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One Sentence Summary: Age-, sex-, and height-adjusted body composition z-scores predict 

cardiometabolic outcomes and enable clinical translation of body composition data. 
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Abstract: Body composition (adiposity and muscle depots) is strongly associated with cardiometabolic 

risk. However, using body composition measures for future disease risk prediction is difficult as they may 

reflect total body size or typical aging rather than poor health. We used data from the UK Biobank (UKB) 

and the German National Cohort (NAKO) to calculate age-, sex-, and height-specific z-scores for body 

composition measures (subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), skeletal muscle 

(SM), SM fat fraction (SMFF), and intramuscular adipose tissue (IMAT)) and describe changes across the 

lifespan. Multivariable Cox regression assessed the prognostic value of z-score categories (low: z<-1; 

middle: z=-1 to 1; high: z>1) for incident diabetes, major adverse cardiovascular events (MACE), and all-

cause mortality beyond traditional cardiometabolic risk factors in the UKB. Among 66,608 individuals 

(mean age: 57.7±12.9 y; mean BMI: 26.2±4.5 kg/m2, 48.3% female), SAT, VAT, SMFF, and IMAT were 

positively, and SM negatively associated with age. In multivariable-adjusted Cox regression, z-score risk 

categories had hazard ratios of up to 2.69 for incident diabetes (high VAT category), 1.41 for incident 

MACE (high IMAT), and 1.49 for all-cause mortality (low SM) compared to middle categories. Body 

composition shows distinct age-related changes across the lifespan. Z-scores of age-, sex-, and height-

adjusted body composition measures identify individuals at risk and predict cardiometabolic outcomes 

and mortality beyond traditional risk factors. Our open-source tool facilitates the clinical translation of 

age-specific body composition assessments and supports future research. 

 

Main Text: 

INTRODUCTION 

Cross-sectional medical imaging, such as magnetic resonance imaging (MRI) and computed tomography 

(CT) scans, have become a fundamental tool in modern healthcare systems to support diagnosis, disease 

monitoring, and prognosis, with an 86% increase in MRI and a 127% increase in the volume of CT scans 

in England over the last decade (1, 2). Growing evidence shows that body composition measures, such as 

adipose tissue compartments and skeletal muscle derived from MRI and CT scans, are critical and 

independent risk factors for cardiometabolic and oncological disease and mortality (3-5). These measures, 
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however, are influenced by height, differ between sexes, and change substantially with aging (3, 4, 6-8). 

Yet, comprehensive and quantifiable reference data on how body composition typically varies across the 

lifespan are currently missing. Therefore, tools that adjust image-derived body composition metrics for 

known confounders are critical for improving screening accuracy, guiding prevention strategies, and 

tailoring treatment decisions by creating the potential to detect whether an individual’s body composition 

is at risk compared to their age-matched peers. While various cutoff values and thresholds have been 

proposed, they were primarily based on data from small, heterogeneous, and diseased populations (6, 9). 

The identification of high-risk body composition alterations based on age-specific reference curves could 

improve the comparability and generalizability of study results, thereby facilitating the translation of body 

composition analysis into clinical practice and personalized risk assessment. Large imaging studies of the 

general population, such as the UK Biobank (UKB) and the German National Cohort study (NAKO), 

provide this unique opportunity to establish these reference curves for body composition metrics (10, 11). 

While manual body composition measurement in large-scale imaging datasets is prohibitively time-

consuming, recent advances in deep learning have enabled fully automated, accurate, and efficient 

quantification from cross-sectional imaging (12, 13).  

Here, we used a fully automated deep learning framework to estimate body composition metrics, 

including subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), skeletal muscle (SM), 

intramuscular adipose tissue (IMAT), and SM fat fraction (SMFF) from whole-body MRI in over 66,000 

individuals from the general population. We 1) described body composition distributions and profiles 

across age decades, 2) calculated age-, sex- and height-adjusted reference curves and z-scores, 3) 

investigated the value of these z-scores as prognostic markers to predict incident health outcomes in the 

general population beyond traditional clinical risk factors, and 4) made available an open-source web-

based body composition z-score calculator for research and clinical use. 
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RESULTS 

In this study, we used a fully automated deep learning framework for comprehensive body composition 

analysis from whole-body MRI in a large Western European population to 1) describe age and sex 

specific changes across the lifespan, 2) calculate age-, sex-, and height-adjusted reference curves for these 

measures, 3) explored their prognostic value for cardiometabolic disease and mortality and 4) provide an 

open-source tool, which may help to accelerate clinical translation and comparability between research 

studies. An overview of the study design is provided in Fig. 1. 

Study population: 

The study population consisted of 66,608 individuals (32,165 females and 34,443 men) with a mean age 

of 57.7±12.9 years and a mean BMI of 26.2±4.5 kg/m2. In females, SAT, SMFF, and IMAT were 

significantly higher than in males (all p<0.001; Table 1), whereas males had significantly higher SM and 

VAT volumes (both p<0.001). Baseline demographics for the entire population and subdivided by NAKO 

and UKB participants are provided in Table 1, Table S1, and Table S2, respectively. 

Differences in body composition measures across age decades: 

First, we analyzed the differences in median body composition measures and their IQR across age 

decades stratified by sex (Fig. 2A and Table 2). 

We observed a positive association between SAT and age, with a minor decrease in variability across the 

lifespan that was more pronounced in females (Fig. 2A, Table 2). VAT increased throughout the lifespan 

with higher variability in older adults in both sexes, but to a much greater extent in males (Fig. 2A, Table 

2). While SM began to notably decline and become less variable after age 50, SMFF and IMAT increased 

and became more variable across all decades (Fig. 2A, Table 2). Similar results were seen in stratified 

analysis of the NAKO (Fig. S1A & Table S3) and UKB (Fig. S2A & Table S4). 

Relative proportion of body composition measures across age decades: 

Next, we assessed the assessed the proportion of each body composition measure relative to the sum of all 
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body composition measures (SAT, VAT, SM, and IMAT) across age decades stratified by sex (Fig. 2B). 

Across all age decades, SAT was the predominant body composition measure in females (Fig. 2B, top 

row) exhibiting only minor differences from a minimum of 55.3% at 20-30 years to a maximum of 57.3% 

at 50-60 years (males: 37.0% at 20-30 years to a maximum of 40.2% at 60-70 and >70 years; Fig. 2B, 

bottom row). In contrast, SM was the predominant body composition measure in males from 20 to 70 

years (Fig. 2B, bottom row) that steadily decreased from 53.6% at 20-30 years to 38.6% at >70 years 

(females: 37.5% at 20-30 years to 27.5% at >60 years; Fig. 2B, top row). While the IMAT proportion 

increased slightly from 20-30 years to >70 years (females: 3.3% to 5.8%; males: 2.7% to 4.9%), the 

relative VAT proportion increased substantially across age decades (females: 3.9% to 9.3%; Fig. 2B, top 

row; males: 6.8% to 15.8%; Fig. 2B, bottom row). Similar results were seen in stratified analysis of the 

NAKO (Fig. S1B) and UKB (Fig. S2B). 

In addition, differences in the relative proportion of body composition measures per BMI categories are 

presented in Fig. S3 for the entire study cohort and the NAKO and UKB separately. 

Spatial differences in body composition distribution along the craniocaudal body axis: 

We then analyzed differences in the spatial distribution of body composition measures along the 

craniocaudal body axis across age decades stratified by sex (Fig. 2C). 

In both females and males, SAT shifted from the gluteal region to the chest and VAT shifted from the 

pelvis to the abdomen with increasing age (Fig. 2C). These differences were less pronounced for SM, but 

we observed a slight shift from the gluteal region to the trunk and chest in females (Fig. 2C), and a slight 

shift from the chest to the gluteal region in males (Fig. 2C). Regarding paraspinal IMAT, there was a shift 

from the lower lumbar spine to the upper thoracic spine in both sexes (Fig. 2C). Similar results were 

found in stratified analysis of the NAKO (Fig. S1C) and, to a lesser extent, in the relatively older UKB 

(Fig. S2C). 
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Age, sex, and height-adjusted body composition reference curves: 

Next, we calculated age-, sex-, and height-specific reference curves for all body composition measures 

(Fig. 3). Crude values for each body composition measure across age stratified by sex are shown as a 

scatter plot in Fig. 3A. Reference curves were calculated using a GAM fit stratified by sex using smooth 

functions of age and height (see Methods). Examples of the resulting reference curves for each body 

composition measure are shown for an average female (1.65 m tall; Fig. 3B) and an average male (1.75 m 

tall; Fig. 3C). While the variance in SAT volume was higher in average females (Fig. 3B), the variances 

of VAT and SM were higher in average males across all ages (Fig. 3C). Variances were comparable for 

SMFF and IMAT for both sexes (Fig. 3B & 3C).  

The derivatives of the 50th percentiles were calculated to illustrate the rate of change of each body 

composition measure over the lifespan of an average tall female and male (Fig. 3D). SAT and VAT were 

increasing in volume until 60 or 70 years when they started to decrease (Fig. 3D). In contrast, a decline in 

SM occurred significantly earlier, starting at age 30 for both sexes (Fig. 3D). SMFF and IMAT increased 

throughout the lifespan (Fig. 3D). SAT and VAT were less height-dependent in females (Fig. 3E) than in 

males (Fig. 3F). While SM and IMAT were quite similarly height-related in males and females, SMFF 

showed almost no height dependency (Fig. 3E & 3F). 

Association between body composition z-scores and health outcomes: 

Last, we investigated the prognostic value of body composition z-scores for cardiometabolic outcomes in 

the UKB. This cohort consisted of 34,638 individuals (18,267 females and 16,371 males) with a mean age 

of 64.9±7.8 years and a mean BMI of 25.8±4.2 kg/m2 after excluding individuals with prevalent diabetes 

or a history of myocardial infarction and/or stroke before the date of their MRI examination (Table S5). 

Cumulative incidence and Kaplan-Meier curves showed graded associations between body composition 

z-score categories and outcomes (Fig. S4). 
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Diabetes: Over a median of 4.75 years (IQR 3.89-6.08 years), 657 individuals (1.9%) were diagnosed 

with diabetes. In Cox regression adjusted for age, sex, and BMI category, race, alcohol consumption, 

smoking status, hypertension, and history of cancer, the high z-score categories of VAT (aHR: 2.69, 95% 

CI [2.22-3.27]), SMFF (aHR: 1.74, 95% CI [1.45-2.09]), and IMAT (aHR: 1.22, 95% CI [1.01-1.47]), as 

well as the low z-score category of SM (aHR: 1.36, 95% CI [1.12-1.65]), were associated with a higher 

risk, while the low z-score categories of VAT (aHR: 0.54, 95% CI [0.35-0.85]) and SMFF (aHR: 0.45, 

95% CI [0.30-0.68]) were associated with a lower risk of incident diabetes (Fig. 4A).  

 

MACE: Over a median of 4.76 years (IQR 3.90-6.12 years), 575 individuals (1.7%) had a MACE. In Cox 

regression adjusted for the above-mentioned risk factors, the high z-score category for SMFF (aHR: 1.39, 

95% CI [1.12-1.72]) and IMAT (aHR: 1.41, 95% CI [1.16-1.72]) were independently associated with a 

higher risk of MACE (Fig. 4B). 

 

All-cause mortality: Over a median follow-up of 4.78 years (IQR 3.93 – 6.15 years), 573 deaths (1.7%) 

were observed. In multivariable adjusted Cox regression, the low z-score category of SM (aHR: 1.49, 

95% CI [1.23-1.81]) and the high z-score category for SMFF (aHR: 1.47, 95% CI [1.18-1.82]) and IMAT 

(aHR: 1.41, 95% CI [1.16-1.70]) were independent predictors of all-cause mortality (Fig. 4C). 

 

DISCUSSION 

In this study, we used a fully automated deep learning framework for robust and accurate quantification of 

body composition measures from whole-body MRI to investigate and describe typical changes, 

distributions and profiles across the lifespan, and to calculate sex-stratified reference curves for adipose 

tissue compartments and SM in a large Western European population of more than 66,0000 individuals. 

Our major findings were that 1) adipose tissue compartments increase and SM decreases in both sexes 

throughout the lifespan, with greater variability in SAT among females and VAT and SM among males, 2) 

adipose tissue compartments demonstrate a cranial shift over the lifespan in both sexes; SM shifts from 
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the gluteal region to the chest in females, while the opposite was observed in males, and 3) body 

composition z-score categories were independent predictors of cardiometabolic outcomes in the general 

population. Our study may provide the basis for tracking physiological and pathological changes in body 

composition across the lifespan, thereby improving personalized risk assessment and subsequent clinical 

decision-making. In addition, our publicly available body composition z-score calculator addresses a 

fundamental need in research and clinical settings: a tool that provides reference values from the general 

population, thereby significantly improving the comparability and generalizability of body composition 

measures in research and clinical practice (https://circ-ml.github.io/). 

 

Most previous studies have used published cutoff values from small or heterogeneous patient cohorts or 

have calculated optimized threshold values for their study cohorts.(14, 15) In addition, there is no 

consensus on how to account for sex-, height-, and especially age-related biases.(16-20) To address these 

limitations, we released an open-source online tool along with this study to allow researchers and 

clinicians to compare body composition measures from their study cohort or patients against age-, sex-, 

and height-normalized values from a large sample of the general population. This approach has the 

potential to 1) improve the comparability, interpretability, reproducibility, and generalizability of research 

studies, and 2) translate quantitative body composition assessment to clinical practice. 

 

One clinical implementation is an opportunistic screening strategy, where body composition data is 

automatically extracted from routine imaging scans, regardless of their initial indication. The online tool 

includes reference values and z-scores for common clinical scan regions (chest, abdomen, pelvis) and a 

single two-dimensional slice at the height of the L3 vertebra, which is a broadly established approach to 

quantify body composition.(21, 22) Thus, our online tool can integrate currently unused but potentially 

prognostic body composition data from routine imaging into the Electronic Medical Record (EMR), 

benchmarking it against a large Western population without disrupting established clinical workflows. 
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As there is increasing evidence that measures of body composition provide important prognostic 

information in cardiometabolic and oncologic diseases and may be related to treatment tolerability and 

outcomes, our reference curves may help to identify individuals with abnormal body composition 

measures from routine imaging examinations.(4, 6, 8, 23) This could be used 1) to identify prefrail 

individuals or 2) as a novel approach for accurate personalized dosing of systemic drug therapies 

including chemotherapy and immunotherapy dosing.(7, 8, 24) Other future applications could include 

tracking body composition changes from sequential imaging examinations, which may provide important 

physiological information on treatment tolerability or incremental prognostic information on survival 

from restaging imaging examinations.(25, 26) In addition, tracking changes in body composition may 

serve as a robust endpoint for the trial of lifestyle, surgical, and novel pharmacological interventions such 

as the recently introduced Glucagon-like peptide-1 (GLP-1) agonists for diabetes and weight loss.(27) In 

research, our framework applied to routine imaging examinations could generate large clinical data sets 

for further studies, to better understand the role of body composition-derived z-scores for disease-specific 

risks and clinical outcomes.(28)  

 

This study has limitations. First, the study population is predominantly white Western European adults 

over the age of 20 from the UK and Germany. The generalizability of the reference curves to other 

racial/ethnic groups, children, and/or patients in a clinical setting may be limited. Second, despite the 

possibility of integrating the framework into clinical practice, whole-body MRI is not a commonly 

performed examination. To account for this, we also provided reference curves for typical anatomical 

regions covered in routine MRI (i.e., chest, abdomen, pelvis) and a single slice at the L3 vertebra, which 

is currently the most widely used approach to quantify body composition.  

 

In conclusion, we automatically quantified body composition from whole-body MRI from a large Western 

European population to describe aging-related differences and to calculate age, sex, and height-specific 

reference curves for body composition measures (SAT, VAT, SM, SMFF, and IMAT). Alterations from 
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body composition reference values were predictors of cardiometabolic outcomes in the general population 

beyond traditional risk factors. To support current and future research and accelerate clinical translation, 

we released an open-source online tool that allows researchers and clinicians to normalize their own data 

sets to improve comparability and generalizability of body composition research.  

 

MATERIAL AND METHODS 

Study design:  

In this study, we used a publicly available deep learning framework to quantify three-dimensional (3D) 

body composition automatically measures from whole-body MRI and common anatomical regions 

covered in routine clinical MRI examinations (i.e., chest, abdomen, pelvis) (5). Body composition 

measures included SAT, VAT, SM, SMFF, and IMAT. First, we analyzed body composition measure 

density plots, their relative proportions, and their distributions along the craniocaudal body axis across the 

lifespan. Second, we calculated age-, sex-, and height-specific z-scores for all body composition 

measures. Third, we investigated the association between these z-scores with incident health outcomes. 

Lastly, we developed an open-source web-based calculator to enable the comparison of body composition 

metrics against reference values from a large Western European population.  

Data sources:  

This study used data from two large population-based cohort studies designed to examine disease 

prevention and prognosis in individuals from the general population: 1) the UKB and 2) the NAKO (11, 

29). Between 2006-2010, 500,000 individuals aged 40-69 (5.5% of invitees) joined the UKB after NHS 

invitation (30). The NAKO is ongoing, with 205,415 participants aged 19-74 years enrolled at 18 sites in 

Germany (31). In both studies, a comprehensive MRI protocol was acquired in a subgroup of participants. 

In this study, we used the whole-body T1-weighted 3D VIBE two-point DIXON technique from the UKB 

and NAKO to quantify body composition. Detailed information on the data sources is provided in 

Supplemental Methods. Flow charts for the data sources are provided in Fig. S5 & S6. 
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Deep learning framework:  

We used a fully automated open-source deep learning framework optimized for BC quantification in the 

UKB and NAKO to volumetrically quantify whole-body composition metrics including SAT, VAT, SM, 

SMFF, and IMAT from whole-body MRI. The model exhibited high performance for BC quantification, 

with Dice coefficients for the different BC measures of ≥0.88 in the NAKO and ≥0.86 in the UKB testing 

datasets, indicating reliable results for subsequent analyses. Further detailed information on model 

development and testing is provided elsewhere (5). 

 

Outcomes in the UKB:  

All survival analyses were performed in the UKB only, as outcome data were not available for the 

NAKO. Incident outcomes in the UKB were 1) diabetes (ICD-10: E10-14; ICD-9: 250), 2) major adverse 

cardiovascular events (MACE) defined as myocardial infarction (ICD-10: I21-22; ICD-9: 410-411), 

ischemic stroke (ICD-10: I63; ICD-9: 433-434), or mortality from major cardiovascular diseases (ICD-

10: I00-I78), and 3) all-cause mortality. Outcomes in the UKB were defined based on ICD-10 and ICD-9 

codes through linkage to electronic medical records or national death registries. Follow-up time in the 

UKB was calculated as the date of the MRI examination until the earliest date among date of death, 

outcome, loss to follow-up, or May 25, 2023 (date of UKB data download).  

 

Covariates:  

The following a priori defined covariable were included in the analyses: age, sex, BMI (height/m2), race, 

smoking status (never, former, current), alcohol consumption, hypertension, and history of cancer. Further 

detailed information on the extraction and definition of covariates from UKB and NAKO is provided in 

Supplemental Methods. 

 

Statistical Analysis:  

Data harmonization 
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We observed a small distribution shift for SMFF and IMAT between the UKB and NAKO. To account for 

this, we used a normal score transformation before further analysis as detailed in Supplemental 

Methods.  

Baseline demographics 

Baseline characteristics of the study participants are presented as mean ± standard deviation (SD) or 

median with interquartile ranges (IQR) for continuous variables and absolute counts with percentages for 

categorical variables. 

Differences in body composition across age decades 

Body composition differences across age decades were visualized using density plots and quantified using 

the median and interquartile range (IQR) of each body composition measure per age decade. The 

proportion of each body composition measure relative to the sum of all body composition measures (SAT, 

VAT, SM, and IMAT) was presented as pie charts per age decade. In addition, the difference in the spatial 

distribution of body composition measures in the craniocaudal direction across age decades was 

described. This was done by calculating the proportion of the total volume for each body composition 

metric at 50 equidistant components along an axis from the femoral insertion of the adductor brevis 

muscle to the 1st thoracic vertebra. 

Body composition reference curves 

Finally, sex-stratified reference curves (similar to growth chart curves in pediatrics) based on age and 

height were created for each body composition measure for both whole-body MRI and body regions 

routinely covered by clinical MRI examinations (pelvis, abdomen, chest). We fit a sex-stratified 

generalized additive model (GAM) with isotropic smooth terms for age and height to predict the 

conditional mean body composition measure using the mgcv R package (version 1.9-1, 2023, open 

source). An additional GAM was developed for each measure using the same structure to predict the 

conditional variance of the body composition measure. Before modeling, log transformations were 

applied to adipose tissue measures (SAT, VAT, and IMAT) to mitigate skewed distributions. We performed 
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internal 5-fold cross-validation to assess the median absolute deviation of the body composition GAMs 

(Table S6).  

Association between age, sex, and height-specific z-scores and outcomes in the UKB 

Outcome analyses were only performed in the UKB and limited to individuals without prevalent diabetes, 

a history of myocardial infarction, or ischemic stroke. An individual’s z-score for each body composition 

measure was calculated as: 

𝑧 =
𝑏𝑜𝑑𝑦	𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑚𝑒𝑎𝑠𝑢𝑟𝑒 − 𝐺𝐴𝑀	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑚𝑒𝑎𝑛

8𝐺𝐴𝑀	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 

The association between age, sex, and height-specific z-scores of SAT, VAT, SM, SMFF, and IMAT and 

health outcomes was explored for z-score categories defined as “high” (z-score > 1), “middle” (z-score -1 

to ≤ 1) and “low” (z-score < -1) for each body composition measure. Thus, an individual’s body 

composition measure was classified as “high” if it was greater than one standard deviation above the age-, 

sex-, and height-specific conditional mean. To investigate time to outcome in the UKB, cumulative 

incidence curves (for incident diabetes and MACE) or Kaplan-Meier survival estimates (for all-cause 

mortality) and log-rank tests were computed using the above-defined z-score categories. The associations 

between the z-score categories and health outcomes were evaluated via univariable and multivariable Cox 

proportional hazard regression analysis adjusted for age, sex, BMI category, race, alcohol consumption, 

smoking status, hypertension, and history of cancer. Results from Cox regressions were reported as 

hazard ratio (HR) and 95% confidence intervals (CI). All statistical analyses were performed using R 

V4.2.2 (R Core Team, www.r-project.org, 2022). 
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FIGURES 

 

Fig. 1. Overview of the study design. (A) The deep learning framework was developed to estimate body 

composition from MRI. The framework comprised one model (Model 1) to quantify different body 

composition measures (SAT, VAT, SM, SMFF, and IMAT) as 3D measures from whole-body MRI scans. 

A second model (Model 2) was trained to identify standardized anatomical landmarks along the 

craniocaudal body axis (z coordinate field), which allowed for subdividing the whole-body measures into 

different subregions typically examined in clinical routine MRI examination (chest, abdomen, pelvis). (B) 

Body composition was quantified from whole-body MRI in more than 66,000 individuals of two large 

population-based cohort studies, the UKB (36,317 individuals) and the NAKO (30,291 individuals). (C) 

After performance assessment of the framework, we investigated the change of body composition 

measures, distributions, and profiles across age decades, calculated age-, sex-, and height-adjusted body 

composition reference curves, and made them publicly available on a web-based z-score calculator.  
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Biobank, UK Biobank. IMAT, intramuscular adipose tissue. NAKO, German National Cohort. SAT, 

subcutaneous adipose tissue. SM, skeletal muscle. SMFF, skeletal muscle fat fraction. VAT, visceral 

adipose tissue, MRI, magnetic resonance imaging 
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Fig. 2. Body composition profiles across age decades. (A) Density plots illustrate the change in body 

composition measures SAT (blue), VAT (orange), SM (green), SMFF (red), and IMAT (grey) across age 

decades. While there is an increase in adipose tissue volume (SAT, VAT, IMAT) across age decades, there 

is a decrease in SM accompanied by an increase in SMFF. Median and IQR are provided in Table 2. (B) 

Pie charts show the age-related differences in the proportion of each body composition measure relative 

to the sum of all body composition measures (SAT, VAT, SM, and IMAT) for females in the top row and 

males in the bottom row separately. While SAT (blue) is the predominant body composition compartment 
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in females across all age decades, it is SM (green) in males until the age of 60 years. In both females and 

males, SAT (blue) remains relatively stable over time, whereas there is a loss of SM (green) accompanied 

by a gain of VAT (orange), which is more pronounced in males than in females, and a gain of IMAT 

(grey), which is more pronounced in females than in males. (C) Profile plots demonstrate difference in the 

spatial distribution of each body composition measure along the craniocaudal body axis across age 

decades (color-coded) stratified for females (top row) and males (bottom row). During aging, SAT shifts 

from the gluteal region to the chest, VAT shifts from the pelvis to the abdomen, SM shifts from the gluteal 

region to the trunk and chest in females, and from the chest to the gluteal region in males. Paraspinal 

IMAT shifts from the lower lumbar spine to the upper thoracic spine. 

X-axis shows 50 equidistant sampling points along the craniocaudal body axis; exemplary anatomical 

landmarks: 10, ischial tuberosity; 20, lumbar vertebra 5; 30, thoracic vertebra 12; 43, thoracic vertebra 1. 

F, female. IMAT, intramuscular adipose tissue. IQR, interquartile range. L, liters. M, male. SAT, 

subcutaneous adipose tissue. SM, skeletal muscle. SMFF, skeletal muscle fat fraction. VAT, visceral 

adipose tissue. Y, years. 
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Fig. 3. Reference curves for body composition measures. (A) Scatterplots of crude body composition 

measures as a function of age (stratified by sex). (B & C) Graphs show age-, sex-, and height-adjusted body 

composition reference curves with 3rd, 10th, 25th, 50th, 75th, 90th, and 97th percentile lines for a 1.65 m tall 

female (B) and a 1.75 m tall male (C). SAT variance was higher in 1.65m tall females (B). Variances of 

VAT and SM were higher in 1.75m tall males than females across all ages (C). Variances were comparable 

for SMFF and IMAT for both sexes (B & C). (D) The derivatives of the 50th percentiles were used to 

illustrate representative growth curves of each body composition measure over the lifespan (stratified by 

sex). Dashed lines indicate the minimum and maximum rate of change. (E & F) Graphs show the 50th 

percentile of females (E) and males (F) of different body heights (female: 1.45-1.85 m; male: 1.55-1.85 m). 

SAT and VAT volumes were less height-dependent in females (D) than in males (E). While SM and IMAT 

volumes were roughly similar height-dependent in males and females, DIXON-derived SMFF was nearly 

height-independent (D & E). 
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IMAT, intramuscular adipose tissue. L, liter. M, meter. SAT, subcutaneous adipose tissue. SM, skeletal 

muscle. SMFF, skeletal muscle fat fraction. VAT, visceral adipose tissue. 
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Fig. 4. Forest plots for the body composition z-score categories and incident diabetes, MACE, and 

all-cause mortality in the UKB. Forest plots show hazard ratios for high and low z-score categories 
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compared to middle categories with 95% confidence intervals of Cox proportional hazard regression 

analysis for (A) incident diabetes, (B), incident MACE, and (C) all-cause death in the UKB after 

excluding individuals with prevalent diabetes or a history of myocardial infarction and/or stroke (n = 

34,638). Models were adjusted for 1) age, sex, and BMI category (upper row per z-score category), and 2) 

additional adjustment for traditional risk factors (lower row per z-score category) including race, alcohol 

consumption, smoking status, hypertension, and history of cancer (full model) for each body composition 

measure. 

 

IMAT, intramuscular adipose tissue. SAT, subcutaneous adipose tissue. SM, skeletal muscle. SMFF, skeletal 

muscle fat fraction. VAT, visceral adipose tissue. UKB, UK Biobank, BMI, body mass index, MACE, major 

adverse cardiovascular events, HR, hazard ratio, CI, confidence interval 
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TABLES 

Characteristic 
Entire cohort,  

N=66,6081 
Female, 

 N=32,1651 
Male, 

 N=34,4431 

Age (y) 57.7±12.9 58.1±12.3 57.3±13.4 

Weight (kg) 77.3±15.8 69.3±13.7 84.7±13.9 

Size (m) 1.72±0.10 1.64±0.07 1.78±0.07 

BMI (kg/m2) 26.2±4.5 25.6±4.9 26.7±4.0 

SAT (L) 15.72±6.68 17.87±7.06 13.71±5.61 

VAT (L) 3.63±2.34 2.45±1.59 4.72±2.39 

SM (L) 12.08±3.25 9.35±1.44 14.63±2.25 

SMFF (%) 15.95±3.25 17.20±3.05 14.79±2.99 

IMAT (dL) 1.39±0.66 1.48±0.63 1.32±0.68 

1 Mean±SD 
 

Table 1. Baseline characteristics - full cohort BMI, body mass index. IMAT, intramuscular adipose 

tissue. L, liters SAT, subcutaneous adipose tissue. SM, skeletal muscle. SMFF, skeletal muscle fat 

fraction. VAT, visceral adipose tissue. Y, years 
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Sex Age N 

SAT in L 

(IQR) VAT in L (IQR) 

SM in L 

(IQR) 

SMFF in % 

(IQR) 

IMAT in dL 

(IQR) 

F 20-30y 1238 13.4(10.4-18.1) 0.85(0.6-1.3) 10.2(9.3-11.2) 14.3(12.8-16.1) 0.88(0.7-1.1) 

F 30-40y 1499 14.1(10.6-19.5) 1.03(0.6-1.7) 10.1(9.2-11.2) 15.3(13.6-17.3) 1.0(0.8-1.3) 

F 40-50y 4031 15.7(11.8-21) 1.46(0.8-2.5) 10.1(9.2-11.1) 17.0(15.1-19.3) 1.27(1-1.6) 

F 50-60y 9323 17.1(13.3-22.4) 2.11(1.2-3.3) 9.55(8.7-10.5) 18.7(16.6-21) 1.76(1.4-2.2) 

F 60-70y 10866 17.3(13.5-21.9) 2.55(1.6-3.8) 8.91(8.1-9.8) 20.2(18.1-22.7) 2.16(1.8-2.6) 

F >70y 5208 16.9(13.5-21.2) 2.70(1.7-3.8) 8.40(7.7-9.2) 21.4(19.3-23.7) 2.57(2.1-3.1) 

        

M 20-30y 1631 9.64(6.8-13.8) 1.67(1.1-2.6) 16.0(14.6-17.6) 11.9(10.3-13.6) 0.76(0.6-1) 

M 30-40y 2198 11.6(8.5-15.6) 2.74(1.6-4.1) 16.0(14.7-17.5) 13.6(12-15.4) 0.89(0.7-1.2) 

M 40-50y 4964 12.7(9.7-16.5) 3.92(2.6-5.4) 15.6(14.4-17.1) 15.4(13.5-17.3) 1.10(0.8-1.5) 

M 50-60y 9014 13.2(10.3-16.7) 4.70(3.2-6.3) 15.0(13.7-16.4) 16.4(14.5-18.6) 1.54(1.2-2) 

M 60-70y 10322 13.2(10.5-16.6) 5.21(3.6-6.9) 14.0(12.8-15.3) 17.7(15.6-20.1) 1.99(1.5-2.5) 

M >70y 6314 12.9(10.4-16.1) 5.19(3.6-6.8) 12.9(11.8-14) 18.7(16.7-21.1) 2.48(2-3.1) 

        

Table 2. Body composition measures (median and IQR) across age decades. IMAT, intramuscular 

adipose tissue. IQR, interquartile range. L, liters. SAT, subcutaneous adipose tissue. SM, skeletal muscle. 

SMFF, skeletal muscle fat fraction. VAT, visceral adipose tissue. 
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