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SUPPLEMENTARY MATERIAL AND METHODS 

Histological staining of pSTAT1 and pSTAT3. Paraffin sections underwent deparaffinization, 

heat-induced epitope retrieval, and quenching of endogenous peroxidase with hydrogen peroxide. 

Sections were stained sequentially with anti-pSTAT1 (clone D4A7, CST) and anti-pSTAT3 

(clone EP2147Y, Abcam), using the EnVision+ HRP polymer (Agilent) and OPAL system 

(Akoya Biosciences) for visualization. OPAL-520 and OPAL-570 dyes were used for pSTAT1 

and pSTAT3, respectively. Nuclei were counterstained with DAPI (Sigma) and mounted with 

Fluoromount G (Southern Biotech). Multispectral imaging was performed with the Vectra® 3 

system, and image analysis (spectral unmixing, tissue/cell segmentation, phenotyping) was done 

using inForm (v2.4.8). Cell frequencies were analyzed in R (v4.0.2) with phenoptr and 

phenoptrReports (v0.2.8). 

In situ hybridization. Mouse Osmr, Il22, Pdgfra, and human OSMR mRNA were detected using 

the RNAscope 2.5 HD Reagent Kit-RED/BROWN (Bio-Techne). Fresh 5 µm paraffin sections 

were dried (60 °C, 1 h), deparaffinized, and pretreated with Target Retrieval buffer and protease. 

Sections were hybridized with probes for Osmr, Ppib (positive control), and dapb (negative 

control); FFPE 3T3 cells served as an additional positive control. Signal amplification and 

detection were performed with FastRed, nuclei were counterstained with hematoxylin, and slides 

were dehydrated and mounted with Histokitt using xylene. Imaging was done on an AxioImager 

Z1 microscope (Zeiss), with blinded evaluation. Images were contrast-adjusted in Adobe 

Photoshop for clarity. Signal quantification was performed using Ilastik (v1.3.2; classification, 

segmentation) and ImageJ (v1.48; analysis). 

RNA extraction, cDNA synthesis, and qPCR. RNA from intestinal epithelial cells was extracted 

using QIAzol (Qiagen), with tissue either stabilized in RNA Later or directly lysed. 

Homogenization and phase separation were induced with chloroform, followed by 

isopropanol/GlycoBlue™ precipitation. RNA pellets were washed in 75% ethanol, resuspended 
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in RNase-free water, quantified (NanoDrop), and stored at –20 °C or –80 °C. For colon tissue, 

RNA was isolated using the Qiagen Mini RNA kit after storage in RNA Later at –80 °C. cDNA 

was synthesized from 500 ng–1 μg RNA using the High-Capacity cDNA Reverse Transcription 

Kit (Applied Biosystems). qPCR was performed on diluted cDNA (1:50) using PowerUp™ 

SYBR™ Green or TaqMan Master Mix with UNG, and TaqMan Gene Expression Assays on a 

QuantStudio 5 (Applied Biosystems). Primers are listed in Supplementary table 7. Expression 

levels were normalized using the comparative CT method (2^–ΔCT), with ΔCT = CT (gene of 

interest) – CT (arithmetic mean of Actb). 

Reverse transcription of low RNA quantity. Colon-derived organoids were treated with 

specified cytokines, washed with PBS, and lysed in QIAzol (Qiagen) for RNA extraction. cDNA 

synthesis and pre-amplification were performed using the SMART-PCR method as previously 

described1,2. Briefly, 100 ng total RNA was mixed with 1 mM dNTPs (ThermoFisher) and 10 μM 

oligo-dT primer (Biomers), denatured, and cooled on ice. First-strand synthesis was carried out 

using Maxima H minus reverse transcriptase (Invitrogen), RNasin (Promega), SuperScript VI RT 

(ThermoFisher), 1 M betaine (Sigma), 10 mM MgCl₂, 1 μM ISPCR-TSO (Biomers; rGrG+G), and 

nuclease-free water. After RT inactivation, adapter-based PCR pre-amplification was performed 

using KAPA HiFi HotStart ReadyMix (KAPA), 200 nM ISPCR primers (Biomers), and nuclease-

free water. The resulting cDNA was treated with Exonuclease I (NEB) per the manufacturer’s 

instructions. 

High-throughput gene expression analysis. Target-specific pre-amplification of cDNA was 

conducted in accordance with the protocol outlined in the Fluidigm Biomark HD manual. Sample 

and primer preparation were performed following the manufacturer’s guidelines. Samples and 

primers were deposited onto a Dynamic 48x48 Array IFC-Chip and subsequently loaded into the 

central reaction chambers of the IFC-Chip using an IFC controller. Real-time quantitative PCR 

(RT-qPCR) gene expression analysis was executed using the Biomark HD system. 
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Single cell (sc) RNA library preparation and sequencing. The lamina propria mononuclear 

cells (LPMC), stromal, and epithelial cells were sorted by FACS and were individually hash-

tagged per mouse group and cell type. Then, the single cell suspensions were obtained and applied 

to the 10x Genomics workflow for cell capturing and scRNA gene expression (GEX) and CITE-

Seq library preparation using the Chromium Single Cell 5’ Library & Gel Bead Kit version 2 (dual 

index) and the Single Cell 5’ Feature Barcode Library Kit (10x Genomics). After cDNA 

amplification, the CITE-Seq libraries were prepared separately using the Dual Index Kit TN Set 

A while, the final GEX libraries were obtained after fragmentation, adapter ligation, and final 

Index PCR using the Dual Index Kit TT Set A. Qubit HS DNA assay kit (Life Technologies) was 

used for library quantification and fragment average sizes were determined using the Fragment 

Analyzer with the HS NGS Fragment Kit (1-6000bp) (Agilent). Furthermore, the libraries were 

sequenced on a NextSeq2000 device (Illumina) using the NextSeq 1000/2000 P3 reagent kits (100 

Cycles, Illumina) and following the sequencing conditions recommended by 10x Genomics: 

read1: 26nt, read2: 90nt, index1: 10nt, index2: 10nt. The single-cell sequencing data from H.h. + 

anti-IL-10R colitis discussed in this section are deposited in NCBI’s Gene Expression Omnibus 

and can be accessed through GEO Series accession number GSE269507.   

Bulk RNA sequencing. For bulk RNA sequencing analysis of colonic tissue of IECOsmr, 

StromaOsmr, EndoOsmr and the respective controls, tissue was collected initially in RNA Later 

(Qiagen). RNA was isolated using the Qiagen Mini RNA kit (Qiagen) following the 

manufacturer’s protocol.  For the sequencing of VillincreERT2 Osmrfl/fl and VillincreERT2 Osmrfl/wt 

epithelial cells, EpCAM+ epithelial cells were FACS-sorted and lysed in the RLT lysis buffer and 

RNA was extracted using the RNeasy Micro Kit (Qiagen) according to the manufacturer’s 

protocol. RNA integrity was assessed as per the manufacturer's guidelines. The following 

procedures were performed at Novogene, where sequencing was carried out on an Illumina 

NovaSeq 6000 sequencer to generate 150 bp paired-end reads. The bulk RNA-seq data generated 
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from colonic tissue and epithelial cells, as detailed in this section, have been deposited in NCBI’s 

Gene Expression Omnibus. These data can be accessed via GEO Series accession number 

GSE269505 and GSE269506.  

Single cell data processing. After sequencing, fastq files were processed using Cell Ranger 5.0.0 

and the genome reference (refdata-gex-mm10-2020-A) annotation. The obtained count matrix 

was taken as an input for the data analysis with use of Seurat v4.0.1 and v5.0.13. Hashtag 

sequences used to label individual mice were imported and combined. For the normalization of 

the data LogNormalize function was used. Seurat’s default method was used for scaling. Hashtag 

demultiplexing (representing the three biological replicates per genotype) was performed based 

on Seurat’s HTODemux with the parameter ‘positive-quantile’ at 0.99. Doublets, untagged and 

low quality (low UMI counts, high % of mitochondrial genes) cells were filtered out. After ranking 

by residual variance, 2000 variable genes were determined. 30 principal components were 

computed and stored. Integration of the single cell data was done using the Seurat pipeline. Next, 

the Harmony package v1.2.0 (https://github.com/immunogenomics/harmony)4  was also applied 

to integrate gene-cell matrix of epithelial in order to increase the quality of the integration. UMAP 

and t-distributed stochastic neighbor embedding were run using the first 20 principal components. 

Transcriptionally similar clusters were identified using shared nearest neighbor modularity 

optimization, with a resolution of 0.3. Signature genes were identified using the FindAllMarkers 

function in default parameter settings (only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25). 

Epithelial and immune contaminants from stromal dataset were excluded from downstream 

analysis. The cluster with unclear gene expression profile and poor quality from LPMC dataset 

was also excluded from downstream analysis.  Heatmaps and dotplots for the single-cell data were 

plotted with Seurat’s DoHeatmap and DotPlot function, respectively, using default settings. 

Differential gene expression analysis was performed with the use of FindMarkers function 

(min.pct = 0.25, logfc.threshold = 0.25). 
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Cluster annotation. Epithelial cells were clustered into Enterocytes_1_0 (Nr3c2, Vegfa, Duox2),  

Enterocytes_1_1 (Slc26a3, Slc20a1), Enterocytes_2 (Aqp8, Car4), Enterocytes_3 (Tmigd1, Ubd), 

Enterocytes_4 (Aqp4, Gsdmc4), Goblet (Spink4, Agr2, Muc2), Proliferating epithelial cells 

(Mki67, Ccna2, Birc5, Cenpf), transit-amplifying (TA)  (Hspd1, Lgr5, Hmgb2), Enteroendocrine 

(Chgb, Chga, Tph1), Tuft (Lrmp, Pou2f3, Sh2d6). Stromal cells were clustered into Endothelial 

cells 1 (Pecam1, Plvap), Endothelial cells 2 (Ackr1, Selp), Lymphatic endothelial cells (Lyve1, 

Ccl21a, Reln), Stromal cells 1.1 (Adamdec1, Sfrp1, Fbln1), Stromal cells 1.2 (Ecm1, Sfrp4, 

Clec3b), Stromal cells 2 (Bmp5, Col4a5, Sox6), Mesothelial cells (Upk3b, Msln), Smooth muscle 

cells (Acta2, Notch3, Rgs5), Proliferating cells (Mki67, Top2a, Prc1), Oligodendrocytes (Ank3, 

Plp1, Chl1). Stromal cell signatures were obtainted from the Kinchen et al. paper5. Immune cells 

were further sub-clustered into CD8 T cells (Cd8a, Cd8b), CD8 effector cells (Gzmk), CD4 T cells 

(Cd4), Tregs (Foxp3, Ctla4),  -T cells (Tcrg), ILC1 (Ncr1, Klre1, Tbx21), ILC2 (Gata3, Klrg1, 

Icos), ILC3 (Il22, Rorc, Il23r), NK cells (Eomes, Tbx21, Prf1, Nkg7), Plasma cells (Jchain, Derl3, 

Eaf2), B cells (Cd79, Vpreb3, Ms4a1), Inflammatory Monocytes (Thbs1, Cfb, Msr1),  Neutrophils 

(S100a9, S100a8, Cxcr2, G0s2), DC (Clec9a, Clec10a, Xcr1).  

Publicly available scRNAseq datasests. Publicly available single-cell RNA sequencing datasets 

from Smillie et al.6  and Kong et al.7  were downloaded from https://singlecell.broadinstitute.org/ 

(SCP259 and SCP1884) and analyzed using the methodology outlined in the respective 

publications. The expression of Osm-Osmr was analyzed using the Dotplot function from the 

Seurat package. 

RNA isolation from tissue samples (IBDome cohort) and bulk RNA-seq analysis. RNA was 

isolated from biopsies taken during routine endoscopy or from resected tissues at the First 

Department of Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg (Germany), and 

at the Department of Gastroenterology, Infectious Diseases and Rheumatology at the Charité – 

Universitätsmedizin Berlin (Germany) by using a single-use biopsy forceps (Olympus). Samples 
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were incubated in RNA protect reagent (RNAprotect Tissue Reagent, Qiagen) and stored at -

80°C. One biopsy was thawed on ice and homogenized in RLT buffer (Qiagen) employing the 

TissueLyser LT (Qiagen) for RNA isolation. RNA was isolated using the RNeasy kit (Qiagen) 

and RNA Clean & Concentrator kit (Zymo Research). The concentration was measured at 

NanoDrop One/One (Thermo Fisher Scientific) and the quality (RNA integrity number, RIN) at 

Tape Station (Agilent). The RNA was used for bulk RNA sequencing at the NGS Competence 

Center Tübingen (NCCT). Paired sequencing reads were processed with the nf-core/rnaseq 

pipeline version 3.48. In brief, reads were aligned to the GRCh38 reference genome with 

GENCODE v33 annotation using STAR9. Transcripts per million (TPM) were quantified using 

Salmon10 and transformed to log10(TPM+1) for visualization in R. 

Association Between OSMR and IL-22 Activity in IBD mucosal samples. To investigate the 

relationship between OSMR and IL-22 activity in IBD, we computed the correlation between gene 

expression and gene set enrichment scores across patients with active inflammation. The IL-22 

gene set was curated from the top 50 upregulated genes in IL-22-treated organoids versus 

untreated conditions11. For this analysis, we integrated multiple IBD cohorts: (1) the UNIFI trial 

cohort (GSE206285), comprising 530 ulcerative colitis (UC) patients; (2) the RISC cohort 

(GSE57945), including 189 Crohn’s disease (CD) patients; and (3) the IBDome database, 

selecting inflamed patients which included 81 ileal CD, and 64 colonic UC patients; ; and (4) the 

Mount Sinai Crohn's and Colitis Registry (MSCCR) (GSE193677), consisting of 162 ileal CD, 

and 293 colonic UC samples. For the UNIFI cohort (GSE206285), RMA-normalized microarray 

expression data were used. The RISC cohort (GSE57945) and MSCCR cohort (GSE193677) 

contained raw read counts, which were further processed using the variance stabilizing 

transformation (VST) with DESeq2 v1.42.0. RNA-seq data from the IBDome cohort were log₂-

transformed (TPM) and standardized to within-sample z-scores. Sample-based enrichment 
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analysis using the IL-22 gene set was performed for each sample with ssGSEA12 . Pearson 

correlation was applied to assess gene expression relationships. 

Pearson correlation was applied to assess gene expression relationships. 

Pathway analysis. Pathway activity was calculated across epithelial subsets with PROGENy 

v.1.24.0 with default parameters13. PROGENy is a computational method that leverages a large 

compendium of publicly available perturbation experiments to identify a core set of Pathway 

Responsive Genes (PRGs), enabling the inference of pathway activity from transcriptomic data. 

Pathway activities were visualized as cluster averages using the R package ComplexHeatmap14.  

Prediction of cell–cell interaction with CellPhoneDB. Ligand–receptor interaction analysis was 

performed using the Python package CellPhoneDB (v.2.1.7, Python v.3.8.18) following 

instructions from the GitHub repository15. The annotated Seurat object from single cell RNA-Seq 

mouse data was used to test the expression of known ligand–receptor interactions from the public 

repository of CellPhoneDB. The dataset was downsampled to 10000 cells. Gene symbols were 

first converted from mouse to human using the biomart R package (v.2.58.2). Mean values 

representing the average ligand and receptor expression of annotated clusters were calculated 

based on the percentage of cells expressing the gene, and the gene-expression mean. To determine 

the significance of observed means, P values were calculated using a null distribution of means 

calculated for randomly permuted annotated cluster labels. An interaction was considered 

significant if P ≤ 0.05. Significant interactions between enterocytes and immune cells with highest 

expression of Osm were extracted, gene symbols were converted from human to mouse and their 

mean values were plotted using the plot_cpdb3 function from the ktplots R package (v.2.2.0) 

(https://github.com/zktuong/ktplots). 

Bulk RNA-Seq data processing. From raw fastq files the reads with adapter contamination were 

excluded. After that the reads were aligned with HISAT2 v2.2.1 to the GRCm39 genome 

annotation16. The gene counts were calculated with htseq-count package v0.11.117. For the 

https://github.com/zktuong/ktplots
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differential gene expression analysis the package DESeq2 v1.42.0 was used18. For the further DE 

analysis only protein-coding genes were taken. The volcano plots were prepared with the 

EnhancedVolcano package v1.20.0 (https://github.com/kevinblighe/EnhancedVolcano). 

Pathway enrichment analysis. For gene-set enrichment analysis (GSEA), genes were pre-ranked 

in decreasing order by the absolute values of logFC. GSEA was performed on this pre-ranked list 

using the R package clusterProfiler v4.10.1 with default parameters and the GO Biological Process 

database (‘BP’)19. Custom gene sets for GSEA were generated using results from bulk RNA-Seq 

analyses of HCA-7 cell lines after rhOSM stimulation (24h stimulation). The selection process 

focused on identifying statistically significant upregulated DEGs with padj < 0.05. Similarly, for 

the HCA-7 cell line dataset, DEGs with a logFC greater than 0.5 were selected (Supplementary 

table 6). The results were filtered for significantly enriched gene sets (Benjamini-Hochberg-

adjusted P < 0.05).  

Plotting and statistical analysis. Statistical analysis and visualization were performed using R 

version 4.1.2 and and 4.3.1. Statistical significance tests were performed as described in each 

figure legend. Unless stated otherwise, all tests were significant with FDR-adjusted P < 0.05. Plots 

were generated with the R package ggplot2. 

Xenium in Situ analysis. Xenium in situ analysis (10X Genomics) was conducted utilising a 

custom gene panel that included OSM, OSMR and several canonical epithelial (EPCAM, CDH1, 

KRT20, MUC5B, MKI67) and non-epithelial genes (CD3E, CD4, CD14, CD68, C1QC, CD19, 

CD79A, PDGFRA, VIM, PECAM1, CD34, KIT). Samples were prepared according to the 

manufacturer's guidelines (CG000578, Rev D). Human colitis-associated cancer (CAC) and 

healthy colon (HC) FFPE blocks (Supplementary table 8) were sectioned at a thickness of 5 μm, 

followed by mounting it on Xenium slides. These sections were processed according to 

manufacturer’s guidelines (CG000760, Rev A). Briefly, the sections underwent sequential 

deparaffinization and permeabilization, followed by overnight hybridisation with custom probes 

https://github.com/kevinblighe/EnhancedVolcano
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at 50°C. After post-hybridization washes, we performed probe amplification and multimodal 

staining for cell membrane and nucleus detection. Next, autofluorescence quenching was done 

and the slides were loaded into the Xenium Analyzer. After the run completion, H&E stainings 

were performed as per Xenium guidelines (CG000613, B). H&E images were acquired using a 

BZ-X810 microscope (Keyence) using a 20x air objective. 

Xenium Data processing and analysis. Raw Xenium transcript data were initially processed 

using Xenium Ranger v3.1.1 according to the manufacturer's guidelines. Subsequent analysis and 

visualization were performed using the Python package Squidpy (v1.2.2)20  and Scanpy 

(v1.10.1)21 . After basic quality control and filtering out low quality cells from individual patients, 

cells were classified into epithelial and non-epithelial lineages. To compare the spatial expression 

of OSM and OSMR between CAC and UC, counts were normalized by tissue surface area (counts 

per μm2). Within the epithelial cell population, we examined and plotted OSMR expression, while 

OSM expression was examined in non-epithelial cells. For spatial visualization of gene 

expression, H&E images were imported and aligned to the DAPI-stained images using Xenium 

Explorer (v3.2.0), through manual placement of 10-12 keypoints on each image. Following 

alignment, transcripts were overlaid onto the H&E image. Final images were exported using the 

platform’s export image function.  
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Figure S1. Cell subset-specific features of the mouse colon single-cell analysis. 

(a) Heatmap showing scaled gene expression of the top five genes representing each of the 

fourteen cell types found in the CD45+ LPMC. Each column displays gene expression from an 

individual cell, and genes are listed in the rows. 

(b) Heatmap of differentially expressed genes in epithelial cell clusters.  

(c) Heatmap of differentially expressed genes in stromal cell clusters.  
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Figure S2. Expression of inflammatory genes and cytokine receptors in colon-resident cells.  

(a) scRNA-seq dot plot depicting the expression profiles of various cytokines, chemokines, and 

other genes related to the pathogenesis of IBD. Red labels in the rows represent cell clusters from 

the inflamed condition; gray labels, steady-state condition.   

(b) scRNA-seq dot plot depicting the expression profiles of cytokine receptors in epithelial cells. 

Red labels in the rows represent cell clusters from the inflamed condition; gray labels, steady-

state condition.    
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Figure S3. Expression of OSM and OSMR in healthy controls, ulcerative colitis, and Crohn's 

disease. 

(a) scRNA-seq dot plot representing the expression profiles of OSM and OSMR in human 

epithelial and CD45+ cells in UC. Gene expression of OSM and OSMR is shown for cell clusters 

from patients with UC (inflamed and uninflamed samples) and healthy control patients. Data 

derived from Smillie et al.6. 

(b) scRNA-seq dot plot representing the expression profiles of OSM and OSMR in human 

epithelial and CD45+ cells in Crohn’s disease. Gene expression of OSM and OSMR is shown for 

cell clusters from patients with Crohn’s disease (inflamed and uninflamed samples) and healthy 

control patients. Data derived from Kong et al.7.   
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Figure S4. Gene expression profiling of colonic tissue in cell type-specific deletion of OSMR. 

(a) scRNA-seq dot plot depicting the expression of Vil1, Col1a2, and Cdh5 in the different cell 

types.  

(b) VilcreERT2 Ai9, Col1a2creERT2 Ai9, and Cdh5cre Ai9 mice were treated with tamoxifen, and the 

expression of DsRed was evaluated in the expected cell populations to assess the deletion 

efficiency of the different deleter lines. Data derive from one experiment (n=3-5).  

(c) Il31 expression in the colonic tissue in inflamed mice normalized to steady-state mice (day 3, 

n=7; day 14, n=8; day 21, n=8; day 31, n=8). Data represent mean ± SEM, from 2 independent 

experiments.  

(d) Clustered correlation heatmap of inflamed IECOsmr, StromaOsmr, and EndoOsmrknockouts 

and control mice as well as steady-state mice based on their gene expression profiles. 

(e) Volcano plot depicting differentially expressed genes in whole colon tissue between inflamed 

StromaOsmr cells and inflamed WT mice or steady-state control mice (n=4-5 per group). Red dots 

represent genes expressed more than 2 fold with statistical significance p=<0.05.  

(f) Volcano plot depicting differentially expressed genes in whole colon tissue between inflamed 

EndoOsmrcells and inflamed WT mice or steady-state control mice (n=4-5 per group). Red dots 

represent genes expressed at high levels with statistical significance. 

(g) Volcano plot depicting differentially expressed genes in whole colon tissue between inflamed 

IECOsmr cells and inflamed WT mice or steady-state control mice (n=4-5 per group). Red dots 

represent genes expressed at high levels with statistical significance. 
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Figure S5. Flow cytometry analysis of immune cell compartment in VilCre Il22ra1fl/fl mice 

during colitis. 

(a, b) Gating strategies to identify the different myeloid (a) and lymphocytic (b) immune cell 

populations.  

(c) Frequency of immune cell subtypes among total live CD45+ cells from colon lamina propria 

of inflamed VilCre-Il22ra1fl/fl and VilCre+Il22ra1fl/fl mice. Live CD45+ colonic cells were identified. 

Eosinophils were distinguished by Siglec-F expression. Neutrophils were characterized as 

Ly6C+/GR1+ and MHCII+ monocytes as Ly6C+/MHCII+. Additionally, CD44high/CD4+ and 

CD44high/CD8+ T cell populations were evaluated. Data are representative of a single independent 

experiment; n=6 mice per genotype.  

(d) Representative H&E-stained colon sections from VilCre+Il22ra1fl/fl and VilCre- Il22ra1fl/fl mice 

on day 7 post-colitis induction; n=6 mice per genotype. Scale bar 100 m. 

(e) Osmr expression stability was tested by stimulating colon epithelial organoids with 10 ng/mL 

of IL-22 for 48 h. The organoids were then washed, passaged, and cultured in medium without 

IL-22. Samples were collected at the indicated time points for q-PCR analysis. Data is 

representative of two independent experiments.   
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Figure S6. Optimisation of innate lymphoid cell activation and cytokine production. 

(a) Experimental design for the H.h.+ anti-IL-10R colitis model and analysis of lamina propria 

innate lymphoid cells (ILCs). C57BL/6J mice were treated with anti-IL-10R and infected with 

H.h. for seven days before analysis. Lamina propria mononuclear cells (LPMCs) were isolated 

from inflamed (n=6) and steady-state (n=6) mice, stimulated ex vivo under the indicated 

conditions, and analyzed for cytokine and transcription factor expression by flow cytometry. 

(b) Gating strategy for identifying ILC subsets in colonic LPMCs. Sequential gating was 

performed to exclude doublets, dead cells, and lineage-positive cells. ILCs were identified based 

on CD90.2 (Thy1) expression and further classified into ILC3 (RORγt⁺), ILC2 (GATA3⁺), and 

ILC1 (T-bet⁺) subsets. 

(c) Bar graphs (mean ± SEM) show the percentage of cytokine-producing cells among ILC3 (left), 

ILC2 (middle), and ILC1 (right) subsets upon stimulation with the indicated conditions. Statistical 

analysis was performed using the Kruskal-Wallis test, with comparisons made to the steady-state 

group.  
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Figure S7. Fluorescence-activated cell sorting of CD45+, epithelial and stromal cells from 

colon tissue.   

(a) Sorting strategy of stromal cells and purity control after sorting are shown.  

(b) Sorting strategy of epithelial cells and purity control after sorting are shown.  

(c) Sorting strategy of immune CD45+ cells and purity control after sorting are shown.  
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