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A better understanding of additional mechanisms of heart failure (HF) progression may allow a different and more complete phenotyping of
the disease and identification of novel therapeutic targets. Persistent latent myocardial inflammation/immune activation in HF may represent
an attempt to restore tissue homeostasis in the failing heart, where cardiomyocytes and immune cells undergo metabolic reprogramming,
which allows them to deal with decreased availability of nutrients and oxygen. This status can trigger a metabolic crosstalk between immune
cells and cardiomyocytes which, depending on the outcome, can either perpetuate the maladaptive remodelling of the heart, or determine
an adaptive response. Therefore, the interplay between immune activation and metabolism is gaining recognition as a potential therapeutic
framework. On these premises, future studies addressing novel HF treatments should attempt to evaluate the potential therapeutic role of
direct metabolic and immunological crosstalk modulation. The aim of the present scientific statement from the Heart Failure Association of
the ESC is to summarize the current evidence for the connection between inflammatory and immune activation and metabolic adaptation in
the onset and progression of HF, in order to promote future strategies for the development of targeted-disease preventive and therapeutic
measures.
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Introduction
The pathophysiological pathways that initiate and perpetuate heart
failure (HF) are complex. Multiple maladaptive and adaptive com-
pensatory mechanisms exist, which span from the subcellular level
to organ-to-organ interactions. The contemporary treatments
for HF aim at counteracting the haemodynamic impairment and
the pathological neurohormonal hyperactivation that characterize
the evolution of the syndrome. Nevertheless, increasing evidence
shows that other mechanisms, including immunoinflammatory
activation and metabolic adaptation, are active part of disease pro-
gression, are tightly interconnected to each other, and play a central
role in the pathophysiology of HF. Systemic metabolism and the
immune system respond in a coordinated manner to stress, such
as infection, cancer, or other organ and tissue injuries. Haemo-
dynamic impairment is a trigger for cardiac inflammation and
changes in cellular metabolism. Immune cells also play important
non-immune functions, including neural development, and modula-
tion of cardiovascular function and metabolism. Experimental and
clinical studies on HF pathophysiology have highlighted the role of
these factors in the onset and progression of HF, but their compre-
hension is still partial and a large gap remains in the understanding
of their dynamic interplay. The concept of immunometabolism
may advance our knowledge of the complex interaction
between energetic metabolism pathways and immune cell
response.1

The aim of the present scientific statement from the Heart Fail-
ure Association (HFA) of the European Society of Cardiology (ESC)
is to summarize current evidence on the connection between
inflammatory, immune activation and metabolic adaptation in the
development and progression of HF, in order to outline future
strategies for the identification of targeted-disease preventive and
therapeutic measures.

Metabolic and immune adaptation
in heart failure: pathophysiological
concepts
Cardiac metabolic changes in heart
failure
The heart requires a large amount of adenosine triphosphate (ATP)
to sustain contractile function, which is obtained from mitochon-
drial oxidative phosphorylation and glycolysis. The healthy heart is
‘metabolically flexible’, and readily shifts between fatty acids, lac-
tate, glucose, ketones, and amino acids as fuel sources to maintain
ATP production.2 In contrast, the failing heart loses its metabolic
flexibility and can become energy deficient due to a decrease in ATP
production,3–5 primarily due to a reduced mitochondrial oxida-
tive capacity and impaired mitochondrial creatine kinase energy
metabolism.6–11 These altered mitochondrial dynamics are impor-
tant contributors to the overall reduction in mitochondrial oxida-
tive capacity and therefore ATP production in HF (Figure 1).

Decreased mitochondrial oxidative metabolism in HF leads
to the induction of glycolysis in an attempt to compensate ..
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.. for the decrease in mitochondrial ATP production.3–5 However,
this increase in glycolysis is inefficient and not accompanied by
enhanced mitochondrial oxidation of pyruvate derived from gly-
colysis.12–22 Inhibition of cardiac mitochondrial pyruvate uptake
results in the development of HF in mice.23,24 The reduction in
pyruvate utilization may also contribute to adverse left ventricular
remodelling.15,23,25–27

Heart failure is also associated with alterations in cardiac fatty
acid oxidation. It is reported that reductions in mitochondrial
fatty acid oxidation occur in HF, but data are not consistent
across different studies.23,26,28–39 Myocardial fatty acid oxidation
also increases in response to conditions such as type 2 diabetes
(T2D), obesity and insulin resistance.40–43 Despite the close asso-
ciation, a causal role for increased fatty acid oxidation rates in
cardiac dysfunction under obesity or diabetic conditions is less
certain. Since cardiac lipid uptake is increased in these models, an
imbalance between lipid uptake and oxidation likely contributes to
lipotoxicity.

Cardiac ketone oxidation is also altered in the failing hearts. The
increase in ketone metabolism is thought to be an adaptive process
in HF,44 and may provide the ‘starving’ failing heart with an extra
source of ATP.

In summary, the failing heart is energy deficient, primarily due
to a decrease in mitochondrial oxidative capacity, an increased
glycolysis uncoupled with glucose oxidation, and either a decrease
or no change in fatty acid oxidation. In contrast, if there is increased
fatty acid availability, as occurs in obesity, an increase in cardiac fatty
acid oxidation may occur. These energy metabolic changes result
in the failing heart becoming less efficient.

Immunological changes in heart failure
The primary role of an inflammatory response is to resolve the
source of the disturbance, thereby allowing the involved tissues to
ultimately restore their function. In the setting of chronic HF, while
some inflammation may be required to repair a short-term injury
and therefore be protective, a persistent myocardial and systemic
inflammatory state takes place and can contribute to disease pro-
gression.45 The enduring expression of pro-inflammatory cytokines
and ongoing inflammation that have been demonstrated in the fail-
ing heart indicate a state of ongoing chronic inflammation that is
intermediate between normality and acute inflammation.46 These
pro-inflammatory cytokines contribute to the pathogenesis and
progression of HF primarily by left ventricular remodelling and dys-
function, and secondarily by interacting with the neurohormonal
system and cardiac metabolism.47 Activation of neurohormonal
systems in HF further contributes to maintain systemic and cardiac
inflammation.48 Both the innate and adaptive immune systems have
a pro-inflammatory role in HF. The immune response-triggered
inflammation mechanism is called immune or sterile inflammation.
This intermediate state has also been termed para-inflammation,
and does not require overt tissue injury or infection for it to
be sustained, but instead represents a sustained inflammatory
response aimed at restoring tissue functionality.49 Since HF is gen-
erally characterized by decreased availability of nutrients and oxy-
gen, cardiomyocytes and non-cardiomyocytes, including fibroblasts
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Figure 1 Cardiac energy metabolism in heart failure with reduced ejection fraction (HFrEF). Mitochondrial fatty acid oxidation, glucose
oxidation, ketone oxidation, lactate oxidation and amino acid oxidation are the main sources of adenosine triphosphate (ATP) production in
the heart. Cytoplasmic glycolysis is also a source of ATP production. In HFrEF, overall mitochondrial oxidative metabolism and ATP production
is decreased, with glucose oxidation being markedly impaired. Fatty acid oxidation can also decrease as the severity of heart failure increases, or
increase in settings such as obesity. In contrast, both glycolysis and ketone oxidation increase in HFrEF. Red arrows indicate direction of change
in HFrEF. Blue text indicates the relative contribution of the various metabolic pathways to ATP production. ADP, adenosine diphosphate;
NADH, nicotinamide adenine dinucleotide; TCA, tricarboxylic acid.

and immune cells, undergo metabolic reprogramming in order to
adapt to this condition.50 Competition for nutrients and increased
production of signalling metabolites initiate a metabolic crosstalk
between immune cells and cardiomyocytes, which is proposed to
tip the balance between resolution of inflammation versus adverse
cardiac remodelling.51 With glucose metabolism and ATP genera-
tion being deeply involved in immune cell activation, proliferation,
trafficking and effector functions, reprogramming of the metabolic
status of immune cells leads to changes in their functional prop-
erties and supports phenotype switching between different sub-
types52–56 (Figure 2).

Diet and HF-associated gut microbiota further affect immune
cell metabolism and foster chronic inflammation and ineffective
adaptive immunity. This implies that therapeutic modulation of sys-
temic metabolism can re-establish immune cell homeostasis and
modulate adverse cardiac remodelling. Caloric excess shortens
lifespan, promotes systemic inflammation and increases the risk
of cardiometabolic diseases.57 In contrast, caloric restriction and
fasting have been shown to be inversely associated with cardio-
vascular diseases, and there is now an increasing attention to its
therapeutic potential.58 In HF, and especially in obese patients with ..
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.. a preserved ejection fraction phenotype, caloric restriction or fast-

ing programmes, alone or in association with exercise training,
improved peak oxygen uptake at cardiopulmonary excercise testing
and quality of life.59,60

However, prolonged fasting and reduction in caloric intake can
have also negative effects, particularly on immunity regulation. Dur-
ing starvation, organs and systems set a sparing energy process
with a survival-driven hierarchy. The production of immune cells
slows down relatively early in the process of conserving resources,
potentially increasing the infective risk. A recent study has shown
that during nutrient scarcity the marrow is a safe haven for mono-
cytes and re-feeding prompts mobilization culminating in monocy-
tosis of chronologically older and transcriptionally distinct mono-
cytes.61 These shifts could alter the adaptation to external stres-
sors response, outlining that diet, in particular a diet temporal
dynamic balance, modulates monocyte lifespan, with consequences
on regulating the immune response, inflammation, and tissue repair.
An appropriate regulation of immune cells turnover is vital for
overall health and immune function, therefore the definition of the
optimal balance is necessary to preserve the organism’s immuno-
logical response.

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 2 Immunological changes in heart failure. Myocardial injury can trigger the pathological process leading to heart failure involving
multiple mechanisms. Indeed, the classical neurohormonal activation mediated by the circulatory and mechanical stress is paired with
immunometabolic changes which flow in a state of persistent inflammation. The process is mediated by the activation of both adaptive
and innate immunity and their interaction. The maladaptive remodelling of the heart resulting from the negative effects of each of the
involved mechanisms is characterized by several alterations in cellular functions and a pro-fibrotic state. ECM, extracellular matrix; NOD,
nucleotide-binding oligomerization domain-like; TLR, Toll-like receptor.

Adaptive role of immunity and interplay
between metabolism and inflammation
Although immune activation is typically maladaptive in HF, it
is crucial to acknowledge that inflammation is a fundamentally
adaptive process (Figure 3). In response to viral myocarditis for
instance, inflammation initially serves an adaptive purpose, but
excessive immune cell activation can cause a switch from host
defence to injury.62 In fact, in HF the adaptive immune system
is dysregulated, with an exaggerated inflammatory response that
contributes to the progression of the disease. Macrophages, neu-
trophils, T cells, B cells, and humoral immunity all play key roles
in driving chronic inflammation, fibrosis, and tissue remodelling.
Understanding the complex interactions between these immune
cells and pathways is crucial for developing targeted therapies
to modulate the immune response and potentially slow the
progression of HF. ..
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.. Macrophages are central to the inflammatory process in HF and

play both protective and detrimental roles, depending on their
polarization and activation state. In HF, mechanisms of activa-
tion are altered, which contributes to chronic inflammation, fibro-
sis, and adverse cardiac remodelling. M1 macrophages secrete
pro-inflammatory cytokines such as tumour necrosis factor-α,
interleukin (IL)-1, and IL-6, which exacerbate cardiac inflammation
and injury. Increased recruitment and activation of macrophages in
the heart tissue may contribute to myocardial inflammation, fibro-
sis, and remodelling by secreting various cytokines, chemokines,
and matrix metalloproteinases.63

Neutrophils are part of the innate immune response and are
actively involved during acute exacerbations or after myocardial
infarction, infiltrating the heart and releasing pro-inflammatory
cytokines, reactive oxygen species (ROS) and enzymes that
contribute to tissue damage and amplification of inflamma-
tion. In chronic HF, sustained neutrophil activation contributes
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Figure 3 Adaptive role of immunity and interplay between metabolism and inflammation in heart failure. Inflammation plays a significant role
in the pathophysiology of heart failure, acting both as a potentially adaptive response (blue lines) and as a contributor to disease progression
(violet lines). Heart failure is both driven by and exacerbates a state of chronic inflammation, characterized by elevated levels of inflammatory
cytokines, which are involved in recruiting immune cells to sites of injury, helping the removal of dead cells and promoting tissue repair
and remodelling. Inflammatory signals can also stimulate angiogenesis. Additionally, inflammation contributes to the structural and functional
remodelling of the heart in response to injury or stress by promoting adaptive cardiac hypertrophy. Finally, inflammatory cytokines are involved
in remodelling the extracellular matrix of the heart by regulation of matrix metalloproteinases. Activated immune cells, such as macrophages
and T cells, shift their metabolism towards glycolysis. This metabolic shift supports rapid proliferation and function of immune cells, promoting
their activation and prolonging the adaptive inflammatory response. Inflammatory signals can also contribute to energy metabolism modification
in cardiac cells to meet the increased energy demands during stress. This includes a shift from fatty acid oxidation to glucose utilization, which is
a more efficient metabolic pathway, especially under ischaemic conditions. Inflammatory cytokines can activate the sympathetic nervous system
(SNS) and the renin–angiotensin–aldosterone system (RAAS) which help to maintain blood pressure and perfusion of vital organs. Brown lines
represent functions with conflicting or unclear evidence. While inflammation serves adaptive purposes, chronic and excessive inflammation
can become maladaptive, contributing to the progression of heart failure. Persistent inflammation can lead to continuous cardiac remodelling,
myocyte apoptosis and drive systemic effects contributing to cachexia and worsening overall health.

to ongoing inflammation, oxidative stress, and endothelial
dysfunction.64

T cells have been found to play both beneficial and harmful roles
in HF, contributing to both the adaptive immune response and the
chronic inflammation. T helper cells, particularly Th1 and Th17
cells, are associated with increased inflammation and tissue damage
in HF with the production of cytokines such as interferon-γ and
IL-17, which are promoters of enhanced macrophagic response and
inflammatory activation, myocardial fibrosis and adverse remod-
elling.65 Regulatory T cells, that typically act as down-modulators
of immune activation and inflammation, are down-regulated in HF.
There is also evidence suggesting that cytotoxic T cells (CD8+) may
contribute to myocardial injury by inducing cell death in the heart
tissue, exacerbating the inflammatory milieu and HF progression.66

B cells in HF may produce autoantibodies leading to autoim-
munity. For example, autoantibodies directed against β-adrenergic
receptors have been observed in HF patients.67 These antibodies
can impair receptor function, contributing to cardiac dysfunction.
In some forms of HF, particularly in the context of myocarditis or
autoimmune diseases, B cells may infiltrate the myocardium and
contribute to local inflammation and tissue damage.68 ..
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.. Additionally, multiple cardiac cell types, including myocytes,

fibroblasts, and vascular cells, actively contribute to inflammation
in response to pressure overload, suggesting that cardiac inflam-
mation may also serve initially as an adaptive response to cardiac
stress.69 For example, the NLRP3 inflammasome is the activated
downstream of calcium signalling pathways in response to haemo-
dynamic stress, which implies that inflammation is partly driven by
cardiac autonomous mechanisms.70 Furthermore, while inhibition
of immune cell activation in HF models decreases disease sever-
ity and slows down the progression of cardiac hypertrophy and
fibrosis, anti-cytokine therapies have not yet provided significant
clinical benefits in patients with HF.71 Nevertheless, since persis-
tent inflammation can lead to continuous cardiac remodelling and
myocyte apoptosis and determine systemic effects contributing to
cachexia and worsening overall health, further research into ther-
apeutic anti-inflammatory strategies is warranted.

The interplay between inflammation and metabolism is gaining
recognition as a potential underlying factor in HF.72 Of particular
interest are the recent observations relative to the potential
harmful role of epicardial adipose tissue via paracrine or vasocrine
secretion of pro-inflammatory and pro-fibrotic cytokines, leading
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to both local and systemic inflammation.73 In particular, inflamed
epicardial adipose tissue may provide a direct source of cardiac
inflammation due to its close proximity to the myocardium.74

Second, research has revealed that inflammatory cytokines, such
as IL-6, can induce pathological cardiomyocyte hypertrophy, which
could contribute to the typical metabolic changes observed in
HF.69 Third, cytokines have the ability to directly target metabolic
pathways, as evidenced by the insulin resistance and suppression
of the metabolic sensor AMPK that was observed following IL-6
infusion in a HF with preserved ejection fraction (HFpEF) model.75

Finally, the increase in ROS production associated with inflamma-
tion can lead to mitochondrial damage and dysfunction, further
exacerbating metabolic derangements.69 A confounding aspect is
that the interplay between inflammation and metabolism may differ
between HF with reduced ejection fraction (HFrEF) and HFpEF.
In general, inflammation is retained to develop during the course
of HF as a response to remodelling, haemodynamic impairment
and neurohormonal activation in patients with HFrEF, whereas it
may be the primary cause of diastolic dysfunction and hypertrophy
in HFpEF as a consequence to extra-cardiac conditions such as
diabetes, metabolic syndrome, chronic kidney disease.76 These
findings underscore the critical interplay between inflammation
and metabolic dysregulation in HF, supporting the need for more
in-depth research into the mechanisms.

Metabolically trained immunity
Long-term epigenetic reprogramming of innate immune cells in
response to microbes is known as ‘trained immunity’, and causes
prolonged altered cellular functionality to protect from sec-
ondary infections.77 Immune cells, especially macrophages, repro-
gram their metabolic pathways to support an enhanced inflam-
matory response. This often involves a shift from oxidative
phosphorylation to glycolysis, which supports a robust immune
response. In addition to metabolic reprogramming, trained immu-
nity involves epigenetic modifications that alter gene expression.
‘Trained’ immune cells can provide a stronger response to infec-
tions and inflammatory injuries. This has positive effects in terms
of effective pathogens’ clearance but can also be responsible for a
hyper-inflammatory response.

In a recent animal study, a sterile trigger of inflammation such as
western diet feeding, has been shown to generate increased pro-
liferation and enhanced innate immune response, with the NLRP3
inflammasome appearing to be critical for this response.77 Hence,
the use of small molecule inhibitors that block the NLRP3 sig-
nalling pathway could represent a new therapeutic approach to bet-
ter modulate the innate immune response following inflammatory
triggers and thereby mediate the potentially deleterious effects of
trained immunity in chronic inflammatory conditions.

Immunometabolic abnormalities
in specific conditions
Ageing
The principal characteristic of cardiac ageing is a decrease of
tissue capacity of recovery and regeneration (Figure 4). Along with ..
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.. increased development of tissue fibrosis, the number of cardiomy-
ocytes and their turnover declines progressively with ageing.78,79

As discussed above, the immune system plays an important role
in the development of cardiac damage and progression of HF,
especially in the elderly.80 It is well established that the inflamma-
tory system is chronically over activated in patients with HF, and
that there is an association with patient outcome.81 The immune
response is also dynamically remodelled with ageing, determining
a phenomenon described as ‘immunosenescence’.82,83 This phe-
nomenon increases susceptibility to multiple clinical conditions
such as infections, autoimmune disorders, and malignancies, and
causes a subclinical chronic pro-inflammatory state also known
as ‘inflamm-aging’.84,85 A possible sequence of events could be
initiated by cardiac ageing, which is associated with decline in
mitochondrial function and accumulation of dysfunctional mito-
chondria86,87 producing and accumulating ROS that, in turn, could
lead to accumulation of damaged DNA, proteins, and lipids as well
as mitochondrial DNA damage and release.88 In older subjects,
ROS could increase the release of mitochondrial DNA from the
cellular cytosol,89 which produces damage-associated molecu-
lar patterns, and is considered to be a driver of inflammatory
responses.90 Inflammatory cells release fibrogenic cytokines and
growth factors stimulating the reparative process, characterized by
fibroblasts undergoing proliferation to replace lost cardiomyocytes
and resulting in remodelling and fibrosis.91 In this context, preser-
vation of mitochondrial morphology, dynamics, and function might
be a therapeutic approach to prevent cardiac ageing. There are
several potential drugs and nutraceuticals that could potentially
improve age-related mitochondrial dysfunction and, thus, attenuate
the process of cardiac ‘inflamm-aging’.92–95 Interestingly, physical
exercise has also been shown to preserve mitochondrial health and
metabolism and, as a consequence, to reduce ‘inflamm-aging’.96,97

Finally, clonal haematopoiesis of indeterminate potential (CHIP),
the clonal expansion of blood stem cells with preleukemic acquired
genetic variants, is an age-related condition affecting approximately
10% of individuals aged at least 70 years.98 Recent work suggests
CHIP is also an independent risk factor for incident HF, with
experimental models indicating a role for CHIP in the development
of cardiac dysfunction through inflammatory dysregulation and
fibrotic remodelling.99 These findings may have implications for
the prevention and management of HF in the elderly, including
development of targeted therapies.

In conclusion, the balance between adaptive and maladaptive
immune activation and metabolism in senescence is crucial for
determining the overall impact on health and ageing. Understanding
this balance can guide therapeutic strategies to promote healthy
ageing and prevent age-related diseases.

Obesity
In obesity, metabolic alterations and immune dysregulation
are intertwined.72,100 Changes in systemic- and tissue-specific
metabolism drive immune alterations and vice versa, participating
to the pathogenesis of HF in subjects with obesity.101,102 The
crosstalk between immunity and metabolism in concomitant
obesity and HF is bidirectional. The perspective of identifying an

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 4 Cardiac ageing. The principal characteristic of cardiac ageing is a decreased tissue capacity for recovery and regeneration, and
development of cardiac fibrosis and heart failure. A possible sequence of events could be initiated by a decline in mitochondrial function
and accumulation of dysfunctional mitochondria producing and accumulating reactive oxygen species (ROS) that, in turn, could give rise to
accumulation of damaged DNA as well as mitochondrial DNA damage and release. Additionally, mitochondrial dysfunction contributes to
telomere shortening. The immune system is highly sensitive to shortening of telomeres as its competence depends on cell renewal and clonal
expansion of T- and B-cell populations. These effects drive immunosenescence and consequent inflammasome activation. In fact, the vicious
circle between mitochondrial dysfunction and DNA damage can lead to a state of chronic low-grade inflammation. Additionally, ROS could
increase the release of mitochondrial DNA from the cellular cytosol, becoming a driver of inflammatory responses. In this context, preservation
of mitochondrial morphology, dynamics, and function might be a main therapeutic approach to prevent cardiac ageing.

inflammatory signature coupled with alterations of cardiac energy
substrate metabolism—a concept which can be encompassed in
the term of immunometabolism—in HF is becoming of growing
interest.

Obesity-driven changes of both innate and adaptive immunity
dysregulate a number of signal pathways which impact on cardiac
metabolism in HF. For example, the role of adipose tissue dysfunc-
tion and the alterations of its immune compartment in HF patho-
genesis are still unclear.103 Both the metabolic reprogramming of
the heart in response to systemic, chronic low-grade inflammation
in obesity and the immune phenotype of this condition have not
been elucidated in depth.

Metabolic inflammation—that has been specifically termed
‘metainflammation’—refers to a systemic, chronic, low-grade
inflammation promoted in response to nutrient overload.104

In obesity, adipose tissue expansion leads to the secretion of
chemokines, thereby initiating immune cells recruitment.105,106

It is known that signals from a particular microenvironment
direct immune cell activation as well as macrophage polarization,
and T-cell activation. The increase in immune cell infiltration
is a hallmark of adipose tissue inflammation in obesity.107

In this setting, the secretion of systemic pro-inflammatory
mediators (e.g. cytokines) has detrimental effects on cardiac
function.50,108 In particular, in HFpEF, this may be mediated by
both epicardial adipose tissue and microvascular endothelial
dysfunction.109–113 ..
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.. Cardiomyocytes have limited capacity to store lipids. When in

excess, lipids may enter harmful non-oxidative pathways, yielding
the production of toxic intermediates which impacts on immune
system function(s).114 In particular, ceramides are known critical
pro-inflammatory molecules and lipotoxic mediators.115 To con-
trast toxic lipid spillover, it has been proposed that visceral adi-
pose tissue expansion acts as a buffer and prevents the detrimental
effects caused by lipid accumulation in non-adipose tissues.116 Lipid
metabolism and inflammatory pathways are highly integrated, but
the contribution of lipotoxicity to metabolic inflammation in HF is
still incompletely understood.

Diabetes
Patients with T2D are at increased risk of developing HF, either
HFrEF or HFpEF, and the coexistence of T2D and HF is asso-
ciated with a worse prognosis.117 Although common causes of
HF in patients with T2D are represented by coronary artery dis-
ease and/or hypertension, insulin resistance and hyperglycaemia
may also have direct effects on the myocardium, and a distinc-
tive cardiac phenotype known as diabetic cardiomyopathy has been
described.118–120 The presence of this distinct entity has been dif-
ficult to prove, but several interactions of systemic, myocardial
and cellular/molecular manifestations have been demonstrated as
contributing mechanisms to T2D-associated HF.121 Insulin resis-
tance and/or reduced insulin signalling in adipose tissue, liver and
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skeletal muscle play a pathophysiological role in T2D-associated
HF, but also abnormal cardiac extracellular matrix deposition,
metabolic disturbances, oxidative stress and inflammatory path-
ways may contribute to adverse cardiac remodelling.122,123 The
interplay between cardiomyocytes and non-myocytes in the heart
(fibroblasts, vascular cells, autonomic neurons, and immune cells)
is crucial.118 Excessive and sustained local inflammation in response
to a persistent stress/trigger such as T2D may be ‘maladap-
tive’ and favour cardiac injury. T2D-mediated oxidative stress
enhances a pro-inflammatory milieu and promotes the mobi-
lization of leucocytes (neutrophils, monocytes, macrophages and
lymphocytes).118,121 Rather than favouring the polarization of
macrophages towards a reparative M2 phenotype, the secre-
tion of pro-inflammatory cytokines by neutrophils alters the
macrophage function and promotes an inflammatory M1-like phe-
notype, further enhancing macrophage-mediated local inflamma-
tion and injury.118,124 Abnormalities in T-cell signalling and regu-
lation have also been described, further contributing to cardiac
inflammation, hypertrophy and fibrosis.118,125–128 Furthermore,
cardiac autoimmunity may have a role, especially among patients
with type 1 diabetes. In both type 1 and type 2 diabetes, chronic
hyperglycaemia causes subclinical myocardial injury with conse-
quent exposure of heart muscle proteins to the immune system,
thus a dysregulated adaptive immune system (typical of type 1 dia-
betes with poor glycaemic control) may overreact, leading to a local
pro-inflammatory state and to the development of autoantibodies
to cardiac antigens.129,130

Gut microbiome
In the presence of HF, low cardiac output and venous fluid overload
contribute to a decrease in intestinal perfusion, mucosal ischaemia,
and ultimately in a disrupted intestinal mucosa and increased gut
permeability.131,132 By this means, gut microbiome-derived metabo-
lites, like trimethylamine-N-oxide (TMAO), can reach the sys-
temic circulation, fuel metabolic inflammation and HF exacerba-
tions.133,134 TMAO levels are in fact a strong predictor of clinical
outcomes in patients with HF regardless of the underlying aeti-
ology.135 The HF-associated gut luminal hypoxia and decrease in
mucosal pH further alter the microbiota to pathogenic microbiota
and lead to loss of microbial diversity or ‘gut dysbiosis’, which
in turn contributes to the raise in gut permeability and systemic
inflammation.136,137 On the other hand, different gut microbiome
compositions have varying abilities to generate TMAO, and higher
levels of circulating TMAO can be attributable to a TMA-producing
microbiome harbouring TMA lyases.138

Vice versa, there is accumulating evidence showing that under
the influence of certain environmental factors and host genetic
susceptibility, interactions between the microbiome and the host
immune system contribute to cardiovascular disease and HF.139

Risk factors of HF, including Western lifestyle with high salt
composition, can lead to hypertension and cardiovascular disease
involving reduced survival of Lactobacillus murinus and increased
TH17 cells.140 Western diet, characterized by a high intake of
fat and a low intake of fiber, decreases the production of short
chain fatty acids (SCFAs) by intestinal microbiota, accounting ..
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.. for the altered regulatory T-cell frequency in mesenteric lymph
nodes.141 On the other hand, caloric restriction modulates gut
microbiota composition, leading to regulatory T-cell expansion.142

In obesity, microbiome-mediated tryptophan metabolites mod-
ulate white adipose tissue inflammation,143 fostering low-grade
systemic inflammation and HFpEF.76 In metabolic dysfunction,
the gut contains increased numbers of (γδ)T cells, macrophages,
dendritic cells, NK cells, CD8+ cells (αß TCR) and Th1 T cells but
less T regulatory cells,144 linked to intestinal barrier dysfunction,
and intestinal dysbiosis. Evidence for the specific involvement of
gut immune cells in cardiovascular disease and HF comes from
integrin β7 (ITGb7) knockout mice, which lack intraepithelial (αβ)
and (γδ)T cells, B cells and myeloid cells in the gut.145 ITGb7, LDLr
knockout mice fed with a high cholesterol diet exhibit lower adi-
pose tissue inflammation, reduced numbers of Ly6Chigh monocytes
and smaller aortic lesions.146 ITGb7 knockout mice are further
protected from hypertension, obesity and diabetes and have higher
levels of the gut incretin hormone glucagon-like peptide-1 (GLP-1)
due to absence of gut immune cells expressing GLP-1 receptor.146

GLP-1 is increased in HF independent of food intake as an endoge-
nous protective counter-regulatory response.147 GLP-1 receptor
agonists have been shown to decrease hospitalization for HF in
T2D patients by 11%.148,149 Further, prospective randomized con-
trolled clinical trials in patients with HFpEF and obesity, comparing
the GLP-1 receptor agonist semaglutide with placebo, have shown
a decrease in body weight with an improvement in quality of life and
exercise tolerance altogether with a reduction in C-reactive pro-
tein and N-terminal pro-B-type natriuretic peptide (NT-proBNP)
plasma concentrations, consistent with a reduction in inflamma-
tory activation and an improvement in diastolic function with the
study drug.150,151 A pre-specified pooled analysis of these trials has
also shown better outcomes with semaglutide versus placebo.152

Besides the abovementioned mutual interplay between HF
and microbiota/dysbiosis-induced systemic inflammation and
(extra)-intestinal immunity, it has been shown that cardiac
myosin-specific TH17 cells can be generated, imprinted in the
intestine by a commensal Bacteroides species peptide mimic,
promoting progression of myocarditis to lethal heart disease.153

This is supported by both the successful prevention of lethal
disease in mice by antibiotic therapy and the significantly elevated
Bacteroides-specific CD4+ T-cell and B-cell responses observed
in myocarditis patients. Taken together, these findings highlight
a strong mutual inter-relation between the gut and the heart,
involving metabolism and the immune system.

Gender
The differences between men and women in epidemiology, patho-
physiology, outcomes and treatment of HF are very broad.154 The
hormonal background is considered to yield a protective effect
on the cardiovascular system in young women. In women, after
menopause the loss of the hormonal balance leads to several
changes which increase the risk of HF, and in particular HFpEF.155,156

Metabolic dysregulation and pro-inflammatory state are only two
of the multiple mechanisms behind the different pathogenesis and
manifestation of HF in the two sexes.
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Microvascular dysfunction, together with the hyperactivation of
systemic and local inflammation, is a major determinant of HFpEF
especially in women, whereas in men the typical atherosclerotic
degeneration of the epicardial coronary circulation predom-
inates.157 Impaired activation of the endothelial nitric oxide
pathway and release of pro-angiogenic factors trigger microvas-
cular dysfunction enhanced by the post-menopausal reduction
in oestrogens.156,158 An additional contribution to microvascular
alterations in women comes from the immune-mediated predispo-
sition to endothelial inflammation. Adipokines and inflammatory
markers such as leptin and C-reactive protein, both central in the
pathogenesis of HFpEF, are indeed expressed to a greater extent
in women compared with men, regardless of the post-menopausal
period.159 This is linked with the differences in immune response
which is enhanced in women, ensuring prompter recovery from
infection and higher protection towards cancer, but the increased
systemic inflammatory activation and the stimulation of multiple
pro-inflammatory pathways mediated by the stronger immune
response indirectly expose women to higher risk of HFpEF.160

It is of interest and worthy of more deep investigations that
sex-specific risk factors (i.e. sex hormones, pregnancy and breast
cancer therapy) are strongly linked each other and involved in the
pathogenesis of sex-specific diseases or sex-prevalent diseases,
such as peripartum cardiomyopathy and stress cardiomyopathy.
The common pathophysiological mechanisms behind these dis-
eases involve indeed endothelial inflammation and microvascular
dysfunction.161,162

Dysfunctional tissue and systemic metabolism characterizing
HF also presents some discrepancies in women and men. In men,
increased afterload leads to more pronounced down-regulation
of lipid and energy metabolism related genes and this implies
less preservation of mitochondrial function compared with
women.163,164 On the other hand, females show an up-regulation
of peroxisome-dependent lipid utilization genes representing an
alternative pathway to cover greater energy demand for the
myocardium exposed to increased afterload.165 Oestrogens are
important mediators of mitochondrial function, exerting through
different mechanisms a protective effect under the influence of
detrimental stressors,166–168 and also stimulate the activation of
antioxidative pathways.

Therapeutic approaches to
inflammation and metabolism in
heart failure
Therapeutic targets
As outlined above, it is evident that normal cellular homeostasis
relies on the crosstalk between the immune system and metabolic
regulation, and that several diseases are produced and exacer-
bated by their dysfunction and crosstalk. Apart from primary
inflammatory/metabolic/immune diseases, the plausible biolog-
ical mechanism in most chronic HF phenotypes is primarily a
mechanical incompetence which, in turn, determines metabolic
adaptation and inflammatory/immune consequences. The targets ..
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.. of the presently available drugs for the treatment of HF are
mainly maladaptive neurohormonal activation and, consequently,
improving cardiac mechanical function, which ultimately regulates
also metabolic and immune adaptations. This precise sequence of
events is deduced by the unsuccessful results of clinical trials of
anti-inflammatory therapies in HF, despite the fact that the chronic
inflammatory state associated with progression and complications
of HF had identified this dysregulated immunologic state as a
potential additional therapeutic target.169,170 On the other hand,
improvement of metabolic efficiency may limit inflammation by
promoting endogenous anti-inflammatory effects, providing strong
evidence for the therapeutic potential also in targeting metabolic
processes as for controlling immune effector functions and thereby
alleviating pathological inflammation,171 again likely consequent
to cardiac mechanical incompetence. Nevertheless, intensive71

research is still active to define the potential therapeutic role of
anti-cytokine therapy in HF. Some studies employing anakinra,
canakinumab and colchicine have shown a significant reduction in
inflammatory biomarkers along with an improvement in exercise
performance and quality of life and a reduction in natriuretic
peptides.172,173 A clinical trial with ziltivekimab is still ongoing.174

In the real world, evidence-based treatments for HF may con-
tribute to modulate the metabolic and immunological crosstalk in
HF52,175 (Table 1). HF induces neurohormonal and immune activa-
tion, which directly and indirectly modify myocardial metabolism.
The autonomic nervous system contributes to the regulation of
cardiac function. Enhanced sympathetic stimulation induced by
cardiac mechanical failure increases myocardial energy metabolic
requirements. Additionally, sympathetic hyperactivity is associ-
ated with increased production of myeloid immune cells in the
bone marrow, resulting in higher numbers of circulating myeloid
immune cells.176 Recent studies have shown that microglia, known
as brain-resident immune cells, may play an important role in
regulating sympathetic nervous system activities and cardiovas-
cular function by releasing cytokines, chemokines, and growth
factors.176–178 Beta-blockers blunt the cardiovascular response
to adrenergic stimulation and, apart from reducing ischaemia
and protecting the infarcted myocardium, have also been shown
to directly affect myocardial energetics, by reducing circulating
levels of free fatty acids (FFA) and, due to substrate competition,
inducing a shift of heart energy metabolism towards a greater
utilization of carbohydrates179–181 (Table 1). The observed increase
in cardiac carbohydrate metabolism after beta-blockade probably
results from decreased FFA delivery and oxidation, as well as
from augmented arterial glutamate availability.182–186 Therefore, a
higher rate of carbohydrate utilization induced by beta-blockade
may result in a greater cardiac energy production at similar
levels of oxygen consumption. Interestingly, there are profound
differences in the metabolic profile of the non-cardioselective and
selective beta-blockers, the former causing significant inhibition
of the lipolytic, glycogenolytic and the growth hormone-releasing
effects of adrenaline when compared with the cardioselective
ones.187 Additionally, catecholamines play an important role in the
regulation of the physiological immune response and, therefore,
the efficacy of beta-blockers in HF may also depend by their cru-
cial immunoregulatory role in modifying a dysregulated cytokine

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 1 Immunometabolic effects of established and potential medical therapies for heart failure

Drug Metabolic effects
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Beta-blockers • Reduction of peripheral lipolysis
• Increased carbohydrate utilization
• Improved insulin sensitivity
• Immunoregulatory role in modifying a dysregulated cytokine network

RAAS inhibitors • Improved glucose homeostasis by increased blood flow in skeletal
muscle

• More efficient insulin release
• Reduction of lipolysis
• Anti-inflammatory effect

Partial fatty acid oxidation inhibitors • Enhancement of insulin sensitivity
• Increased glucose oxidation
• Modulation of late sodium current, thereby reducing the accumulation

of intracellular Ca++

• Attenuation of macrophage infiltration and pro-inflammatory
responses in sepsis-induced myocardial dysfunction

Coenzyme Q10 • Inhibition of the mitochondrial permeability transition pore
• Inactivation of apoptotic cascades and the oxidative inactivation of key

proteins involved in ATP production
SGLT2i • Increased bioavailability and myocardial utilization of ketone bodies

• Ketone body-mediated anti-inflammatory effects
• Inhibition of epicardial adipose tissue accumulation and inflammation

Statins • Positive influence on pro-inflammatory cytokine production, immune
cell migration and T-cell signalling

• Inhibition of epicardial adipose tissue accumulation and inflammation
GLP-1 receptor agonists • Mitigation of inflammation in visceral fat adipocytes

• Modulation of the immune system
Adipose triglyceride lipase inhibitors • Improved adipose tissue storage capacities

• Reduced lipolytic activity
• Anti-apoptotic, anti-fibrotic, and anti-inflammatory actions

Ketone bodies and short-chain fatty acids • Alternative fuel sources
• Inhibition of NLRP3 inflammasome formation

ATP, adenosine triphosphate; GLP-1, glucagon-like peptide-1; RAAS, renin–angiotensin–aldosterone system; SGLT2i, sodium–glucose cotransporter 2 inhibitor.

network.188–191 Indeed, in patients with HF, beta-blockers have
been shown to reduce the expression of inflammation, regardless
of left ventricular functional response.192

The renin–angiotensin–aldosterone system (RAAS) is another
system that is hyperactivated in presence of cardiac mechanical
dysfunction. Apart from regulating blood pressure, angiotensin
II is also an important modulator of cardiac energy metabolism
and function. Angiotensin II damages mitochondria in the car-
diomyocyte by increasing ROS production,193,194 and affects
mitochondrial oxidative phosphorylation, including FFA oxida-
tion.19,193 There is also evidence that angiotensin II regulates
glucose oxidation and that inhibition of angiotensin II may exert
beneficial metabolic effects.195–198 In addition, by decreasing oxida-
tive metabolism, angiotensin II can reduce ATP production.199 In
this context, apart from blood pressure and fluid balance regula-
tion, angiotensin II antagonism represents an attractive therapeutic
approach to target metabolic deregulation in HF. Additionally,
as for beta-blockers, RAAS antagonism has been shown to yield
a significant reduction in markers of inflammation in different
cardiological contexts. Angiotensin-converting enzyme inhibitors ..
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.. (ACEi), compared with angiotensin receptor blockers, appear to
produce a more robust anti-inflammatory effect.200 However, the
role of ACEi in inflammation is still debated. Intrinsic ACE has
been detected in macrophages and neutrophils, where its overex-
pression results in enhanced immune responses, independent of
angiotensin II. In contrast, ACE activity is also elevated in certain
autoimmune diseases and its inhibition benefits patient outcome
where inflammatory immune cells are overactive. Further research
on the potential role of ACEi in modulating immune response are
definitely warranted.201

Cardiac metabolism in HF can also be beneficially targeted by
specific drugs, by improving mitochondrial membrane stability,
mainly dependent on cardiolipin and coenzyme Q10.202,203 Coen-
zyme Q10 is an obligatory component of the respiratory chain
in mitochondria and plays an essential role in ATP formation in
most tissues, including the heart. In addition, Q10 has antioxi-
dant properties and protects circulating low-density lipoprotein
particles from oxidation. Its inhibition of the mitochondrial per-
meability transition pore prevents the activation of apoptotic cas-
cades and the oxidative inactivation of key proteins involved in
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Statins

GLP1-RA

Ectopic accumulation of lipids
Increased lipolytic activity
Elevated plasma lipids

Mitochondrial dysfunction
Oxidative stress
Cardiomyocyte apoptosis
and necrosis
Fibrosis

Increased plasma lipid intake

Accelerated atherosclerosis

Anti-oxidative

Anti-hypertrophic

Atheroprotective

Diabetes
Obesity

disorders

Statins, metformin, SGLT2i, MRA

Experimental: ATGL inhibitors

Obese visceral adipose tissue

Epicardial adipose tissue

SStatins, metformin, SGff LT2i, MRALL

EExperimental: ATAA GL inhibitors

GLP1-RA

Statins

Figure 5 Targeting other sources of inflammation. Statins exert several beneficial pleiotropic effects in the vasculature and cardiac tissue.
Obese visceral adipose tissue and epicardial adipose tissue promote pro-inflammatory and lipid-associated pathological effects as well
as pro-fibrotic actions, negatively impacting on cardiomyocyte function and survival as well as on cardiac fibrosis. Statins and several
other established (in part non-cardiac) and experimental pharmacological treatments inhibit these negative effects, positively influencing
immunometabolism of the heart. ATGL, adipose triglyceride lipase; GLP1-RA, glucagon-like peptide-1 receptor agonist; MRA, mineralocorticoid
receptor antagonist; SGLT2i, sodium–glucose cotransporter 2 inhibitor.

ATP production204 (Table 1). Lower levels of coenzyme Q10 are
associated with worse HF symptoms, lower ejection fraction and
higher NT-proBNP.205,206 However, association between its values
and mortality remains controversial.207 Coenzyme Q10 supple-
mentation improved HF symptoms and reduced major cardiovas-
cular outcomes in patients with HF in a randomized controlled
trial.208 However, a more recent meta-analysis, due to the low
quality of available data, concluded for no convincing evidence sup-
porting the use of coenzyme 10 in patients with HF.209

In addition, beneficial effects on cardiac metabolism can be
achieved with the direct inhibition of oxidative phosphorylation
by shifting energy production from fatty acid to glucose oxida-
tion by selective block of mitochondrial long chain 3-ketoacyl
coenzyme A thiolase (3-KAT) activity, the last enzyme involved
in beta-oxidation210 (Table 1). This approach has been shown to
preserve phosphocreatine and ATP intracellular levels in the failing
heart and to exert significant beneficial effects in patients with
ischaemic and non-ischaemic left ventricular dysfunction, espe-
cially in HF patients who also have diabetes.211–213 More recently,
partial FFA oxidation inhibition with trimetazidine has been
shown to attenuate macrophage infiltration and pro-inflammatory
responses in sepsis-induced myocardial dysfunction. These effects
are achieved by normalizing the inflammatory response pathway
in macrophages.214 Similar anti-inflammatory effects have been
observed with ranolazine, another partial FFA oxidation inhibitor,
which has also been shown to inhibit the cellular late inward
sodium current.215–217 In particular, the demonstration that func-
tional Na+ shuttling is required for a full cellular response to
inflammation and that inhibition of Na+–Ca2+ exchange during ..
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.. inflammation by ranolazine reduces the inflammatory response

in human endothelial cells in vitro, in a mouse atherosclerotic
disease model and in human patients, opens a new potential
immunometabolic therapeutic target.215

Moderate caloric restriction could also represent an attractive
therapeutic tool targeting the immunometabolic crosstalk in HF.
It could improve transcriptional reprogramming in adipose tis-
sue through pathways regulating mitochondrial bioenergetics and
anti-inflammatory responsivity,218,219 possibly by a conveyed reduc-
tion of sympathetic activity.220 Caloric restriction exerts potent
anti-inflammatory effects in different pathological conditions by
supporting the function of memory T cells and inducing a metabolic
switch from glycolysis and fatty acid synthesis to fatty acid oxi-
dation and lipolysis,221,222 with mechanisms related to increased
ketone bodies availability.27,223–226 Additional studies are warranted
to evaluate the clinical role of nutritional intervention in different
pathologic conditions, including HF.227,228

Targeting other sources
of inflammation
Other drugs than evidence-based pharmacotherapy are frequently
used in patients with HF due to the frequent coexistence of
multiple comorbidities. In randomized controlled trials, statins did
not clearly show a prognostic benefit in patients with HFrEF.229,230

A possible selection bias due to the exclusion of patients with
strong primary indication for statins cannot be excluded. Two
large observational studies suggested a possible benefit with statins
in HFrEF with an ischaemic aetiology, where they are indicated
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regardless of HF,231,232 whereas in HFpEF the observed benefit was
independent of the aetiology. It was hypothesized that in HFpEF
the underlying effect on systemic inflammation or on microvascular
dysfunction might be implicated (Table 1, Figure 5).233 Statins
are mainly involved in vasculoprotective and anti-atherosclerotic
effects; however, they were also shown to mediate direct effects on
cardiac tissue, including cardiac endothelium, cardiomyocytes and
connective tissue, as for example anti-oxidative, anti-hypertrophic
and anti-fibrotic effects, among others through regulating small
GTP-binding proteins.234–236

White adipose tissue serves as endocrine organ which systemi-
cally secretes adipokines and cytokines.237 Adipokines are involved
in metabolic processes and regulate insulin signalling, glucose
uptake, FFA oxidation and other energy-producing processes;
cytokines mediate regulation of inflammation and adaptive angio-
genesis. Lean, healthy adipose tissue secretes anti-inflammatory
adipokines and cytokines, whereas obese adipose tissue switches
to an inflammatory phenotype, secreting both locally and system-
ically pro-inflammatory cytokines and chemo-attractants, and is
characterized by immune cell infiltration.237 Obese adipose tissue
inflammation negatively impacts remote organ function, including
the heart.103,237 Interestingly, epicardial adipose tissue may be
involved in chronic inflammatory disorders, especially those lead-
ing to HFpEF, by switching to an inflammatory adipocyte phenotype
which, by secreting pro-inflammatory adipokines, may cause atrial
and ventricular fibrosis.108 Thus, epicardial adipose tissue may
be a transducer of the adverse effects of systemic inflammation
and metabolic disorders on the heart, and may therefore rep-
resent an interesting therapeutic target. Drugs such as statins,
metformin, sodium–glucose cotransporter 2 inhibitors (SGLT2i)
or mineralocorticoid receptor antagonists may inhibit epicardial
adipose tissue accumulation and inflammation108 (Table 1, Figure 5).
GLP-1 receptor agonists mitigate inflammation in visceral fat
adipocytes, exert pleiotropic anti-inflammatory properties in
different tissues and may modulate the immune system, with
potential beneficial effects on cardiac immunometabolism238,239

(Table 1, Figure 5).
Neutrophils secrete myeloperoxidase, which has been impli-

cated in the comorbidity-inflammation-microvascular dysfunction
paradigm for HFpEF, and inhibition of myeloperoxidase with
mitiperstat (AZD4831) appears promising in HFpEF.110,240

Low-grade inflammation of adipose tissue promotes the ectopic
accumulation of lipids in other organs, including the heart, and
catecholamine-derived increased lipolytic activity in adipose tis-
sue results in elevated plasma lipids. Elevated lipid uptake and
insufficient lipid oxidation in cardiomyocytes may cause mitochon-
drial dysfunction and oxidative stress, and consequently cardiac
apoptosis, necrosis, fibrosis and inflammation.241 Novel experi-
mental therapies, such as adipose triglyceride lipase inhibitors,
leading to improved adipose tissue storage capacities and reduced
lipolytic activity as well as to anti-apoptotic, anti-fibrotic, and
anti-inflammatory actions in cardiac tissue, showed promising
results on cardiac metabolism and cardiac dysfunction in experi-
mental disease models, and may therefore represent new promising
pharmacological tools to treat pathological metabolic phenotypes
of HF241 (Table 1, Figure 5). ..
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.. Finally, iron is essential for cardiovascular processes, including
bioenergetics, electrical activity, and programmed cell death. Iron
deficiency leads to impaired immune function and metabolism,
while iron overload causes oxidative stress, chronic inflammation,
and increased susceptibility to infections and metabolic disor-
ders.242 Therefore, maintaining iron homeostasis is crucial for
both immune health and overall metabolic balance. Specifically,
several studies have shown that a dysregulated systemic iron
homeostasis can determine and/or worsen HF.243 The evidence
of the beneficial effects of iron-modulating therapeutics in HF
demonstrate the importance of maintaining iron homeostasis in
the cardiovascular system.244

The role of metabolic substrate
availability
Traditionally, metabolic drug development for HF aimed to stim-
ulate glucose oxidation or inhibit FFA oxidation.2 An alternative
approach to restoring cardiac energetics may lie in providing the
heart with alternative fuel sources that can bypass the roadblocks
in cardiac metabolism that occur in failing cardiomyocytes.2,245,246

Ketone bodies are efficient fuel that are easily oxidized by both
failing and non-failing hearts.225,246,247 Failing hearts have a signifi-
cant capacity to further increase ketone oxidation, suggesting that
strategies to increase ketone delivery to the heart may serve as
a viable treatment for HF.225,247–249 SGLT2i have been shown to
induce a state of mild ketosis and improve myocardial energet-
ics, and it has been proposed that the beneficial effects of SGLT2i
may at least partially depend on enhanced myocardial ketone oxi-
dation.250–252 Moreover, ketone treatment has also been shown
to ameliorate cardiac dysfunction and restore myocardial energet-
ics in small and large animal models of HFpEF and HFrEF.225,249,253

Short-term ketone infusion or ingestion strategies also resulted in
acute improvements in cardiac function in healthy volunteers and
patients with HF.225 In a preliminary small-sized randomized con-
trolled trial, short-term treatment with ketone ester improved rest
and exercise haemodynamics in HFrEF.254 Multiple clinical trials are
currently ongoing to determine the effects of acute and chronic
ketone treatment strategies on clinical endpoints in HF.225

Short-chain fatty acids (SCFA) are another promising alternative
energy source for the failing heart due to their ability to bypass
the down-regulation of the CPT1 shuttle.255 Supplementing iso-
lated perfused hearts with the SCFA butyrate resulted in robust
improvements in cardiac performance, surpassing the benefits
of ketone bodies in this model.247 The potential of butyrate as
a cardiac fuel provides a strong rationale for exploring SCFA as
metabolic treatments for HF, although it may be challenging to
reach sufficient circulating concentrations to serve as fuels.

Ketone bodies and SCFAs have also been shown to modulate
cellular signalling and suppress inflammation through a variety of
pathways. Ketone bodies inhibit NLRP3 inflammasome formation
and reduced pro-inflammatory cytokine-triggered mitochon-
drial dysfunction and fibrosis in a murine model of HFpEF.253

β-hydroxybutyrate also reduces NLRP3 activity in macrophages
isolated from diabetic patients.256 SCFAs, in particular butyrate,
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share many of these anti-inflammatory and signalling properties
with ketone bodies, but appear to do so at low concentra-
tions.245,257 This suggests that ketone bodies and SCFAs may offer
cardioprotective benefits beyond fuelling the heart by reducing
inflammation and fibrosis.

Benefits of exercise
Physical inactivity is linked to the development of many chronic dis-
eases through a chronic low-grade inflammation state.258 In chronic
HF, exercise deprivation has been specifically related to further
deterioration of left ventricular remodelling.259 Exercise elicits a
strong anti-inflammatory response and systemic effects on immune
function, inflammation, and host metabolism independently of
weight loss and can be a useful non-pharmacologic strategy to
counteract low-grade inflammation conditions, including HF.260

Physical exercise inhibits the inflammatory response by various
molecular mechanisms.261,262 Accumulating data from the field of
exercise immunology indicate that exercise affects immune func-
tion via cellular metabolism.263 Apart from its role on skeletal and
cardiac muscle metabolism, exercise interferes with the regulation
and function of leucocyte metabolism.264 T cells and macrophages
show high sensitivity to changes in their metabolic environment,
which indirectly or directly affects their central functions.265 Under-
standing the interactions between the level of physical activity and
the metabolic status of immune cells could be helpful to target the
dysregulated immune system in primary and secondary prevention
of HF. In these contexts, future research shall eventually dissect
out the differential effects of acute exercise and chronic exercise
training on immunometabolism, and potential differences in the
effects of exercise between immune cell types and subsets.266

Conclusions
Heart failure is an ongoing epidemic. Despite remarkable thera-
peutic progress, hospitalizations for HF remain both frequent and
costly. In this context, the complete understanding of alternative
mechanisms of disease progression may allow a different and more
complete phenotyping of the disease and the identification of novel
therapeutic targets. Persistent latent myocardial inflammation in
HF probably represents an attempt to restore tissue homeosta-
sis in the failing heart, where cardiomyocytes and immune cells
undergo metabolic reprogramming, which allow them to deal with
decreased availability of nutrients and oxygen. This status can trig-
ger a metabolic crosstalk between immune cells and cardiomy-
ocytes which can perpetuate the maladaptive remodelling of the
heart. Therefore, the interrelation between immune activation and
metabolism is gaining recognition as a potential therapeutic frame-
work. The traditional cornerstones of HF treatment are mainly
directed at counteracting the neurohormonal activation induced
by haemodynamic incompetence and the abnormal metabolic and
immune adaptations can be mitigated indirectly as a consequence
of reverse remodelling and improved mechanical function. Never-
theless, chronic inflammatory/immune activation remains associ-
ated with the progression of HF and indicates that this dysregu-
lated immunologic state is not merely the result of the overall HF ..
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.. process but an active player which could be tackled with specific
treatments. On the other hand, improving the metabolic efficiency
of the failing circulatory system might itself alleviate the patho-
logical inflammation breaking the vicious circle that contributes
to the progression of the syndrome. We are still far from com-
pletely understanding the shape and extent of cardiac and systemic
metabolic alterations in HF impacting on immune function. How-
ever, it is becoming increasingly clear that the investigation of this
conundrum—metabolism and immunity—in HF, is emerging as a
priority research target for HF pathophysiology and therapeutic
strategies. On these premises, future studies addressing novel HF
treatments should attempt to evaluate the potential therapeutic
role of direct metabolic and immunological crosstalk modulation.
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