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Abstract 28 

Prolonged fasting may benefit metabolic health, but data in healthy individuals remain 29 

limited. We performed a randomized, waitlist-controlled study (LEANER study), with 38 30 

healthy participants completing a 5-day-fasting intervention with 12-week follow-up. Fasting 31 

acutely lowered body mass index (BMI), via fat mass loss. These changes partially persisted 32 

at follow-up. Fasting altered the gut microbiome composition and induced metabolite shifts 33 

in plasma and feces. Changes to gut microbiome alpha diversity after fasting correlated with 34 

baseline microbiome diversity. Long-term BMI response at follow-up could be predicted 35 

through machine learning (ML) using baseline microbiome and clinical data, highlighting an 36 

unknown Faecalibacterium sp., Oscillibacter sp. 50_27, LDL cholesterol, and systolic blood 37 

pressure as key predictors. This ML model was validated in independent patient cohorts with 38 

metabolic syndrome and multiple sclerosis. These findings support prolonged fasting as an 39 

effective metabolic intervention and demonstrate that individual responses to fasting 40 

interventions can be predicted using pre-intervention features. 41 

 42 

Trial registration: ClinicalTrials.gov, NCT04452916. Registered on June 26, 2020 43 

 44 

Key words: fasting, gut microbiome, weight loss, machine learning, personalized nutrition, 45 

precision medicine  46 
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Introduction 47 

Fasting interventions have gained renewed attention for their potential to modulate 48 

metabolism, reshape the gut microbiome, and promote healthy aging
1
. While fasting 49 

protocols vary widely from time-restricted eating to fasting-mimicking diets
2
, and prolonged 50 

food abstinence lasting up to several weeks (up to 26 days)
3
, the underlying principle is 51 

consistent: transient caloric deprivation triggers coordinated physiological responses that 52 

may confer long-term health benefits
4
. 53 

Evidence from patient populations, including those with metabolic syndrome
5
, autoimmune 54 

diseases
6,7

, and cancer
8
, suggests that fasting can influence key regulatory pathways such as 55 

autophagy, insulin sensitivity, and oxidative stress
1
. In individuals with metabolic syndrome, 56 

we previously demonstrated that a 5-day fast atop a DASH (Dietary Approaches to Stop 57 

Hypertension) diet induced profound and coordinated changes in gut microbiome 58 

composition and immune cell states most of which were reversed at 12 weeks follow-up
5
. 59 

Using immune cell population or microbiome profiles, we developed models that predicted 60 

long-term antihypertensive effects, supporting the concept of data-driven stratification⁵. 61 

In parallel, gut microbiome profiling has emerged as a powerful tool for personalized 62 

medicine
9
. Microbial signatures have been linked to energy metabolism

10
, weight 63 

regulation
11,12

, and immune modulation
13,14

. Personalized dietary approaches that account 64 

for microbiome composition have demonstrated superior outcomes in metabolic control⁸. 65 

Emerging applications extend to autoimmune, neuropsychiatric, and oncologic indications, 66 

underscoring the potential of microbiome-informed strategies in precision medicine
9,15

. 67 

Despite these advances, the long-term effects of prolonged fasting in healthy individuals 68 

remain poorly characterized. Most existing studies rely on non-randomized designs, lack 69 

adequate control groups, or fail to include follow-up assessments. Furthermore, many 70 
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interventions are performed in multimodal clinical settings involving exercise, psychological 71 

support, and dietary coaching
5
, making it difficult to isolate the effect of fasting alone. 72 

Here, we present a randomized, waitlist-controlled study investigating the effects of a 5-day 73 

prolonged fasting intervention in healthy adults, with follow-up assessments at 12 weeks. We 74 

integrated clinical, microbiome, and metabolome profiling to characterize immediate and 75 

long-term physiological responses. Using machine learning, we show that sustained weight 76 

loss can be predicted from baseline microbiome and clinical features. The results that were 77 

validated in independent cohorts with metabolic syndrome and multiple sclerosis. Our 78 

findings offer mechanistic insight into fasting responses and support the potential of 79 

microbiome-informed strategies for personalized lifestyle interventions. 80 

  81 
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Results 82 

Prolonged fasting affects energy expenditure and long-term weight loss 83 

Thirty-eight healthy participants were recruited for a 5-day prolonged fasting intervention 84 

(Figure 1a). As fasting interventions cannot be blinded, we decided to use a waiting list 85 

control to account for physiological fluctuations within a 12-week timeframe while 86 

maximizing the number of participants undergoing prolonged fasting (Figure 1A). Baseline 87 

characteristics are shown in Table 1. 88 

Of the 38 participants, 83% reported fasting-related adverse events (AE) (Table S1). All AE 89 

were mild and transient and did not necessitate discontinuation of fasting. Blood glucose and 90 

β-hydroxybutyrate levels were measured each morning and evening during the five-day 91 

fasting period (days 1–5), confirming that all participants adhered closely to the study 92 

protocol (Figure S1a, b). We observed a diurnal rhythm with higher BHB but lower glucose 93 

concentrations in the morning compared to the evening (Figure S1a, b). Continuous 94 

interstitial glucose monitoring during the five-day fasting period, compared with baseline 95 

measurements and waiting-list controls, confirmed a dynamic reduction in glucose levels 96 

over the course of the fast. (Figure 1b). Following refeeding the glucose levels normalized; 97 

however, between days 2 and 4 post-fast, blood glucose concentrations were elevated 98 

throughout the day (06:00–22:00) compared with baseline measurements (Figure 1c).  99 

Our predefined endpoint was a change in resting energy expenditure (REE). Prolonged fasting 100 

acutely reduced REE by 62 kcal/d, suggesting a fasting-induced, energy-preserving 101 

mechanism (Figure 1d, Supplementary Data 1). We did not observe alterations in REE 102 

between the two baseline timepoints of waiting list controls (Figure 1d). Since REE was the 103 

defined endpoint, we performed a linear mixed model showing that lean mass (p < 0.001) 104 

and not self-reported sex significantly influenced REE at all visits, including post-fasting 105 
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(Figure S2). Following the five-day fast, respiratory exchange ratios (RER) declined 106 

significantly (Figure 1e), paralleling a peak in BHB concentrations on day 5 (Figure S1b). All 107 

those metabolic makers returned to baseline by 12 weeks post-fast.  108 

Furthermore, we observed that prolonged fasting reduced BMI (Figure 1f). This decrease was 109 

partly reversed after 12 weeks follow-up (Figure 1f). Body composition analysis attributed 110 

this incomplete return towards baseline BMI predominantly to a reduction in fat mass 111 

(Figure 1g, S1g). Of note, the absolute and relative reduction of body fat was accompanied 112 

by a reduction in lean mass during fasting that completely reverted at follow-up (Figure S1h). 113 

Prolonged fasting reduced waist-to-hip ratio and diastolic blood pressure while increasing 114 

heart rate, findings which are consistent with a previously published study in metabolic 115 

syndrome (Figure S1d-g). In contrast to metabolic syndrome patients
5
, the healthy 116 

participants in this study did not exhibit sustained blood-pressure reductions (Figure S1e, f). 117 

Taken together, these results demonstrate that prolonged fasting is well tolerated in healthy 118 

individuals, yielding sustained reductions in BMI and fat mass, while most metabolic and 119 

hemodynamic parameters return to baseline during the 12-week follow-up.  120 

 121 

Prolonged fasting induces large short-term and small long-term changes in gut microbiome 122 

composition 123 

To assess the natural fluctuation of the gut microbiome composition, we analyzed changes 124 

between the two baseline samples (baseline 0 and baseline 1) from the waiting list control 125 

(Figure 1a). Microbial alpha diversity, measured as Shannon index, and microbiome 126 

composition quantified by Bray-Curtis dissimilarity did not differ significantly between the 127 

two baseline samples (Figure S3a, b). Shannon index remained stable across all study visits 128 

(Figure 2a). In contrast, individual trajectories in response to fasting varied markedly (Figure 129 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 26, 2025. ; https://doi.org/10.1101/2025.06.26.25330331doi: medRxiv preprint 

https://doi.org/10.1101/2025.06.26.25330331
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

2a). Interestingly, short-term (post-fasting) and long-term (follow-up) changes in alpha-130 

diversity correlated negatively with alpha-diversity at baseline, implicating baseline 131 

differences in microbiome composition as relevant predictors of fasting-induced microbiome 132 

changes (Figure 2b, c). Bray-Curtis dissimilarity-based multivariate analysis of the taxonomic 133 

composition demonstrated a significant shift in microbial community composition in 134 

response to fasting that partially reversed during the follow-up period (Figure 2d). Consistent 135 

with the observed shift in the multivariate analysis, fasting induced significant changes in 136 

several bacterial species that reversed during follow-up. For example, Roseburia sp. inserta 137 

sedis and Bifidobacterium adolescentis decreased after the fasting period but increased at 138 

follow-up, whereas Faecalibacterium sp. CAG-74 showed the opposite pattern (Figure 2e, 139 

S3c, Supplementary Data 2). In contrast, only seven taxa exhibited sustained abundance 140 

changes (Figure S3c). 141 

Next, we analyzed gut-specific metabolic modules using GOmixer. Again, fasting induced 142 

pronounced alterations that largely reverted to baseline during follow-up (Figure 2f). Only for 143 

three modules, ketone body synthesis, osmoprotectant transport system, and 144 

N-acetylneuraminate and N-acetylmannosamine degradation, fasting induced a long-lasting 145 

increase when comparing baseline to follow-up (Figure 2f, Figure S4a, Supplementary Data 146 

3). 147 

Overall, prolonged fasting induces pronounced compositional shifts in the gut microbiome 148 

which were largely reversed upon refeeding, resulting in minimal long-term deviations from 149 

baseline at the 12-week follow-up. Notably, baseline alpha diversity metrics correlate with 150 

the magnitude of alpha diversity changes both immediately after fasting and at follow-up. 151 

 152 

Prolonged fasting alters plasma and fecal metabolome 153 
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We performed nuclear magnetic resonance (NMR) spectroscopy on plasma and fecal 154 

samples to assess the impact of fasting, and its associated microbiome shifts on the fecal and 155 

host metabolome. Principal coordinate analysis (PCA), centered on baseline values to 156 

characterize post-fast changes and on post-fast values to characterize follow-up effects, 157 

revealed plasma metabolome trajectories analogous to those observed in the gut 158 

microbiome (Figure S4b). In line, we observed significant alterations between baseline, 159 

fasting, and follow-up, with most changes reversed at follow-up (Figure S4c, Supplementary 160 

Data 4). In plasma, only valine, glycine, tyrosine, and pyruvic acid exhibited sustained 161 

increases from baseline to follow-up, indicating lasting effects of fasting on these metabolites 162 

(Figure S4b, c). 163 

Fecal metabolite profiling again revealed a pattern of alteration and reversion to baseline 164 

(Figure S4d). Contradicting other previous reports on short-chain fatty acids (SCFA) in 165 

fasting
5
, we observed a decrease in butyrate during fasting, which was non-significant at 166 

follow-up (Figure S4e, Supplementary Data 5). The only long-term effect observed in our data 167 

was a decrease in choline from baseline to fasting (Figure S4e). 168 

In conclusion, NMR-based metabolomics of plasma shows more consistent alterations as 169 

compared to the fecal metabolome, which might be due to the different matrix or 170 

intraindividual variations in gut microbiome composition. 171 

 172 

Prediction of sustained BMI response by multi-omics machine learning  173 

Since we observed strong intraindividual differences in response to prolonged fasting across 174 

most data layers, we aimed to investigate whether the clinical response to fasting can be 175 

predicted from baseline data. Since BMI showed the overall strongest long-term effect of the 176 

analyzed clinical data (Figure 1), we focused on the long-term weight loss phenotype. Using 177 
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the waiting list control, we estimated the normal fluctuation of BMI within 12 weeks of study 178 

participation. Normal fluctuation in BMI was defined as mean ± two standard deviations 179 

(SD)
16

, in our case -0.008 ± 0.32 kg/m
2
. With this threshold, we identified 38% BMI long-term 180 

responders and 62% BMI non-responders to prolonged fasting. In order to cross-validate our 181 

model in publicly available datasets we focused on microbiome and clinical features over 182 

NMR metabolomics
5,17

. A random forest classifier was trained on 87 features including the 50 183 

most abundant species, candidate species and pathways from previous studies on prolonged 184 

fasting, as well as relevant clinical metadata (Supplementary Data 6) using 80% of our data. 185 

To account for the small sample size, we used leave-one-out cross-validation. The model was 186 

evaluated on the remaining 20% of the dataset that was held out during training (Figure 3a). 187 

The initial model achieved 66.7% accuracy with 100% sensitivity in identifying responders in 188 

the test dataset. To optimize performance, we then selected key predictors using random-189 

forest feature importance, the Boruta algorithm, and backward feature elimination 190 

(Figure 3b, S5c). This analysis indicated four key predictors: LDL, systolic blood pressure (BP), 191 

Faecalibacterium sp. incerta sedis and Oscillibacter sp. 57_20. Those four features were used 192 

to train the final model on 80% of the dataset. The refined model demonstrated improved 193 

performance, achieving 83.3 % accuracy, an 80% positive predictive value, and a 100% 194 

negative predictive value (Figure S5a). 195 

Baseline BMI can confound weight loss predictions, so we tested for collinearity and 196 

correlations between baseline BMI and our four selected features none of which reached 197 

significance (Figure 3c). To further test if our four features are mere surrogate markers of 198 

baseline BMI, we incorporated baseline BMI into the model which did not improve predictive 199 

accuracy (Figure S5b). Furthermore, Oscillibacter sp. 57_20 remained the most important 200 
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feature. These results confirm that our final model captured biologically relevant signals 201 

beyond simple baseline BMI effects.  202 

Finally, we examined the abundance patterns of the model’s key features within our cohort. 203 

Responders exhibited significantly higher levels of Oscillibacter sp. 57_20 (Figure 3d), while 204 

the identified Faecalibacterium sp. showed no significant difference (Figure 3f). Although 205 

important for responder identification, we observed no significant differences in systolic 206 

blood pressure or plasma LDL levels between responders and non-responders (Figure 3e, g). 207 

Taken together, we identified four (two clinical and two microbiome) features that hold the 208 

potential to predict long-term weight loss in response to prolonged fasting interventions. 209 

Although our model performed robustly on the 20 % hold-out set, these results were 210 

achieved in a very limited cohort size. 211 

 212 

Validation in available datasets of patients with co-morbidities 213 

To address this limitation, we next applied our model to our published metabolic syndrome 214 

cohort in which patients underwent either a five-day fasting regimen followed by a DASH 215 

diet or a DASH diet alone (Figure 4a)
5
. The study outcomes were assessed 12 weeks post-216 

intervention, mirroring our study’s timeline. Given the greater BMI variability expected in 217 

metabolic syndrome patients, we again quantified BMI fluctuation from the DASH only group 218 

and subsequently defined long-term responders with a BMI reduction exceeding 0.8 kg/m
2
.  219 

Remarkably, our trained model predicted sustained weight loss in this study with an AUC of 220 

0.85 (Figure 4b). Our model correctly classified 19 (82.6% [61.2 – 95.1%] accuracy) of the 23 221 

patients and with a sensitivity and specificity of 85.7 % and 81.3 %, respectively (Figure 4b). 222 

Furthermore, patients classified as responders showed a significantly higher BMI reduction at 223 

12 weeks follow-up compared to non-responders (Figure 4c, d). Consistent with our 224 
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healthy-participant cohort, the model’s predictive features exhibited only weak correlations 225 

with baseline BMI, underscoring their independence from initial body mass (Fig. 4e). In 226 

univariate analyses, none of the features differed significantly at baseline between 227 

responders and non-responders (Figure 4f-i). 228 

As further validation, we selected a recent nutritional intervention trial in multiple sclerosis 229 

patients, the majority of whom exhibited normal metabolic profiles (obesity in one patient, 230 

hypertension in two patients, high LDL in four patients) 
17

. Notably, the study design differed 231 

substantially. Patients completed two prolonged fasting cycles, interspersed with an interim 232 

period of intermittent fasting (14 hrs/ day), and follow-up assessments were conducted nine 233 

months apart (Figure 5a). As the control arm of this study included dietary counseling, 234 

following the dietary recommendations of the German Society of Nutrition, we did not use it 235 

to define average BMI shifts over nine months. Therefore, we could not calculate specificity 236 

or sensitivity. Nevertheless, patients classified as responders by our model experienced 237 

significantly greater weight loss than those classified as non-responders (Figure 5b). Again, 238 

no significant correlations between model parameters and baseline BMI were detected in 239 

this cohort (Figure 5c). Similar to the current cohort, levels of Oscillibacter sp. 50_27 were 240 

significantly higher in responders (Figure 5e. The other features did not differ significantly 241 

(Figure 5f-h). 242 

Our findings indicate that baseline patient characteristics determine the magnitude of long-243 

term weight response to prolonged fasting interventions. Furthermore, the predictive model, 244 

initially developed in healthy subjects, retained robust performance when applied to both 245 

individuals with metabolic syndrome and to a regimen involving two separate prolonged-246 

fasting episodes. 247 

 248 
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Metabolite associations with Oscillibacter sp. 57_20 and Faecalibacterium sp. incertae sedis 249 

Since both the Oscillibacter sp. 57_20 and the Faecalibacterium sp. identified in this study 250 

were predictive of weight loss, we wanted to further understand the potential metabolite 251 

profile associated with these bacteria. Therefore, we performed an exploratory correlation 252 

analysis with the fecal metabolome across all visit data while blocking the visit information
18

. 253 

We found significant associations of Faecalibacterium sp. with butyrate, tryptophan, and 254 

uridine (Figure 6a-c, Supplementary Data 7) as well as of Oscillibacter sp. 57_20 with glycerol 255 

and methionine, and for uridine without reaching statistical significance (Figure 6d-f, 256 

Supplementary Data 8). In summary, our data suggest that the bacterial species important 257 

for the classification of long-term body weight responders modulate the metabolomic output 258 

of the fecal microbiome. 259 

  260 
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Discussion 261 

Our data show that prolonged fasting leads to long-term body weight and body fat reduction 262 

after 12 weeks. Interindividual variability in response to dietary interventions poses a major 263 

challenge in lifestyle interventions. Large-scale studies have shown that both host and 264 

microbial factors shape individual metabolic responses, emphasizing the need for precision 265 

strategies
19,20

. Using baseline microbiome and clinical data, we can predict individuals who 266 

will respond to fasting with sustained weight loss, defined as a BMI reduction lower than the 267 

mean minus two standard deviations of the waiting list control. Using available data from 268 

similar interventions in patients with metabolic syndrome and patients with multiple 269 

sclerosis, we could validate our data-driven classification approach. While Faecalibacterium 270 

sp. incertae sedis and Oscillibacter sp. 57_20, were important for BMI response prediction, 271 

most of the microbiome and metabolome features were characterized by transient shifts 272 

induced by fasting, with subsequent return to pre-intervention states. Taken together, our 273 

data implicate gut microbiota in long-term BMI changes post fasting and suggest conserved 274 

effects of fasting regardless of health status. 275 

On host level, prolonged fasting led to strong changes of multiple cardiometabolic risk factors 276 

like LDL cholesterol, waist-to-hip ratio, and systolic and diastolic blood pressure. However, at 277 

12 weeks follow-up these changes mainly reverted, indicating that prolonged fasting does 278 

not exert a sustained effect in healthy individuals. These data differ from in patients with 279 

metabolic syndrome with values above the healthy range
5
. Interestingly, while blood glucose 280 

dropped during fasting, it increased upon refeeding during the day (6am to 10pm). Since 281 

values at night (10pm to 6am) did not increase, our data suggest a mildly disturbed glucose 282 

handling for the early days post-fasting. A similar phenotype was reported in the literature in 283 

response to standardized meal intakes after prolonged fasting
21,22

. This was attributed to the 284 
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metabolism successfully switching to fatty acid and ketone oxidation and postprandial 285 

carbohydrate oxidation was reduced leading to higher plasma glucose levels
21

. Since a strong 286 

metabolic phenotype was expected, REE reduction was our predefined endpoint. REE in 287 

fasting was studied previously mainly in healthy men
23-25

 Our data shows an overall similar 288 

but smaller effect, which might be due to the inclusion of healthy women and a broader 289 

range of lean masses. Levels of REE reduction after 24h caloric deprivation was previously 290 

associated with weight gain after 6 months in healthy individuals
26

. We could not confirm 291 

these findings in our cohort for long-term weight changes after 3 months using the changes 292 

in REE after 5 days of fasting (Figure S6). However, using a combination of clinical and 293 

microbiome data, we were successful in predicting long-term weight loss. 294 

We have shown in the past the microbiome and immune data can predict blood pressure 295 

reduction in patients with metabolic syndrome in response to fasting
5
. In contrast, our study 296 

in healthy participants revealed only modest effects on blood pressure. Given the well-297 

established impact of fasting on weight managemen
27

, we applied a data-driven approach 298 

that involved clustering participants based on BMI changes and employing a random forest 299 

classifier. Our initial model, which incorporated 83 features, demonstrated high sensitivity 300 

but limited specificity, iterative feature selection enabled us to identify Faecalibacterium sp. 301 

incertae sedis, Oscillibacter sp. 57_20, plasma LDL levels, and systolic blood pressure as key 302 

predictors. Notably, independent validations highlighted the robustness and generalizability 303 

of our approach. In the Maifeld et al. cohort
5
, which featured a similar study design in 304 

patients with metabolic syndrome, we observed an 82.6% of responders were correctly 305 

identified. In the Bahr et al. cohort
17

, with a different study design incorporating intermittent 306 

fasting in patients with multiple sclerosis, predicted responders exhibited higher weight loss. 307 

These external validations not only reinforce the reliability of our predictive model but also 308 
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suggest that the gut microbiome changes associated with fasting responses are conserved 309 

across diverse populations, from healthy individuals to those with metabolic disorders and 310 

autoimmune disease, thereby broadening the potential applicability of fasting-based 311 

interventions for weight management and metabolic health. 312 

Given that baseline BMI is typically a key predictor of weight loss, we assessed its 313 

confounding effect on fasting-induced BMI changes. Oscillibacter sp. 57_20 remained the 314 

stronger predictor even when baseline BMI was included in the model, indicating that this 315 

microbial species may exert an independent influence on weight regulation during fasting. 316 

While we cannot fully exclude potential confounding or correlations between baseline BMI 317 

and microbiome composition, to our knowledge, no prior study has directly linked 318 

Oscillibacter sp. 57_20 with weight regulation. However, Oscillibacter sp. 57_20 was recently 319 

identified as a keystone taxon in a similar prolonged fasting study in healthy individuals, 320 

where it was implicated in the production of indole-3-propionate (I3P)
28

, a protective 321 

metabolite in cardiometabolic disease
29

. Future research is needed to explore the 322 

mechanistic role of Oscillibacter spp. in host metabolism and its potential relevance in 323 

personalized fasting interventions. 324 

Faecalibacterium spp. are known SCFA producers
30

. In line, our data shows that the 325 

abundance of our specific Faecalibacterium sp. associates with fecal butyrate levels. As 326 

described previously for other Faecalibacterium spp.
31

, the identified Faecalibacterium sp. 327 

correlates with fecal tryptophan. Tryptophan can be catabolized by gut microbiota to indole 328 

metabolites
32

. Unfortunately, due to the resolution of NMR metabolomics, we could not 329 

detect specific indole metabolites like I3P. However, our data implicate that both bacteria 330 

might interact in the production of tryptophan catabolites. 331 
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Both the Faecalibacterium sp. identified in this study and the Oscillibacter sp. 57_20 332 

correlate with the nucleoside uridine. Uridine can adaptively regulate food intake in healthy 333 

participants
33

. Furthermore, experimental evidence show that blood uridine levels reflect the 334 

nutritional status of mice
34,35

 with high uridine levels as indicators of catabolic states
34,36

. In 335 

line, dietary supplementation of uridine enhanced hunger and increased caloric intake
33

. 336 

Microbial metabolism of uridine suggests a potential role of a gut-brain axis or influence on 337 

satiety
37

 in long-term BMI responders. Unfortunately, the literature concerning the other 338 

metabolites of interest correlating with Oscillibacter sp. 57_20, glycerol and methionine is 339 

sparse. While we controlled our analysis for abundance shifts at different visits, we could not 340 

control the false discovery rate in this exploratory setting. Future confirmatory studies are 341 

needed to further investigate the metabolite spectra of the identified Faecalibacterium sp. 342 

and Oscillibacter sp. 57_20. 343 

Overall, the gut microbiome and metabolome exhibited a consistent pattern of fasting-344 

induced alterations and nearly complete reversion to baseline at follow-up. Previous studies 345 

have consistently reported an enrichment of beneficial bacteria such as F. prausnitzii 
38-40

, as 346 

well as Roseburia and Coprococcus species, other known SCFA producers
41-43

. Our data only 347 

partly overlaps with these reports, as we observed no alterations to F. prausnitzii, alongside a 348 

decrease in Roseburia spp. and Coprococcus spp. However, we observed an increase in one 349 

Butyricicoccus sp., known butyrate producers. Our functional analysis revealed an increase in 350 

propionate production via kinase pathways, pointing towards an elevated SCFA production 351 

potentials from coordinated activity across broader microbial community rather than single 352 

species effects. The discrepancy with earlier findings may be attributed to our study's healthy 353 

cohort, in which baseline levels of F. prausnitzii are likely already well-balanced. This suggests 354 

that fasting might predominantly restore disturbed bacterial populations rather than altering 355 
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already stable communities. Suggest that fasting primarily restores imbalanced microbial 356 

populations, rather than reshaping already stable communities.
44

 Interestingly and consistent 357 

previous studies, we did not observe overall change in alpha diversity
5,42

. However, 358 

participants with lower baseline alpha diversity responded with a long-lasting increase to the 359 

fasting intervention. High microbial diversity stabilizes microbiota functions during 360 

perturbations
45

. In diseases usually associated with lower alpha diversity, such as obesity, 361 

other fasting interventions increase alpha diversity
46

. Together, these studies reinforce the 362 

hypothesis that fasting effects on alpha diversity are more pronounced in individuals with a 363 

reduced microbial diversity. However, low baseline alpha diversity may also arise from 364 

unaccounted external influences (e.g., lifestyle habits immediately preceding the 365 

measurement).  366 

Despite these promising results, our study has several limitations. First, the lack of 367 

comprehensive documentation on dietary intake following the fasting intervention. Whether 368 

significant weight loss was solely due to fasting or also influenced by subsequent dietary 369 

modifications, a common limitation in caloric restriction studies, cannot be determined. 370 

From a computational perspective, the relatively small sample size, particularly the initial test 371 

dataset after splitting, poses challenges for the random forest model and feature selection
47

. 372 

However, the validation in two independent cohort shows the robustness of our approach
48

. 373 

In conclusion, our study provides compelling evidence that fasting induces substantial yet 374 

reversible changes in the gut microbiome and host metabolic profiles. Importantly, a subset 375 

of individuals experiences sustained weight loss. The integration of microbial and clinical 376 

data not only enhanced our predictive capabilities but also unveiled novel associations, such 377 

as the independent role of Oscillibacter sp. 57_20 and Faecalibacterium sp. incertae sedis in 378 

weight regulation. Despite limitations related to dietary documentation and sample size, 379 
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these findings pave the way for future research aimed at refining personalized fasting 380 

interventions. Ultimately, our work underscores the promise of leveraging gut microbiome 381 

insights to tailor dietary strategies for improved metabolic health and weight management. 382 

  383 
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Methods 384 

Study design 385 

We performed a randomized, waitlist-controlled study (LEANER study, ClinicalTrials.gov; 386 

NCT04452916) carried out at the Experimental and Clinical Research Center of Charité –387 

 Universitätsmedizin in Berlin, from November 2020 to December 2022. The study protocol 388 

was approved by the institutional review board of Charité – Universitätsmedizin Berlin 389 

(EA1/033/20) and all participants provided written informed consent before entering the 390 

study. We collected and managed study data using REDCap electronic data capture tools 391 

hosted at Charité – Universitätsmedizin Berlin
49,50

. This study was exploratory, and we did not 392 

calculate a pre-determined sample size. Instead, the size of the recruited cohort was 393 

determined based on methodological and feasibility considerations. A general overview of 394 

the study is provided in Fig. 1a. 395 

 396 

Eligibility criteria 397 

We included individuals aged 20-50, who were assigned male or female at birth and 398 

identified as men and women, respectively; with a body mass index between 20-30 kg/m
2
. 399 

Exclusion criteria were heart, lung, liver, and kidney diseases requiring medical intervention, 400 

prescribed medication (except oral contraceptives), postoperative phases, current or chronic 401 

infection, antibiotic treatment or a fasting week within the last 6 months, habitual use of 402 

dietary supplements, food intolerances, > 2 kg body weight change within the last month, 403 

pregnancy, lactation, vegan diet, smoking, drug, or alcohol abuse.  404 

 405 

Intervention 406 
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Participants received oral and written instructions on the method of prolonged fasting. 407 

Expert guidance was provided by experienced nutritionists and certified fasting counselors in 408 

a group setting with 5-10 participants per group. After sufficient instruction, the fasting was 409 

performed individually at home, with the possibility of reaching out to the counselor at any 410 

time or to connect with other group members (if patients gave consent to share this 411 

information). Participants were encouraged but not required to take time off during this 412 

week. Fasting was preceded by one preparation day, on which participants consumed a low-413 

calorie, fiber-rich diet, e.g. fruits, vegetables, potatoes, rice, oats. 414 

During the five fasting days, participants were allowed to consume 200-250 kcal/d through 415 

vegetable juices and vegetable broths. Herbal teas and water could be consumed ad libitum. 416 

At the morning of fasting day 6, we performed the study visit and patients were instructed 417 

for the refeeding phase. A detailed fasting plan including refeeding recommendation is 418 

provided as Supplementary Table S2. 419 

 420 

Randomization 421 

We assigned participants randomly according to a locked list created by www.randomizer.at 422 

(two treatments: waiting, fasting; 1 factor: self-reported sex; permuted blocks; block sizes 4, 423 

2, 6, 4). Due to the nature of the intervention and the wait-list design, blinding was not 424 

possible. 425 

 426 

Outcome measures 427 

We established all outcome measures in advance and did not adapt them during or after the 428 

study. The primary outcome measure was resting energy expenditure (REE in kcal/d) after 5 429 

days of fasting vs. baseline 1 assessed by indirect calorimetry. Secondary outcomes were 430 
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body composition, cardiovascular parameters, various routine blood parameters, glucose 431 

variability, gut metagenome, fecal and plasma metabolome. In addition, we assessed 432 

compliance and safety of fasting.  433 

 434 

Study center assessments 435 

The waiting group underwent assessments four times, the fasting group three times. The 436 

fasting group had one baseline visit (baseline 1) and started the intervention within two to 437 

eleven days afterwards, the waiting group had two baseline visits with a 12-week waiting 438 

period in between (baseline 0 and baseline 1) and also started the intervention within a 439 

maximum of 11 days after baseline 1. These two baselines allowed detection of random time 440 

effects on the assessed outcome measures. For both groups, the next visit was on the 441 

morning of the sixth fasting day directly before breaking the fast (fasting). To assess medium-442 

term effects of fasting, there was another visit after 12 weeks (follow-up). Except for the 443 

additional baseline 0 in the waiting group, all assessments were identical between the 444 

groups. All examinations described hereafter were performed at all study visits. 445 

Assessments commenced in the morning following a 12-hour overnight fast. Participants 446 

were instructed to abstain from caffeine, alcohol, and vigorous exercise for 24 hours prior to 447 

the assessments.  448 

Venous blood was drawn and sent to an accredited laboratory (Labor Berlin, Berlin, 449 

Germany) that measured parameters of glucose and lipid metabolism, blood count, 450 

electrolytes, liver enzymes, uric acid, CRP, and renal function according to international 451 

standards. 452 
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We measured waist and hip circumference to calculate waist-to-hip ratio and determined 453 

body composition (lean and fat mass) by air displacement plethysmography (Bod Pod, Life 454 

Measurements, Inc., Concord, CA).  455 

Indirect calorimetry was conducted following a 30 min resting period while in a supine 456 

position within a thermoneutral environment for a duration of 30 min (Quark RMR, COSMED, 457 

Italy). REE and respiratory exchange ratio (RER) were calculated from oxygen consumption 458 

and carbon dioxide production as described elsewhere.
51

 459 

Office blood pressure and heart rate were determined by five automated measurements 460 

within 10 min with an upper arm cuff (Mobil-o-Graph, I.E.M. GmbH, Stolberg, Germany) in 461 

the absence of study personnel. 462 

 463 

Fecal samples 464 

At each study visit, participants received two stool collection kits and were asked to collect 465 

two samples from one stool at home as soon as possible following the study visit. One 466 

sample was used for gut metagenome sequencing (OMNIgene Gut, DNA Genotek, Ottawa, 467 

Canada) and the other for metabolome analysis (OMNImet Gut, DNA Genotek, Ottawa, 468 

Canada). These kits allow shipment without cooling to the study center. Participants sent the 469 

tubes to the study center at room temperature, where they were stored at - 80°C until 470 

further processing.  471 

 472 

Glucose sensors 473 

We assessed glucose variability by continuous glucose monitoring over 14 days. For this, 474 

participants wore a glucose sensor that measured interstitial glucose concentrations in the 475 

subcutaneous tissue of the dorsal upper arm every 15 min (FreeStyle Libre Pro, Abbott, 476 
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Chicago, IL, USA). In contrast to the use of these sensors in diabetic patients, participants in 477 

this study could not see their values during the measurement. Baseline assessment was done 478 

only in the waiting group directly following baseline visit 0. Additionally, fasting assessment 479 

was done in all participants during preparation, fasting and refeeding.  480 

 481 

Ketone and glucose measurements 482 

On the five fasting days, participants independently measured their blood concentration of 483 

beta-hydroxybutyrate (BHB) and glucose twice daily using a handheld glucometer (Freestyle 484 

Precision Neo, Abbott, Chicago, IL, USA), and recorded their values in a provided protocol. In 485 

addition, values were stored on the device and read out later in the study center, providing 486 

an objective measure of compliance.  487 

 488 

Fecal metagenomic sequencing 489 

DNA isolation 490 

DNA was isolated using ZymoBIOMICS DNA Miniprep Kit (ZymoReseach Europe GmbH, 491 

Freiburg, Germany). In short, an aliquot of 250 μL of stool sample from the OMNIgene Gut 492 

tube was added to a ZR BasingBead Lysis Tube. The following extraction was done according 493 

to the manufacturer’s instructions. DNA was eluted in 100 μL RNase/DNase-free water and 494 

collected in a 1.5 mL Eppendorf Tube. Total DNA concentration was measured using 495 

NanoDrop ND-1000 (Peqlab Biotechnologie GmbH, Erlangen, Germany). Isolated DNA was 496 

stored at - 80°C
52

. 497 

 498 

Shotgun metagenomics  499 
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Isolated DNA was shipped on dry ice to Novogene (Cambridge, UK) for shotgun metagenomic 500 

DNA sequencing. In short, DNA was fragmented and subsequently underwent end repair and 501 

phosphorylation. After A-tailing, adapter ligation was performed. Then 150 bp paired-ending 502 

sequencing was performed on the Illumina Novaseq 6000 platform with an aimed data 503 

collection of 6Gb raw data. 504 

 505 

Microbiome data processing 506 

Sequencing reads were mapped to the mOTUv2 (version 2.6) database, and read counts 507 

were subsequently rarefied using the RTK R package (version 0.2.6.1) to standardize 508 

sequencing depth across samples. Rarefaction involves randomly subsampling reads to 509 

match the sample with the lowest read depth, thereby mitigating biases introduced by 510 

variable sequencing depth and enabling reliable comparisons across cohorts. For the LEANER 511 

(healthy) cohort, a cutoff of 3,859 reads was applied, resulting in the exclusion of one sample 512 

due to insufficient sequencing depth. The same threshold was used for the Maifeld cohort
5
, 513 

where one sample was also excluded. In the Bahr dataset
17

, applying the same rarefaction 514 

criteria led to the exclusion of one sample. This consistent approach enabled reliable 515 

comparisons across cohorts and increased the robustness of downstream analyses. 516 

 517 

Plasma metabolomics 518 

Collection of plasma 519 

Venous blood was collected in Vacutainer® EDTA tubes (BD, Heidelberg, Germany) and 520 

immediately put on crushed ice for 30 min and then centrifuged (3,000 g, 4°C, 10 min). 521 

Plasma was collected and stored at - 80°C.  522 

 523 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 26, 2025. ; https://doi.org/10.1101/2025.06.26.25330331doi: medRxiv preprint 

https://doi.org/10.1101/2025.06.26.25330331
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Preparation of plasma for nuclear magnetic resonance spectroscopy (NMR) 524 

Plasma samples were prepared with a robotic system (SamplePro Tube, Bruker BioSpin 525 

GmbH, Ettlingen, Germany) by mixing 287 μL plasma with 287 μL IVDr buffer (Bruker BioSpin 526 

GmbH, Ettlingen, Germany) and adding 10 μL formic acid (240 mM) as internal standard.  527 

 528 

NMR measurement of plasma  529 

All NMR experiments were performed on a 600 MHz Bruker Avance III spectrometer, using a 530 

triple resonance (
1
H, 

13
C, 

15
N, 

2
H lock) helium cooled cryoprobe with z-gradient. Samples 531 

were handled by an automatic Bruker SampleJet sample changer (Bruker Biospin GmbH, 532 

Ettlingen, Germany). Tuning and matching of the probe as well as locking and shimming of 533 

the sample were performed automatically. Following the Bruker IVDr protocol for plasma 534 

measurements, for each sample four different types of 
1
H NMR spectra were acquired at 310 535 

K (1D NOESY, 2D JRES, 1D CPMG, and 1D spin echo diffusion spectrum). 536 

 537 

Data analysis of plasma NMR spectra  538 

From the collected spectra of each specimen, 41 smaller, non-lipoprotein metabolites were 539 

automatically identified and quantified using the Bruker IVDr Quantification in Plasma/Serum 540 

B.I.Quant-PSTM platform. Of note, only metabolites levels not bound to proteins were 541 

determined. Additionally, 112 lipoprotein parameters including various lipoprotein fractions, 542 

classes and subfractions were identified and quantified using the Bruker IVDr Lipoprotein 543 

Subclass Analysis B.I.LISATM platform. 544 

 545 

Stool metabolomics 546 

Drying of stool samples 547 
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Fecal samples from OMNImet Gut tubes were processed for metabolomics. Fecal samples (1 548 

mL) were dissociated two times after adding 2.5 mL 70% isopropanol using C tubes with the 549 

gentleMACS OctoDissociator (Miltenyi Biotec, Bergisch Gladbach, Germany). Aliquots of 550 

dissociated samples were covered with perforated Parafilm and dried overnight in a vacuum 551 

concentrator (Concentrator 5301, Eppendorf, Hamburg, Germany). Dried samples were 552 

stored at - 80°C. 553 

 554 

Preparation of stool for NMR  555 

Dried stool samples were resuspended in 600 μL (< 10 mg dry weight), 800 μL (10-40 mg dry 556 

weight) or 1,000 μL (> 40 mg dry weight) of double distilled water and 10 μL of an extraction 557 

standard (Nicotinic acid at 80 mmol/L) were added. Samples were centrifuged three times 558 

(12 000 x g, 4 °C, 10 min) and supernatants were transferred into a fresh vial after each 559 

centrifugation in order to remove particles. Of the final supernatant, 400 μL were mixed with 560 

200 μL of 0.1 mol/L phosphate buffer (pH 7.4) and 50 μL of a 0.75% (w/v) solution of 3-561 

trimethylsilyl-2,2,3,3-tetradeuteropropionate (TSP; Sigma-Aldrich, Taufkirchen, Germany), 562 

which served as an internal standard, in deuterium oxide. 563 

 564 

NMR measurements of stool  565 

NMR experiments were conducted on the same NMR spectrometer as described for the 566 

plasma analyses. Before measurement, each sample was allowed to equilibrate for 300 sec in 567 

the magnet, and the probe was automatically locked, tuned, matched, and shimmed. One-568 

dimensional 1H NMR spectra were obtained at 298 K using a nuclear Overhauser 569 

enhancement spectroscopy pulse sequence with solvent signal suppression by pre-saturation 570 

during relaxation and mixing time. For each spectrum, 512 scans were collected into 65,536 571 
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data points over a 20-ppm (parts/million) spectral width using a relaxation delay of 4 sec, an 572 

acquisition time of 2.66 sec, and a mixing time of 0.01 sec. Spectra were automatically 573 

Fourier transformed and phase and baseline corrected.  574 

 575 

Data analysis of stool NMR spectra  576 

In each spectrum, a set of 41 metabolites were semi-automatically identified and relative to 577 

the TSP reference signal quantified using the CHENOMX 9.02 (Chenomx Inc, Edmonton, 578 

Canada) software suite. To account of potential losses during sample preparation resulting 579 

data was adjusted to the extraction standard and normalized to dry weight. 580 

 581 

Statistical analysis 582 

Descriptive statistics for interval variables are presented as mean ± standard deviation or 583 

median with interquartile range (IQR). For comparisons of delta BMI between responders 584 

and non-responders, normality of variable distributions was assessed by visual check of 585 

histograms and qq-plots. Mann-Whitney U-test or T-test was used as appropriate. For all 586 

other data, comparisons between independent groups were performed using the Mann-587 

Whitney U test, and paired samples were compared using the Wilcoxon signed-rank test. 588 

Where applicable, p-values were adjusted for multiple comparisons using either the Holm 589 

method (for family-wise error control) or the Benjamini-Hochberg (BH) procedure (for false 590 

discovery rate control), depending on the analytical objective. 591 

Permutational Multivariate Analysis of Variance (PERMANOVA) was used to test for 592 

multivariate compositional differences between groups and visits. 593 

To evaluate the relationship between bacterial abundance and metabolite concentrations 594 

while accounting for visit timepoint, we performed permutation-based conditional 595 
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independence tests. Specifically, for each metabolite, its association with Oscillibacter sp. 596 

57_20 and Faecalibacterium sp. incertae sedis was tested while conditioning on the visit 597 

variable, using the R package coin (version 1.4.3) with 10,000 permutations. Resulting p-598 

values were corrected for multiple testing using the Benjamini-Hochberg false discovery rate 599 

(FDR) method. 600 

Statistical significance was defined as p < 0.05 or q < 0.1, where applicable.  601 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 26, 2025. ; https://doi.org/10.1101/2025.06.26.25330331doi: medRxiv preprint 

https://doi.org/10.1101/2025.06.26.25330331
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Data and code availability 602 

All code, data, and scripts used in this study have been made publicly available. The code, 603 

scripts and processed raw data can be accessed on Zenodo 604 

(doi: https://doi.org/10.5281/zenodo.15696891). Raw sequencing data will be deposited in 605 

the NCBI database upon publication.  606 
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Tables 642 

Table 1. Baseline characteristics of healthy participants depending on their randomization to 643 

fasting and waiting control arm. Data are given as means (SD). p-values fasting vs. waiting by 644 

t-test. BMI, body mass index; eGFR, estimated glomerular filtration rate; ALT, alanine 645 

aminotransferase; TSH, thyroid-stimulating hormone; CRP, C-reactive protein; HbA1c, 646 

glycated hemoglobin. 647 

Variable All Fasting Waiting P value 

Number (n) 38 19 19  

Sex, female 19 / 38 (50%) 9 / 19 (47%) 10 / 19 (53%) >0.9 

Age (years) 38 (8) 39 (9) 36 (8) 0.4 

BMI (kg/m
2
) 25.1 (2.5) 25.0 (2.7) 25.2 (2.3) 0.7 

eGFR 

(ml/min/1.73m
2
) 

102 (14) 98 (12) 106 (15) 0.1 

ALT (U/l) 23.1 (8.1) 23.0 (8.2) 23.2 (8.2) 0.2 

TSH (mU/l) 1.70 (0.84) 1.77 (0.91) 1.64 (0.77) 0.6 

CRP (mg/dl) 0.98 (0.87) 0.78 (0.28) 1.17 (1.17) 0.2 

Cholesterol (mg/dl) 182 (36) 189 (35) 175 (36) 0.2 

HbA1c (mmol/mol) 33.2 (2.8) 34.2 (2.6) 32.3 (2.7) 0.03 

Hemoglobin (g/dl) 14.0 (1.3) 13.8 (1.3) 14.2 (1.2) 0.41 

White blood count 

(uL
-1

) 
5.46 (1.02) 5.56 (0.96) 5.37 (1.09) 0.6 

Thrombocytes (uL
-1

) 240 (42) 238 (63) 239 (54) 0.9 
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Figure Legends 649 

 650 

Figure 1. Physiological effects of prolonged fasting in healthy individuals. a) Schematic 651 

overview of the randomized waitlist-controlled trial. A total of 38 healthy participants were652
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recruited. The first 19 participants immediately underwent prolonged fasting, while the 653 

remaining 19 served as a waitlist control group. After the initial intervention period, the 654 

waitlist group also underwent the same prolonged fasting protocol, resulting in a complete 655 

dataset of 38 participants undergoing prolonged fasting. The fasting intervention consisted of 656 

a 5-day period with 250 kcal/day, preceded and followed by baseline and follow-up visits at 657 

days 0, 5, and 90. Stool, blood, and clinical data were collected at each visit. The waitlist 658 

group was assessed at an additional baseline (day -90) to control for temporal fluctuations. 659 

b) Glucose time series measured by continuous intradermal monitoring starting one day 660 

prior to fasting (pink) or at baseline for the waiting list control (grey). c) Quantification of 661 

absolute changes in mmol/L during the mean daytime (6am to 10pm) glucose levels (top) 662 

and night (10pm to 6am) glucose levels (bottom) as changes compared to the individual 663 

baseline (day 1). Paired t-test with Benjamini-Hochberg false discovery rate correction (BH-664 

FDR), *q<0.1, **q < 0.01, ***q < 0.001. d) Resting energy expenditure (REE), e) respiratory 665 

exchange ratio (RER), f) body mass index (BMI), and g) body fat percentage at the different 666 

study visits. Each point represents one participant, lines connect individuals, boxplot (middle) 667 

for all participants, violins (right side) and dots coloured by sex. P-values are from Wilcoxon 668 

signed-rank tests and were corrected using the Holm method. 669 
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 671 

Figure 2. Prolonged fasting induces transient alterations in gut microbiome composition 672 

and function. a) Alpha diversity as measured by Shannon index for the study visits. 673 

Correlation of Shannon index at baseline with changes in Shannon index immediately b) 674 

post-fasting and c) at 12-week follow-up, indicating that baseline diversity predicts 675 

microbiome responsiveness. d) Principal coordinate analysis (PCoA) based on Bray–Curtis 676 

dissimilarity (naïve, left) and centered on baseline visit for fasting effect and on fasting visit 677 
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for post-fasting effect (right) show a transient shift in overall microbial composition after 678 

fasting (pink), which partially reverts at follow-up (blue). Ellipses represent 95% confidence 679 

intervals p-values from PERMANOVA. Dot plots showing differential abundant e) species 680 

(taxonomic level) and f) gut metabolic modules (functional level). Dots show fasting effects, 681 

follow-up effects and study effects, transparency indicates non-significant findings (q>0.1), 682 

dot size shows absolute Cliff’s delta, color shows directionality. Significance by Wilcoxon 683 

signed-rank test with Benjamini–Hochberg false discovery rate correction. 684 
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 686 

Figure 3. Machine learning model predicts sustained BMI response to prolonged fasting 687 

using clinical and microbiome features. a) Schematic overview of the multi-omics feature 688 
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selection and classification pipeline. Baseline species abundances, clinical metadata, and 689 

functional modules were used to train a random forest classifier. Important features were 690 

selected through recursive feature elimination, Boruta algorithm, and backward selection. b) 691 

Final model includes four top-ranked features: Faecalibacterium sp. incertae sedis, 692 

Oscillibacter sp. 57_20, LDL cholesterol, and systolic blood pressure. c) Correlation heatmap 693 

of the selected features showing independence from baseline BMI. R-values from Spearman 694 

correlation d) Boxplots of the four selected features at baseline, comparing BMI responders 695 

and non-responders, dots show individual patients. P-values by Mann-Whitney-U-test. 696 

Oscilli, Oscillibacter sp. 57_20; Faecali, Faecalibacterium sp. incertae sedis; LDL, Low-density 697 

lipoprotein cholesterol; sys BP, systolic blood pressure. 698 
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 700 

Figure 4. Validation of BMI response prediction model in a fasting cohort of patients with 701 

metabolic syndrome. a) Schematic of the Maifeld et al. (2021) study: 5-day fasting followed 702 

by a DASH diet in individuals with metabolic syndrome (n = 38), with BMI follow-up after 12 703 

weeks. b) Receiver operating characteristic (ROC) curve of model performance in the Maifeld 704 

cohort, showing good predictive accuracy (AUC = 0.85). c) BMI reduction at follow-up of 705 

patients classified as responder or non-responder by the prediction model. p-value by one-706 

tailed unpaired t-test. d) BMI over the course of the study, split by participants classified as 707 

responders or non-responders. Each point represents a participant. P-values are from paired 708 
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Wilcoxon signed-rank tests and were corrected for multiple comparisons using the 709 

Benjamini-Hochberg false discovery rate (FDR-BH) method. e) Correlation heatmap of model 710 

features (Oscillibacter sp. 57_20, Faecalibacterium sp. incertae sedis, LDL, systolic blood 711 

pressure) within the Maifeld dataset. Features used for classification at baseline: f) 712 

Oscillibacter sp. 57_20, g) Faecalibacterium sp. incertae sedis, h) LDL, and i) systolic blood 713 

pressure. Oscilli, Oscillibacter sp. 57_20; Faecali, Faecalibacterium sp. incertae sedis; LDL, 714 

Low-density lipoprotein cholesterol; sys BP, systolic blood pressure. 715 
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 717 

Figure 5. Validation of BMI response prediction model in a fasting cohort of patients with 718 

multiple sclerosis. a) Schematic of the Bahr et al. (2024) study: two 7-day fasting periods and 719 

intermittent fasting in individuals with multiple sclerosis (n = 56), over a 9-month period. b) 720 

BMI reduction at follow-up of patients classified as responder or non-responder by the 721 

prediction model. p-value by one-tailed unpaired t-test. c) BMI reduction at follow-up of 722 

patients classified as responder or non-responder by the prediction model. p-value by one-723 

tailed unpaired t-test. d) BMI over the course of the study, split by participants classified as 724 

responders or non-responders. Each point represents a participant. P-values are from paired 725 
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Wilcoxon signed-rank tests and were corrected for multiple comparisons using the 726 

Benjamini-Hochberg false discovery rate (FDR-BH) method. d) Correlation matrix of selected 727 

features in the Bahr dataset. Features used for classification at baseline: f) Oscillibacter sp. 728 

57_20, g) Faecalibacterium sp. incertae sedis, h) LDL, and i) systolic blood pressure. Oscilli, 729 

Oscillibacter sp. 57_20; Faecali, Faecalibacterium sp. incertae sedis; LDL, Low-density 730 

lipoprotein cholesterol; sys BP, systolic blood pressure. 731 
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 733 

Figure 6. Oscillibacter sp. 57_20 and Faecalibacterium sp. incertae sedis abundance 734 

correlates with fecal metabolome. Correlation of Oscillibacter (Oscilli) sp. 57_20 abundance 735 

with fecal a) glycerol, b) methionine, and c) uridine levels. Correlation of Faecalibacterium 736 

(Faecali) sp. incertae sedis abundance with fecal d) butyrate, e) tryptophan, and f) uridine 737 

levels. R-values from Spearman’s correlation. P-values from permutation-based 738 

independence test screening for associations of species with metabolites while blocking 739 

effects of study visits. Abbreviations: Oscilli: Oscillibacter sp. 57_20; Faecali: Faecalibacterium 740 

sp. incertae sedis. 741 
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