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A macrophage-predominant
immunosuppressive microenvironment
and therapeutic vulnerabilities in advanced
salivary gland cancer
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Salivary gland cancers are rare, diverse malignancies characterized by poor
response to immunotherapy. The tumor immune environment in these can-
cers remains poorly understood. To address this, we perform an integrative
analysis of the tumor immunemicroenvironment in a large cohort of advanced
salivary gland cancer samples. Most tumors exhibit low immune activity with
limited immune cell infiltration. Inflammation is linked to higher tumor
mutational burden in non-adenoid cystic carcinoma histologies. Subtype
specific expression of immune checkpoints is identified with prominent
expression of VTCN1 in luminal-like cells within adenoid cystic carcinoma.
Macrophages with immunosuppressive properties dominate the immune
microenvironment across subtypes. Responses to immunotherapy are limited
and associated with a higher ratio of T-cells relative to macrophages in indi-
vidual cases, warranting further investigation. Here, we show an immuno-
suppressive environment in salivary gland cancers and identify subtype-
specific immune vulnerabilities that could inform tailored therapeutic
strategies.

Salivary gland cancers (SGC) are a rare and heterogeneous group of
malignancies that arise from major and minor salivary glands. SGC
account for 5% of all head and neck cancers and comprise more than
20 different histologies1. The prognosis is poor in the recurrent and
metastatic setting, with a median OS of 15 months after appearance of
distant metastasis2. No approved therapies for advanced SGC exist.
Histological subtypes are often not adequately represented in

available clinical trials with the exception of adenoid cystic carcinoma
(ACC). ACC is among the most common malignant subtypes, defined
by a recurrent MYB-NFIB gene fusion and often presents with slow
tumor growth and poor response to systemic therapy3. Yet, different
molecular and clinical subsets of ACC have been described4. In con-
trast, non-ACC tumors typically show an aggressive clinical course and
often harbor targetable molecular alterations5.
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Immune checkpoint inhibition yielded low response rates in
clinical trials in advanced salivary gland cancer. In a study of pem-
brolizumab in PD-L1 positive salivary gland cancer, 26 patients were
enrolled and three objective responses (all PR) could be reported in
adenocarcinoma (n = 2) and high-grade serous carcinoma (n = 1)6.
Similarly, in another phase 2 trial of pembrolizumab, in 109 patients
with pretreated SGC, including few ACC, an objective response rate of
4.6% was observed7. In this trial, a higher response rate (10.7%) was
noted in PD-L1 positive disease. A comparable response rate of 4.2%
(salivary duct carcinoma) was reported in a retrospective multicenter
analysis of nivolumab in 24 patients with SGC8. The combination of
nivolumab and ipilimumab was tested in separate cohorts of 32
patients each with ACC and non-ACC9. In this trial, the primary efficacy
endpoint of at least 4 objective responses was met in the non-ACC
(ORR 16%) but not in the ACC cohort (ORR 6%). Similarly, no objective
responses were noted in 20 ACC patients randomized 1:1 to pem-
brolizumabwith or without radiotherapy10. These data show an overall
limited efficacy of immune checkpoint inhibitors in advanced SGC6–11.
Among these prospective trials, no clear subtypes and predictive
biomarker for the use of immune checkpoint inhibitors could be
identified, although condensed data suggest low activity especially in
ACC. The use of immunotherapy outside of clinical trials is therefore
not routinely recommended in SGC and predictive biomarkers and
suitable treatment strategies are urgently required12. Available data on
the tumor immune microenvironment in SGC show subgroup-specific
differences with an immune-excluded microenvironment in ACC, but
only limited data are available in the recurrent and/or metastatic
setting13–15. Here, we provide a multi-omics analysis of the tumor
immunemicroenvironment in a cohort of recurrent and/ormetastatic
salivary gland cancers, thus representing a potential intention-to-treat
cohort for systemic therapies. Taken together, these results provide a
comprehensive insight into the tumor immune microenvironment in
advanced SGC.

Results
Cohort characteristics
A total of 104 patients with recurrent/metastatic salivary gland cancer
from the MASTER program were analyzed. The most common tumor
entity was ACC (58%, 61/104 patients). In addition to ACC, a further 12
tumor entities were included. The median age at the time of tumor

biopsywas 46 years (IQR 41–61), and 46% of patients were female. One
patient was younger than 18 years at the time of diagnosis. The most
common primary tumor site was the parotid gland in 47% of all sam-
ples. Two-thirds of patients had receivedprior systemic therapy before
inclusion in theMASTER program, with amedian of one line (IQR 0–2)
of therapy. Median duration of prior therapy lines was 139 days (IQR
57.5–153). A summary of clinical data is provided in Fig. 1, Table 1 and
Supplementary Data 1.

Bulk RNA-seq data was available for 93 patients (95 samples).
Whole-Exome (WES) and Whole-Genome sequencing (WGS) data was
available for 55 and 50 patients (52 samples), respectively. Single-
nuclei transcriptome sequencing was performed in selected samples
(n = 13), representing inflammation-high and inflammation-low in ACC
and non-ACC histologies. A summary of molecular data layers is pro-
vided in Fig. 1 and Supplementary Figure 1. Immunohistochemical
analyses were performed in 44 samples (17 of which were part of the
MASTER cohort and 15 with available bulk RNAseq data).

MYB-NFIB fusions were the most common genetic alteration,
identified in 60% of ACC samples (Fig. 2A). An additional 6% of ACC
harboredMYBL1-NFIB fusions. These proportions are supported in the
literature16. None of the non-ACC samples had a MYB-NFIB fusion. A
PLAG1-fusion suggesting carcinoma ex pleomorphic adenoma was
identified in one sample previously diagnosed as ACC. Two adeno-
carcinomaNOS showed specific alterations: one sample had an EWSR1-
fusion suggesting clear-cell carcinoma, and another had a focal
amplification of the HER2 gene (CN > 10) suggesting salivary duct
carcinoma (SDC). TP53 was the most commonly altered gene in non-
ACC (26%), followed by PTEN (12%) (Fig. 2B). Most common short
variants in ACC affected NOTCH1 (18%), BCOR (13%), KDM6A (10%),
ARID1A (13%), and ACTB (13%) (Fig. 2B). Among CNVs the most com-
mon alteration was the deletion of the Cyclin Dependent Kinase Inhi-
bitor 2 (CDKN2A, CDKN2B, CDKNC total: 8%). 3 out of 7 SDCs hada focal
amplification of HER2. Overall the chromosomal aberration index
(portion of DNA affected by CNVs) was significantly higher in non-ACC
(Wilcoxon, p <0.0001, Supplementary Fig. 2A). TMB was significantly
higher in non-ACC than ACC samples (Wilcoxon test, p = 2.9e−06***,
Fig. 2C). The TMB of ACC was also in the lower spectrum when com-
pared to other TCGA entities (median: 0.8 Mut/Mb, 8/33, Supple-
mentary Fig. 2B). Mutational signatures were extracted for WGS and
WES data (Supplementary Fig. 2C). Recurrent signatures included

Fig. 1 | Study cohort and data. A Clinical characteristics of the cohort, including
tumor entities, therapy status (therapy prior to sequencing), site of biopsy, age
and sex are presented. B Availability of sequencing data and number of samples
(do not equal to number of patients on the left), as well as overlapping data
availability, is provided. RNA-seq data were evaluable for a majority of patients

(n = 93, n_samples 95). (ACC Adenoid Cystic Carcinoma, ADC Adenocarcinoma,
BCC Basal Cell Carcinoma, MEC Mucoepidermoid Carcinoma, SDC Salivary Duct
Carcinoma, LSG Large Salivary Glands, WGS Whole Genome Sequencing, WES
Whole Exome Sequencing). Figure created using the Mind the Graph platform
(www.mindthegraph.com).
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clock-like signatures (SBS1,5), damage by reactive oxygen species
(SBS18), platinum-chemotherapy-related signature (SBS31, prevalent
in patients with prior treatment) and APOBEC-mutagenesis-signatures
(SBS2,13, 6 samples including 3 mucoepidermoid carcinomas, Sup-
plementary Fig. 2D). A summary of molecular tumor profiles is pro-
vided in Fig. 2A. Fusion status of each patient is provided in
Supplementary Data 1.

We analyzed bulk RNA-seq data to identify gene expression dif-
ferences. Principal component analysis revealedmost variance (13%) to
be explainedby tumor entity (p = 4.5e-10***, Supplementary Fig. 3A, D).
A small portion of variance was explained by the biopsy site (~4%),
which was associated with PC3 and PC5. (Supplementary Fig. 3D). PC1,
which also separated ACC from other entities, was related to immune
response (Supplementary Fig. 3B, C). Differentially expressed genes
between ACC and non-ACC were also related to inflammation (AUC =
0.7, p.adj = 5.2e−8***), cell cycle (AUC=0.8, p.adj = 2.6e−10***) and cell
cycle in T-cells (AUC =0.8, p.adj = 2.4e−4***) with lower expression in
ACC (Supplementary Fig. 3E).

Salivary gland cancers cluster into 3 groups of immune
infiltration
To further analyze tumor inflammation in advanced SGC, bulk gene
expression data was analyzed. Six different published functional
inflammation signatures were used to identify samples with an
inflamed tumor immunemicroenvironment (TIM) (Fig. 3A). Additional
measures of immune infiltration besides the 6 GSVA-based signatures
shown in Fig. 3A were computed. All of the mentioned immune scores
showed significant correlation between each other after multiple
testing corrections (Supplementary Fig. 4A).

Hierarchical clustering based on GSVA scores identified 3 clus-
ters of immune-infiltration (Fig. 3A) with 35% of samples belonging to
the immune-high cluster. We selected three clusters instead of two
since the medium cluster demonstrated significant differences in
inflammation compared to the high and low clusters, as illustrated in
Fig. 3A, C and Supplementary Fig. 4B. ACC were significantly under-
represented in the immune-high cluster (Fisher test, p = 0.002**,
OR = 0.3). We could test inflammation differences in a limited num-
ber of histologies due to the low sample size per group. Both
mucoepidermoid carcinoma (MEC, n = 7) and SDC (n = 7) had a
similar level of inflammation which was significantly higher than in
ACC (n = 57) (Supplementary Fig. 4C). In order to validate these
findings in a larger cohort, we performed an integrated analysis with
previously published SGC datasets9,13 which further confirmed 3
clusters of immune infiltration with ACC being significantly under-
represented in the immune-high group (Fig. 3B). Importantly, a small
immune-high ACC subgroup could be validated in all 3 cohorts
(Fig. 3B). After data integration, a sufficient number of samples for
histology-specific analyses (n > 20 each) was evaluable for ACC,
myoepithelial carcinoma and SDC and revealed significant differ-
ences between the subtypes (Supplementary Fig. 4D). Myoepithelial
carcinoma (n = 26) had overall lower inflammation than ACC (n = 158)
and SDC was confirmed as being the highest inflamed entity (n = 46).
Compared to pan-cancer TCGA data, inflammation (IFNG score) in
theACCcohortwas comparable to those of the 5 least inflamedTCGA
cohorts (Supplementary Fig. 4I). Other entities showed a much
higher variance in their inflammation score, however inflammation
scores of immune-high samples aligned with the 5 highest inflamed
TCGA cohorts (Fig. 3C).

Immune clusters were validated immuno-histochemically in a
tissuemicroarraywith available bulk sequencingdata (n = 14 evaluable,
Fig. 3D and Supplementary Fig. 4E–H). CD3 staining intensity was
significantly correlated with the IFNG score (Spearman, rho =0.74,
p = 0.002**) (Fig. 3D).

Correlates of tumor inflammation in advanced SGC
We tested for the association of different parameters with the immune
clusters and inflammation scores. ACC-histology (One-way anova,
p.adj = 0.003 **) and closely related cell-of-origin-group (One-way
anova test, p.adj = 0.0003 ***) as well as tumor purity (One-way anova
test, p.adj = 0.0003***) and TMB (One-way anova test, p.adj.=0.04*)
were significantly associatedwith inflammation (Fig. 3E). No significant

Table 1 | Baseline clinical characteristics of the cohort. The
table shows clinical data of the cohort stratified by tumor
entity (ACC vs non-ACC). Clinical data includes sex, age at
biopsy, primary site, tumor entity, and information on prior
therapies. Due to rounding percentages may not add up to
100. Detailed, per-patient data can be found in Supplemen-
tary Table 1

Summary of the clinical data ACC
(n = 60)

non-
ACC (n = 44)

all (n = 104)

Sex

female 38 (63%) 10 (23%) 48 (46%)

male 22 (37%) 34 (77%) 56 (54%)

Age at date of biopsy

0–30 5 (8%) 3 (7%) 8 (8%)

31–50 27 (45%) 14 (33%) 41 (40%)

51–70 26 (43%) 25 (58%) 51 (50%)

>70 2 (3%) 1 (2%) 3 (3%)

NA 0 (0%) 1 (2%) 1 (1%)

Tumor site

Parotid gland 21 (35%) 27 (63%) 48 (47%)

Submandibular gland 9 (15%) 12 (28%) 21 (20%)

nasopharynx NOS 6 (10%) 0 (0%) 6 (6%)

large salivary glands NOS 2 (3%) 1 (2%) 3 (3%)

other 22 (37%) 3 (7%) 25 (24%)

NA 0 (0%) 1 (2%) 1 (1%)

Entity

ACC 60 (100%) 0 (0%) 60 (58%)

Adenocarcinoma NOS 0 (0%) 8 (18%) 8 (8%)

Mucoepidermoid carcinoma 0 (0%) 7 (16%) 7 (7%)

Basal cell carcinoma 0 (0%) 6 (14%) 6 (6%)

Salivary duct carcinoma 0 (0%) 6 (14%) 6 (6%)

Malignant mesenchy-
mal tumor

0 (0%) 5 (11%) 5 (5%)

Carcinoma ex pleomorphic
adenoma

0 (0%) 4 (9%) 4 (4%)

Acinic cell carcinoma 0 (0%) 3 (7%) 3 (3%)

other 0 (0%) 5 (11%) 5 (5%

Prior therapy lines*

Chemotherapy 26 (43%) 26 (59%) 52 (50%)

TK-inhibition 8 (13%) 3 (7%) 11 (11%)

Immune checkpoint
inhibition

3 (5%) 6 (14%) 9 (9%)

HER2-blockade 0 (0%) 6 (14%) 6 (6%)

EGFR-inhibition 1 (2%) 5 (11%) 6 (6%)

Number of previous ther-
apy lines

0 23 (38%) 13 (30%) 36 (35%)

1 22 (37%) 14 (32%) 36 (35%)

2 10 (17%) 7 (16%) 17 (16%)

3 3 (5%) 3 (7%) 6 (6%)

>3 2 (3%) 7 (16%) 9 (9%)
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associations were found for sample origin (metastatic/primary), pri-
mary site (large salivary glands/other), age, cohort batch, sex, and
therapy status for several therapies (received therapy/therapy-naive)
after multiple testing correction (Fig. 3E).

TMB and IFNG score showed a weak positive correlation
(Spearman, rho = 0.31, p = 0.002**, Supplementary Fig. 5) in the
combined WES and WGS data (n = 103). This correlation was mostly
driven by non-ACC samples (Supplementary Fig. 5A, B). As expected,
inflammation was significantly negatively correlated with tumor
purity (computed based on WGS/WES data) in both ACC and non-
ACC (Spearman, rho = 0.42, p = 2.4e-5***, Fig. 3E, Supplemen-
tary Fig. 5C).

Non-synonymous mutations in immunotherapy-relevant genes17

were slightly enriched in ACC compared to non-ACC (Fisher test,
p = 0.006**, OR = 1.6), however no positive selection could be identi-
fied in these genes (no difference in abundance of synonymous and
nonsynonymous mutations) (Supplementary Fig. 5D). Among muta-
tional signatures, clock-like signature 1 was more prevalent in the
immune-low subgroup but impacted by ACC status, TMB and WGS
sequencing. An APOBEC-mutational signature was associated with
higher antigen processing machinery (APM) in few evaluable samples
(Supplementary Fig. 2C, Supplementary Fig. 5E–G).

ACC comprises clinically distinct subgroups. We therefore tested
potential mediators of inflammation in ACC samples separately (Sup-
plementary Fig. 6). A marginally significant impact of metastatic site
(lung) compared to primary tumor on tumor inflammation was
observed in ACC samples only (Supplementary Fig. 6A, B). The ACC
score, used to discriminate ACC subgroups 1 and 2 was negatively
correlated with inflammation (Pearson, rho = −0.3, p = 0.03*, Supple-
mentary Fig. 6B). A significant association with the APMwas identified
in these samples (Pearson, rho = −0.49, p = 0.0002***, Supplementary
Fig. 6C). The negative correlation suggests a deficient antigen pro-
cessingmachinerymediating immune exclusion in ACC1. As expected,
ACC1 samples were found to have a significantly worse prognosis than
ACC2 (Supplementary Fig. 6D).

TIM composition analysis reveals macrophage-
dominance in SGC
To identify the TIM cell composition in advanced SGC, single nuclei
RNA-seq data was analyzed for 13 samples. The single nuclei cohort
comprised 5 ACC and 8 non-ACC (2 basal cell carcinoma, 1 carcinoma
expleomorphic adenoma, 2 adenocarcinomaNOS, 1 carcinosarcoma, 1
mucoepidermoid carcinoma, 1 salivary duct carcinoma). After quality
control and filtering the total amount of cells was 85,142.

Table 2 shows the sample origin, tumor entity and quality metrics
for each sample sequenced. Data analysis revealed 23 different cell
clusters, which could be assigned to 6 major cell types: fibroblasts,
endothelial cells, immune cells, alveolar cells (present only in the lung
metastases) and malignant cells (Fig. 4A, B and Supplementary
Fig. 7A–N). More than half of all identified immune cells came from 2
lymph node metastases (Fig. 4A, P-18 and P-66). Therefore, these
samples were removed to further analyze TIM composition. The
majority of immune cells were labeled asmacrophages (mean: 60% sd:
25), followedbyT-cells (mean: 22%, sd: 18), dendritic cells (mean: 6%, sd:
5) and plasma cells (mean: 4% sd: 5) (Fig. 4C–E). The least abundant
immune cells were B-cells, which were almost only present in lymph
nodemetastases. Samples labeled as immunehigh inbulk data analysis
had more immune cells than those labeled as immune low or medium
(Fig. 4A). Bulk based scores, in particular IFNG score were also in
agreement with immune cell proportions from single nuclei data
(Spearman, rho = 0.8, p =0.002**, Supplementary Fig. 7O). Macro-
phages and T-cells were analyzed in depth (Supplementary Figs. 8
and9) after exclusionof one sample (P-31), becauseof remarkably high
macrophage infiltration, resulting from the phagocytosis of necrotic
tissue, as confirmed by microscopy. Bulk data analysis revealed a
predominance of M2-polarized macrophages as compared to M1 or
M0 macrophages (Supplementary Fig. 8A). Single-cell analysis and
immunohistochemistry confirmed these findings with a majority of
macrophages exhibiting high expression of genes associated with an
M2-polarized or tumor-associated macrophage (TAM) phenotype
(Supplementary Fig. 8C, G, H, J). M2 markers including MSR1, MRC1,

Fig. 2 | Summary of molecular alterations. A Oncoprint with molecular altera-
tions in a set of selected genes commonly affected in SGC (n = 104). On the left, the
percentage of samples with one or more alterations in each listed gene is
shown. The top bar shows the total number of alterations in the specific sample.
The heatmap at the bottom represents the expression of MYB and MYBL1 genes.

B Co-barplot with most common SNVs in ACC and non-ACC. TP53 alterations are
the only SNVs significantly enriched in non-ACC. C Tumor mutational burden was
significantly higher in non-ACC (n = 43, median = 2.3, iqr = 2.5, max = 8.3, min =
0.03) compared to ACC samples (n = 60, median = 0.82, iqr = 0.54, max= 4.7,
min = 0.17) (Wilcoxon test, two-sided).
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CD163, and CD68 were highly expressed in single cell data (Supple-
mentary Fig. 8C, H). Highest M2 score was observed in macrophages
derived from an ACC1 sample, however no clear differences could be
recognized between ACC and non-ACC due to low sample sizes (P-33,
Supplementary Fig. 8I). Principal Component Analysis (PCA) revealed
that PC1 accounted for 10% of the variance and was linked to alveolar
macrophage markers, such as PPARG (Supplementary Fig. 8D). These
macrophageswere exclusively found in samples from lungmetastases,
confirming their lung-specific origin. PC2 reflected a functional spec-
trum of TAMs in salivary gland cancers, showing a positive correlation
(Pearson, rho =0.5, p <0.001***) with M2 marker expression (Supple-
mentary Fig. 8G). The dominant gene in PC2, F13A1, has been pre-
viously described to promote fibrin cross-linking, creating a scaffold
that facilitates cancer cell invasion and metastasis (Supplementary
Fig. 8B, E)18. Conversely, genes associated with low PC2 values did not
correlate with classical M1 markers but may represent a distinct
population of immune-active or alternative-state macrophages (Sup-
plementary Fig. 8F). Among the genes associatedwith low PC2 values 2
types of integrins were found (ITGA4 and ITGAX, Supplemen-
tary Fig. 8B).

We additionally analyzed lymphocyte compositions. In bulk data
a median of 49% of all T-cells were predicted to be CD4+ T helper
cells, followed by 47% CD8+ cytotoxic cells (T-cells and NK-cells) and
4% T regulatory cells (Supplementary Fig. 9A). These data could also
be validated in single-cell analysis (n = 11) and immunohistochemistry
(IHC) (n = 43) (Supplementary Fig. 9B–K). In single-cell data and IHC

the CD8+ were slightly more abundant than the CD4+ cells (47% vs
41% in single-cell data) (Supplementary Fig. 9B, C). TOX, a tran-
scription factor that regulates T-cell exhaustion19 was highly
expressed in Cytotoxic and T-regulatory cells in all samples (Sup-
plementary Fig. 9I). The elevated expression of TOX in these T-cell
subpopulations suggests a potential dysfunctional or exhausted
phenotype.

We performed a deconvolution analysis (CIBERSORT, which
showed the best agreement with single-cell based results and IHC) on
bulk data to explore the TIM in a larger number of samples. Sixty-one
samples had evaluable results from CIBERSORT (empirical p-value
<=0.05) and could be used for subsequent analyses. Similar to single
nuclei based results, most of the analyzed samples had a myeloid-
dominantmicroenvironment (Fig. 5A). On average,myeloid cellsmade
up 55% (41% Macrophages) and T-cells 25% of the TIM in the entire
cohort (Fig. 5A). The relative proportion of T-cells, in particular CD8+
T-cells was slightly higher in the immune-high group, compared to the
other two groups (Wilcoxon test, p = 1.7e-4***)(Fig. 5B). On the other
hand, the relative proportion of M2 macrophages was lower in the
immune high group compared to the immune low, however not sig-
nificant (Wilcoxon test, p =0.053) (Supplementary Fig. 10A). The pro-
portions of the other immune cell types did not cluster by immune
assignment nor by tumor entity (Fig. 5A).Multiple ANOVA tests did not
identify significant associations of T-cell to macrophage ratio with
clinical parameters such as tumor entity (ACC vs non-ACC), prior
immune checkpoint inhibition (ICI) and sample type (metastatic vs

CD3 (T-cells) staining intensity

B

E

DA

*
**
*

C

IFNG

APM

Fig. 3 | Advanced SGC cluster into 3 groups of immune infiltration. A Heatmap
of GSVA scores of 6 immune signatures (see methods) for all samples (n = 95).
Samples were clustered by hierarchical clustering and annotated by tumor entity
(ACC/non-ACC or 9 categories of tumor entities), cell-of-origin group (ID/ED),
sample type (metastasis/primary) and prior systemic therapy status.BGSVA scores
of 6 immune signatures were calculated in an integrated analysis together with
previously published cohorts (n = 198). Samples were annotated by tumor entity
(ACC/non-ACC), sample type (metastasis/primary) and cohort (MASTER cohort/
Linxweiler et al/Vos et al). C Comparison of immune clusters (Immune-high n = 33
median = 0.48, iqr = 0.29, max= 0.88, min = −0.13; Immune-medium n = 34 med-
ian = −0.38, iqr = 0.24,max= 0.28,min = −0.62; Immune-low n = 28median = −0.67,
iqr=0.19, max= −0.38, min = −0.89) to TCGA most (PAAD n = 183 median = −0.08,
iqr = 0.87, max= 0.94, min = −0.83; TGCT n = 156 median= 0.40, iqr = 0.69, max=
0.88, min = −0.76; LUSC n = 553 median= 0.47, iqr = 0.68, max= 0.97, min = −0.91;

HNSC n = 566 median = 0.56, iqr = 0.79, max= 0.98, min = −0.87; LUAD n = 600
median = 0.55, iqr = 0.52, max= 0.97, min = −0.80) and least inflamed cohorts (LGG
n = 534 median = −0.82, iqr = 0.18, max= 0.69, min = −0.96; PCPG n = 187 med-
ian = −0.63, iqr = 0.24, max = 0.62, min = −0.88; ACC n = 79 median = −0.63, iqr =
0.28, max= 0.77, min = −0.84; UVM n = 80 median = −0.68, iqr = 0.34, max =0.85,
min = −0.93; KICH n = 91 median = −0.47, iqr = 0.41, max =0.38, min = −0.79).
D Intensity of pan T-cell marker (CD3) versus IFNG bulk score. Samples were
colored by immune clusters (n = 14, Immune-high n = 6 median=0.83, iqr=0.13,
max=0.85, min=0.26; Immune-medium n= 3 median= −0.17, iqr=0.71, max=0.89,
min = −0.84; Immune-low n = 5 median= −0.73, iqr=0.06, max= −0.67, min =
−0.80). E One-way anova test was performed to analyze the association of several
clinical parameters with immune scores (APM and IFNG). Corrected and log-
transformed p-values are provided in the heatmap, showing a significant impact of
tumor entity, cell-of-origin, tumor purity, and TMB.
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primary). When combining our data with 2 other published cohorts
(n = 101) we did also not identify a difference in T-cell to Macrophage
ratio in ACC vs non-ACC and in metastatic vs non-metastatic sites but
found a significantly higher M2 proportion in ACC compared to non-
ACC samples. (Wilcoxon testp = 6e−05***) (Fig. 5C,D).We stratified the
entities further into ACC (n = 45), myoepithelial carcinoma (n = 9), and
SDC (n = 20) and we still could not observe major differences in T-cell
to Macrophage ratio, but still the highest M2 proportion in ACC
(Supplementary Fig. 11A, B).

We additionally compared the T-cell to Macrophage ratio of this
cohort and another advanced SGC cohort to several TCGA cohorts
and healthy salivary glands. T-cell to Macrophage ratio in SGC was
among the lowest, with a median T-cell/Macrophage ratio of both
analyzed SGC cohorts below 1 (Supplementary Fig. 11C). Also theM2/
total Macrophage ratio was the highest in advanced SGC compared
to other TCGA cohorts (Supplementary Fig. 11D). Both healthy and
diseased SG had a low immune infiltration in the context of other
TCGA cohorts (Supplementary Fig. 11E). A mean T-cell/Macrophage
ratio of below 1 could also be validated immuno-histochemically
(Fig. 5E). Our cohort analyses, spanning bulk RNA sequencing
(n = 61), single-cell RNA sequencing (n = 11), and IHC (n = 40), con-
sistently demonstrate a lowT/M ratio, withmean values of 0.65, 0.73,
and 0.8, respectively (Fig. 5E). This consistency across different
methodologies suggests that this finding is a robust characteristic of
advanced SGC.

Immunohistochemical analyses showed that macrophages tend
to arrange themselves mostly in clusters at the tumor invasion front. T
lymphocytes (here cytotoxic T lymphocytes) were only found spor-
adically in the majority of samples (Fig. 5F–I).

A trend to better overall survival was observed in samples with a
high T-cell content, no impact of macrophages on survival was
observed (Fig. 5J and Supplementary Fig. 10B).

In order to rule out the presence of muciphages as a cause of
macrophage predominance we analyzed 34 samples via PAS staining
(Supplementary Fig. 10C, D). Only one single PAS+ macrophage was
identified in one sample. Furthermore we compared the TIM in SGC to
the immunemicroenvironment in healthy salivary glands.We analyzed
published salivary gland bulk (n = 33)20–22 and single-cell data (n = 2)22

(Supplementary Fig. 12). In contrast to SGC, B-cells and plasma cells
constituted a large portion of immune cells whereas myeloid cells
includingmacrophages onlymade up approximately 8% of all immune
cells (Supplementary Fig. 12A–C). Deconvolution analyses predicted
most macrophages in healthy SG to be M2 polarized, however single
cell data showed different results. Only a few cells expressedMSR1 and
other M2markers, insteadwe observed a notably higher expression of
HLA-II genes, chemokines andM1markers such as FCGR3A indicating a
rather pro-inflammatory phenotype (Supplementary Fig. 12E).

Analysis of biomarkers for immunotherapy
Among 22 evaluable patients treated with immune checkpoint inhibi-
tors, two patients (1 adenocarcinoma NOS with EWSR1-fusion, thus
likely a clear cell carcinoma and 1 carcinoma-ex-pleomorphic ade-
noma) achieved clinical benefit (stable disease for more than
6 months). Evaluable results from CIBERSORT deconvolution analysis
(n = 10, including 1 with clinical benefit, P-95) revealed the highest
T-cell to Macrophage ratio in the patient with clinical benefit (Fig. 6A).
Additional RNA-sequencing was performed on 6 SGC patients treated
with immune checkpoint inhibitors (clinical benefit in one myoe-
pithelial carcinoma) (Fig. 6A, Supplementary Fig. 13A). Evaluable
CIBERSORT results (n = 4) were integrated with prior data and further
confirmed previous findings (Fig. 6A). Independent validation in a
second cohort of evaluable patients with pre-treatment sequencing
(n = 14) also revealed clinical benefit in the patient with the highest
T-cell infiltration (Fig. 6B, Trial_ID_44). These results were additionally
confirmed by an analysis of post-treatment sequencing in the same
cohort (n = 8, Supplementary Fig. 13B).

We additionally performed an IHC analysis of T-cell/Macrophage
ratio in a third, independent cohort of 5 patients treated with
immune checkpoint inhibitors (clinical benefit in a patient with
adenocarcinoma NOS; Supplementary Fig. 13C–F) and again identi-
fied the highest T-cell to macrophage ratio in the patient with clinical
benefit (Supplmentary Data 2, Fig. 6C; exemplary images of stainings
in the patient with clinical benefit are depicted in Fig. 6D, E). Evalu-
able patients with clinical benefit had a moderate immune cell infil-
tration and medium/high TMB in the context of the whole cohort
(Fig. 6A, B and Supplementary Fig. 13A, B). We could not observe
significant differences in the T-cell to Macrophage ratio or in T-cell
proportions between samples that received ICI before sequencing or
after (Fig. 6F, G).

To identify additional treatment targets, a set of 43 immune
checkpoint molecules was analyzed for differential expression
(Fig. 7A). Most of the immune checkpoints were enriched in the
immune-high cluster. We could observe an overexpression of inhibi-
tory members of the immunoglobulin superfamily VTCN1 (syn: B7-H4,
L2FC = 2.2, p.adj = 2e-08***) and CD160 (L2FC = 3.5, p.adj = 2e−19***) in
ACC compared to other entities (Fig. 7B). Several immune checkpoints
were significantly under-expressed in ACC (p.adj < 0.001*** and
L2FC < −1.5), such as inhibitory members of the immunoglobulin
superfamily PD-1, its ligand CD274, and TIGIT, the co-stimulatory
molecules TNFSF8 and TNFRSF9 (4-1BB), and NT5E (CD73) (Fig. 7A).

We additionally analyzed mRNA expression of a comprehensive
list of potential targets of T-cell-receptor based immunotherapy stra-
tegies. Expression of any potential treatment target was identified in
the majority of samples. Expression clusters of target groups were

Table 2 | Sample characteristics for single-nuclei sequencing.
The table shows clinical characteristics and quality metrics
for the single-nuclei cohort. Clinical characteristics include
site of biopsy, tumor entity, and inflammation group. Quality
metrics are the number of nuclei per sample, themedian UMI
counts per nucleus, and themediannumber of transcripts per
nucleus. (ACC=Adenoid Cystic Carcinoma, AdC=Adeno-
carcinoma,BCC=BasalCell Carcinoma,CS=Carcinosarcoma,
CEPA=Carcinoma ex Pleomorphic Adenoma, MEC=Mucoe-
pidermoid Carcinoma, SDC=Salivary Duct Carcinoma)

Sample Site
Biopsy

Entity # nuclei Immune
cluster

median
UMI
counts/
nucleus

median
transcripts/
nucleus

P-6 lung CS 6640 High 4254 2235

P-14 lung AdC 2774 High 1740 1108

P-18 lymph
node

SDC 4344 High 5624 2277

P-31_1 primary CEPA 3957 NA 5034 2427

P-31_2 primary CEPA 3839 NA 4824 2395

P-32 primary ACC 4667 Low 2495 1545

P-33 skin ACC 5455 Low 3867 2064

P-42 lung ACC 10273 High 3750 1892

P-46_1 lung BCC 8082 Low 7149 2834

P-46_2 lung BCC 7864 Low 7152 2773

P-66_1 lymph
node

BCC 5973 High 4756 2292

P-66_2 lymph
node

BCC 4664 High 3961 2049

P-74 primary MEC 4802 Medium 2179 1358

P-79 skin AdC 2861 Medium 3261 1811

P-85 lung ACC 6497 High 2920 1804

P-103 lung ACC 4343 Medium 4095 2277
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identified, e.g. CTAG1B (NY-ESO-1) and MMP7 were found to be sig-
nificantly overexpressed in ACC (L2FC= 4.7, p.adj = 1.9e−10*** and
L2FC = 3, p.adj = 1.2e−11***). Around 25% of the cohort had high
expression of some or multiple genes of the MAGE family (Supple-
mentary Fig. 14A).

Protein expression of VTCN1was validated by IHC and correlated
with bulk RNA expression in 15 samples (Fig. 7C, D and Supplementary
Fig. 14B, C). IHC intensitymultiplied bypercentage of positive cells was
correlated with VTCN1 expression (Spearman, rho =0.82, p = 1.9e−4***,
Fig. 7D).VCTN1 expressionwas further confirmed in tumor cells of ACC
samples in single-nuclei RNA seqdata (Fig. 7E). No association between
VTCN1 expression and different immune clusters in ACC was seen
(Fig. 7A). Further analysis in single nuclei data demonstrates that
VTCN1 was overexpressed in luminal-like cells and showed decreased
expression inmyoepithelial-like cellswithinACC samples (Fig. 7E–G). A
predominance of luminal-like cells was identified in ACC1 (n = 1),
whereas ACC2 (n = 3) had more myoepithelial-like cells. These differ-
ences in cell composition might mediate differences in VTCN1
expression between ACC1 and ACC2 samples15, however, the expres-
sion in both ACC clusters was remarkably higher than in non-ACC
(Fig. 7B). These findings indicate that VTCN1 is a suitable marker for
ACC specifically.

Discussion
Effective immune therapies are lacking for patients with advanced
SGC. Response rates with PD-1 or PD-1/CTLA-4 directed therapies are
low and range from4-16% in prospective clinical trials7,9. Consequently,
the use of immune checkpoint inhibitors has not been recommended
outside of clinical trials in current guidelines12. In order to identify
potential biomarkers and therapeutic strategies for immunotherapy in
these hard-to-treat tumors, we analyzed a large cohort of advanced
SGC using bulk and single-cell sequencing data.

An inflamed TIM could be observed in only a subset of samples.
Immune desertion was most pronounced in Intercalated-duct derived
(ID) histologies, including myoepithelial carcinoma and ACC, com-
pared to excretory-duct derived (ED) histologies, in line with previous
analyses in SGC13,23. However, prior data are based on early tumor
stages and, as such, are at risk of bias towards more favorable disease
subgroups. The provided analysis of advanced tumors yields multi-
layered data in a potential intention-to-treat cohort that might differ
biologically from early-stage tumors. The observed differences
between primary tumors and lung metastases in ACC support this
notion. Pulmonary metastases have been associated with a more
favorable clinical course in ACC24 and are therefore likely linked to
different ACC subgroups.

These results highlight the heterogeneity between tumor sub-
types both within ACC and SGC overall, in line with data from a rea-
nalysis of early-stage SGC gene expression data, where an association
between cell-of-origin and tumor inflammation was shown23. Several
mechanisms might contribute to these phenotypic differences.
Inflammation was associated with TMB mostly in non-ACC histologies
in our analyses. This is likely caused by a uniformly lower TMB in ACC,
limiting a statistical association. However, the molecular profile of
inflammation-high ACCdid not differ significantly from themajority of
ACC, therefore, themechanisms behind tumor inflammation in a small
ACC subset remain not entirely understood. Within ACC, different
subgroups of ACC1 and ACC2 have recently been proposed4. We were
able to validate the prognostic relevance and also link thesefindings to
differences in tumor inflammation. Our results further suggest that
these differences are mediated by differences in the antigen proces-
sing machinery. In contrast, non-ACC samples, especially of an ED-like
cell-of-origin, often harbor complex genomic alterations and higher
tumor inflammation (e.g., APOBEC-mutational signature in mucoepi-
dermoid carcinoma samples or TMB-high in salivary duct carcinoma).
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Fig. 4 | TIM composition analysis based on single nuclei data. A Proportions of
major cell-types in single nuclei data revealed a higher number of immune cells
(red) in tumors previously classified as immune-high (legend is provided in panel
B). Samples are annotated by tumor entity and bulk-based immune cluster (see
legend annotation). P-31 did not have evaluable bulk data and therefore lacked
immune cluster annotation. B UMAP plot of integrated data, annotated by major
cell types.CUMAPof immune cells (n = 11, after exclusionof lymphnodemetastasis

samples) annotated by major immune cell populations. D Proportions of immune
cell populations in single nuclei data revealed a predominance of macrophages
(legend is provided in panel D). Samples were annotated by tumor entity and
biopsy site (see legend annotation). The bars on the right represent the proportion
of immune cells in the sample. E Expression of selected immune cell markers in
annotated immune cells.
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These differences could cause the higher efficacy of immune check-
point inhibitors in non-ACC compared to ACC subtypes, observed in
this cohort as well as clinical trial data9. Thus, individual SGC patients,
especially with an ED-like histology, might benefit, and an individual
molecular tumor profile should be evaluated before a treatment
decision is made12. These individual considerations are likely more
important than simple assignment to one of the three identified
inflammation groups. However, these groups are able to distinguish
between existingT-cell inflammation, thepresence of immuneeffector
cells, and immune desertion. Expression of immune checkpoints
across these groups also suggests to differentiate between immune-
high and immune-deserted tumors. Still, overall response rates to
immune checkpoint inhibitors are also low for non-ACC samples. We
assessed the TIM to identify potential additional mediators of resis-
tance to current immunotherapy strategies.

Identifying immune cell compositions from bulk sequencing is
challenging. Using single-cell transcriptome-validated bulk deconvo-
lution analyses, we identified a myeloid-dominant tumor immune
microenvironment (TIM) in both ACC and non-ACC SGCs. Macro-
phages, particularly M2-polarized macrophages, are key drivers of
immune suppression and resistance to immune checkpoint
inhibition25. The high M2 macrophage content in advanced SGCs may
thus contribute to ICI resistance. Comparative analyses with other

TCGA datasets further suggest that relative macrophage pre-
dominance is particularly relevant in SGC.

A high T-cell content was associated with clinical benefit from
immune checkpoint inhibitors (ICI) in individual patients in two
independent cohorts. However, in both cohorts, only a subset of
samples could be confidently analyzed via deconvolution, which
limits the statistical power of findings. Response to ICI is multi-
factorial and influenced by several factors, such as TMB or PD-L1
expression26. Thus, these results need to be viewed with caution
before translation into clinical practice. Yet, they justify further
validation of ICI treatment in SGC subgroups and investigation of the
T-cell to macrophage ratio as an additional potential predictive
biomarker. Macrophage-directed agents should be further investi-
gated either alone or in combinationwith other immunotherapies for
patients with SGC. Mechanisms underlying the high macrophage to
T-cell ratio in SGC are currently unclear. We were able to assess the
immune microenvironment of healthy salivary glands, which did not
reveal an increased macrophage content. Most macrophages in SGC
exhibited a rather M2-like phenotype, however, our single-cell ana-
lysis of the macrophage population in healthy SG revealed a pre-
dominantly inflammatory phenotype. Nevertheless, some M2-like
macrophages were still present within the tissue. This coexistence
suggests that macrophages exist along a dynamic spectrum rather

Macrophage-dominated TIM T-cell-dominated TIM

Immune Cluster

Tumor Entity
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Fig. 5 | Macrophages dominate TIM in advanced SGC. A Deconvolution results
for 61 samples with evaluable results. Barplot shows the proportions of major
immune cell subpopulations. Samples were ordered by T-cell to macrophage ratio
and annotated by tumor entity, cell of origin (ID/ED group), and immune cluster.
B Deconvolution results revealed significantly different proportions of CD8 T-cells
between previously identified immune subgroups (p-value filtered, Immune-high
n = 24 median = 0.11, iqr = 0.08, max= 0.24, min = 0.03; Immune-medium n = 25
median = 0.07, iqr = 0.06, max= 0.23, min = 0.00; Immune-low n = 12 median =
0.05, iqr = 0.03, max = 0.08, min =0.00) (Wilcoxon test, two-sided). C, D In an
integrated analysis including previously published studies, the overall T-cell/Mac-
rophage ratio did not differ between ACC (n = 47, median = 0.72, iqr = 0.59, max=
1.96, min = 0.04) and non-ACC (n = 51, median= 0.73, iqr = 0.61, max= 3.52, min =
0.10) samples (C), whereas a higherM2-macrophage/overallmacrophage ratiowas
observed in ACC (n = 47, median =0.86, iqr = 0.20, max= 1.00, min = 0.28) com-
pared to non-ACC (n = 51, median = 0.64, iqr = 0.29, max= 0.95, min = 0.24) sam-
ples (D) (integrated, p-value and TNM filtered data, n = 98) (Wilcoxon test, two-

sided). E A low T-cell/macrophage ratio was confirmed across different analytic
modalities including bulk sequencing (n = 61, median = 0.68, iqr = 0.58,max = 2.04,
min = 0.04), single-cell sequencing (n = 11, median = 0.75, iqr = 1.19, max= 5.72,
min = 0.04), and immunohistochemistry (n = 40, median = 0.83, iqr = 0.50, max=
3.00, min = 0.00) (Wilcoxon test, two-sided). F Representative H&E staining of a
tumor sample (ACC). Highlighted in blue is the invasive tumor front. G Same
sample as in panel F showing the presence of macrophages (CD68 staining) (Same
scale as figure F).H Same sample as in panel F and G showing the presence of CD8
T cells (Same scale as figure F and G). I Representative image of M2-macrophages
clustering towards the tumor edge in the tumor immune microenvironment in a
SGC samples. M2-likemacrophages (CD163) are highlighted by yellow, whereas the
red line shows the tumor front. J Survival plot of the samples with the highest and
lowest T-cell proportion (upper- and lower quartile of deconvoluted T-cell pro-
portions) shows a nonsignificant trend towards improved survival with higher
T-cell proportions (log-rank test, two-sided).
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than fitting into strictly definedM1 orM2 categories. The presence of
distinct immune checkpoint molecules on SGC suggests close
interaction with the TIM and might represent potential therapeutic
targets. High expression of VTCN1 (B7H4) was identified in ACC, thus
validating previous findings in cohorts with mostly earlier-stage
ACC15. In contrast to these previous results, we only found a minor
difference in VTCN1 expression between ACC1 and −2 subtypes,
which could therefore be less pronounced in more advanced disease
stages. However, significantly different VTCN1 expression was iden-
tified between luminal- and myoepithelial cells within ACC, which
might impact the therapeutic efficacy of VTCN1-directed agents and
explain previously reported differences between ACC subtypes.
VTCN1 has been shown to negatively regulate T-cell immune
response27 and was negatively associated with tumor-infiltrating
lymphocytes and PD-L1 expression in breast cancer28. Hence, over-
expression of VTCN1 on ACC cells could contribute to the low
immunogenicity in ACC and poor response to ICI and might repre-
sent a potential treatment target for advanced ACC. In addition to
immune checkpoints, expression of target antigens for immu-
notherapy strategies was identified in a relevant subset of samples,
including a histology-predominant expression of NY-ESO1 in ACC, in
line with previous reports29. Advanced SGC should therefore be
incorporated in ongoing trials, such as T-cell-receptor-based
immunotherapies.

In conclusion, an inflamed TIM can be observed in a subset of
advanced SGC with ACC and other ID-like histologies showing sig-
nificantly less inflammation. TMB and specificmutational signatures in
non-ACC and antigen processing in ACC are potential contributors to
these observed phenotypes. ICI and T-cell-receptor-based therapies
should be further investigated in biomarker-stratified SGC. Among
these targets, significant VTCN1 over-expression in advanced ACC
could represent a possible treatment option. Furthermore, TIM cell
compositions are characterized by macrophage predominance,
representing an additional potential treatment target, whereas a high
T-cell/macrophage ratio should be further investigated as a predictive
biomarker for ICI. These results further support the development of
biomarker-based immunotherapy strategies in advanced SGC.

While our study addresses key gaps in the literature, certain lim-
itations must be acknowledged. The heterogeneous nature of the
cohort—encompassing diverse subtypes, biopsy sites, and treatment
histories—introduces variability that complicates the attribution of
specific findings to individual subtypes or populations. This is espe-
cially important for rare SGC subtypes, where sample size does not
allow for a generalization of findings. Furthermore, multiple covari-
ates, such as prior treatments, may influence the TIM, potentially
masking or mimicking significant associations. Despite these limita-
tions, our studyprovides important insights, including theprovisionof
data on rare SGC subtypes and a focus on recurrent and metastatic
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Fig. 6 | Clinical benefit in individual patients with high T-cell infiltration.
ADeconvolution results for 14 samples of patients treatedwith immunecheckpoint
inhibitors from the MASTER cohort, also including additionally integrated data
from a validation cohort of 4 patients (red font). Barplot shows proportions of
major immune cell subpopulations. Samples were ordered byT-cell tomacrophage
ratio and annotated by tumor entity and therapy status (ICI prior to sequencing).
Topbars indicate the absolute immune score andTMB.The red lines depictmedian
scores. Patients achieving a clinical benefit were marked in red. B Deconvolution
results for 14 samples from the Vos et al pre-treatment cohort. For details see panel
A. TMB results were missing for this cohort. C Additional validation in a separate
cohort of 5 patients treated with ICI using immunohistochemistry. Staining inten-
sities of CD68 andCD3were normalized to sumup to 1. Samples were annotatedby
tumor entity and sorted by T-cell proportions. Clinical benefit was observed in the

patient with the highest T-cell/macrophage ratio (highlighted in red).
D Immunohistochemical CD3 staining revealed the presence of T-cells in the
patient achieving a clinical benefit from C. E Immunohistochemical CD68 staining
depicting some presence of macrophages in the same patient. Deconvoluted, p-
value filtered T-cell proportions (F) and T-cell to macrophage ratios (G) in samples
that received ICI prior to sequencing (n = 6, median T-cell proportion =0.28, iqr =
0.12, max= 0.43, min = 0.16; T-cell/macrophage ratio = 0.81, iqr = 0.61, max = 2.04,
min = 0.39) or did not receive ICI before sequencing (n = 54, median T-cell pro-
portion = 0.25, iqr = 0.17, max = 0.41, min = 0.03; T-cell/macrophage ratio = 0.65,
iqr = 0.62, max = 1.96, min = 0.04) revealed no significant changes in tumor
immune microenvironment composition after ICI treatment, although a modest
increase in T-cell levels was observed (Wilcoxon test, two-sided).
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tumors representing an intention-to-treat population for systemic
therapies. The use of multi-omics approaches—combining WES, WGS,
RNA-Seq, and scRNA-seq—alongside clinical data, enables a compre-
hensive analysis of the TIM. By contextualizing advanced SGC TIM
features with comparisons to healthy salivary tissue, other cancer
types, and previously published cohorts, we offer unique insights into
the immune dynamics and biology of advanced SGC.

Method
Patient identification
The research complies with all ethical regulations (Ethics Committee
Medical Faculty Heidelberg, Germany, S-206/2011, Ethics Committee
Charité Berlin, Germany, EA1/305/21; see below).

Patients with ACC and non-ACC SGC from the multicentric
national DKFZ/NCT/DKTK MASTER (Molecularly Aided Stratification
for Tumor Eradication Research, Clinicaltrials ID NCT05852522)
programwere included in the analysis. TheMASTER program applies
comprehensive molecular diagnostics to inform the care of adult
patients with incurable cancers. MASTER inclusion criteria were
advanced solid tumors of a rare histology or younger age (<51 y), no
available standard therapy, good general condition (ECOG< 2), as
well as available fresh-frozen tumor tissue. Participants are not

compensated. The MASTER program was approved by ethics com-
mittees at all participating sites (Lead Heidelberg, S-206/2011). In a
separate retrospective analysis, patients with salivary gland cancer
treated at Charité - Universitätsmedizin Berlin were identified
through an analysis of the clinical and pathological documentation
system.

Written informed consent was obtained from all participants in
the MASTER program. Ethics approval for retrospective analysis of
tumor samples from patients not participating in the MASTER pro-
gramwas obtained separately (Berlin, EA1/305/21). Sex was considered
in the studydesign and self-reportedbyparticipants. Clinical datawere
extracted from clinical documentation of the primary care facility
detailing the patient history, as available.

Immunohistochemistry
Formalin-fixed and paraffin-embedded (FFPE) surgical specimens of
the patients were used to prepare slides for immunohistochemistry
(IHC). IHCwas performedon tissuemicroarrays (TMAs)with two cores
for each case, according to standard procedures. As counterstaining,
Hematoxylin was used.

For the detection of the immune cells we used a polyclonal anti-
body against CD3 for T-cells (solution 1:100, Dako) and monoclonal
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Fig. 7 | Analysisofbiomarkers for immunotherapy.AExpressionmatrix basedon
log TPM values of selected immune checkpoints. The checkpoints were annotated
on the left as co-inhibitory or co-stimulatory. The sampleswereannotated basedon
the tumor entity and the immune-cluster assignment.VTCN1was highlighted in red.
B Boxplot of VTCN1 expression (here vst values) in ACC1 (n = 25, median = 14.60,
iqr = 1.16, max = 16.3, min = 6.19), ACC2 (n = 32, median = 14.10, iqr = 0.75, max=
15.5, min = 11.5), and non-ACC (n= 38, median = 9.92, iqr = 6.06, max= 14.9, min =
0.71) showing significantly increased VTCN1 expression in ACC compared to non-
ACC samples and a nonsignificant trend towards increased VTCN1 expression in
ACC1 (Wilcoxon test, two-sided). C: Exemplary staining of VTCN1 in an ACC sample
reveals strong staining intensity on tumor cells. D: VTCN1 expression by RNAseq

was significantly correlated with VTCN1 staining intensity by IHC (intensity * per-
centage positive cells), with the exception of 3 outliers (highlighted in red). The
shaded area represents the 95% confidence interval of the linear model. E:
Expression of VTCN1 in ACC malignant cells. UMAP shows non-integrated data.
Cells are clusteredbydonor.F:UMAPofmalignant cells inACCcolored by assigned
cell type (myoepithelial- or luminal-like) revealed an association between VTCN1
expression and cell type. G: Violin plot with expression of VTCN1 in myoepithelial-
vs. luminal-like malignant cells showed significantly higher expression in luminal
ACC cells (luminal: n = 2615, median = 1.70, iqr = 0.88, max= 3.61, min =0.38;
myoepithelial: n = 1033, median = 1.20, iqr = 0.63, max= 3.05, min = 0.26). Cells
expressing no VTCN1 were removed (Wilcoxon test, two-sided).

Article https://doi.org/10.1038/s41467-025-60421-0

Nature Communications |         (2025) 16:5303 10

www.nature.com/naturecommunications


antibodies against CD8 (clone C8/144B, solution 1:100, Dako) for
cytotoxic T-cells, against CD4 (clone 4B12, solution 1:20, Leica) for
T-helper cells, against CD20 for B-cells (clone L26, solution 1:750,
Dako), against CD68 for macrophages (clone PG-M1, solution 1:200,
Dako), against CD163 (clone NCL-L-Cd163, solution 1:400, Leica) for
M2-macrophages, against FOXP3 for T-regs (clone 236A/E7, solution
1:200, Abcam plc., Cambridge, UK) and PD-L1 (clone E1L3N, solution
1:200, Cell signaling). All analyses were performed on the Leica Bond
Master.

For the detection of VTCN1, we used the recombinant Anti-B7H4
antibody (clone EPR23665-20, solution 1:100, Abcam plc., Cambridge,
UK). A positive expression for CD3, CD4, CD20, CD68, CD163, and CD8
was defined by a medium to strong intensity of membranous staining.
A positive expression for VTCN1 was defined by a medium to strong
intensity of membranous staining of the tumor cells. IHC intensities
were classified as 0 for no staining, 1 for weak intensity, 2 for medium
intensity, and 3 for strong intensity by a board-certified pathologist.
Immunohistochemistry staining was performed once on each sample
for each selected marker.

Exome, genome, and bulk RNA seq sequencing
Bulk sequencing on fresh-frozen tumor tissue within the MASTER
programwas performed as previously described30: DNA and RNA from
tumor and DNA from matched blood samples were isolated using
AllPrep Mini or Universal Kits (Qiagen). After library preparation
(SureSelect Human All Exon, Agilent; TruSeq RNA Sample Preparation
kit V2, Illumina), whole-exome and RNA-paired-end sequencing (2 ×
151 bp; 2 × 101 bp) was performed with various HiSeq instruments (e.g.
HiSeq 4000 and NovaSeq 6000; Illumina).

Exome, genome and bulk RNAseq data processing
Fastq files were trimmed using bbduk by removing adapter sequen-
ces and thenmapped using bwa-mem algorithm (version 0.7.17) onto
the GRCh38 genome (GRCh38.d1.vd1, primary assembly with decoys
and viral sequences). In case of RNA-seq data, alignment and gene
expression quantification were performed with salmon (version
1.4.0, transcriptome version: GENCODE 33). Counts were normalized
to gene length (TPM) and log-transformed for visualization. To
compare gene expression between samples (for example, in a box-
plot) and to run GSVA, counts were “variance stabilized” via vst
transformation using the DeSeq2 package in R31. Aligned exome and
genome data was passed through a somatic variant calling pipeline.
SNPs and short indels were detected by theMutect2 algorithm32 using
in-house panels of normals. The resulting vcf files were annotated via
jannovar (version 0.26) and vep (version 102). Gene fusion products
were detected with arriba33 (version 2.3.0). CNVs were computed
with Ascat34, using both exome and genome data. A CNV was labeled
as amplification if the copy number was larger than 4 and as deletion
if the copy number was 0. The chromosomal abberation index (CAI)
was defined as the length of the altered genome (affected by CNVs)
divided by the total length of the genome. Other datasets used in this
study were retrieved from the TCGA database and theNCBI sequence
read archive (SRA). For TCGA datasets STAR counts were used and
transformed. Linxweiler et al13 and Vos et al9 comprised fastq files
from SRAwhich were processed in the samemanner as our data. Bulk
RNA-seq raw data from healthy SG (salivary gland) tissue were
retrieved from 3 different publications20–22. Only samples from
healthy and adult tissue were selected and processed in the same
manner as our data. The final count matrix was then batch corrected
using the study as a batch.

Bulk RNAseq downstream analysis
Differential expression was performed using the R package DeSeq231.
DEGs and PCA loadings were tested for functional enrichment against
gene sets from MSigDB (release 2023 v1) using the tmod 35 package.

The AUC for each enrichment was calculated by ranking genes from
the gene set to be tested based on their relevance to a specificmodule
and then assessing how well these ranks separate module-associated
genes from non-associated ones

Sample-wise gene set enrichment was performed with GSVA
implemented in the R package gsva36. A set of several functional scores
for immune infiltration published in four independent publications
was used to cluster the patients. Gene signatures were selected based
on similar sizes, frequent citations, and association with tumor
immunity. This set comprises a 6-gene T-cell signature from Danaher
et al., a 6-gene IFNG signature from Ayers et al., an 18-gene immune
signature from Ayers et al., a 7-gene APM (Antigen processing
machinery) signature from Senbabaoglu et al. a 17-gene cytotoxicity
signature from Bindea et al. and a 20 ICR (Immunologic Constant of
Rejection) gene signature from Roelands et al.37–41. The overlap
between these signatures was low (max. Jaccard’s coefficient 0.2).
Furthermore, scores for several immune infiltrates were computed
basedon the set of immune infiltrate signatures fromBindea et al.40. All
signatures are listed in Supplementary Data 3.

As an additional validation, other scores were computed: the
cytotolic score42, the ESTIMATE Immune score43, the CIBERSORT
absolute score44, and the x-cell immune score45. CIBERSORT was used
both in absolute and relative modes to get the absolute and relative
proportions of immune cells, respectively. For the validation of the
CIBERSORT results in the immune checkpoint inhibitor (ICI)-cohor,t
we analyzed 6 additional samples from the MASTER cohort and the
published RNA-seq cohort from Vos et al.9. These analyses were per-
formed using the immunedeconv package in R46.

GSVA was applied using a Gaussian kernel on variance-stabilizing
transformed counts (vst). The input for the immunedeconv methods,
such as CIBERSORT and x-cell were TPMs. Results from different
deconvolution methods were compared to single-cell results and IHC
via simple correlation, the bestmethodwas chosen for further analyses.
Matrices with GSVA scores of immune-cells/infiltrates were clustered
via hierarchical clustering with ward linkage and k = 3. Immune infil-
tration scores were correlated against each other, and the p-valueswere
corrected for multiple testing (bonferroni-holm method).

In the case of the integrated analysis with other cohorts, samples
from tumor stage <3 were filtered out (this filtering step was per-
formed in order to analyze only advanced tumor samples) and the
filtered combined expression matrix was batch corrected with the
limma package in R before computing the GSVA scores.

Integration and statistical testing of clinical and molecular data
We analyzed the relationships between several clinical parameters and
response variables such as IFNG-score or t-cell to macrophage ratio
using one- or two-wayANOVAs. For non-normallydistributed response
variables, log transformations were applied to meet model assump-
tions where appropriate. In cases where transformations were insuffi-
cient, alternative methods such as non-parametric ANOVA (Kruskal-
Wallis) were employed to ensure robust statistical inference. To test
differences between groups in any other settings, a non-parametric,
unpaired test such as the Wilcoxon test was used. P-values were cor-
rected using the Holm-Bonferroni method.

Survival analyses were performedwith R package survminer using
only overall survival. Samples were divided into “high” or “low” for
survival analysis by using the upper quartile and lower quartile of the
respective immune score.

Two molecular ACC subgroups were previously described by
Ferrarotto et al.4: ACC1 and ACC2. ACC1 subtype is characterized by
solid histology and poorer prognosis, whereas ACC2 subtype has a
better prognosis and predominantly cribriform tubular forms. ACC1-
ACC2 score was calculated based on MYB-TP63 expression as descri-
bed by Ferrarotto et al4. If the score was > 0, the sample was labeled as
ACC1, otherwise as ACC2.
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Different entities were labeled as ID (Intercalated-duct)- or ED
(Excretory-duct)-derived based on a cut-off on median SOX10
expression and prior literature, when applicable23,47

WGS and WES downstream analysis
Annotated variants retrieved from exome and genome data were used
for the calculation of the tumor mutational burden (TMB), mutational
landscape analyses, and detection of mutational signatures. TMB was
calculated as the number of non synonymous short variants per MB
sequence. Variants used for TMB had at least 5% VAF, 10x coverage for
the normal allele and 20x or 50x coverage for the mutant allele
(depending on the data source:WGSorWES). VCF files were converted
to MAF files by the vcf2maf tool (version 1.6.21) and analyzed by the
maftools package48 in R. For mutational landscape analyses, only
mutations in the coding sequence were used, whereas for mutational
signatures, all variants were used.

The oncoprint matrix was produced using all alterations (SNVs,
CNVs, and fusions) in a set of selected genes, known to be affected in
SGC49. Mutational signatures were computed with MusiCal50. Expo-
sures were calculated against the newest version of SBS mutational
signature catalog (v3.4)51. To test for positive selection the ratio of
missense and synonymous mutations within the coding sequence of
immunotherapy-relevant genes was computed gene-wise. If the ratio >
1 there is a positive selection for the respective mutation(s). Tumor
purity and ploidy were assessed with Ascat34 based on WGS and WES.

Tissue dissociation, nuclei preparation, and single nuclei
sequencing
Each sample of fresh frozen tumor tissue was suspended in NP-40 lysis
buffer (10mMTris-HCl (pH7.4); 10mMNaCl; 3mMMgCl2; 0.01%NP-40;
1mMDTT; 2%BSA; 1U/µl RNAse inhibitor; Complete EDTA-free protease
inhibitor) in a 1.5ml Eppendorf tube and disrupted with a plastic pestle.
The suspension was incubated on ice for 5minutes, filtered through a
70 µmpre-separation strainer, and centrifuged at 4 °C. The supernatant
was removed, the nuclei were resuspended in nuclei wash buffer (PBS;
1%BSA; 0.4U/µl RNAse inhibitor), and 3.5 µl DAPIwas added, followedby
incubation on ice. Themixture was filtered through a 40 µmFlowmi cell
strainer and sorted with a 100 µm nozzle in an Eppendorf tube con-
taining 200 µL sort buffer (PBS; 2% BSA; 2U/µl RNASe inhibitor). Single
nuclei libraries were generated according to the Chromium Next GEM
Single Cell 3ʹ Reagent Kits v3.1 (Dual Index) user guide (CG0003154) by
10x Genomics. Gel bead-in-emulsions (GEMs) were created using the
Chromium Controller. In this step, individual nuclei were encapsulated
with a gel bead in a droplet,where barcodingoccurs. ThebarcodedRNA
was reverse transcribed into cDNA and amplified. The amplified cDNA
underwent fragmentation, end-repair, A-tailing, adaptor ligation, and
sample index PCR to create the final library. The prepared library was
sequenced on a NovaSeq 6000 instrument (Illumina).

Single nuclei data processing and downstream analysis
Generated fastq files were aligned with cellranger (version v7.1.0),
which outputs count matrices for each sample. Cellbender52 was then
used to filter count matrices and remove background noise. Expected
cells and total droplets were estimated from the cell ranger quality
control for each sample. The count matrices were further processed
using the scanpy package in Python. In the case of published data for
healthy SG22, the filtered count matrix in.h5 format was used and
processed further in the same manner as our data.

After cellbender filtering, additional filtering steps were per-
formed. Only cells with at least 1000 UMIs and at least 300 expressed
genes were kept. Cells with more than 20% mitochondrial and 10%
ribosomal counts were removed. scDBLFInder was used for doublet
detection53, which was around 10% in the whole dataset.

Counts were normalized via size factor normalization54. For PCA,
only 3000 to 5000 highly variable genes (depending on the analysis)

were used. In certain analyses, counts from mitochondrial and ribo-
somal reads, as well as from MALAT1, were removed in order to facil-
itate the interpretation of results. Furthermore, a total of 50 PCs were
used for integration with Harmony55. After assessment of 3 different
integration methods, we found Harmony to be the best suited for our
data. Harmony embeddings were used for knn-graph construction,
UMAP, and clustering. For clustering, we used the leiden algorithm56

with 0.5 resolution. Cell clusters were annotated manually based on
markers retrieved from the literature57 and the protein atlas58 (protei-
natlas.org). Immune cells were annotated automatically using pub-
lished celltypist59. Malignant cells were identified based on copy
number variants (inferCNV of the Trinity CTAT Project. https://github.
com/broadinstitute/inferCNV) and based on the occurrence of
somatic SNVs known from WES/WGS in the single-cell RNAseq reads
with CCISM60. Malignant cells in ACC were further classified into
myoepithelial- and luminal-like following a similar approach to the one
used by Parikh et al.61. Luminal and myoepithelial scores were calcu-
lated and subtracted. If the difference was below or above a 0.3
threshold, the cells were labeled either as luminal or as myoepithelial.

Statistics & Reproducibility
Study design and sample size. No statistical method was used to
predetermine sample size. The study included all eligible patients with
available sequencing data and/or immunohistochemical analyses from
the DKFZ/NCT/DKTK MASTER cohort and the retrospective Charité -
Universitätsmedizin Berlin cohort. Sample sizes were based on the
availability of tumor samples and matched clinical data.

Data exclusions. Samples with insufficient quality, defined by low
sequencing quality, incomplete clinical documentation, or technical
failure in immunohistochemical staining, were excluded. Additionally,
for integrated analyses involving multiple cohorts, samples from
tumor stages below stage III from published cohorts were excluded to
focus specifically on advanced disease.

Randomization and blinding. The experiments were not randomized.
The investigatorswerenot blinded to allocationduring experiments or
outcome assessment. Clinical outcomes and molecular data were
analyzed retrospectively.

Statistical analyses. Statistical analyses were conducted using R
(versions 4.1.0−4.3.0) and Python (Scanpy for single-cell analysis).
Details about the specific methods and tests can be found in the
respective methods section.

Reproducibility. Immunohistochemical staining experiments were per-
formed once per marker, per sample, due to the limited availability of
tumor material. Sequencing experiments were conducted once per
patient biopsy, and data reproducibility was assessed by validating
results across independent cohorts andmultiple analyticmodalities (bulk
RNA-seq, single-nuclei RNA-seq, immunohistochemistry). We addition-
ally provide raw sequencing data under restricted access as well as pro-
cesseddata, such as countmatrices for single-cell andbulkRNA-seqdata.

Ethics approval and consent to participate
The MASTER program was approved by ethics committees at all par-
ticipating sites (Lead Ethics Committee Heidelberg, S-206/2011).
Written informed consent was obtained from all participants. Ethics
approval for retrospective analysis of tumor samples frompatients not
participating in the MASTER program was obtained separately (Ethics
Committee Charité Berlin, EA1/305/21).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Article https://doi.org/10.1038/s41467-025-60421-0

Nature Communications |         (2025) 16:5303 12

https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
www.nature.com/naturecommunications


Data availability
The bulk sequencing data generated in this study have been deposited
in the The European Genome-phenome Archive (EGA) with the
accession code EGAS50000000809. The data are available under
controlled access due to the sensitive nature of genome sequencing
data, and access can be obtained by contacting the appropriate Data
Access Committee listed for each dataset in the study. Access will be
granted to commercial and non-commercial parties according to
patient consent forms and data transfer agreements. We have an
institutional process in place todealwith requests for data transfer and
aim for rapid response time. Any further questions can be directed to
the corresponding author. The clinical data generated in this study are
provided in the manuscript and supplementary information. The
count matrix for bulk data and filtered count matrices for each single
nuclei sample are provided on GEO under the accessions GSE294016
(bulk) and GSE294017 (single nuclei). We provided source data for
each of the main figures. Source data are provided with this paper.
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