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Inference of 10 free parameters 

Initially, we tried to infer 10 free parameters of the biophysical model, namely {E, L0, Ve
0, kon, Koff, vrc, 

𝑘max, 𝜁max, b, B} (for a description of the parameters, see Tab. 1). To this end we trained an NDE as 
described above but with the goal of calculating 10 posterior distributions instead of 5, as in the later 
version of our NDE. The result of the inference is shown in Fig S1. The plots on the diagonal show the 
posterior distribution for each individual parameter p(θi|x), while the plots in the right-hand corner 
show the distribution for each pair of parameters p(θij|x). Vertical gray lines in the plots on the diagonal 
and white crosses in the plots on the off-diagonal represent the values that were used for the simulated 
trajectory. While the peak of the posterior distributions is close to the true value for most parameters, 
the distributions are smeared out across the range of the prior distribution which means that the NDE 
can’t infer the true parameter set precisely. Additionally, the shape of the 2D posterior distributions in 
the off-diagonal plots exhibit small intrinsic correlations between different parameters. Diagonal shapes 
in the plots of paired distributions, such as for the actin retrograde flow velocity Ve

0 vs the critical actin 
retrograde flow velocity vrc and the ligand density B vs the effective E-modulus E, indicate correlations of 
parameters of the biophysical model. A rising shape of the paired distribution is a sign of a positive 
correlation, such as for Ve

0 vs vrc and B vs E, while a falling shape such as for 𝑘max vs Ve, is a hallmark of a 
negative correlation. The correlations between parameters imply that we cannot accurately determine 
the values of individual parameters independently. We see this for example in the shape of p(𝑘max, Ve|x): 
The negative correlation between 𝑘max and Ve tells us that an increase in one is equivalent to a decrease 
in the other, so that we cannot determine 𝑘max and Ve simultaneously. 



 

Fig S1 Inference of 10 free parameters leads to loss of identifiability. The posterior probability p(θ|x) is 
inferred by a neural density estimator that was learnt to infer 10 free parameters. The plots on the 
diagonal show the posterior distribution for each individual parameter p(θi|x), while the plots in the 
right-hand corner show the distribution for each pair of parameters p(θij|x). Vertical gray lines in the 
plots on the diagonal and white crosses in the plots on the off-diagonal represent the values that were 
used for the simulated trajectory. The posterior distributions are smeared out across the range of the 
prior distribution which means that the NDE can’t infer the true parameter set precisely.  

 

 

  



Simplification of the biophysical model 

The size of the latent space required a reduction of our original model for a sensible parameter 
inference. We reduced the number of parameters by rescaling and simplifying the model. Fibronectin 
density B as external parameter is assumed to be constant because the FN density on the 1D lanes was 
kept constant. The vectorial sum of the actin retrograde flow vr and the cell’s velocity v are equal to the 
net networking extension rate Ve. 

 

The coefficient a 

 

incorporates a geometrical component 𝑔 that results from averaging the orientation of the filaments 
within the network, the increase in length 𝑑=2.7 nm contributed by each actin monomer to the filament, 
and the thermal energy 𝑘𝑏𝑇. We assume that the force dependence of the actin polymerization is 
negligible, so that the actin network extends at the constant rate of Ve0. We also eliminate the 
depolymerization rate 𝑘- which additionally reduces the computational cost of simulations.  

 

Changes in the protrusion length L arise from the difference of the velocities of cell edge and nucleus. 

 

Integrin signaling is non-linear. It’s governed by the following equations: 

 

Note that we renamed c1 as kon, c2 as koff and c3 to vslip for clarity compared to Amiri et al. 

Integrin signaling is affected by the fibronectin density of the substrate. The upper value of κ and ζ is 
determined by the Hill functions in equations S17 and S18 of Amiri et al. This relation is reflected by the 
adhesion velocity relation. We therefore use the adhesion velocity relation to fix the four parameters 
entering the Hill functions: nκ, nζ, Kκ, Kζ. We furthermore assume ζ0 = κ0 = 0 as their values used in Amiri 
et al. are negligibly small and therefore have a negligible effect on simulated trajectories. 



We rescale the force balance (eqs. S2 and S4, Amiri et al.) by Ve
0 and L and arrive at the following 

equation for the cell’s edges:

 

We define

which yields the following formulation of the force balance

with

 

We now rescale eqs. A6 and A7 by introducing



and for the κ-dynamics

 

 

to 

which yields

Altogether the rescaled system is given by

The original system had 9 internal parameters:



 
The parameters in the rescaled model are

which are given by

 

Since we do not assume the dimensionless parameter b = 𝜁c/𝜁f, which is the contribution of the cell’s 
body to the drag compared to the contribution of the protrusions, to be cell type or cell state specific, 
we keep it fixed at b=3. Hence, the simplification of the model results in 5 variable parameters that 
sufficiently describe the system’s dynamics. As the 5 targets of the inference procedure, we choose 
parameters that provide the best biological insight, either by being easily interpretable or 
experimentally accessible: {L0, Ve

0, kon, 𝑘max, vslip}. 

Quality of the NDE 

A good posterior estimator p(θ|x) should satisfy two conditions. First it should have a high predictive 
power: it should assign much higher probability to the true parameter value than the prior does  

p(θtrue|x) >> p(θ).  

Second, a good posterior should be well calibrated: it should be unbiased, and it should be neither 
overconfident nor underconfident. 

We introduce the metric Li,j = ∑n=1
N  p(θi

n, θj
n|x) / p(θi

n, θj
n) as a measure of the accuracy of the inference 

procedure for each pair of parameters, where θi
n is the i-th component of the nth true parameter. The 

resulting Lij is shown in Fig 4 and shows which parameters are best inferred by the trained NDE. In 
particular, we can also directly see how correlations between different parameters lead to a better 
inference of joint probability distributions than for individual parameters: Lij > Lii and Lij > Ljj.  

We then check whether our posterior is well calibrated using simulation-based calibration (SBC) (65). 
SBC is capable of revealing two main problems in a neural posterior density estimator (NDE): 

1. Biases in the inferred posterior: SBC reveals systematic over or underestimation of any specific 
parameter. 

2. Posterior uncertainty. SBC also allows checking for an overconfident or underconfident 
posterior. A good brief explanation is provided in 
https://www.mackelab.org/sbi/tutorial/13_diagnostics_simulation_based_calibration/ 

The main idea behind SBC goes as follows: 
1. Run N simulations 
2. For each simulation, sample L samples from the posterior {θ1, …, θL} ~ p(θ|x) 
3. Compute the rank statistic of {θ1, …, θL} (see Talts et al. [65] for details) for each simulation 

https://www.mackelab.org/sbi/tutorial/13_diagnostics_simulation_based_calibration/


4. Increment the histogram for all N simulations 

The rank statistics for the Nsim simulations should be uniformly distributed. Any deviations from 
uniformity show an uncalibrated posterior. An asymmetric distribution of the rank statistics shows a bias 
in the given parameter. A U-shape shows an overconfident posterior. An ∩-shaped distribution shows 
an under confident posterior. Examples of the rank statistics for 1023 simulations (N=23) are displayed 
in S2 Fig. 

 

Fig S2 Quality of the NDE Examples of the rank statistics for 1023 simulations (N=23). The rank statistics 
for the Nsim simulations should be uniformly distributed and fall within the gray area. The parameters 
Ve

0, kon, vslip and 𝑘max can be considered as being well calibrated while the posterior estimation for L0 is 
somewhat under-confident. 

Additional information improves the performance of SBI. 

The experiments performed in this work track three variables over time: front, back, and nuclear 
position. In this section we investigate how additional measurements would improve the precision of 
the model-based characterization of single cells. Training the NDE in Fig 4 required a parameter set θ 
and a corresponding simulation x = (front, back, nucleus). In the following we expanded x with other 
measurable variables and investigated the effect these additional variables had on the NDE’s 
performance. To this end we include values used for simulations of those variables that could potentially 
be measured into the SBI input. The results are shown in S3 Fig. We start by adding the actin retrograde 
flow at the front and back of the cell, so that x = (front, back, nucleus, vr,f, vr,b), see S3(b) Fig. This leads 
to the posterior distribution for vslip being more peaked. If instead κf and κb the adhesion dynamics are 
directly accessible to the NDE, not only vslip but also the actin network extension rate Ve

0 can be 
estimated with more confidence, see S3(c) Fig. If information characterizing both the retrograde flow 



and the adhesion dynamics are available to the NDE, all remaining parameters can be inferred with 
great confidence, see S3(d) Fig. 

 

 
Fig S3 New variables improve SBI performance. The posterior p(θ|x) was inferred by our trained NDPE. 
(a) We compare a posterior trained with the three cellular positions as input. (b) Here, the input 
variables contain not only the cellular positions but also the actin retrograde flows vr,f, vr,b. (c) This plot 
depicts a posterior trained on the cellular positions plus the adhesion dynamics κf and κb. (d) Finally, the 
posterior if the input contains the cellular positions, the actin retrograde flows and the adhesion 
dynamics. The sharpening of the posterior estimator with the addition of observed variables suggests 



that one could characterize migrating cells much more precisely by adding further readouts to the 
experimental tracking. 


