent
DAY @fasbng fasting fastlng fasting ’

! 250 kcal / day 6 days 250 kcal / day 6 days
7 days per week 7 days per week
n =56
patients  goceline Follow-up
with "
i 8 OE 84E
sclerosis = =
b p=0.048 q=0.974 q=0.598 d
3 c 30 . BMI -008 o001 032 034
s2 27 * f LDL 034 -024 019
aa] E H o I
< . s | M24 B s + SysBP 018 -0.4 ED:&:
1 = : s 05
t ! ™ Faecali sp. )
[ I 21 : I incertae sedis - ;?;3
0 s . o
‘~ » @ SRR NY
O &
& @c& & R .(@@{\
& A
(\0
e p < 0.0001 f p=0454 ¢ p=0972 | p = 0.897
o) ) ~ 2150 :
= 75 c 60 | . I
5 I 3 I 2 150 £ 140 I
350 240| o] 4 £ =130( % 3
= = ° . ~ - ;
5 25 : § 20 . =100 ﬁ 120{ * .
172} &
Sol=t= 1 Zols 4 - 101 ¢ ¥
S SN A A L L A AN
F & &K ¥ & 8 & 8
N & & .
"DQO CDQO °.>Q0 G.)QQ G_,QO c,Qo c,Qo c,Qo
;\Q’ & /‘3’ & /{,,Q' @ /@; 7
O & O O
717 ® ® ®

718  Figure 5. Validation of BMI response prediction model in a fasting cohort of patients with
719  multiple sclerosis. a) Schematic of the Bahr et al. (2024) study: two 7-day fasting periods and
720 intermittent fasting in individuals with multiple sclerosis (n = 56), over a 9-month period. b)
721  BMI reduction at follow-up of patients classified as responder or non-responder by the
722  prediction model. p-value by one-tailed unpaired t-test. ¢) BMI reduction at follow-up of
723  patients classified as responder or non-responder by the prediction model. p-value by one-
724  tailed unpaired t-test. d) BMI over the course of the study, split by participants classified as

725  responders or non-responders. Each point represents a participant. P-values are from paired
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Wilcoxon signed-rank tests and were corrected for multiple comparisons using the
Benjamini-Hochberg false discovery rate (FDR-BH) method. d) Correlation matrix of selected
features in the Bahr dataset. Features used for classification at baseline: f) Oscillibacter sp.
57 20, g) Faecalibacterium sp. incertae sedis, h) LDL, and i) systolic blood pressure. Oscilli,
Oscillibacter sp. 57 20; Faecali, Faecalibacterium sp. incertae sedis; LDL, Low-density

lipoprotein cholesterol; sys BP, systolic blood pressure.
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Figure 6. Oscillibacter sp. 57_20 and Faecalibacterium sp. incertae sedis abundance

correlates with fecal metabolome. Correlation of Oscillibacter (Oscilli) sp. 57_20 abundance

with fecal a) glycerol, b) methionine, and c) uridine levels. Correlation of Faecalibacterium

(Faecali) sp. incertae sedis abundance with fecal d) butyrate, e) tryptophan, and f) uridine

levels.

R-values

from Spearman’s

correlation.

P-values

from permutation-based

independence test screening for associations of species with metabolites while blocking

effects of study visits. Abbreviations: Oscilli: Oscillibacter sp. 57 _20; Faecali: Faecalibacterium

sp. incertae sedis.
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