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Abstract 
Body mass index (BMI) does not account for substantial inter-individual differences in 
regional fat and muscle compartments, which are relevant for the prevalence of 
cardiometabolic and cancer conditions. We applied a validated deep learning pipeline 
for automated segmentation of whole-body MRI scans in 45,851 adults from the UK 
Biobank and German National Cohort, enabling harmonized quantification of visceral 
(VAT), gluteofemoral (GFAT), and abdominal subcutaneous adipose tissue (ASAT), 
liver fat fraction (LFF), and trunk muscle volume. Associations with clinical conditions 
were evaluated using compartment measures adjusted for age, sex, height, and BMI. 
Our analysis demonstrates that regional adiposity and muscle volume show distinct 
associations with cardiometabolic and cancer prevalence, and that substantial 
disease heterogeneity exists within BMI strata. The analytic framework and reference 
data presented here will support future risk stratification efforts and facilitate the 
integration of automated MRI phenotyping into large-scale population and clinical 
research.    
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Introduction 
Obesity affects nearly 890 million people worldwide and represents a major public 
health challenge with far-reaching clinical implications. While substantial evidence 
has established obesity as a potent driver of cardiovascular and metabolic disease,1-3 
an expanding body of research now also suggests links to various malignancies 
including colorectal, pancreatic, prostate, and breast cancer, albeit with variable 
effect magnitudes.4-9  
Body mass index (BMI) remains the most widely used clinical tool worldwide for 
obesity assessment, as it is simple to calculate and implement. However, BMI 
exhibits notable limitations in its inability to adequately reflect the distribution and 
metabolic characteristics of adipose tissue, factors increasingly recognized as crucial 
correlates of health conditions beyond overall body weight.10,11 The heterogeneity in 
metabolic phenotypes across BMI categories further underscores these limitations. 
Individuals classified as obese by BMI criteria but exhibiting preserved metabolic 
function and physical fitness, often termed metabolically healthy obese (MHO),11 
frequently present with more favourable cardiometabolic profiles than their BMI would 
suggest.11-14 Conversely, individuals with normal BMI but disproportionate 
accumulation of visceral adipose tissue, described as metabolically obese normal 
weight (MONW), exhibit elevated risk of metabolic dysfunction and cardiovascular 
disease.15 These contrasting phenotypes underscore metabolic heterogeneity, 
suggesting that regional body composition, rather than overall weight, may better 
reflect variation in the prevalence of cardiometabolic, cancer, and related clinical 
conditions. 
Still, the precise quantification of body composition presents with methodological 
challenges. While anthropometric indices such as waist to hip ratio provide 
incremental information beyond BMI, magnetic resonance imaging (MRI) enables a 
highly accurate non-invasive assessment of adipose tissue compartments. MRI 
allows for detailed quantification of visceral adipose tissue (VAT), gluteofemoral 
adipose tissue (GFAT), abdominal subcutaneous adipose tissue (ASAT), trunk 
muscle volume, and liver fat fraction (LFF). Manual delineation, however, remains 
labour-intensive and has historically limited studies to a few hundred scans from a 
single imaging protocol. 
Deep-learning approaches allow us to overcome that bottleneck and enable fully 
automated extraction of regional body composition metrics from tens of thousands of 
MRIs.16-18 We analysed whole body MRIs from 45,851 participants from UK Biobank 
(UKB)19 and the German National Cohort (NAKO).20 21 These two population studies 
were scanned on different hardware, providing a natural test bed for cross-platform 
harmonisation.22,23   
Using deep learning-based segmentation techniques, we quantified VAT, GFAT, 
ASAT, muscle and LFF in each participant and examined their independent 
associations with nine prevalent diseases spanning cardiometabolic, cancer and 
musculoskeletal domains. For each body composition compartment, associations 
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with clinical conditions were estimated after adjusting for age, sex, height, and BMI. 
Odds ratios are reported per 1 SD higher compartment volume at a given BMI and 
body size, reflecting redistribution of body composition rather than absolute 
increases. By integrating data from two population-based cohorts scanned with 
different MRI protocols, we tested whether regional body composition phenotypes 
provide generalisable and BMI-independent associations with prevalence of 
cardiometabolic, cancer, and related clinical conditions, reflecting variation in fat and 
muscle distribution at a given BMI and body size rather than absolute compartment 
volumes. 

Results 
Cohort characteristics and prevalence of cardiometabolic, cancer, and related 
clinical conditions 
We analysed whole-body MRIs in 45,851 adults from two large imaging cohorts: 
26,877 of the first 30,861 NAKO participants and 18,974 of the first 19,512 UK 
Biobank (UKB) participants. The NAKO subsample included 14,969 men (55.7%) and 
11,908 women (44.3%), consistent with the full imaging dataset. The UKB imaging 
cohort was sex-balanced (9,094 men, 47.9%; 9,880 women, 52.1%) but older, due to 
targeted recruitment of participants aged ≥55 years at the outset of imaging. Median 
age was 63 years (IQR 56–68) in UKB versus 48 years (IQR 40–58) in NAKO 
(p�<�0.0001; Fig. 1, Supplementary Tables S1–S2). Clinical conditions analysed 
include diseases (e.g., CAD, diabetes, cancer) as well as risk factors and symptoms 
(e.g., hyperlipidaemia, osteoporosis, gout, back pain).  
BMI distributions were similar between cohorts (men: 26.3�kg/m² in NAKO, 
26.0�kg/m² in UKB; women: 24.8 and 24.7�kg/m², respectively), but prevalence of 
cardiometabolic conditions varied considerably (Table�1). Coronary artery disease 
(CAD) was 5.5% in UKB men and 1.2% in NAKO men, a 4.6-fold difference. This 
likely reflects both age structure and differing definitions: NAKO relied on self-
reported myocardial infarction, angina, or coronary stenosis; UKB used a 
combination of hospital records, self-report, and procedure codes. T2D prevalence 
was higher in UKB men (7.0% vs. 5.2%) but slightly lower in women (3.5% vs. 4.4%). 
Hyperlipidaemia was also more frequent in UKB (men: 52.3% vs. 46.3%; women: 
45.3% vs. 37.0%). In contrast, heart failure was reported more often in NAKO (1.3%) 
than in UKB (0.1%), likely reflecting differences in questionnaire structure, self-report 
practices, or diagnostic coding. 
 
Age and sex differences in body composition 
We observed consistent age- and sex-related differences in body composition across 
both cohorts. VAT increased markedly with age, particularly in men (Figure 2a), with 
VAT volumes 179% higher in women and 236% higher in men at age 60–70 
compared to 20–30 years (Table 3). In contrast, GFAT declined with age, decreasing 
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by 5% in women and 9% in men over the same age range (Supplementary Figure 
S1). 
Men had significantly higher VAT and trunk muscle volumes than women in both 
cohorts (p�<�0.0001 for all comparisons). In NAKO, VAT was 2.69�L (IQR: 1.43–
4.14) in men versus 1.06�L (IQR: 0.59–2.00) in women; in UKB, 3.10�L (IQR: 2.03–
4.38) versus 1.47�L (IQR: 0.98–2.28). Trunk muscle volumes showed a similar 
pattern (NAKO: 6.38�L [IQR: 5.82–7.00] in men vs. 4.74�L [IQR: 4.34–5.21] in 
women; UKB: 6.21�L [IQR: 5.57–6.91] vs. 4.40�L [IQR: 3.97–4.87]). Conversely, 
GFAT was substantially higher in women: 8.69�L (IQR: 6.81–11.12) in NAKO and 
7.75�L (IQR: 5.93–10.06) in UKB, compared to 4.82�L (IQR: 3.69–6.26) and 4.16�L 
(IQR: 3.13–5.55) in men, respectively (p�<�0.0001 for all comparisons). 
These sex-based differences were evident across all BMI categories (Figure 2c) and 
persisted among individuals with normal weight (Table 3A), suggesting that 
compartmental fat and muscle distribution varies systematically by sex and age, 
independent of BMI. 
 
Correlations among adjusted body composition parameters and associations 
with lifestyle factors 
We derived residualised body composition parameters adjusted for age, sex (for 
combined analyses), height, and BMI using linear regression models to examine 
relationships while holding these covariates constant. The resulting correlation matrix 
of adjusted values is shown in Figure 2b and Supplementary Table S3. ASAT-adj and 
GFAT-adj were positively correlated (r = 0.56 in men), whereas muscle-adj showed 
inverse correlations with both subcutaneous fat compartments across sexes. VAT-adj 
and LFF-adj were positively correlated in both men (r = 0.35) and women (r = 0.43), 
indicating shared variance not explained by anthropometric covariates. 
In NAKO participants, physical activity was associated with body composition 
patterns characterized by lower VAT and higher trunk muscle volume 
(Supplementary Table S4). Compared to participants classified as insufficiently active 
(<600 MET min/week), those in the moderate activity group (1000–2999 MET 
min/week) had significantly lower VAT Z-scores (–0.130, 95% CI [–0.152, –0.107], p 
< 0.0001). Sufficient activity levels (600–999 MET min/week) were associated with 
smaller reductions (–0.037, 95% CI [–0.069, –0.005], p = 0.024), while participants in 
the highest category (≥3000 MET min/week) showed only a slightly greater reduction 
(–0.156, 95% CI [–0.176, –0.136], p < 0.0001), with diminishing additional effect at 
the upper end of the activity range. Hand grip strength was also independently 
associated with lower VAT and higher trunk muscle volume. 
Among UKB participants, current smoking was associated with lower adjusted ASAT 
(–0.052, 95% CI [–0.083, –0.020], p = 0.0019) and GFAT (–0.072, 95% CI [–0.107, –
0.036], p = 0.0001), and higher VAT (0.046, 95% CI [0.004, 0.089], p = 0.0426) and 
LFF (0.085, 95% CI [0.022, 0.148], p = 0.018). These findings reflect altered fat 
distribution among current smokers; however, causal inference is not possible from 
these cross-sectional associations (Supplementary Fig. S3). Associations between 
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alcohol intake frequency and body composition parameters are reported in Figure 2, 
Supplementary Table S5 and Supplementary Figure S3d as well as Supplementary 
Results.  
 
Associations between body composition phenotypes and cardiometabolic 
conditions 
Associations between body composition parameters and clinical conditions were 
estimated per 1 SD higher compartment volume, adjusted for age, sex, height, and 
BMI, reflecting variation in fat and muscle distribution among individuals with 
comparable body size and demographics. Higher GFAT-adj was consistently 
associated with lower prevalence of type 2 diabetes (OR = 0.69, 95% CI 0.66–0.71), 
coronary artery disease (OR = 0.88, 95% CI 0.81–0.95), hypertension (OR = 0.88, 
95% CI 0.86–0.90), and hyperlipidemia (OR = 0.87, 95% CI 0.85–0.89) (Figure 3b). 
In contrast, ASAT-adj showed modestly higher odds of hypertension (OR = 1.05, 
95% CI 1.03–1.08), type 2 diabetes (OR = 1.06, 95% CI 1.02–1.11), and 
hyperlipidemia (OR = 1.11, 95% CI 1.08–1.13) (Figure 3a). VAT-adj was most 
strongly associated with prevalence of cardiometabolic conditions: OR = 1.12 (95% 
CI 1.05–1.19) for coronary artery disease, OR = 1.20 (95% CI 1.08–1.33) for heart 
failure, OR = 1.19 (95% CI 1.16–1.22) for hypertension, OR = 1.19 (95% CI 1.14–
1.24) for type 2 diabetes, and OR = 1.29 (95% CI 1.26–1.32) for hyperlipidemia 
(Figure 3c). As these models adjust for BMI and height, increases in a given 
compartment reflect substitution for other compartments at constant body size, rather 
than effects of absolute volume.24,25 Observed associations for higher GFAT-adj 
reflect variation in gluteofemoral fat relative to other compartments, rather than direct 
evidence for beneficial properties of GFAT itself. These cross-sectional associations 
remained significant in models including interaction terms with BMI (Figure 3g) and 
were also evident in normal-weight individuals. 
LFF-adj was positively associated with hypertension (OR = 1.07, 95% CI 1.04–1.09), 
type 2 diabetes (OR = 1.28, 95% CI 1.24–1.32), and hyperlipidemia (OR = 1.07, 95% 
CI 1.04–1.09) (Figure 3e). In BMI-stratified models, an inverse association with 
hyperlipidemia was observed in normal-weight individuals, indicating potential 
variation by BMI category in these associations (Figure 3g). Muscle-adj showed 
inverse associations with several diseases/clinical conditions: type 2 diabetes (OR = 
0.87, 95% CI 0.84–0.92), heart failure (OR = 0.85, 95% CI 0.76–0.95), and 
hypertension (OR = 0.95, 95% CI 0.92–0.97) (Figure 3d). 
Non-cardiometabolic associations followed similar trends. Gout was associated with 
higher ASAT-adj, VAT-adj, muscle-adj, and LFF-adj, and lower GFAT-adj. 
Osteoporosis showed opposing associations with VAT-adj (OR = 1.25, 95% CI 1.15–
1.37) and muscle-adj (OR = 0.82, 95% CI 0.75–0.90). Back pain was modestly less 
common with higher ASAT-adj (OR = 0.95, 95% CI 0.92–0.98), GFAT-adj (OR = 
0.94, 95% CI 0.91–0.97), and muscle-adj (OR = 0.92, 95% CI 0.89–0.95). 
Distinct disease-specific body composition phenotypes were observed. Individuals 
with type 2 diabetes had elevated VAT-adj (+0.45�±�1.31), reduced GFAT-adj (–
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0.45�±�1.18), and elevated LFF-adj (+0.60�±�1.61). Hypertensive individuals had 
higher VAT-adj (+0.20�±�1.19) and slightly lower GFAT-adj (–0.11�±�1.07), 
compared to healthy participants (VAT-adj: –0.16�±�0.86; GFAT-adj: 
+0.07�±�1.00) (Table 4). Based on these patterns, we defined an “unfavorable” 
body composition profile as +1 SD in ASAT-adj, VAT-adj, and LFF-adj, and –1 SD in 
GFAT-adj and muscle-adj. Predicted clinical conditions across age are shown for 
mean and unfavorable phenotypes in Figure 4d–f. 
 
Associations between body composition phenotypes and cancer prevalence 
The relationship between body composition and cancer was evaluated in UKB 
participants with available diagnosis data. Associations were estimated per 1 SD 
higher compartment volume, adjusted for age, sex, height, and BMI, reflecting 
differences in fat and muscle distribution among individuals with similar body size. 
Higher VAT-adj was associated with slightly higher cancer prevalence (OR = 1.06, 
95% CI 1.00–1.11, p = 0.036; Figure 3c). This association was evident in women (OR 
= 1.12, 95% CI 1.05–1.21, p = 0.0012), with no significant association in men 
(Supplementary Figure S5). GFAT-adj was not related to cancer in the full sample 
(OR = 1.01, 95% CI 0.95–1.06, p = 0.80), but showed a positive association in 
women (OR = 1.09, 95% CI 1.01–1.17, p = 0.027). Muscle-adj was inversely 
associated with cancer prevalence overall (OR = 0.94, 95% CI 0.89–0.99, p = 0.022), 
with this association largely driven by men (OR = 0.91, 95% CI 0.85–0.99, p = 0.026). 
LFF-adj was not significantly associated with cancer (OR = 1.02, 95% CI 0.97–1.07, 
p = 0.46). 
Participants with cancer exhibited modest differences in adjusted body composition 
parameters compared to healthy controls (Table 4), including slightly higher VAT-adj 
(–0.01�±�1.01 vs. –0.16�±�0.86) and ASAT-adj (+0.02�±�0.97 vs. –
0.01�±�0.96). GFAT-adj was similar between groups (+0.03�±�1.02 in cancer vs. 
+0.07�±�1.00 in controls), and muscle-adj was identical (–0.08�±�0.96 in both 
groups). Sex-stratified analyses further revealed that, at a given BMI, women with 
cancer had higher visceral adipose tissue than controls, while men with cancer had 
lower trunk muscle volume, suggesting sex-specific shifts in body composition 
(Supplementary Table S6).  
Age-stratified models showed pronounced sex differences in predicted cancer 
prevalence (Table 5). In men, prevalence increased from 1.49% (95% CI 0.49–3.63) 
at ages 20–40 to 15.42% (95% CI 7.65–30.05) at ages 61–80. In women, 
corresponding estimates were 5.90% (95% CI 3.54–9.03) and 14.58% (95% CI 
10.46–20.81), resulting in a female-to-male ratio of 3.95 in early adulthood that 
declined with age. This pattern coincided with age-related increases in VAT, 
particularly among men (Table 3), although causality cannot be inferred from these 
cross-sectional data. 
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Discussion 
Adipose tissue distribution, rather than BMI, is associated with cardiometabolic and 
cancer prevalence, as revealed by our comprehensive MRI analysis of 45,851 
participants across two European cohorts. Elevated VAT was consistently associated 
with prevalence of cardiometabolic conditions even in normal-weight individuals, with 
significantly higher odds of conditions like coronary artery disease, hypertension, and 
type 2 diabetes.  
By contrast, GFAT was inversely associated with multiple conditions. However, given 
that associations were estimated at a constant body size, these findings may also 
reflect a redistribution of fat from visceral compartments rather than a depot-specific 
protective effect of gluteofemoral fat. Utilizing a fully automated deep-learning 
pipeline, we generated volumetric measurements in approximately one minute per 
scan, demonstrating the feasibility of scalable and reproducible body composition 
biomarkers for population-level research and risk stratification. Characteristic body 
composition phenotypes were identified for specific diseases; for example, patients 
with diabetes exhibited elevated VAT, reduced GFAT, and increased liver fat, adjusted 
for BMI. 
The distinct associations of VAT and GFAT with prevalence of clinical conditions 
observed in our analysis support previously described biological differences between 
these adipose depots in smaller clinical and experimental studies. VAT exerts 
adverse cardiometabolic effects through well-documented mechanisms involving 
insulin resistance, dyslipidaemia, and chronic systemic inflammation.26-34 Our results 
further indicate that, among adults of similar BMI, those with relatively higher GFAT 
and lower VAT have a lower prevalence of cardiometabolic conditions. While these 
observations align with mechanistic hypotheses regarding metabolic buffering and 
depot-specific adipokine secretion,35 our study underscores the importance of fat 
distribution for individuals of similar body size, rather than effects of absolute 
changes in single depots. 
Similarly, trunk muscle volume showed inverse associations with the prevalence of 
cardiometabolic conditions after adjustment for age and BMI, with lower odds of type 
2 diabetes, among others, likely reflecting variation in muscle mass at a given body 
size. This inverse association hints at muscle tissue's critical functions in glucose 
homeostasis, insulin sensitivity, and inflammatory modulation.35 Associations were 
more pronounced in men, whereas in women, associations were primarily observed 
for musculoskeletal conditions such as osteoporosis and back pain. These findings 
underscore the potential clinical relevance of preserved muscle mass through 
improved glucose disposal, anti-inflammatory effects, and mechanical loading.36,37  
Cancer-related findings from UKB add to existing evidence that body composition is 
associated with differences in cancer prevalence. With MRI phenotyping, we 
identified sex-specific associations not captured by BMI. Higher VAT-adj was 
associated with increased cancer prevalence in women, with no such association in 
men. This female-specific pattern may reflect differences in hormonal, adipokine, or 
inflammatory profiles.38 While GFAT-adj was inversely associated with prevalence of 
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cardiometabolic conditions, it showed a positive association with cancer prevalence 
in women, suggesting that adipose tissue distribution may reflect sex-specific 
variation in cancer susceptibility patterns. Muscle-adj was inversely associated with 
cancer prevalence in men, while no association was observed in women, suggesting 
sex-specific metabolic or inflammatory contributions. 
Disease-specific body composition phenotypes provided additional nuance to our 
understanding of pathophysiological relationships. Cardiometabolic conditions 
exhibited pronounced deviations in body composition parameters, while cancer 
patients showed more subtle alterations that varied by sex. These MRI-derived 
phenotypes may improve clinical stratification beyond traditional anthropometric 
measures.39,40 Age- and sex-stratified models also revealed clinically relevant 
patterns. For example, women with high VAT and low muscle mass reached 
hyperlipidaemia prevalence nearly a decade earlier than men with average body 
composition phenotypes. Such observations support the added value of regional 
body composition phenotyping for clinical risk assessment and highlight the 
heterogeneity of disease burden within BMI categories. 
Our analysis of age-related changes in body composition revealed differential 
trajectories by sex and tissue type. VAT accumulation increased with age, particularly 
in men, while GFAT was relatively preserved or declined modestly. These shifts 
paralleled age-related patterns of prevalence of clinical conditions and underscore 
the importance of longitudinal assessment of body composition. Physical activity 
showed a non-linear association with VAT and muscle mass, with the greatest 
benefits observed at moderate activity levels and diminishing additional effects at 
high activity levels. These findings may inform targeted interventions to mitigate age-
related shifts in body composition associated with prevalence of clinical conditions. 
Altogether, these findings emphasize critical limitations of BMI as an obesity metric, 
as it fails to differentiate metabolically detrimental visceral fat from protective 
subcutaneous fat compartments or beneficial muscle mass. Our results demonstrate 
that, among individuals with comparable BMI, substantial heterogeneity in disease 
prevalence is explained by differences in regional fat and muscle distribution. 
Normal-weight individuals with high VAT showed comparable prevalence of clinical 
conditions to those with obesity, while those with obesity but lower VAT and 
preserved muscle mass showed lower observed prevalence of clinical conditions.41,42 
MRI-derived body composition phenotypes were cross-sectionally associated with 
cardiometabolic and cancer prevalence, independent of traditional anthropometric 
and behavioural covariates, enabling more granular characterization of adiposity-
related disease patterns. The observed heterogeneity within BMI categories 
highlights the potential value of MRI-based phenotyping for refining current obesity 
classification systems and for characterizing prevalence of clinical conditions in 
epidemiologic research.  
This study has limitations. The observational, cross-sectional design inherently limits 
any inference regarding directionality or causality. Reverse causation is possible, 
particularly for conditions such as cancer or heart failure, where disease may 
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influence body composition. Selection biases due to voluntary participation may 
influence representativeness, with both cohorts comprising predominantly middle-
aged individuals of European descent from urban environments. Despite rigorous 
harmonization efforts, residual methodological differences between cohorts could 
affect comparability. While MRI provides accurate body composition quantification, 
clinical implementation depends on the widespread availability and accessibility of 
imaging resources. Future research should prospectively validate these findings, 
evaluate cost-effectiveness, and explore longitudinal body composition changes 
alongside functional metrics. Since all associations observed in this study were 
adjusted for BMI and height, they reflect variation in fat and muscle distribution at a 
constant body size and should be interpreted as reflecting differences in fat and 
muscle distribution, rather than the effect of absolute compartment size.  
Our findings demonstrate the utility of MRI-based body composition phenotyping for 
epidemiological surveillance and stratification of prevalence of clinical conditions. 
Regional adiposity and muscle phenotypes were distinctly associated with 
cardiometabolic and cancer conditions across BMI strata, offering greater granularity 
than conventional anthropometric measures. While causal inference is limited by the 
cross-sectional design, these results provide a basis for hypothesis generation and 
support prospective studies to assess whether modifying specific body composition 
compartments improves clinical conditions in interventional or longitudinal settings. 

Methods 
This study was conducted under data access applications NAKO-836 and UKB-
34479 for the German National Cohort and UK Biobank, respectively. The full 
protocols for NAKO and UKB are available online (NAKO: https://nako.de/wp-
content/uploads/NAKO-Wissenschaftliches-Konzept.pdf; UKB: 
https://www.ukbiobank.ac.uk/media/gnkeyh2q/study-rationale.pdf). Informed consent 
was obtained from all participants from NAKO and UKB. In addition, we received 
local IRB approval (2024-479-S-SB). 
 
Study cohorts 
Data for this study were derived from the NAKO and UKB cohorts, with participant 
selection outlined in Supplementary Figure S8. 
The NAKO is a population‐based, multi-centric, prospective study of 205,217 
individuals aged 19–74 years. Data collection for the baseline examination was 
performed between 2014 and 2019 at 18 study centers.21,43 Whole‐body 3T MRI 
scans were acquired for 30,861 participants at five dedicated centres across 
Germany using identical Magnetom Skyra scanners (Siemens Healthineers, 
Erlangen, Germany). MRI and outcome data were available for 30,397 participants. 
For body composition assessment, in-phase gradient echo (GRE) images were 
processed by stitching together four separate image sections using an in-house tool.  
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Participants were excluded if required GRE image types (in-phase, out-of-phase, fat-
only, water-only) or expected partition numbers (4 for NAKO) were missing, or if 
image dimensions were inconsistent. Next, 137 participants with liver fat fraction 
(LFF) > 0.6 over larger regions, indicative of fat–water swap artifacts, were excluded. 
Following additional exclusions due to missing anthropometric (n = 1), disease status 
(n = 787), or health behaviour data (n = 2,237), 26,877 individuals (14,969 males and 
11,908 females) were included in the final analysis. 
The UKB is a large-scale biomedical database consisting of over 500,000 
participants aged 40–69 years, with baseline data collected between 2006 and 2010. 
For this study, MRI imaging and outcome data from 19,512 participants scanned at 
two imaging centres were available. Dixon images (in-phase GRE) were processed 
by stitching together six separate image sections using an in-house tool. We 
excluded 91 participants for incorrect image structure or dimension, and 257 with LFF 
> 0.6 due to fat–water swap artifacts. A further 190 were excluded for missing health 
behaviour data, resulting in 18,974 participants (9,094 males and 9,880 females) in 
the final dataset. 
 
Classification of health behaviours and clinical conditions 
Classification was implemented to standardize the assessment of health behaviour 
indicators, covariates, and clinical condition outcomes across datasets. In the NAKO 
cohort, hand grip strength was measured as the maximum isometric grip strength 
value of at least two measurement values using a JamarPlus+ hand dynamometer 
(Sammons Preston, Rolyon, Bolingbrook, IL, USA), while physical activity was 
quantified using self-reported weekly metabolic equivalent of task (MET) minutes. 
Based on the minimum recommendations from the World Health Organization (WHO, 
2021) and evidence indicating benefits beyond, physical activity was categorized into 
four levels: insufficient (<600 MET minutes/week), sufficient (600–999 MET 
minutes/week), moderate (1000–2999 MET minutes/week), and high (≥3000 MET 
minutes/week). For UKB participants, data on lifestyle factors, including smoking 
status and alcohol intake frequency, were available and incorporated to analyze their 
influence on body composition. 
Clinical condition classification focused on key metabolic and cardiovascular 
diseases (coronary artery disease, type 2 diabetes, hypertension), cancer, as well as 
related risk factors and clinical traits such as hyperlipidemia, osteoporosis, and back 
pain. For NAKO participants, coronary artery disease (CAD) was defined based on a 
self-reported history of heart attack, known constriction of the coronary arteries, or 
angina pectoris. Type 2 diabetes was identified either through self-report or, for 
NAKO participants, by an HbA1c level of ≥6.5% measured within three months prior 
to imaging. Hyperlipidemia was classified using self-reported data on high cholesterol 
(UKB), and high cholesterol or triglycerides (NAKO). Additional laboratory thresholds 
were applied for NAKO participants not currently on lipid-lowering medication: total 
cholesterol ≥240 mg/dl, LDL cholesterol ≥160 mg/dl, or triglycerides ≥200 mg/dl. 
Other clinical conditions, such as hypertension, osteoporosis, and back pain, were 
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classified based on self-reported medical history collected during participant 
assessment. Data regarding history of cancer was only available in UKB participants. 
Cancer status in UKB was determined from self-report and linked health records 
(ICD-10 codes C00–C97). For clarity, we use the term ‘clinical condition’ throughout 
this manuscript to encompass both diagnosed diseases (e.g., coronary artery 
disease, type 2 diabetes, cancer) and related risk factors or clinical traits (e.g., 
hyperlipidemia, back pain, osteoporosis) as defined in the study cohorts. 
 
Deep learning-based segmentation of body composition parameters 
Body composition parameters were extracted using MRSegmentator44, which was 
extended to include segmentations for SAT, ASAT, GFAT, VAT, and trunk 
musculature. ASAT was delineated from the top of the T9 vertebra to the top of the 
gluteus maximus dorsally and the pubic symphysis ventrally, with the posteroanterior 
boundary defined by the iliac bone. GFAT was segmented continuously from the 
ASAT down to the knee joint line to capture lower body fat distribution. 
Segmentation used an nn-U-Net with a learning rate of 3 × 10⁻�, 1,000 epochs, a 
patch size of 192 × 192 × 64 voxels and on-the-fly affine, elastic and gamma-intensity 
augmentations. It was validated using 5-fold cross-validation (VAT Dice 0.83 ± 0.09, 
GFAT Dice 0.95 ± 0.03). 
We employed a human-in-the-loop training strategy. Initially, 20 manually segmented 
MRIs per cohort (NAKO and UKB; 40 total) were used to train a preliminary nnU-Net 
model.45 These scans were selected to reflect variation in body habitus and image 
quality. The model was then applied to additional scans, with pre-segmentations 
manually corrected and used for retraining. Additionally, UKB in-phase annotations 
were registered to the corresponding opposed-phase, fat-only, and water-only 
images to enable full multi-sequence generalizability. In total, 250 curated 
segmentations (50 NAKO, 200 UKB) were used for final model development. This 
iterative approach enabled efficient expansion of the training set while improving 
generalizability. 
Voxel volumes of segmented tissues were extracted for further analysis, and liver fat 
fractions (LFF) were calculated from fat-only and water-only signal intensities.46,47  
Fat–water swap artifacts were not corrected algorithmically. Instead, scans with LFF 
≥ 0.6 over larger liver regions were excluded following visual confirmation. When 
smaller regions exceeded this threshold, these were masked to prevent bias in LFF 
estimation. 
Systematic spot checks were performed to assess segmentation quality, focusing on 
anatomical plausibility and outlier volumes. A total of 76 participants (<0.2%) were 
excluded due to segmentation anomalies, including truncated anatomy or 
misregistration. These errors were randomly distributed across scanners and cohorts, 
with no evidence of systematic bias. 
 
Data processing and statistical analysis 
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Data were harmonised with ComBat,48,49 modelling scanner vendor, field strength 
and echo time as batch variables while preserving age, sex and BMI as biological 
covariates (Supplementary Figure S9). Participants with missing covariate or 
outcome data were excluded listwise from each model. No imputation was 
performed. Individual muscle compartments were separately assessed as illustrated 
in Supplementary Figure S10. Participants with missing covariate or outcome data 
were excluded from the respective models; no imputation was applied. 
Linear mixed-effects models were used to examine associations between lifestyle 
factors and MRI-derived body composition parameters. In these models, fixed effects 
included z-standardized age, height, and BMI, sex (in combined analyses), along with 
z-standardized maximum hand grip strength and physical activity levels for the NAKO 
cohort or smoking status and alcohol intake frequency for the UKB cohort. The 
imaging centre was incorporated as a random effect to account for site-specific 
variability. 
To investigate body composition independent of age, height, BMI, and sex (in 
combined analyses), adjusted body composition parameters were derived from the 
residuals of respective linear regression models. To assess associations between 
body composition and status of clinical conditions, generalized linear mixed-effects 
models were employed. These models included the adjusted body composition 
parameters, age, BMI, and sex (in combined analyses) as fixed effects, with the 
imaging centre again modelled as a random effect. From these models, odds ratios 
and predicted prevalences were calculated to describe cross-sectional associations 
with clinical conditions.  
P-values for fixed effects of all models were derived using Wald z-statistics, 
calculated as the ratio of each coefficient estimate to its standard error, assuming 
asymptotic normality. 
Because BMI and height were included as covariates in all models, effect estimates 
for body composition compartments should be interpreted as reflecting differences in 
regional fat and muscle distribution for individuals with similar body size, rather than 
as effects of absolute changes in a single compartment. Increases in one 
compartment are therefore associated with a redistribution from other compartments 
at constant BMI and height. 
Statistical analyses were performed in R Version 4.4.3 using the package lme450 for 
modelling, ggcorrplot for generating correlation matrices, forestplot and pheatmap for 
visualizing odds ratios, ggeffects51 for computing and plotting marginal predictions, 
and ggbump and fmsb for constructing body composition profile plots. Plots of cohort 
characteristics and harmonized body composition metrics were created using the 
Python package seaborn. 
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Tables 
Table 1: Characteristics of NAKO and UKB participants.  
Dataset NAKO UKB 
Sex Male 

(n = 14,969) 
Female 
(n = 11,908) 

Male 
(n = 9,094) 

Female 
(n = 9,880) 

Age (years) 48 [40, 57] 49 [41, 58] 64 [58, 69] 62 [56, 68] 
Ethnicity     

     White 14,148 
(94.51%) 

11,050 (92.79%) 8,779 (96.54%) 9601 
(97.18%) 

     Not specified 663 (4.43%) 730 (6.13%)   
     Other* 160 (1.07%) 128 (1.07%) 315 (3.46%) 279 (2.82%) 
Weight (kg) 85 [76, 94] 68 [61, 78] 82 [75, 90] 66 [60, 75] 
Height (cm) 179 [174, 184] 166 [161, 170] 177 [173, 182] 163 [159, 168] 
Body mass index (kg/m2) 26.3 [24.1, 

29.1] 
24.8 [22.1, 28.6] 26 [23.9, 28.5] 24.7 [22.4, 

27.9] 
Hand grip strength (kg) 48.7 [43.2, 

54.7] 
30.4 [26.7, 34.2]   

Physical activity (MET min. 
/ week) 

    

     Insufficient (< 600) 2047 (13.67%) 1751 (14.7%)   
     Sufficient (600 – 999) 931 (6.22%) 797 (6.69%)   
     Moderate (1000 – 
2999) 

3770 (25.19%) 2954 (24.81%)   

     High (≥ 3000) 8221 (54.92%) 6406 (53.8%)   
Alcohol     
     Never   489 (5.38%) 720 (7.29%) 
     Special occasions only   589 (6.48%) 1359 

(13.76%) 
     One to three times a 
month 

  864 (9.5%) 1361 
(13.78%) 

     Once or twice a week   2373 (26.09%) 2736 
(27.69%) 

     Three or four times a 
week 

  2903 (31.92%) 2413 
(24.42%) 

     Daily or almost daily   1876 (20.63%) 1291 
(13.07%) 

Smoking     
     Never   5265 (57.9%) 6532 

(66.11%) 
     Previous   3414 (37.54%) 3021 

(30.58%) 
     Current   415 (4.56%) 327 (3.31%) 
Body composition 
metrics 

    

Subcutaneous adipose 
tissue (L) 

12.67 [9.58, 
16.43] 

17.79 [13.42, 
23.49] 

11.31 [8.65, 
14.64] 

17.79 [13.42, 
23.49] 

Abdominal subcutaneous 
adipose tissue (L) 

3.98 [2.78, 
5.55] 

4.50 [2.99, 6.63] 3.47 [2.54, 4.77] 4.44 [3.11, 
6.26] 

Gluteofemoral adipose 
tissue (L) 

4.82 [3.69, 
6.26] 

8.69 [6.81, 
11.12] 

4.16 [3.13, 5.55] 7.75 [5.93, 
10.06] 

Visceral adipose tissue (L) 2.69 [1.43, 
4.14] 

1.06 [0.59, 2.00] 3.10 [2.03, 4.38] 1.47 [0.98, 
2.28] 

Total trunk muscle volume 
(L) 

6.38 [5.82, 
7.00] 

4.74 [4.34, 5.21] 6.21 [5.57, 6.91] 4.40 [3.97, 
4.87] 

Liver fat fraction (%) 7.45 [5.95, 
10.87] 

5.75 [4.71, 7.64] 8.44 [7.29, 
10.65] 

7.44 [6.52, 
8.89] 

Disease outcomes     
Cardiovascular     
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Hypertension 3846 (25.69%) 2517 (21.14%) 2618 (28.79%) 1888 
(19.11%) 

CAD 180 (1.20%) 70 (0.59%) 501 (5.51%) 166 (1.68%) 
Heart failure 189 (1.26%) 158 (1.33%) 9 (0.1%) 9 (0.09%) 
Metabolic     
Type 2 diabetes 773 (5.16%) 529 (4.44%) 639 (7.03%) 349 (3.53%) 
Hyperlipidaemia 6937 (46.34%) 4408 (37.02%) 4752 (52.25%) 4473 

(45.27%) 
Gout 781 (5.22%) 199 (1.67%) 270 (2.97%) 18 (0.18%) 
Other     
Cancer   972 (10.69%) 1175 (11.89%) 
Back pain 2854 (19.07%) 2837 (23.82%) 192 (2.11%) 187 (1.89%) 
Osteoporosis 161 (1.08%) 403 (3.38%) 26 (0.29%) 285 (2.88%) 
Note: Continuous variables are shown as median with interquartile range in square brackets. Number of 
participants corresponding to a specific group are shown with relative abundance in percent. 
* Other ethnicities specified in Supplementary Tables S1 and S2 
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Table 2: Dice Similarity Coefficients (DSC) for all classes.  
We used 5-fold participant-stratified cross validation on UKB Dixon in-phase, opposed-phase, water-
only and fat-only (in, opp, W, F) as well as NAKO T2-HASTE data (T2). Classes are subcutaneous 
adipose tissue (SAT), abdominal subcutaneous adipose tissue (ASAT), gluteofemoral adipose tissue 
(GFAT), visceral adipose tissue (VAT), left and right rectus abdominis muscle (RAM), left and right 
lateral abdominal muscles (LAM), left and right quadratus lumborum muscle (QLM). GFAT is not 
included in the NAKO T2-HASTE sequences, so the values are for the UKB data only. The table 
shows the mean DSC ± standard deviation. 
 

 
SAT ASAT GFAT VAT RAM 

(L) 

RAM 

(R) 

LAM 

(L) 

LAM 

(R) 

QLM 

(L) 

QLM 

(R) 

Avera

ge 

F 0.93 ± 
0.05 

0.95 ± 
0.03 

0.96 ± 
0.02 

0.85 ± 
0.11 

0.86 ± 
0.10 

0.88 ± 
0.09 

0.92 ± 
0.04 

0.93 ± 
0.03 

0.86 ± 
0.10 

0.88 ± 
0.07 

0.90 ± 
0.07 

T2 

0.96 ± 
0.02 

0.96 ± 
0.03 

 
- 

0.90 ± 
0.05 

0.91 ± 
0.04 

0.91 ± 
0.05 

0.95 ± 
0.02 

0.95 ± 
0.03 

0.92 ± 
0.09 

0.92 ± 
0.06 

0.93 ± 
0.04 

W 0.92 ± 
0.05 

0.94 ± 
0.03 

0.95 ± 
0.02 

0.81 ± 
0.11 

0.85 ± 
0.10 

0.86 ± 
0.10 

0.91 ± 
0.04 

0.92 ± 
0.03 

0.85 ± 
0.11 

0.87 ± 
0.08 

0.89 ± 
0.07 

in 0.95 ± 
0.02 

0.95 ± 
0.02 

0.97 ± 
0.01 

0.89 ± 
0.06 

0.89 ± 
0.09 

0.90 ± 
0.08 

0.93 ± 
0.03 

0.94 ± 
0.03 

0.87 ± 
0.10 

0.89 ± 
0.07 

0.92 ± 
0.05 

opp 0.93 ± 
0.05 

0.94 ± 
0.03 

0.96 ± 
0.02 

0.81 ± 
0.13 

0.84 ± 
0.10 

0.86 ± 
0.10 

0.91 ± 
0.04 

0.91 ± 
0.03 

0.85 ± 
0.10 

0.87 ± 
0.08 

0.89 ± 
0.07 

Aver
age 

0.94 ± 
0.04 

0.95 ± 
0.03 

0.96 ± 
0.02 

0.85 ± 
0.10 

0.87 ± 
0.09 

0.88 ± 
0.09 

0.92 ± 
0.04 

0.93 ± 
0.03 

0.87 ± 
0.10 

0.88 ± 
0.07 

0.91 ± 
0.06 
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Table 3: Body composition distribution by sex, age, and BMI category. Table 3 integrates both 
BMI and age effects on body composition, providing a complete overview of the primary determinants 
of fat and muscle distribution. The table highlights how body fat compartments differ markedly 
between sexes, change systematically with aging, and vary across BMI categories. Panel A presents 
pooled median values and interquartile ranges (IQR) categorized by sex and BMI category based on 
harmonized data from the UK Biobank (UKB) and German National Cohort (NAKO). Panel B presents 
median and IQR by sex and age group. Panel C summarizes relative age-related changes and sex-
specific ratios, showing percentage changes from early to late adulthood (20–30 years to 60–70 years) 
and female-to-male ratios in early and late adulthood. 
 

A. Body composition by sex and BMI category 
Sex BMI 

Category 
ASAT (L) GFAT 

(L) 
VAT (L) Muscle 

(L) 
LFF (%) Total SAT 

(L) 
Female Normal 

n = 11440 
3.15 [2.27, 
4.00] 

6.74 
[5.44, 
8.11] 

0.83 
[0.58, 
1.20] 

4.27 
[3.94, 
4.59] 

5.90 
[4.72, 
7.26] 

13.49 
[10.93, 
15.94] 

 Overweight 
n = 6569 

5.68 [4.82, 
6.61] 

9.63 
[8.04, 
11.17] 

1.72 
[1.21, 
2.35] 

4.81 
[4.48, 
5.15] 

7.05 
[6.03, 
8.88] 

20.86 
[18.56, 
23.25] 

 Obese 
n = 3779 

9.00 [7.64, 
10.86] 

13.07 
[11.01, 
15.24] 

2.96 
[2.25, 
3.74] 

5.54 
[5.14, 
5.99] 

9.17 
[7.27, 
14.31] 

29.79 
[26.51, 
34.04] 

Male Normal 
n = 8706 

2.46 [1.82, 
3.11] 

3.37 
[2.63, 
4.21] 

1.50 
[0.96, 
2.28] 

5.66 
[5.23, 
6.09] 

6.56 
[5.43, 
7.99] 

8.57 
[6.82, 
10.35] 

 Overweight 
n = 10964 

4.16 [3.38, 
5.07] 

4.86 
[3.96, 
5.89] 

3.26 
[2.36, 
4.19] 

6.48 
[6.06, 
6.93] 

8.23 
[6.94, 
10.92] 

13.08 
[11.13, 
15.26] 

 Obese 
n = 4393 

7.02 [5.7, 
8.84] 

7.37 
[6.02, 
9.09] 

5.21 
[4.20, 
6.31] 

7.45 
[6.94, 
7.99] 

12.03 
[8.97, 
18.28] 

20.10 
[17.05, 
23.97] 

B. Body composition by sex and age group 

Female 20-30 years 
n = 1389 

3.43 [2.32, 
5.35] 

8.35 
[6.75, 
10.74] 

0.58 
[0.43, 
0.90] 

4.66 
[4.29, 
5.07] 

4.55 
[3.97, 
5.35] 

15.11 
[11.67, 
20.4] 

 40-50 years 
n = 4442 

4.31 [2.84, 
6.46] 

8.74 
[6.82, 
11.16] 

0.99 
[0.61, 
1.75] 

4.77 
[4.34, 
5.27] 

5.72 
[4.78, 
7.19] 

17.52 
[13.15, 
23.26] 

 60-70 years 
n = 6632 

4.71 [3.32, 
6.53] 

7.92 
[6.05, 
10.27] 

1.62 
[1.03, 
2.53] 

4.47 
[4.05, 
4.94] 

7.52 
[6.47, 
9.37] 

17.62 
[13.54, 
23.02] 

Male 20-30 years 
n = 1880 

2.87 [1.83, 
4.53] 

4.74 
[3.36, 
6.46] 

1.03 
[0.69, 
1.82] 

6.21 
[5.69, 
6.80] 

5.36 
[4.64, 
6.52] 

10.30 
[7.11, 
14.74] 

 40-50 years 
n = 5253 

4.03 [2.89, 
5.68] 

4.88 
[3.75, 
6.38] 

2.71 
[1.62, 
3.99] 

6.48 
[5.92, 
7.12] 

7.38 
[6.14, 
10.41] 

12.76 
[9.78, 
16.66] 

 60-70 years 
n = 6702 

3.77 [2.72, 
5.09] 

4.31 
[3.28, 
5.70] 

3.46 
[2.21, 
4.78] 

6.21 
[5.61, 
6.85] 

8.69 
[7.38, 
11.82] 

12.04 
[9.22, 
15.44] 

C. Age and sex effects 
Metric Age Effect 

Female 
Age Effect Male Sex Effect Young 

Adult F/M 
Sex Effect Older 
Adult F/M Ratio 

ASAT 1.37 1.31 1.20 1.25 

GFAT 0.95 0.91 1.76 1.84 
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VAT 2.79 3.36 0.56 0.47 

Muscle 0.96 1.00 0.75 0.72 

LFF 1.65 1.62 0.85 0.87 

Total 
SAT 

1.17 1.17 1.47 1.46 

Note: Values in Panel A and B represent median volumes and interquartile ranges (IQR). In Panel C, age effects 
represent relative changes from age 20-30 to age 60-70, and sex effects represent female-to-male ratios in the 
20-30 and 60-70 age group respectively. ASAT = abdominal subcutaneous adipose tissue; GFAT = gluteofemoral 
adipose tissue; VAT = visceral adipose tissue; LFF = liver fat fraction; Total SAT = total subcutaneous adipose 
tissue. 
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Table 4. Body composition Z-scores by clinical condition. This table presents mean Z-scores of 
adjusted body composition parameters (abdominal subcutaneous adipose tissue [ASAT], 
gluteofemoral adipose tissue [GFAT], visceral adipose tissue [VAT], trunk muscle volume, and liver fat 
fraction [LFF]) across multiple clinical conditions, as determined in the provided dataset. Each row 
corresponds to a specific disease/condition category, listing the number of individuals (n), followed by 
the mean Z-score and standard deviation (with standard error in parentheses) for each parameter. 
Positive Z-scores indicate higher relative values compared to the average total population, whereas 
negative values indicate lower relative values.  
 

Clinical 
Condition 

n Mean Z-Scores 

  ASAT adj. GFAT adj. VAT adj. Muscle adj. LFF adj. 

Cardiovascular       

CAD 917 -0.09 ± 
1.06 (0.03) 

-0.07 ± 0.96 
(0.03) 

0.23 ± 1.29 
(0.04) 

0.01 ± 1.09 
(0.04) 

0.06 ± 1.25 
(0.04) 

Heart failure 365 0.04 ± 1.09 
(0.06) 

0.00 ± 1.22 
(0.06) 

0.20 ± 1.13 
(0.06) 

-0.12 ± 1.01 
(0.05) 

0.12 ± 1.16 
(0.06) 

Hypertension 10,869 0.02 ± 1.11 
(0.01) 

-0.11 ± 1.07 
(0.01) 

0.20 ± 1.19 
(0.01) 

0.02 ± 1.09 
(0.01) 

0.13 ± 1.29 
(0.01) 

Metabolic       

Diabetes 2,290 -0.05 ± 
1.25 (0.03) 

-0.45 ± 1.18 
(0.02) 

0.45 ± 1.31 
(0.03) 

0.05 ± 1.17 
(0.02) 

0.60 ± 1.61 
(0.03) 

Hyperlipidaemia 20,570 0.04 ± 1.02 
(0.01) 

-0.10 ± 1.00 
(0.01) 

0.16 ± 1.05 
(0.01) 

0.07 ± 1.02 
(0.01) 

0.10 ± 1.14 
(0.01) 

Gout 1,268 -0.04 ± 
1.21 (0.03) 

-0.19 ± 1.04 
(0.03) 

0.41 ± 1.30 
(0.04) 

0.14 ± 1.17 
(0.03) 

0.36 ± 1.44 
(0.04) 

Other       

Back pain 6,070 -0.03 ± 
1.03 (0.01) 

-0.05 ± 1.04 
(0.01) 

0.03 ± 1.02 
(0.01) 

-0.02 ± 0.98 
(0.01) 

0.03 ± 1.07 
(0.01) 

Cancer 2,147 0.02 ± 0.97 
(0.02) 

0.03 ± 1.02 
(0.02) 

-0.01 ± 1.01 
(0.02) 

-0.08 ± 0.96 
(0.02) 

0.01 ± 1.03 
(0.02) 

Osteoporosis 875 0.11 ± 0.87 
(0.03) 

0.04 ± 1.01 
(0.03) 

0.09 ± 0.91 
(0.03) 

-0.05 ± 0.82 
(0.03) 

0.10 ± 1.04 
(0.04) 

Reference       

Healthy 6,393 -0.01 ± 
0.96 (0.01) 

0.07 ± 1.00 
(0.01) 

-0.16 ± 0.86 
(0.01) 

-0.08 ± 0.96 
(0.01) 

-0.05 ± 0.82 
(0.01) 

Note: Values represent mean ± standard deviation with standard error in parentheses. Positive values indicate 
higher relative values compared to the total population. ASAT = abdominal subcutaneous adipose tissue; GFAT = 
gluteofemoral adipose tissue; VAT = visceral adipose tissue; LFF = liver fat fraction; adj. = adjusted.  
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Table 5. Predicted prevalence of cardiometabolic, cancer, and related clinical conditions by sex 
and age. This table presents the predicted prevalence of cardiometabolic, cancer, and related clinical 
conditions for three age groups (20–40, 41–60, 61–80 years) in females and males.  
 

Clinical Condition Sex Age Group Predicted 
Prevalence (%) 

Sex Ratio (F/M) 

Cardiovascular 
Conditions 

    

CAD Female 20-40 years 0.23 (0.06–0.65) 0.61 
  41-60 years 0.75 (0.25–1.99) 0.47 
  61-80 years 2.40 (0.86–6.90) 0.38 
 Male 20-40 years 0.37 (0.09–1.19) 1.00 
  41-60 years 1.59 (0.43–4.73) 1.00 
  61-80 years 6.33 (1.87–18.17) 1.00 
Hypertension Female 20-40 years 9.55 (3.62–20.77) 0.68 
  41-60 years 23.29 (10.34–42.89) 0.74 
  61-80 years 45.75 (24.85–68.59) 0.82 
 Male 20-40 years 14.03 (5.71–28.28) 1.00 
  41-60 years 31.58 (15.52–52.83) 1.00 
  61-80 years 55.83 (34.23–76.33) 1.00 
Metabolic Conditions     
Diabetes Female 20-40 years 2.66 (1.10–5.40) 1.24 
  41-60 years 4.35 (1.97–8.58) 0.63 
  61-80 years 6.96 (3.20–13.99) 0.37 
 Male 20-40 years 2.15 (0.40–6.65) 1.00 
  41-60 years 6.87 (1.53–19.04) 1.00 
  61-80 years 18.92 (5.08–45.10) 1.00 
Hyperlipidaemia Female 20-40 years 24.65 (11.13–44.21) 0.58 
  41-60 years 47.90 (27.47–69.26) 0.85 
  61-80 years 71.60 (51.72–86.63) 1.04 
 Male 20-40 years 42.85 (27.61–59.48) 1.00 
  41-60 years 56.32 (40.53–71.70) 1.00 
  61-80 years 68.65 (53.88–81.54) 1.00 
Other Conditions     
Osteoporosis Female 20-40 years 0.67 (0.17–2.09) 1.68 
  41-60 years 2.99 (0.86–8.53) 2.74 
  61-80 years 11.90 (3.79–30.04) 4.13 
 Male 20-40 years 0.40 (0.09–1.44) 1.00 
  41-60 years 1.09 (0.29–3.72) 1.00 
  61-80 years 2.88 (0.79–10.03) 1.00 
Cancer Female 20-40 years 5.90 (3.54–9.03) 3.95 
  41-60 years 9.43 (6.37–13.43) 1.86 
  61-80 years 14.58 (10.46–20.81) 0.95 
 Male 20-40 years 1.49 (0.49–3.63) 1.00 
  41-60 years 5.08 (2.06–10.81) 1.00 
  61-80 years 15.42 (7.65–30.05) 1.00 
Note: Mean predicted prevalence was multiplied by 100 and is presented with the smallest lower 
confidence bound and largest upper confidence bound observed in each group. Sex Ratio (F/M) is the 
female mean divided by the male mean prevalence for the matching age range. 
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Figures 

 
Figure 1. Deep learning-based segmentation of body composition from MRI scans. (a) A total of 
26,877 NAKO and 18,974 UKB participants were included based on available imaging, lifestyle 
variables, and outcome data. (b) Histograms and density plots of participants baseline characteristics 
stratified by dataset and sex. (c) Representative segmentation results illustrating subcutaneous 
adipose tissue (SAT), abdominal subcutaneous adipose tissue (ASAT), gluteofemoral adipose tissue 
(GFAT), visceral adipose tissue (VAT), and trunk musculature, including rectus abdominis muscles 
(RAM), lateral abdominal muscles (LAM), and quadratus lumborum muscles (QLM). Segmented liver 
images are shown, including water-only, fat-only, and fat fraction maps. Fat fraction was calculated via 
the ratio of fat signal intensity over combined signal intensity: η = F/(W+F). (d) Dice similarity 
coefficients (DSC) for each segmented tissue class, evaluated using 5-fold participant-stratified cross-
validation. Box plots display the median and interquartile range, with whiskers extending to the 
minimum and maximum values within 1.5 times the IQR, and outliers shown as individual points. The 
model exhibited high segmentation accuracy across most compartments, with DSC values of 0.94 for 
SAT, 0.95 for ASAT, and 0.96 for GFAT (UKB data only as GFAT is not included in NAKO T2-HASTE 
training sequences). VAT segmentation showed the lowest DSC (0.85) likely due to its higher spatial 
complexity. Muscle segmentation was consistent between sides, with DSC values of 0.92/0.93 for 
LAM, and 0.87/0.88 for both RAM and QLM (left/right). 
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Figure 2. Body composition parameters and associations with age, BMI, and health behaviour 
indicators. (a) Age-related patterns in body composition parameters (BCPs), shown as LOESS 
curves with cohort-specific means (black lines) and ±1 standard deviation (shaded areas). (b) 
Correlation matrix of adjusted BCPs (residuals after adjustment for age, height, and BMI), with 
Pearson coefficients presented for men (upper triangle) and women (lower triangle); all correlations 
p�<�0.0001 from two-sided t-tests. (c) Distributions of BCPs by BMI category for men and women, 
displayed as histograms with dashed lines indicating medians. Pearson correlation coefficients 
between each BCP and BMI are shown in the top row. (d) Estimated associations between health 
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behaviour indicators and unadjusted BCP Z-scores, derived from linear mixed-effects models stratified 
by cohort and adjusted for age, height, BMI, sex (if applicable), and available behavioural covariates 
(hand grip strength and physical activity in NAKO; smoking and alcohol intake in UKB). Imaging centre 
was included as a random intercept. All associations reflect cross-sectional patterns and are not 
indicative of causal relationships. 
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Figure 3. Associations between body composition parameters and clinical conditions. (a–e) 
Associations between adjusted body composition parameters (BCPs) and the prevalence of clinical 
conditions, presented as odds ratios (OR) derived from generalized mixed-effects logistic regression 
models. P-values for fixed effects were derived using Wald z-statistics. Models included adjusted 
BCPs, age, BMI, and sex, with imaging centre included as a random effect. Cancer data were 
available only in UKB participants. Colours indicate clinical condition categories. (f) Heatmap of 
average odds ratios for each clinical condition group, based on sex-stratified models (detailed results 
in Supplementary Figure S5). (g) Estimated cross-sectional prevalence of selected conditions across 
adjusted BCP Z-scores, shown for BMI reference values of 20 kg/m² (normal), 27.5 kg/m² 
(overweight), and 35 kg/m² (obese). Estimates are based on marginalized means from sex-stratified 
generalized mixed-effects logistic regression models including interaction terms between BMI and 
each BCP, with imaging centre as a random effect. These models describe prevalence variation and 
should not be interpreted as predictive of future risk. 
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Figure 4. Body composition phenotypes and their associations with prevalence of 
cardiometabolic, cancer, and related clinical conditions. (a–c) Mean Z-scores of adjusted body 
composition parameters (BCPs) for participants with different clinical conditions, displayed using dot-
whisker and spider plots. Values reflect mean (± standard error) adjusted BCP Z-scores for each 
condition. "Healthy" was defined as participants without any of the assessed conditions. (d–f) 
Estimated cross-sectional prevalence of cardiometabolic, cancer, and related clinical conditions across 
age for two standardized body composition phenotypes: “unfavourable” (defined as +1 SD in ASAT, 
VAT, and LFF; –1 SD in GFAT and trunk muscle volume) and “mean” (Z = 0 for all BCPs). Estimates 
are based on marginalized predictions from sex-stratified generalized linear mixed-effects models 
adjusted for age, BMI, and adjusted BCPs, with imaging centre modelled as a random effect. These 
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models describe variation in prevalence, not risk or prognosis. Cancer data were available only in UKB 
participants.  
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Supplementary Results 

We assessed associations between self-reported alcohol intake frequency and 
adjusted body composition parameters in 18,974 UKB participants using linear 
mixed-effects models adjusted for age, height, BMI, and sex (in combined analyses), 
with imaging center as a random effect. Results are presented in Supplementary 
Table S5. 
Alcohol intake showed inverse associations with subcutaneous fat compartments. 
Compared to abstainers, participants consuming alcohol 3–4 times per week had 
lower adjusted ASAT (β = –0.054, 95% CI [–0.080, –0.027], p = 0.0001) and GFAT (β 
= –0.060, 95% CI [–0.090, –0.030], p = 0.0001). A similar inverse association was 
observed for daily alcohol intake. In contrast, VAT and liver fat fraction (LFF) were 
not consistently associated with alcohol frequency. 
Notably, alcohol intake frequency was positively associated with adjusted trunk 
muscle volume, particularly in the 3–4 times per week group (β = 0.093, 95% CI 
[0.073–0.113], p < 0.0001). 
These cross-sectional associations may reflect complex behavioral or health-related 
confounding. Specifically, individuals who abstain from alcohol may represent a 
heterogeneous group that includes former drinkers and individuals with underlying 
health conditions or comorbidities, which could confound associations with muscle 
mass or adiposity. These findings should be interpreted as descriptive associations 
only. Alcohol-related results were not adjusted for potential confounders such as diet, 
education, medication use, or comorbidity burden, limiting interpretability. These 
exploratory analyses therefore require confirmation in longitudinal cohorts. 
 
Supplementary Material and Methods 
 
Deep learning segmentation performance 
Whole-body MRI scans were segmented using MRSegmentator44, a deep learning-
based segmentation tool extended in this study to include additional body 
compartments: subcutaneous adipose tissue (SAT), abdominal subcutaneous 
adipose tissue (ASAT), gluteofemoral adipose tissue (GFAT), visceral adipose tissue 
(VAT), and trunk musculature. Figure 1c illustrates segmentation outputs, showing fat 
depots and musculature including the rectus abdominis (RAM), lateral abdominal 
(LAM), and quadratus lumborum (QLM) muscles. Liver fat fraction (LFF) was 
calculated using fat-only and water-only MRI signal intensities (see lower panel, 
Figure 1c). 
Segmentation accuracy was evaluated using 5-fold participant-stratified cross-
validation with Dice similarity coefficients (DSC) as the primary metric (Figure 1d). 
High segmentation accuracy was achieved for subcutaneous compartments (SAT: 
0.94, ASAT: 0.95, GFAT: 0.96). GFAT segmentation was limited to UKB due to 
superior-inferior truncation in NAKO sequences above the hip. VAT segmentation 
achieved a lower DSC (0.85), reflecting its greater anatomical complexity. Muscle 
segmentations were consistent across sides and imaging protocols (RAM and QLM: 
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0.87–0.88; LAM: 0.92–0.93). Importantly, segmentation quality was comparable 
between T2-HASTE images from NAKO and Dixon-based sequences from UKB 
(Table S1). 
Segmentation failure analysis 
To identify rare failure cases and assess robustness at the extremes, we 
implemented two complementary quality control procedures: volumetric outlier 
inspection and ensemble-based uncertainty estimation. 
For volumetric inspection, we identified the highest and lowest volume segmentations 
for VAT, GFAT, SAT, combined musculature, and liver in both cohorts. Visual review 
confirmed accurate VAT, muscle, and liver segmentations across all extremes. SAT 
was also correctly segmented in low-BMI participants. However, SAT volume was 
underestimated in nine participants with extreme obesity (BMI > 40 kg/m²), where 
body girth exceeded the MRI field of view. GFAT segmentation was consistently 
accurate in UKB. In contrast, in NAKO, several low-volume scans, primarily in very 
lean participants, showed under- or over-segmentation near the thighs, likely due to 
insufficient contrast in the GFAT layer at low fat volumes. 
To further probe segmentation reliability, we used a model-discordance heuristic 
based on the observation by Kofler et al.48,49 that inter-model disagreement correlates 
with segmentation uncertainty. We randomly selected 1,000 participants from each 
cohort to limit computational and environmental costs, then applied two nnU-Net sub-
models trained on different folds. Dice similarity between model outputs was used to 
identify the lowest-agreement cases for manual review. 
Most discrepancies involved subtle boundary shifts between GFAT, SAT, and ASAT, 
where anatomical transitions are gradual and poorly demarcated. These variations 
were deemed acceptable on visual inspection. No systematic errors were observed in 
the UKB cohort. In NAKO, consistent with volumetric findings, the only recurrent 
issue was under-segmentation of GFAT in individuals with very low thigh fat. 
In summary, the segmentation pipeline demonstrated strong performance across 
cohorts and imaging protocols. VAT, SAT, musculature, and liver were segmented 
accurately in nearly all cases. Minor segmentation errors were confined to individuals 
with extreme body composition phenotypes, either due to limited MRI field-of-view in 
high-BMI individuals or model underperformance in underrepresented anatomical 
configurations. These findings confirm that our extended segmentation pipeline is 
robust and suitable for large-scale quantitative body composition analysis. 
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Supplementary Tables 
 
Supplementary Table S1: Additional descriptive statistics of NAKO participants 
 
Dataset NAKO 
Sex Male  

(n = 14,969) 
Female  
(n = 11,908) 

Ethnicity   
     White 14,148 (94.52%) 11050 (92.79%) 
     African 59 (0.39%) 34 (0.29%) 
     Indian 24 (0.16%) 10 (0.08%) 
     Southeast Asian 37 (0.25%) 45 (0.38%) 
     Northeast Asian 12 (0.08%) 15 (0.13%) 
     Japanese 4 (0.03%) 5 (0.04%) 
     South- & Middle American 22 (0.15%) 19 (0.16%) 
     Not specified 663 (4.42%) 730 (6.13%) 
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Supplementary Table S2: Additional descriptive statistics of UKB participants  
 
Dataset UKB 
Sex Male  

(n = 9,094) 
Female  
(n = 9,880) 

Ethnicity   
     White 8,779 (96.5%) 9601 (97.2%) 
     Black 49 (0.5%) 56 (0.6%) 
     South Asian 127 (1.4%) 62 (0.6%) 
     East Asian 25 (0.3%) 38 (0.4%) 
     Other 114 (1.3%) 123 (1.2%) 
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Supplementary Table S3: Pearson correlation coefficients between body composition parameters 

Parameter 1 Parameter 2 Male Female 

ASAT adj. GFAT adj. 0.565 [0.556, 0.573] 0.049 [0.036, 0.063] 

ASAT adj. VAT adj. 0.098 [0.085, 0.110] 0.275 [0.263, 0.287] 

ASAT adj. Muscle adj. -0.398 [-0.409, -0.388] -0.132 [-0.145, -0.119] 

ASAT adj. LFF adj. 0.040 [0.027, 0.052] 0.114 [0.101, 0.127] 

GFAT adj. VAT adj. -0.103 [-0.116, -0.091] -0.337 [-0.349, -0.325] 

GFAT adj. Muscle adj. -0.407 [-0.418, -0.397] -0.376 [-0.388, -0.365] 

GFAT adj. LFF adj. -0.088 [-0.100, -0.075] 

 

-0.233 [-0.245, -0.22] 

VAT adj. Muscle adj. 0.115 [0.102, 0.127] 0.257 [0.245, 0.27] 

VAT adj. LFF adj. 0.350 [0.339, 0.361] 

 

0.427 [0.416, 0.438] 

Muscle adj. LFF adj. 0.048 [0.035, 0.061] 0.119 [0.106, 0.132] 
Note: Values represent Pearson correlation coefficients and 95% confidence intervals between adjusted Z-scores of body 
composition parameters. ASAT = abdominal subcutaneous adipose tissue; GFAT = gluteofemoral adipose tissue; VAT = 
visceral adipose tissue; LFF = liver fat fraction; adj. = adjusted.  
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Supplementary Table S4. NAKO Linear Mixed-Effects Model Coefficient Estimates 
 

Response 
Variable  

(Z-Score) 
ASAT GFAT VAT Muscle LFF 

Predictors Estimates p Estimates p Estimates p Estimates p Estimates p 

(Intercept) 
0.346 

<0.0001 
0.765 

<0.0001 
-0.248 

<0.0001 
-0.287 

<0.0001 
-0.186 

<0.0001 (0.325 –
 0.367) 

(0.711 –
 0.818) 

(-0.279 – -
0.217) 

(-0.316 – -
0.257) 

(-0.234 – -
0.138) 

Standardiz
ed BMI 

0.927 
<0.0001 

0.648 
<0.0001 

0.616 
<0.0001 

0.522 
<0.0001 

0.496 
<0.0001 (0.922 –

 0.932) 
(0.643 –
 0.654) 

(0.609 –
 0.623) 

(0.519 –
 0.526) 

(0.486 –
 0.506) 

Sex [Male] 
-0.577 

<0.0001 
-1.384 

<0.0001 
0.685 

<0.0001 
0.503 

<0.0001 
0.476 

<0.0001 (-0.594 – -
0.560) 

(-1.403 – -
1.365) 

(0.662 –
 0.708) 

(0.490 –
 0.516) 

(0.443 –
 0.508) 

Standardiz
ed Age 

-0.042 
<0.0001 

-0.136 
<0.0001 

0.275 
<0.0001 

-0.033 
<0.0001 

0.179 
<0.0001 (-0.048 – -

0.037) 
(-0.142 – -

0.130) 
(0.268 –
 0.283) 

(-0.037 – -
0.029) 

(0.168 –
 0.190) 

Standardiz
ed Height 

0.248 
<0.0001 

0.199 
<0.0001 

0.174 
<0.0001 

0.388 
<0.0001 

  
(0.241 –
 0.256) 

(0.190 –
 0.208) 

(0.163 –
 0.184) 

(0.382 –
 0.394) 

Activity 
group 
[Sufficient] 

-0.028 
0.0183 

-0.025 
0.0659 

-0.037 
0.0239 

0.019 
0.0373 

-0.01 
0.6716 (-0.052 – -

0.005) 
(-0.051 –
 0.002) 

(-0.069 – -
0.005) 

(0.001 –
 0.037) 

(-0.059 –
 0.038) 

Activity 
group 
[Moderate] 

-0.065 
<0.0001 

-0.052 
<0.0001 

-0.13 
<0.0001 

0.032 
<0.0001 

-0.099 
<0.0001 (-0.082 – -

0.049) 
(-0.070 – -

0.034) 
(-0.152 – -

0.107) 
(0.019 –
 0.044) 

(-0.132 – -
0.065) 

Activity 
group [High] 

-0.096 
<0.0001 

-0.105 
<0.0001 

-0.156 
<0.0001 

0.053 
<0.0001 

-0.13 
<0.0001 (-0.111 – -

0.081) 
(-0.121 – -

0.088) 
(-0.176 – -

0.136) 
(0.042 –
 0.065) 

(-0.160 – -
0.100) 

Standardiz
ed  
     Hand grip 
strength 

-0.162 

<0.0001 

-0.146 

<0.0001 

-0.097 

<0.0001 

0.117 

<0.0001 

-0.092 

<0.0001 (-0.171 – -
0.154) 

(-0.156 – -
0.137) 

(-0.108 – -
0.085) 

(0.110 –
 0.123) 

(-0.109 – -
0.076) 

Observatio
ns 26877 26877 26877 26877 26877 

Note: Estimates represent standardized β coefficients with 95% confidence intervals, showing the change in body composition 
parameter (in standard deviation units) per unit change in the predictor. For categorical variables, effects represent the 
difference compared to the reference group (sex: female; activity group: insufficient). P-values were derived from Wald z-
statistics for fixed effects and adjusted for false discovery using the Benjamini-Hochberg method (α = 0.05). For categorical 
predictors, each non-reference level is compared to the reference group, with coefficients interpreted as contrasts. * p<0.05, ** 
p<0.01, *** p<0.001. 
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Supplementary Table S5. UKB Linear Mixed-Effects Model Coefficient Estimates 
 

Response 
Variable  

(Z-Score) 
ASAT GFAT VAT Muscle LFF 

Predictors Estimates p Estimates p Estimates p Estimates p Estimates p 

(Intercept) 
0.491 

<0.0001 
0.861 

<0.0001 
-0.246 

<0.0001 
-0.351 

<0.0001 
-0.006 

0.8955 (0.465 –
 0.518) 

(0.820 –
 0.902) 

(-0.296 – -
0.197) 

(-0.371 – -
0.331) 

(-0.057 –
 0.045) 

Standardiz
ed BMI 

0.869 
<0.0001 

0.737 
<0.0001 

0.649 
<0.0001 

0.613 
<0.0001 

0.35 
<0.0001 (0.863 –

 0.876) 
(0.730 –
 0.744) 

(0.640 –
 0.658) 

(0.608 –
 0.618) 

(0.337 –
 0.363) 

Sex [Male] 
-0.864 

<0.0001 
-1.617 

<0.0001 
0.551 

<0.0001 
0.624 

<0.0001 
0.156 

<0.0001 (-0.883 – -
0.846) 

(-1.638 – -
1.597) 

(0.527 –
 0.576) 

(0.610 –
 0.638) 

(0.131 –
 0.181) 

Standardiz
ed Age 

-0.022 
0.0001 

-0.028 
<0.0001 

0.144 
<0.0001 

-0.103 
<0.0001 

0.086 
<0.0001 (-0.032 – -

0.011) 
(-0.040 – -

0.016) 
(0.130 –
 0.159) 

(-0.111 – -
0.095) 

(0.065 –
 0.107) 

Standardiz
ed Height 

0.206 
<0.0001 

0.267 
<0.0001 

0.162 
<0.0001 

0.525 
<0.0001 

  
(0.197 –
 0.215) 

(0.257 –
 0.277) 

(0.149 –
 0.174) 

(0.518 –
 0.531) 

Alcohol 
[Special 

occasions] 

0.004 
0.8056 

-0.016 
0.3437 

-0.001 
0.9767 

0.01 
0.4676 

0.003 
0.9293 (-0.027 –

 0.034) 
(-0.050 –
 0.018) 

(-0.041 –
 0.040) 

(-0.013 –
 0.033) 

(-0.058 –
 0.063) 

Alcohol 
[1to3pm] 

-0.004 
0.8056 

-0.028 
0.1009 

0.045 
0.0401 

0.059 
<0.0001 

0.01 
0.8948 (-0.034 –

 0.025) 
(-0.062 –
 0.005) 

(0.005 –
 0.085) 

(0.036 –
 0.081) 

(-0.049 –
 0.069) 

Alcohol 
[1to2pw] 

-0.035 
0.0125 

-0.041 
0.0076 

0.025 
0.2059 

0.078 
<0.0001 

-0.078 
0.0105 (-0.061 – -

0.008) 
(-0.071 – -

0.012) 
(-0.011 –
 0.060) 

(0.058 –
 0.098) 

(-0.131 – -
0.025) 

Alcohol 
[3to4pw] 

-0.054 
0.0001 

-0.06 
0.0001 

0.018 
0.3612 

0.093 
<0.0001 

-0.069 
0.0194 (-0.080 – -

0.027) 
(-0.090 – -

0.030) 
(-0.018 –
 0.053) 

(0.073 –
 0.113) 

(-0.122 – -
0.016) 

Alcohol 
[Daily] 

-0.065 
<0.0001 

-0.081 
<0.0001 

0.055 
0.0073 

0.087 
<0.0001 

0.017 
0.7777 (-0.093 – -

0.037) 
(-0.112 – -

0.049) 
(0.017 –
 0.093) 

(0.066 –
 0.109) 

(-0.040 –
 0.073) 

Smoking 
[Previous] 

-0.02 
0.0033 

-0.029 
0.0002 

0.048 
<0.0001 

0.002 
0.7066 

0.031 
0.0318 (-0.034 – -

0.007) 
(-0.044 – -

0.014) 
(0.031 –
 0.066) 

(-0.008 –
 0.012) 

(0.005 –
 0.057) 

Smoking 
[Current] 

-0.052 
0.0019 

-0.072 
0.0001 

0.046 
0.0426 

-0.008 
0.5551 

0.085 
0.0183 (-0.083 – -

0.020) 
(-0.107 – -

0.036) 
(0.004 –
 0.089) 

(-0.032 –
 0.016) 

(0.022 –
 0.148) 

Observatio
ns 

18974 18974 18974 18974 18974 

Note: Estimates represent standardized β coefficients with 95% confidence intervals, showing the change in body composition 
parameter (in standard deviation units) per unit change in the predictor. For categorical variables, effects represent the 
difference compared to the reference group (sex: female; alcohol: never; smoking: never). P-values were derived from Wald z-
statistics for fixed effects and adjusted for false discovery using the Benjamini-Hochberg method (α = 0.05). For categorical 
predictors, each non-reference level is compared to the reference group, with coefficients interpreted as contrasts. * p<0.05, ** 
p<0.01, *** p<0.001. 
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Supplementary Table S6. Adjusted BCP Z-score averages for participants with different clinical 
conditions stratified by sex 
Clinical 
Condition Group Mean Z-Scores 

ASAT adj. GFAT adj. VAT adj. Muscle adj. LFF adj. 
Cardio-
vascular       

CAD 

All 
-0.09 ± 1.06 
(0.03) 

-0.07 ± 0.96 
(0.03) 0.06 ± 1.25 (0.04) 0.01 ± 1.09 (0.04) 0.23 ± 1.29 (0.04) 

Female 
-0.05 ± 1.15 
(0.08) 

-0.15 ± 1.14 
(0.07) 0.29 ± 1.51 (0.10) 0.03 ± 1.06 (0.07) 0.29 ± 1.29 (0.08) 

Male 
-0.06 ± 1.00 
(0.04) 

-0.07 ± 0.94 
(0.04) 

-0.00 ± 1.13 
(0.04) 

-0.07 ± 0.99 
(0.04) 0.15 ± 1.17 (0.04) 

Heart failure 

All 0.04 ± 1.09 (0.06) 0.00 ± 1.22 (0.06) 0.12 ± 1.16 (0.06) 
-0.12 ± 1.01 
(0.05) 0.20 ± 1.13 (0.06) 

Female 0.18 ± 1.06 (0.08) 
-0.06 ± 1.33 
(0.10) 0.20 ± 1.22 (0.09) 

-0.04 ± 1.12 
(0.09) 0.40 ± 1.35 (0.10) 

Male 
-0.05 ± 1.08 
(0.08) 0.09 ± 1.11 (0.08) 0.06 ± 1.14 (0.08) 

-0.20 ± 0.99 
(0.07) 0.09 ± 1.08 (0.08) 

Hypertension 

All 0.02 ± 1.11 (0.01) -0.11 ± 1.07 (0.01) 0.13 ± 1.29 (0.01) 0.02 ± 1.09 (0.01) 0.20 ± 1.19 (0.01) 

Female 0.05 ± 1.11 (0.02) 
-0.17 ± 1.13 
(0.02) 0.18 ± 1.40 (0.02) 0.04 ± 1.10 (0.02) 0.23 ± 1.27 (0.02) 

Male 0.00 ± 1.10 (0.01) 
-0.05 ± 1.06 
(0.01) 0.09 ± 1.21 (0.02) 

-0.03 ± 1.07 
(0.01) 0.17 ± 1.13 (0.01) 

Metabolic       

Diabetes 

All 
-0.05 ± 1.25 
(0.03) 

-0.45 ± 1.18 
(0.02) 0.60 ± 1.61 (0.03) 0.05 ± 1.17 (0.02) 0.45 ± 1.31 (0.03) 

Female 0.03 ± 1.24 (0.04) 
-0.67 ± 1.30 
(0.04) 0.78 ± 1.80 (0.06) 0.28 ± 1.22 (0.04) 0.64 ± 1.47 (0.05) 

Male 
-0.06 ± 1.23 
(0.03) -0.29 ± 1.11 (0.03) 0.49 ± 1.50 (0.04) 

-0.14 ± 1.17 
(0.03) 0.32 ± 1.23 (0.03) 

Hyperlipidemia 

All 0.04 ± 1.02 (0.01) 
-0.10 ± 1.00 
(0.01) 0.10 ± 1.14 (0.01) 0.07 ± 1.02 (0.01) 0.16 ± 1.05 (0.01) 

Female 0.07 ± 1.01 (0.01) -0.11 ± 1.03 (0.01) 0.09 ± 1.18 (0.01) 0.06 ± 1.02 (0.01) 0.17 ± 1.11 (0.01) 

Male 0.02 ± 1.02 (0.01) 
-0.07 ± 1.00 
(0.01) 0.09 ± 1.11 (0.01) 0.05 ± 1.02 (0.01) 0.16 ± 1.03 (0.01) 

Gout 

All 
-0.04 ± 1.21 
(0.03) 

-0.19 ± 1.04 
(0.03) 0.36 ± 1.44 (0.04) 0.14 ± 1.17 (0.03) 0.41 ± 1.30 (0.04) 

Female 0.09 ± 1.28 (0.09) 
-0.29 ± 1.31 
(0.09) 0.51 ± 1.79 (0.12) 0.03 ± 1.24 (0.08) 0.32 ± 1.41 (0.10) 

Male 
-0.03 ± 1.18 
(0.04) -0.11 ± 1.11 (0.03) 0.27 ± 1.31 (0.04) 0.03 ± 1.10 (0.03) 0.22 ± 1.17 (0.04) 

Other       

Back pain 

All 
-0.03 ± 1.03 
(0.01) 

-0.05 ± 1.04 
(0.01) 0.03 ± 1.07 (0.01) 

-0.02 ± 0.98 
(0.01) 0.03 ± 1.02 (0.01) 

Female 
-0.01 ± 1.05 
(0.02) 

-0.05 ± 1.07 
(0.02) 0.03 ± 1.06 (0.02) 

-0.02 ± 1.03 
(0.02) 0.06 ± 1.08 (0.02) 

Male 
-0.05 ± 1.02 
(0.02) 

-0.08 ± 0.99 
(0.02) 0.04 ± 1.08 (0.02) 

-0.02 ± 0.97 
(0.02) 0.02 ± 1.01 (0.02) 

Cancer 

All 0.02 ± 0.97 (0.02) 0.03 ± 1.02 (0.02) 0.01 ± 1.03 (0.02) 
-0.08 ± 0.96 
(0.02) 

-0.01 ± 1.01 
(0.02) 

Female 0.00 ± 1.00 (0.03) 0.02 ± 0.99 (0.03) 0.08 ± 1.17 (0.03) 0.02 ± 1.01 (0.03) 0.10 ± 1.11 (0.03) 

Male 0.03 ± 0.94 (0.03) 0.06 ± 0.97 (0.03) 
-0.08 ± 0.91 
(0.03) 

-0.13 ± 0.99 
(0.03) 

-0.07 ± 1.05 
(0.03) 

Osteoporosis 

All 0.11 ± 0.87 (0.03) 0.04 ± 1.01 (0.03) 0.10 ± 1.04 (0.04) 
-0.05 ± 0.82 
(0.03) 0.09 ± 0.91 (0.03) 

Female 0.08 ± 0.87 (0.03) 0.07 ± 0.92 (0.04) 0.05 ± 1.05 (0.04) -0.11 ± 0.87 (0.03) 0.09 ± 1.08 (0.04) 

Male 0.15 ± 0.95 (0.07) 0.11 ± 1.00 (0.07) 0.21 ± 1.20 (0.09) 
-0.28 ± 0.99 
(0.07) 0.25 ± 1.12 (0.08) 

Reference       
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Healthy 

All 
-0.01 ± 0.96 
(0.01) 0.07 ± 1.00 (0.01) 

-0.05 ± 0.82 
(0.01) 

-0.08 ± 0.96 
(0.01) 

-0.16 ± 0.86 
(0.01) 

Female 
-0.04 ± 1.03 
(0.02) 0.09 ± 0.96 (0.02) 

-0.07 ± 0.83 
(0.01) 

-0.05 ± 0.99 
(0.02) 

-0.14 ± 0.86 
(0.01) 

Male 
-0.01 ± 0.89 
(0.02) 0.03 ± 0.94 (0.02) 

-0.04 ± 0.82 
(0.02) 

-0.04 ± 0.99 
(0.02) 

-0.23 ± 0.91 
(0.02) 

Note: Values represent mean ± standard deviation with standard error in parentheses. Positive values indicate 
higher relative values compared to the total population. ASAT = abdominal subcutaneous adipose tissue; GFAT = 
gluteofemoral adipose tissue; VAT = visceral adipose tissue; LFF = liver fat fraction; adj. = adjusted.  
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Supplementary Figures 
 

 
Figure S1. Age-related trends in BMI-adjusted body composition parameters. LOESS curves 
display the mean and ±1 SD for height-adjusted (except for LFF) and BMI-adjusted body composition 
parameters across age. Black lines indicate the mean, and shaded areas represent ±1 SD. 
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Figure S2. Distribution of body composition parameter residuals after adjustment for 
anthropometric covariates. Histograms illustrate the distribution of model residuals for abdominal 
subcutaneous adipose tissue (ASAT), gluteofemoral adipose tissue (GFAT), visceral adipose tissue 
(VAT), trunk muscle volume, and liver fat fraction (LFF), stratified by sex and BMI category. All 
measures show approximately normal distributions with minimal systematic bias across BMI 
categories, validating our statistical approach for isolating depot-specific adiposity measures 
independent of overall body size.  
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Figure S3. Association of health behaviour indicators with body composition in men and 
women. Sex-stratified relationships between key health behaviour indicators and MRI-derived body 
composition parameters based on cohort-specific linear mixed-effects models adjusted for age, height, 
BMI, and available behavioural factors (maximum hand grip strength & physical activity group (based 
on MET min. per week of < 600, 600-999, 1000-2999, ≥ 3000) for NAKO; smoking status & alcohol 
intake frequency for UKB). Imaging centre was included as a random effect. (a) Grip strength was 
inversely associated with all adipose compartments (ASAT, GFAT, VAT, LFF) but positively associated 
with trunk muscle volume in both sexes. The negative associations with ASAT and GFAT were slightly 
stronger in men compared to women. (b) Dose-dependent relationships between physical activity and 
body composition, with increasing physical activity levels progressively linked to reduced visceral 
adiposity and enhanced trunk muscle volume. Interestingly, while men in the highest activity group 
exhibited even lower amounts of VAT and LFF, albeit with diminishing returns, women did not seem to 
benefit from further reductions in these adipose tissue compartments with higher activity. (c) Smoking 
was associated with slightly reduced amounts of ASAT and muscle in men. In women, it was linked to 
decreased amounts of GFAT and notably, increased amounts of VAT and LFF. (d) Higher frequency of 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2025. ; https://doi.org/10.1101/2025.06.03.25328867doi: medRxiv preprint 

https://doi.org/10.1101/2025.06.03.25328867
http://creativecommons.org/licenses/by/4.0/


 
 
 

43 

alcohol intake was associated with reduced amounts of subcutaneous adipose tissue compartments 
and higher trunk muscle volume in men and women. Associations with VAT and LFF were inconsistent 
and not statistically robust, with wide confidence intervals suggesting limited precision.  
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Figure S4. Predicted prevalence plots of other clinical conditions. Plots show the predicted 
prevalence with confidence intervals of the remaining available clinical conditions (cancer, heart 
failure, gout, osteoporosis, and back pain) across Z-scores of adjusted body composition parameters 
(BCPs) based on generalized mixed-effects logistic regression models adjusted for age, BMI, adjusted 
BCPs, and interaction terms between BMI and each of the BCPs, with imaging centre as a random 
effect. Data are stratified by sex and BMI category (set at representative values of 20 kg/m2 (normal), 
27.5 kg/m2 (overweight), and 35 kg/m2 (obese)). 
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Figure S5. Odds ratios based on adjusted body composition parameters stratified by sex. 
Forest plots showing associations between adjusted body composition parameters and clinical 
conditions, stratified by sex (males in blue, females in red). (a) ASAT-adj shows modest positive 
associations with hyperlipidaemia and diabetes, particularly in males. (b) GFAT-adj demonstrates 
inverse effects against metabolic conditions, significantly reducing odds of diabetes (OR=0.66-0.71, 
p<0.0001) and hyperlipidaemia (OR=0.86-0.88, p<0.0001). (c) VAT-adj exhibits the strongest adverse 
relationships, significantly increasing odds for cardiovascular and metabolic conditions in both sexes, 
with a notable female-specific association with cancer (OR=1.12, p=0.0012). (d) Adjusted trunk muscle 
volume showed more pronounced effects in men, where it protected against heart failure (OR=0.81, 
p=0.0068), diabetes (OR=0.79, p<0.0001), and osteoporosis (OR=0.73, p<0.001). (e) LFF-adj 
associates positively with metabolic conditions, particularly diabetes (OR=1.26-1.32, p<0.0001). 
Results demonstrate distinct sex-specific patterns in how regional adiposity and trunk muscle volume 
relate to prevalence of cardiometabolic, cancer, and related clinical conditions independent of BMI. 
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Figure S6. Sex separate body composition phenotypes based on clinical condition status. Body 
composition phenotypes are presented as mean Z-scores ± standard error of the adjusted body 
composition parameters (BCPs). The top panel shows cardiovascular conditions (CAD, heart failure, 
hypertension) compared to healthy controls, revealing distinct patterns particularly in VAT-adj and LFF-
adj (elevated) as well as GFAT-adj in women (reduced). The middle panel displays metabolic disorders 
(diabetes, gout, hyperlipidaemia), with diabetes showing the most pronounced profile characterized by 
elevated VAT-adj and LFF-adj coupled with substantially reduced GFAT-adj in both sexes, but with 
greater GFAT deficit in females. The bottom panel presents other conditions (back pain, cancer, 
osteoporosis) with more subtle deviations from the healthy reference. These condition-specific body 
composition phenotypes hint at distinct pathophysiological mechanisms underlying different conditions 
and reveal important sex differences in how adipose distribution relates manifestation of clinical 
conditions.  
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Figure S7. Predicted prevalence plots of other clinical conditions with mean and unfavourable 
body composition profile stratified by age. Plots show the age-dependent predicted prevalence 
with confidence intervals of heart failure, gout, and back pain, stratified by sex and body composition 
profile. Unfavourable profile was defined as +1 SD of adjusted ASAT, VAT, and LFF, with -1 SD of 
adjusted GFAT and trunk muscle volume. Shaded regions represent 95% confidence intervals. For 
heart failure, prevalence increased with age in both sexes, with unfavourable body composition 
associated with higher observed prevalence in women. Gout shows prominent sex dimorphism with 
substantially higher prevalence in males, particularly those with unfavourable body composition, 
reaching ~18% by age 80 compared to ~5% in females with unfavourable phenotypes. Back pain 
demonstrates the highest overall prevalence among these conditions, reaching approximately 30% at 
advanced ages, with age-related increases in both sexes and only a modest increase in predicted 
prevalence due to unfavourable body composition. 
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Figure S8. Participant inclusion flowchart. From an initial sample of 30,397 NAKO and 19,512 UKB 
MRI scans, participants were sequentially filtered: after confirming required imaging modalities and 
image sizes (yielding 30,039 NAKO, 19,421 UKB), excluding scans with fat fraction ≥ 0.6 in larger 
areas (29,902 NAKO, 19,164 UKB), and retaining those with height, weight, and clinical condition 
status data (29,114 NAKO, 19,164 UKB), the final analytic cohorts comprised 26,877 NAKO and 
18,974 UKB participants with available health behaviour information. 
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Figure S9. Histograms illustrate the distributions of ASAT, GFAT, VAT, trunk muscle volume, and LFF 
from NAKO and UKB cohorts, stratified by dataset and sex, before (left panels) and after (right panels) 
applying ComBat harmonization. This adjustment minimizes site-specific differences while preserving 
biological variation.  
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Figure S10. Individual trunk muscle volume components before and after ComBat 
harmonization. Charts display the contributions of individual muscles form the core, hip, and 
lower back region to total trunk muscle volume, stratified by dataset and sex. The left panels 
show the raw values, while the right panels display the data after ComBat harmonization. 
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