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Clonal tracing with somatic epimutations 
reveals dynamics of blood ageing

Michael Scherer1,2,21, Indranil Singh3,4,21, Martina Maria Braun1,5,21, Chelsea Szu-Tu1,21, 
Pedro Sanchez Sanchez3,5, Dominik Lindenhofer6,7, Niels Asger Jakobsen8, Verena Körber8, 
Michael Kardorff9, Lena Nitsch10,11,12, Pauline Kautz10,11,13, Julia Rühle1,5, Agostina Bianchi1,5, 
Luca Cozzuto1, Robert Frömel1,5, Sergi Beneyto-Calabuig1,5, Caleb Lareau14, 
Ansuman T. Satpathy15,16, Renée Beekman1,5,17, Lars M. Steinmetz6,7,18,19, Simon Raffel9, 
Leif S. Ludwig10,11, Paresh Vyas8, Alejo Rodriguez-Fraticelli3,20 ✉ & Lars Velten1,5 ✉

Current approaches used to track stem cell clones through differentiation require 
genetic engineering1,2 or rely on sparse somatic DNA variants3,4, which limits their wide 
application. Here we discover that DNA methylation of a subset of CpG sites reflects 
cellular differentiation, whereas another subset undergoes stochastic epimutations 
and can serve as digital barcodes of clonal identity. We demonstrate that targeted 
single-cell profiling of DNA methylation5 at single-CpG resolution can accurately 
extract both layers of information. To that end, we develop EPI-Clone, a method for 
transgene-free lineage tracing at scale. Applied to mouse and human haematopoiesis, 
we capture hundreds of clonal differentiation trajectories across tens of individuals 
and 230,358 single cells. In mouse ageing, we demonstrate that myeloid bias and low 
output of old haematopoietic stem cells6 are restricted to a small number of expanded 
clones, whereas many functionally young-like clones persist in old age. In human 
ageing, clones with and without known driver mutations of clonal haematopoieis7  
are part of a spectrum of age-related clonal expansions that display similar lineage 
biases. EPI-Clone enables accurate and transgene-free single-cell lineage tracing on 
hematopoietic cell state landscapes at scale.

Lineage tracing using genetic or physical labels has been an important 
tool in developmental and stem cell biology for more than a century1,2. 
More recently, genetic barcoding compatible with single-cell RNA 
sequencing (scRNA-seq) has provided information on the cellular out-
put of hundreds of stem cell clones together with cell-state informa-
tion on the stem cell itself 8–12. Such methods require complex genetic 
engineering and therefore have limited applications, for example, in 
humans or during native ageing. Thus, methods are needed that rely on 
endogenous clonal markers (for example, somatic mutations) and allow 
tracing of various stem cell clones in parallel. Whole-genome sequenc-
ing can reconstruct cellular phylogenies3 but has limited throughput. It 
also lacks information about cell states, which precludes clonal tracking 
across cellular differentiation landscapes. Conversely, spontaneous 
mitochondrial DNA (mtDNA) mutations can be captured together with 
cell-state information by scRNA-seq or ATAC–seq4,13,14. Although mtDNA 

variants can be clonally informative, it is unclear whether mtDNA vari-
ants can reconstruct cellular phylogenies15,16.

Clonal signals have been identified in bulk DNA methylation data 
obtained from cancer and healthy tissues17,18. Somatic epimutations, 
defined as spontaneous but heritable losses and gains of DNA methyla-
tion, have been explored as a potential clonal label in cancer19,20. How-
ever, differentiation-associated changes in DNA methylation may mask 
clone-associated differences21,22. Furthermore, current single-cell DNA 
methylation methods23,24 suffer from data sparsity, which makes it chal-
lenging to exploit the stochasticity of epimutations at individual CpGs.

A compelling case for the use of lineage tracing is haematopoiesis, 
whereby, in humans, 50,000–200,000 stem cell clones generate blood 
throughout life3. Ageing induces clonal expansion with substantial 
loss of clonal diversity. In mice, much of our understanding of clonal 
behaviour in ageing either comes from transplantation experiments25 
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or mathematical modelling26, which may not recapitulate steady-state 
haematopoiesis or lacks the resolution of single-cell lineage analysis. 
In humans, literature focuses on the role of driver mutations in clonal 
haematopoiesis (CH), but clonal expansions without (known) drivers 
are common with age and are associated with an increased all-mortality 
risk27. So far, the lineage output of clones with or without (known) CH 
driver mutations have not been compared because of a lack of suitable 
methods.

Here we develop EPI-Clone, a method that exploits the targeted 
single-cell readout of DNA methylation at single-CpG resolution to 
track clones while providing detailed cell-state information. EPI-Clone 
builds on single-cell targeted analysis of the methylome (scTAM-seq), 
which is implemented on the Mission Bio Tapestri platform to read 
out methylation states of several hundred CpGs in thousands of single 
cells at a time, with a dropout rate of around 7%5. scTAM-seq uses a 
methylation-sensitive restriction enzyme to selectively digest unmeth-
ylated CpGs and thus generates sequencing reads only from methylated 
CpGs. We applied EPI-Clone to lineage-barcoded cells and in native 
human and mouse haematopoiesis to characterize the decline in clonal 
complexity and the functional properties of age-expanded clones in 
mouse and human ageing.

A DNA methylation map of haematopoiesis
We performed a series of experiments, which, for clarity, are defined as 
follows: scTAM-seq applied to eight different settings in mice (exper-
iments M.1–M.8; Extended Data Fig. 1a); scTAM-seq applied to two 
human cohorts (A.1–A.7 and B.1–B.5); and experiments demonstrating 
the combination of scTAM-seq with RNA-seq and mitochondrial line-
age tracing from the same cell (X.1 and X.2). An overview of all data is 
provided in Supplementary Table 1.

To create a ground-truth dataset of clonal identity and DNA meth-
ylation, we labelled mouse haematopoietic stem cells (HSCs) with 
lentiviral barcodes using the LARRY system8. Labelled HSCs were 
transplanted into lethally irradiated recipient mice and the mice were 
profiled 5 months later, a time point at which all blood populations 
should be reconstituted. Sorted haematopoietic stem and progenitor 
cells (HSPCs) from bone marrow (sorted as LIN−KIT+ (LK) cells with 
additional enrichment of LIN−SCA1+KIT+ (LSK) cells) were profiled 
by scTAM-seq (experiment M.1, the main LARRY experiment; Fig. 1a, 
Extended Data Fig. 1a, Supplementary Table 1 and Supplementary 
Fig. 1). The experiment was repeated (experiment M.2, replicate LARRY 
experiment) and we profiled LK and LSK bone marrow from untreated 
mice (experiment M.3, native haematopoiesis). Specifically, we ana-
lysed methylation of 453 CpGs that were selected as differentially or 
variably methylated from bulk HSPC DNA methylation data22 (Fig. 1b, 
Methods and Extended Data Fig. 1b,c). The LARRY barcode was read 
out directly from the DNA by including a LARRY-specific amplicon in 
our targeting panel for scTAM-seq. Finally, the expression of 20 surface 
proteins (Supplementary Table 2) was simultaneously profiled using 
oligonucleotide-tagged antibodies to obtain independent information 
on cellular differentiation. In summary, for experiments M.1–M.3, we 
profiled DNA methylation at 453 CpGs and the expression of 20 surface 
proteins across HSPCs. In experiments M.1 and M.2, we also profiled 
LARRY barcodes from the same cells.

We applied Seurat’s default batch-correction method to integrate 
methylation data from 28,782 cells across the three experiments. We 
thereby obtained a low-dimensional embedding in which most variation 
was driven by differentiation along four trajectories (Fig. 1c). To anno-
tate cell states from the DNA methylation data, we used three layers 
of information: (1) bulk methylation profiles (Fig. 1d and Supplemen-
tary Fig. 2a); (2) the methylation states of important lineage-specific 
transcription-factor-binding sites (TFBSs; Fig. 1e and Supplementary 
Fig. 2b); and (3) the expression of surface proteins (Fig. 1f and Supple-
mentary Fig. 2c,d). We identified cell-state-specific demethylation of 

CpGs that neighboured crucial TFBSs, including GATA2 (an erythroid 
factor), EBF1 (a lymphoid factor) and SPI1 (a myeloid factor) (Fig. 1e 
and Supplementary Fig. 2b). scTAM-seq data revealed a cluster of HSCs 
and early multipotent progenitors (MPP1, also called short-term or 
active HSCs), several additional MPP subsets (MPP2, MPP3 and MPP4), 
myeloid, erythroid and B cell progenitors, as well as two subsets of 
megakaryocyte progenitors (MKPs). As we also performed scRNA-seq 
on different cells obtained from the same samples, we could com-
pare low-dimensional uniform manifold approximation and projec-
tion (UMAP) generated by DNA methylation with a UMAP generated 
from transcriptomic data (Extended Data Fig. 2a). We observed an 
overall similar topology (Extended Data Fig. 2b) with the four main 
differentiation trajectories. Overall, through data integration of several 
experiments, we obtained a DNA-methylation-based map of mouse 
HSC differentiation at single-CpG resolution. This map contains two 
orders of magnitude more cells than two previous, single-cell bisulfite 
sequencing datasets of the haematopoietic system28,29.

DNA methylation encodes clones and cell states
Computational batch-correction methods, by definition, remove 
most individual-specific signals (Extended Data Fig. 2c). As clonal 
information is individual-specific, we computed a UMAP display of 
the data from experiment M.1 only. This analysis revealed that DNA 
methylation jointly captures two layers of information: differentia-
tion state and clonal identity. Specifically, although cells clustered 
according to differentiation states (Fig. 1g), they also clustered by their 
clonal identity as defined through LARRY barcodes (Fig. 1h). To use 
this clone-specific signal for lineage tracing, we sought to determine 
whether clonal identity and differentiation affect different subsets of 
CpGs. We tested for the association of every CpG with the expression of 
any surface protein and thereby identified differentiation-associated, 
dynamic CpGs. Performing dimensionality reduction using only these 
dynamic CpGs (Extended Data Fig. 2d) or only the expression of surface 
proteins (Extended Data Fig. 2e,f) resulted in a similar landscape to 
that obtained by batch correction. This finding indicates that dynamic 
CpGs and surface antigens independently capture differentiation state 
well. The remaining, static CpGs were frequently associated with clonal 
identity, as defined through LARRY barcodes (Fig. 1i). Dynamic CpGs 
were enriched in enhancer elements, whereas the static CpGs were pref-
erentially located in heterochromatic regions (Fisher test P = 2.2 × 10−5; 
Fig. 1j). Moreover, static CpGs were enriched in late-replicating domains 
(Fisher test P = 0.001; Extended Data Fig. 2g). In summary, clonal iden-
tity and differentiation state affect the methylation of different sets of 
CpGs in haematopoietic cells, which creates a valuable tool to read out 
both processes simultaneously at the single-cell level.

The EPI-Clone algorithm
We focused on exploiting static CpGs to analyse clonal identity.  
To this end, we developed EPI-Clone, which is divided into three steps: 
(1) identification of static CpGs, as described above; (2) identification 
of cells from expanded clones by using cell density in the DNA methyla-
tion space defined by the static CpGs; and (3) clustering of cells from 
the expanded clones (Fig. 2a and Methods).

Using this algorithm, expanded LARRY clones with relative clone 
sizes larger than 0.25% clustered separately, with no influence of cell 
state (Fig. 2b,c and Supplementary Fig. 3). By contrast, cells from small 
LARRY clones with relative sizes less than 0.25% were interspersed 
between clusters (Fig. 2d). EPI-Clone identified cells that belong to 
expanded clones on the basis of the high local density in principal 
component analysis (PCA) space spanned by the static CpGs (Fig. 2b,d). 
EPI-Clone correctly identified cells from expanded clones with an area 
under the receiver operating characteristic curve (AUC) of 0.79 when 
using the LARRY clone sizes as ground truth (Fig. 2e). Subsequently, 
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(see Extended Data Fig. 1c for definition). c, UMAP of DNA methylation data for 
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in a was adapted from ref. 5 under a Creative Commons licence CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/


4  |  Nature  |  www.nature.com

Article

EPI-Clone clustered cells from expanded clones by clonal identity, 
achieving an adjusted rand index (ARI) of 0.88 relative to ground-truth 
LARRY barcodes (Fig. 2f). Quantitatively and qualitatively similar 
results were obtained from a biological replicate that used the same 
parameters and cut-off values in the EPI-Clone analysis (Extended 
Data Fig. 3; AUC = 0.68, ARI = 0.82). These results demonstrate that 
epimutational clonal signals are stably maintained in blood stem and 

progenitor cells over long periods of time (5 months from transplant 
to analysis).

We next asked whether EPI-Clone can determine clonal identity in 
mature immune cells. To that end, we collected mature immune (lym-
phoid and myeloid) cells from bone marrow and spleen (experiment 
M.5; Fig. 2g, Supplementary Table 1 and Supplementary Fig. 4) and 
profiled surface-antigen expression and DNA methylation at the same 
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CpGs as in experiments M.1–M.3. Using the static CpGs defined from 
experiment M.1, EPI-Clone again produced clonal clustering that reca-
pitulated ground-truth clonal labels (Fig. 2h). We separately computed 
ARI values between EPI-Clone results and LARRY barcodes. ARI values 
were higher than 0.7 for monocytes, neutrophils, other myeloid cells, 
CD8+ T cells and one B cell subset, higher than 0.4 for CD4+ T cells and 
low for macrophages and a second B cell subset (Fig. 2i,j). Most T cells 
and B cells belonged to lymphoid-dominated (LARRY and EPI-Clone) 
clones (Fig. 2i and Supplementary Fig. 4d), which implicated an origin 
in lymphoid-biased or restricted progenitors30. In a separate experi-
ment (M.4), we profiled mature myeloid cells from lung, bone marrow 
and peripheral blood, and found that myeloid cell types, except mac-
rophages, retained this clonal mark also outside of the bone marrow 
(Extended Data Fig. 4). These results show that clonal information 
encoded in the DNA methylation state is maintained in most lineages 
until terminal differentiation and 10 months after the lentiviral label-
ling event (Discussion).

Finally, we asked whether EPI-Clone can be applied to tissues other 
than blood. We used the same CpG panel to sorted endothelial cells 
(ECs) from lung of an aged mouse. ECs share a common developmen-
tal origin with blood (experiment M.6; Extended Data Fig. 5a). Using 
the dynamic CpGs defined in haematopoiesis and CD31, SCA1 and 
podoplanin protein-expression information, we identified two previ-
ously described types of capillaries and lymphatic ECs31 (Extended 
Data Fig. 5b–f). Using the same set of static CpGs as in haematopoiesis, 
EPI-Clone revealed cell-state-independent, yet statistically supported, 
clusters containing all three cell types (Extended Data Fig. 5g,h). We 
conclude that a similar set of static and dynamic CpGs defines clones 
and differentiation states, respectively, in endothelia and haemat-
opoiesis (Extended Data Fig. 5i).

In summary, DNA methylation patterns at static CpGs constitute a 
broadly applicable clonal barcode.

HSC-expanded clones in mouse ageing
EPI-Clone can provide joint information on the cell state of progeni
tors, clonal identity and clonally derived progeny. Therefore, it is an 
ideal method to characterize the clonal dynamics of native (unper-
turbed) haematopoiesis. In contrast to the transplantation setting, 
native haematopoiesis has been described as polyclonal32,33, whereby 
several thousand clones contribute to blood formation. To investigate 
whether EPI-Clone also identifies clones in native haematopoiesis, we 
applied it to bone marrow samples from two untreated, young mice 
(experiment M.7, 12 weeks old; Supplementary Fig. 5a). Approximately 
50% of cells were part of large clones (defined as a relative size larger 
than 1%) that individually made up 1–4% of total HSPCs (Fig. 3a,c). 
These clone sizes are in line with a study that genetically barcoded 
adult haematopoietic clones in situ33 (Fig. 3c). The remaining cells were 
classified as belonging to small and non-expanded clones. A limitation 
of EPI-Clone is that only cells belonging to expanded clones can be 
assigned to their clone of origin. Cells belonging to very small clones 
(<0.25% of cells after transplant and <1% in native haematopoiesis) 
could be identified as not belonging to expanded clones, but their 
clonal identity could not be inferred with the cell numbers used here.

We next applied EPI-Clone to study ageing by comparing the data 
from young mice (12 weeks old) to 100-week-old mice in two biologi-
cal replicates (experiment M.7; Fig. 3b and Supplementary Fig. 5a). 
We observed weak shifts in cell-type proportions between the young 
and the old mice, a result that confirmed previous observations34 
(Supplementary Fig. 5b–e). When comparing the EPI-Clone result, 
we observed more expanded clones in the old mice than in the young 
mice (Fig. 3c and Supplementary Figs. 6 and 7). Expanded clones in the 
old mice were individually also larger than in the young mice (Fig. 3c; 
two-sided Wilcoxon test P = 0.012). This gradual loss of clonality with 
age resembles certain properties of human HSC ageing (see below).

Next, we measured the distribution of cell types for each clone across 
the various stem and progenitor clusters. In the old mice, we observed 
several expanded clones that contained mostly HSCs across both of 
our replicates (Fig. 3d–f and Supplementary Fig. 7d,e; Kolmogorov–
Smirnov test P < 0.05), which were not present in the young mice. 
These HSC-expanded clones contained large numbers of stem cells 
apparently incapable of proceeding with differentiation and contained 
little progeny. Old mice showed a moderate increase in the number of 
myeloid-biased clones, which was in contrast to results from classical 
transplantation experiments35–38 (Fig. 3d and Supplementary Figs. 6 and 
7). However, the rare HSC-expanded clones were mostly myeloid-biased 
(Fig. 3g; Wilcoxon test P = 0.01 (replicate 1) and P = 0.076 (replicate 2)).

To determine the long-term stability of the HSC-expanded clonal 
behaviour, we performed a transplantation assay using an aged donor 
mouse. We used EPI-Clone to compare the clonal composition of the 
haematopoietic system in the native state (before transplant) and after 
transplant, and used LARRY barcoding as an additional control during 
transplantation (experiment M.8; Fig. 3h and Extended Data Fig. 6a). 
Clonal identities defined using EPI-Clone remained stable during 
transplantation (Extended Data Fig. 6b–e). HSCs with abundant prog-
eny before transplant showed poor engraftment, a result in line with 
serial transplantation studies using lentiviral barcoding8,33 (Fig. 3i and 
Extended Data Fig. 6f). Notably, HSC-expanded clones also engrafted 
poorly, and we identified non-expanded HSCs as the major drivers of 
transplantation haematopoiesis (Fig. 3j). Clones with quantifiable 
output before and after transplant showed a stable lineage bias that 
was inherited after transplantation (Fig. 3k and Extended Data Fig. 6g).

In summary, our data demonstrate age-related loss of clonal com-
plexity in mouse ageing that is accompanied by an emergence of 
HSC-expanded clones with low engraftment capacity. We propose that 
these rare but expanded clones drive the increase in stem cell number 
and decrease in output that had typically been associated with aged 
haematopoiesis in transplantation studies39–41 and in Cre-lox-based 
native lineage-tracing studies42. Our transplant data support the idea 
that HSCs that do not expand with age persist and drive regeneration.

EPI-Clone in human bone marrow
To relate these results to human ageing, we next adapted EPI-Clone 
for use on human samples. We designed a panel that targeted 448 
CpGs with variable methylation between or within blood progenitor 
populations (Methods and Extended Data Fig. 7a,b). We also included 
147 genomic regions commonly mutated in CH and 20 regions that 
targeted chromosome Y to serve as a partial ground truth for clones 
identified by EPI-Clone.

We collected CD34+-enriched total bone marrow (TBM) samples from 
seven donors of different ages (donors A.1–A.7). We also assembled a 
dataset of CD34+ cells from bone marrow from nine donors (donors 
B.1–B.5 and X.1, and donors A.1, A.3 and A.4, for whom >1,000 CD34+ 
cells had been captured from TBM) (Fig. 4a and Supplementary Table 1). 
Three of the TBM donors had previously been characterized for CH 
mutations43, and we de novo identified CH mutations or loss of the 
Y chromosome (LoY) for four additional donors from scTAM-seq data 
(Methods). In total, we identified ten CH mutations and one LoY event 
in our cohort. Samples were stained with an antibody panel targeting 
45 surface proteins to provide phenotypic characterization. Across all 
donors, we profiled 135,432 single cells using scTAM-seq.

We followed the same analytical strategy as for the mouse experi-
ments, but with minor adaptations (Methods). Specifically, we detected 
expanded clones using a statistical criterion (CHOIR44; Extended Data 
Fig. 3g), and we identified cell types and differentiation states using 
a combination of both dynamic CpGs and surface proteins (Fig. 4b 
and Extended Data Fig. 7c–e). We then used all myeloid cells to iden-
tify a consensus set of static CpGs across individuals (Extended Data 
Fig. 7f–h). To assess the fidelity of static CpGs to identify clones, we 
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mouse from experiment M.7. b, DNA methylation UMAP based on the static 
CpGs for an old mouse (100 weeks old). In a and b, three outlier clusters with 
size <1% were removed to improve visualization. c, Comparison of clone sizes 
for old and young mice (two biological replicates), and a young mouse from  
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d, Comparison of HSC/MPP1 output and myeloid output for the 20 clones with 
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e, Bubble plot visualizing the frequency of HSC/MPP1 cells per clone for old  
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per clone identified using EPI-Clone. P values calculated using two-sided 
Wilcoxon tests. h, Experimental design for the transplantation experiment 
(M.8). i,j, Boxplots of post-transplant clone sizes, comparing clones with 
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exploited the CH mutations and LoY events as a clonal ground-truth. 
CH clones clustered together in static CpG UMAPs in all cases (Fig. 4c 
and Extended Data Fig. 8a). EPI-Clone recapitulated the CH clones in 
all donors except A.5, which was covered with substantially fewer cells 
than the rest of the TBM cohort (Fig. 4d,e and Extended Data Fig. 8b). 
Quantitatively, the epimutational clones dominated by CH mutant 
cells were on average 78.8% mutant and those dominated by wild-type 
cells were on average 95.4% wild-type (Fig. 4e). These numbers prob-
ably underestimate the true overlap between the identified clones and 
CH clones owing to allelic dropout of CH mutations. We observed a 
stronger separation of clones identified using our algorithm and bet-
ter overlap with CH mutations in older donors than in young donors. 
This result suggests that EPI-Clone most accurately identifies clones 
in haematopoietic systems of reduced clonal complexity. Besides the 
CH clones, EPI-Clone identified a total of 67 other clonal expansions 
in the seven TBM donors, a result that highlights the capacity of this 

algorithm to recapitulate clonal expansions driven by known and 
unknown drivers.

We included natural killer (NK) cells and immature B cells in our anal
ysis and used CH mutations to validate that these cells also clustered by 
clone (Extended Data Fig. 8c,d). When T cells and mature B cells were 
included, they associated with lymphoid-dominant clusters, a finding 
in line with the results from mice (Fig. 2i and Extended Data Fig. 8e) and 
indicating their distinct clonal origins compared with the other cells. 
In donor A.4, in whom a large CH clone contributed to T cells, mutant 
T cells clustered with the remaining CH-derived cells (Extended Data 
Fig. 8e). Together with the results from the mouse LARRY experiment, 
this finding constitutes evidence that the identified clones remain 
stable from HSCs to myeloid, T cells, NK cells and immature B cells.

To establish a conservative estimate for a minimum clone size of 
EPI-Clone in humans, we determined the smallest CH clone identified 
using this method. The clone DNMT3A(C666Y) in donor A.4 had 145  
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Fig. 4 | EPI-Clone identifies expanded clones with and without CH mutations 
in human samples. a, Summary of donor characteristics (Supplementary 
Table 1). Dots connected by dashed lines denote samples that were analysed as 
part of the TBM and the CD34+ dataset. b, Integrated UMAP of dynamic CpG and 
surface-protein data for all donors from the TBM and CD34+ datasets. Cell states 
were annotated based on the expression of surface proteins (Extended Data 
Fig. 7c–e). c, UMAPs computed per donor on a consensus set of static CpGs, 
highlighting cells containing the specified CH mutations. See Extended Data 
Fig. 7f–h and Methods for how consensus static CpGs were identified. The 
donors are sorted by increasing age. d, UMAPs as in c, highlighting clones 
identified using EPI-Clone. e, Scatter plot displaying the percentage of cells 

from each identified clone displaying CH mutations. The identified clones 
(x axis) are sorted by size. Dots in colours correspond to the clones dominated 
by a CH mutation, see c for colour scheme. f,g, Scatter plot relating donor age (f) 
and the presence of GMPs (g) to the number of clones identified by EPI-Clone in 
the TBM cohort and CD34+ cohort, respectively. P value calculated with a two-
sided t-test computed from a generalized linear model of the Poisson family, 
using the number of cells observed as a weight. Dot size denotes the number  
of cells analysed (see b for a scale). h, Boxplot depicting clone sizes stratified 
into clones carrying CH mutations and clones for which no CH mutation was 
identified. See the section ‘Data visualization’ in the Methods for a definition  
of boxplot elements.
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cells or a relative size of 1% in the myeloid compartment. Furthermore, 
we observed that several large CH clones (for example, DNMT3A(R659H) 
in donor A.4; Fig. 4d and Supplementary Fig. 8) had diversified into two 
clones with a similar but distinguishable static CpG profile. This result 
suggests that over decades, epimutations can continue to accrue phy-
logenetic information. In conclusion, these analyses demonstrate the 
ability of EPI-Clone to identify expanded haematopoietic clones of a 
wide range of sizes in human bone marrow and blood.

Clonal expansions in human ageing
We leveraged the ability of EPI-Clone to trace both CH clones, which 
are well characterized in humans28,43, and clones without known driver 
mutations (non-CH clones) to functionally compare these two types 
of clonal expansions in our TBM and CD34+ cohorts. Owing to their 
putatively distinct clonal origins, we excluded T cells and mature B cells 
from this analysis. As expected3, in the TBM cohort, we observed an 
age-dependent accumulation of expanded CH and non-CH clones 
(Fig. 4f). Notably, in the CD34+ cohort, which was mostly sampled from 
individuals aged 50–60 years, we identified a correlation between 
the fraction of granulocyte–macrophage progenitors (GMPs) in the 
sample and the accumulation of expanded clones (Fig. 4g), which sug-
gested that cues that enhance myelopoiesis also lead to more clonal 
expansions.

CH clones tended to be more expanded than non-CH clones, but 
were not always among the largest ones (Fig. 4h). Expanded clones 
were significantly depleted (compared with cells from non-expanded 
clones) from the B cell and erythroid lineages (Fig. 5a,b and Extended 
Data Fig. 8f), which implicated a link between myelopoiesis and expan-
sion even for non-CH clones. Compared with non-CH clones, CH clones 
were significantly enriched in HSCs and MPPs but depleted from the 
B cell and erythroid lineages (Fig. 5b and Extended Data Fig. 8f,g). These 
results highlight a stem-cell bias in age-expanded clones that is con-
served across mice and humans, and they support a model whereby CH 
clones are part of a spectrum of such age-expanded clones.

To resolve transcriptional differences between clones in the HSC 
and MPP (HSC/MPP) compartment, we added targeted RNA-seq to the 
scTAM-seq protocol (single-cell targeted analysis of the methylome and 
RNA (scTAMARA-seq); Fig. 5c and Extended Data Fig. 9a). To that end, we 
combined SDR-seq45, a recently described targeted RNA-seq protocol 
for Mission Bio Tapestri, with scTAM-seq. We profiled one of the CD34+ 
bone marrow samples (X.1) and obtained high-quality DNA methylation 
and RNA-seq data from 2,745 cells (Extended Data Fig. 9b–e). scRNA-seq 
data confirmed the accuracy of DNA-methylation-based cell-state 
annotation and showed an increased resolution of transcriptomic data 
at the level of erythromyeloid progenitors (Extended Data Fig. 9f,g). We 
then investigated the gene-expression pattern of distinct clones. HSC/
MPP-biased clones expressed low levels of TAL1, SLC40A1 and CDC45 at 
the HSC/MPP level and high levels of CEBPA, which suggested that clonal 
fate biases are correlated with gene-expression changes at early stem 
and progenitor states (Fig. 5d). These results further demonstrate the 
compatibility of EPI-Clone with targeted RNA-seq from the same cell.

EPI-Clone and mitochondrial variants
In the field, there is controversy regarding the potential of other somatic 
events, in particular low-heteroplasmy mtDNA variants, for lineage trac-
ing14–16. To perform a direct experimental comparison, we used EPI-Clone 
to analyse peripheral blood from a 38-year-old healthy donor (X.2) that 
had previously been characterized by a state-of-the-art single-cell mito-
chondrial lineage tracing method, mt-scATAC-seq13,46. We identified 
44 clones from this sample, which displayed prominent clonal expan-
sions of NK cells and T cells (Extended Data Fig. 10a). By including a 
mitochondrial targeting panel into scTAM-seq, we achieved a median 
coverage of 176 reads per cell on the mitochondrial genome (Fig. 5e and 

Extended Data Fig. 10b,c). Of the 23 mtDNA variants previously identi-
fied46 (Supplementary Table 3) in this donor and covered in scTAM-seq, 
5 had clear phylogenetic relationships with the clones identified using 
EPI-Clone. That is, they were either subclones of single clones or were 
parental to several of the identified clones (Fig. 5f), and one variant was 
observed in two clones. A highly abundant variant (mt:7076A>G) was 
strongly enriched or depleted in 17 T cell or NK cell clones identified 
using EPI-Clone, but was observed in approximately 50% of cells of the 
remaining, mostly multilineage or B cell, clones identified (Fig. 5g). 
This variant was probably present before epimutational patterns were 
established and repeatedly underwent selection throughout devel-
opment and adulthood. Therefore, T cell clones with a recent history 
of expansion may or may not carry the variant, whereas multilineage 
clones that expanded before selection of the variant contain a mix of 
mutant and wild-type cells. Finally, the remaining 16 low-heteroplasmy 
mitochondrial variants did not segregate with clones identified using 
EPI-Clone (Extended Data Fig. 10d,e). These findings are in line with 
a recent report15 observing that only some observed mitochondrial 
variants carry phylogenetic information, and illustrate the complexity 
of mitochondrial genetics, for which selection of variants can happen 
repeatedly during differentiation46. These results also provide additional 
orthogonal validation of the value of EPI-Clone outside the setting of CH.

Discussion
In summary, DNA methylation at a few hundred CpGs is sufficient to 
simultaneously identify clones and cell states of haematopoietic cells 
and ECs, whereas individual CpGs are either informative of cell states 
or clones. Somatic epimutations seem to be a stable, long-term lineage 
tracer. Indeed, 5–10 months had elapsed between introduction of the 
ground-truth clonal label and collection of cells after transplantation. 
In humans, previous studies have indicated that decades pass between 
the initial acquisition of CH or LoY and the observation of expanded 
clones in age3.

This result raises the question of where and how clonal epimuta-
tions arise. We found that they randomly occur but remain stable 
over many cell divisions. Moreover, their numbers do not increase 
during differentiation (Supplementary Fig. 9a) and they are enriched 
for heterochromatic and late-replicating domains. We propose that 
some developmental events that are characterized by rapid cellular 
proliferation and/or a remodelling of the DNA methylome, such as the 
specification of HSCs47, essentially randomize the methylation state 
of CpGs in heterochromatic and late-replicating regions. A potential 
explanation of this effect is that in rapidly dividing cells, DNMT1 may 
not act sufficiently to copy the DNA methylation state to the nascent 
DNA strand (Supplementary Fig. 9b). Consistent with this idea, a recent 
study of bulk methylome profiles from blood cells in monozygotic 
twins suggested that clone-associated variation of the methylome 
may be established during embryonic development48. In the case of 
some large CH clones, we observed additional diversification of epi-
mutational patterns.

We therefore propose that variably methylated CpGs in non- 
regulatory genomic regions can act as a digital barcode of clonal origin. 
The digital and stochastic nature of epimutations makes single-cell 
methods that are capable of mapping the methylation state of single 
CpGs at high confidence, such as scTAM-seq, a powerful tool for lineage 
tracing. While this article was under review, a method termed Meth-
ylTree49 demonstrated identification of clonal identity from sparse 
whole-genome, single-cell DNA methylation data. Compared with 
MethylTree, our approach is more scalable, less expensive and less 
computationally intense. Conversely, scTAM-seq requires the design 
of a species-specific targeting panel.

The robustness of EPI-Clone is best evidenced by its capacity to 
identify high-resolution clonal patterns in native haematopoiesis. 
We demonstrated that both native human and mouse haematopoiesis 
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shifts from highly polyclonal to oligoclonal blood production, and we 
investigated clone function in these two species using a coherent, uni-
fied method. Expanded clones in mice tended to be more numerous, 
but individually smaller, and poorly contribute to haematopoiesis in 
transplants. This observation seems to be in line with the larger and 
more polyclonal stem cell compartment in humans, but a much longer 
period of clonal selection and drift. In our human data, oligoclonal 
blood production became detectable at an age of around 50 years and 
manifested itself as an inevitable and potentially clock-like process 
after the age of 60 years.

Our data further put CH mutations into a perspective with clonal 
expansions without known drivers. That is, CH clones are more strongly 

biased towards the myeloid lineage and towards an expansion of stem 
cells, but together with non-CH clones form part of a spectrum of 
age-related clonal expansions that display similar functional properties. 
In aged mice, we similarly detected large HSC-expanded clones that had 
reduced regenerative capacity. Together with recent transplantation 
studies of human HSCs50, this result suggests that there is conservation 
of the processes that drive haematopoietic ageing and decline in clonal 
complexity, and it highlights that CH mutations might not be the main 
driver of this process. Epidemiological studies have demonstrated an 
increased mortality risk in carriers of driver-free expanded clones27. 
These results call for a broader investigation of age-related decline in 
clonality instead of a strict focus on CH.
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donor as a random effect and clone type (expanded or non-expanded or CH  
or non-CH) as a fixed effect (Extended Data Fig. 8f,g). c, Schematic of the 
scTAMARA-seq protocol (for the X.1 experiment; Extended Data Fig. 9).  
d, Clones discovered using EPI-Clone were identified on CD34+ cells from  

donor X.1 using DNA methylation data. Subsequently, genes with differential 
expression between clones and correlation with the percentage of HSC/MPPs  
in the clone were identified. Adjusted P values were calculated using two-sided 
tests for Pearson correlation, adjusted for multiple testing. e, Schematic of 
experiment X.2 (scTAMito-seq; Extended Data Fig. 10). f, Scatter plot depicting 
the presence of six mitochondrial variants in the different clones identified 
using EPI-Clone from X.2. Cells were scored as positive for the variant if at least 
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the mt:7076A>G variant.
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Methods

Methods summary
An overview of all experiments performed for this study is included 
in Extended Data Fig. 1a and Supplementary Table 1. For the mouse 
experiments with an available ground truth from the LARRY lentiviral 
barcoding system (experiments M.1, M.2, M.4, M.5), LARRY barcoding 
vectors were constructed and lentiviruses were produced (see the sec-
tion ‘Lentiviral barcoding using the LARRY system’). Stem cells were 
then collected from mice, transduced with the LARRY lentiviruses and 
transplanted, and different cellular compartments were collected 
5–10 months later for profiling by scTAM-seq (see the section ‘Experi-
mental procedures (mouse study)’). Additional experiments were 
performed on biological material from non-treated mice of different 
ages (experiments M.3 and M.6–M.8; see the section ‘Experimental 
procedures (mouse study)’). For the human study, primary bone mar-
row samples were analysed (see the section ‘Experimental procedures 
(human study)’).

All biological material was analysed by scTAM-seq5 (see the section 
‘Single-cell DNA methylation profiling with scTAM-seq’). scTAM-seq is a 
targeted method for DNA methylation analysis based on the Mission Bio 
Tapestri platform. Specifically, up to 1,000 amplicons 200–400 base 
pairs in length are amplified from the genomes of single cells. Before 
this amplification step, scTAM-seq includes a digestion step with a 
methylation-sensitive restriction enzyme, HhaI. Therefore, CpG dinu-
cleotides in HhaI sites are only effectively amplified if methylated. 
The selection of the target amplicons comprising individual CpGs is 
a crucial step in this protocol (see the sections ‘Mouse panel design 
for scTAM-seq’ and ‘Human panel design for scTAM-seq’). Relevant 
genetic information (LARRY barcodes or CH mutations) can be read 
out from gDNA by scTAM-seq in the same cells, specifically by cov-
ering these regions with amplicons not containing HhaI cut sites. 
Surface-antigen expression was read out through the inclusion of 
oligonucleotide-barcoded antibodies in the protocol. We also included 
dedicated experiments demonstrating the combination of scTAM-seq 
with RNA-seq from the same single cell (experiment X.1, see the section 
‘Combined profiling of DNA methylation and RNA in the same cell’) or 
mitochondrial genome sequencing (experiment X.2, see the section 
‘Combined profiling of DNA methylation and mitochondrial variants’).

Key steps in the data analyses (see the section ‘Bioinformatic analy-
sis (mouse)’) were to define cell states through data integration and 
subsequently to identify clones using the EPI-Clone algorithm. This 
algorithm first identifies CpGs with no surface-antigen association as 
potentially clone-associated or ‘static’ CpGs, and subsequently per-
forms clustering and dimensionality reduction exclusively on these 
CpGs (see the section ‘EPI-Clone’). For the analyses of the human data, 
the same overall strategy was used. Additional steps and adjustments 
included mutation calling and definition of a consensus set of static 
CpGs across donors (see the section ‘Bioinformatic analysis (human)’).

A detailed protocol for performing scTAM-seq for clonal tracing  
with EPI-Clone is available from protocols.io51.

Lentiviral barcoding using the LARRY system
Construction of lentiviral pLARRY vectors. Barcode libraries were 
constructed according to a previously established protocol (https://
www.protocols.io/view/barcode-plasmid-library-cloning-4hggt3w). 
First, the T-Sapphire or eGFP coding sequences and the EF1a promoter 
sequence were PCR-amplified from pEB1-T-Sapphire and pLARRY-eGFP 
with primers homologous to the vector insertion site in a custom lenti-
viral plasmid backbone (Vectorbuilder) using Gibson assembly (Gibson 
assembly master mix, NEB, E2611L). After magnetic bead purification,  
ligated vectors were transformed into NEB10-beta electroporation 
ultracompetent Escherichia coli cells (NEB 10-beta electrocompetent 
E. coli, NEB, C3020K) and grown overnight on LB plates supplemented  
with 50 μg ml–1 carbenicillin (carbenicillin disodium salt, Thermo 

Scientific Chemicals, 11568616). Colonies were scraped using LB medium  
and pelleted by centrifugation. Plasmid maxipreps were performed 
using an Endotoxin-Free Plasmid Maxi kit (Macheray Nagel), following 
the manufacturer’s protocol. pEB1-T-Sapphire was a gift from P. Cluzel 
(Addgene plasmid 103977). pLARRY-eGFP was a gift from F. Camargo 
(Addgene plasmid 140025).

Barcode lentivirus library generation and diversity estimation. To 
barcode pLARRY plasmids and generate a library, a spacer sequence 
flanked by EcoRV restriction sites was cloned into the plasmid after 
the WPRE element of the vector. Custom PAGE-purified single-strand 
oligonucleotides with a pattern of 20 random-bases (GTTCCANNNNT 
GNNNNCANNNNGTNNNNAGNNNN) and surrounded by 25 nucleotides 
homologous to the vector insertion site were synthesized by IDT DNA 
Technologies. The assembly of these components and subsequent 
purification steps were carried out through Gibson assembly (Gib-
son assembly master mix, NEB, E2611L). Six electroporations of the 
bead-purified ligations were performed into NEB10-beta E. coli cells 
(NEB 10-beta electrocompetent E. coli, New England Biolabs, C3020K) 
using a Gene Pulser electroporator (Bio-Rad). After transformation, 
the cells were incubated at 37 °C for 1 h at 220 r.p.m. After incubation, 
the transformed cells were plated in six large LB–ampicillin agar plates 
overnight at 30 °C. Colonies from all six plates were collected by scrap-
ing with LB–ampicillin and then grown for an additional 2 h at 225 r.p.m. 
and 30 °C. Cultures were pelleted by centrifugation, and plasmids were 
isolated using an Endotoxin-Free Plasmid Maxi kit (Macheray-Nagel), 
following the manufacturer’s protocol.

For estimating diversity, LARRY barcode amplicon libraries were 
prepared by PCR amplification of the lentiviral library maxiprep using 
flanking oligonucleotides carrying TruSeq read1 and read2 adaptors 
using 10 ng of the library (Supplementary Table 4). We used the minimal 
number of cycles that we could detect by quantitative PCR to avoid 
PCR amplification bias (10–12 cycles). After bead purification, 10 ng of 
the first PCR product was used as a template for a second PCR to add 
Illumina P5 and P7 adaptors and indexes (Supplementary Table 4). Two 
independent PCRs were sequenced on an Illumina NovaSeq 6000 S4 
platform (Novogene) to confirm diversity after correction of errors 
through collapsing with a Hamming distance of 4. After collapsing, 
libraries were confirmed to contain at least 50 million different bar-
codes, with enough diversity for uniquely labelling up to 100,000 HSCs 
with a minimal false-positive rate.

Lentivirus production and barcode labelling. Lentivirus produc-
tion and HSPC transduction were performed as previously described8.

Experimental procedures (mouse study)
Mice and animal guidelines. All procedures involving animals adhered 
to the pertinent regulations and guidelines. Approval and oversight 
for all protocols and strains of mice were granted by the Institutional 
Review Board and the Institutional Animal Care and Use Committee 
at Parque Científico de Barcelona under protocols CEEA-PCB-22-001- 
ARF-P1 and CEEA-PCB-22-002-ARF-P2. The study followed all rel-
evant ethical regulations. CD45.1 (CD45.1, B6.SJL-Ptprca Pep3b/BoyJ,  
002014, The Jackson Laboratory) mice were used as transplanta-
tion recipients for CD45.2 (BL6/J) donor cells. Mice were kept under  
specific-pathogen-free conditions for all experiments. We used 
12–100-week-old male and female mice for our experiments. Neither 
randomization nor blinding was used. Experiments were performed 
with one or two biological replicates of mice, and no statistical methods 
were used for sample size choice. To minimize distress, euthanasia was 
performed by administering isoflurane inhalation, followed by cervical 
dislocation to ensure the animals were fully deceased.

LARRY lentiviral barcoding and transplantation. Following eutha-
nasia, bone marrow was collected from the femur, tibia, pelvis and 
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sternum through mechanical crushing, ensuring the retrieval of most 
of the cells. The collected bone marrow cells were then sieved through 
a 40 μm strainer and cleansed with a cold ‘Easy Sep’ buffer contain-
ing PBS, 2% FBS, 1 mM EDTA and penicillin–streptomycin followed by 
lysis of red blood cells using RBC lysis buffer (BioLegend, 420302). 
At first, mature lineage cells were selectively depleted using a Line-
age Cell Depletion kit, mouse (Miltenyi Biotec, 130-110-470), and the 
resulting LIN– (lineage-negative) fraction was then enriched for KIT 
expression using CD117 MicroBeads (Miltenyi Biotec, 130-091-224). 
These KIT-enriched cells were washed, blocked with FcX and stained 
with the following fluorescently labelled antibodies: APC anti-mouse 
CD117, clone ACK2 (BioLegend, 105812); PE/Cy7 anti-mouse Ly6a (SCA1) 
(BioLegend, 108114); Pacific Blue anti-mouse Lineage cocktail (Bio-
Legend, 133310); PE anti-mouse CD201 (EPCR) (BioLegend, 141504); 
PE/Cy5 anti-mouse CD150 (SLAM) (BioLegend, 115912); and APC/Cy7 
anti-mouse CD48 (BioLegend, 103432). For transplants, EPCR+LIN–

SCA1+KIT+CD48–CD150+ HSCs were sorted by FACS with a BD FACSAria 
Fusion with a 70 µm nozzle.

In vitro cultures of HSCs were done under self-renewing F12-PVA-
based conditions as previously described52. To culture HSCs, 96-well 
flat-bottom plates from Thermo Scientific were coated with a layer 
of 100 ng ml–1 fibronectin (bovine fibronectin protein, 1030-FN) for 
30 min at room temperature. After the sorting process, HSCs were 
transferred into 200 µl complete HSC medium supplemented with 
100 ng ml–1 recombinant mouse TPO (PeproTech Recombinant Murine 
TPO, 315-14) and 10 ng ml–1 recombinant mouse SCF (PeproTech Recom-
binant Murine SCF, 250-03) and grown at 37 °C with 5% CO2. During 
lentiviral library transduction, the first medium change took place 24 h 
after transduction. Three days after labelling, the cultured HSCs were 
collected and subsequently transplanted into conditioned CD45.1 mice. 
The CD45.1 recipient mouse was preconditioned with a lethal X-ray 
radiation dose, administered as two separate sessions amounting to 
5 Gy each, with a 4-h interval between them. To assess the engraftment 
of donor cells, the percentage of CD45.2+ peripheral blood leukocytes 
(and the percentage of fluorescent-protein-labelled cells) was deter-
mined. All mice demonstrated stable long-term engraftment until the 
experimental end point. Engraftment analysis, along with the measure-
ment of labelling frequency, was carried out using BD FACS Fusion.

Collection of cells for single-cell characterization. In all single-cell 
experiments, unless described otherwise in the subsequent sections, 
transplanted or untreated mice were euthanized at specified ages and 
time points after transplant, and a KIT-enriched cell fraction was isolat-
ed from the femur, tibia, pelvis and sternum, per the protocol described 
above. This KIT-enriched cell population was stained with FcX block to 
prevent nonspecific binding and subsequently stained again with the 
following panel of fluorescently labelled antibodies: APC anti-mouse 
CD117 (clone ACK2, BioLegend, 105812); PE/Cy7 anti-mouse Ly6a (SCA1) 
(BioLegend, 108114); and Pacific Blue anti-mouse Lineage cocktail (Bio-
Legend, 133310). In all mouse experiments, cells were also labelled with 
a custom TotalSeq-B antibody cocktail (Supplementary Table 2). After 
staining, distinct cellular compartments were sorted as illustrated in 
Supplementary Fig. 1 and profiled by scTAM-seq (see below).

LARRY experiments. For validating EPI-Clone using a ground-truth 
genetic lineage-tracing experiment, we performed two experiments: 
the main LARRY experiment (M.1) and the LARRY replicate experiment 
(M.2) (Figs. 1 and 2 and Extended Data Figs. 2 and 3). For M.1, two donor  
mice were killed, and HSCs were labelled with LARRY constructs 
containing a GFP label in one case and LARRY constructs containing 
a Sapphire label in the other case. Subsequently, labelled cells from 
each donor were transplanted into two recipient mice each. Accord-
ingly, the dataset contains cells from four mice that contain two sets 
of clones, labelled with GFP and Sapphire, respectively. GFP and Sap-
phire clones did not mix on EPI-Clone UMAPs (Extended Data Fig. 3f), 

which further demonstrates that clones identified using EPI-Clone are 
individual-specific. We profiled all four recipient mice after allowing full 
blood reconstitution over 5 months. We also repeated this experiment 
again for validating the computational method (experiment M.2) using 
only one donor mouse. For both experiment M.1 and experiment M.2, 
we collected LSK and LK cells from the bone marrow and mixed them 
at 60,000 (LK) plus 50,000 (LSK) before analysing the cells using the 
Tapestri platform (Supplementary Table 1).

Native haematopoiesis. In this experiment (M.3; Fig. 1), we killed a 
12-week-old wild-type BL6/J (CD45.2) mouse, extracted 120,000 LK 
cells and subjected them to scTAM-seq (Supplementary Table 1 and 
Supplementary Fig. 1).

Mature myeloid cell experiment. For profiling tissue-resident  
myeloid cells (experiment M.4; Extended Data Fig. 4), a single LARRY- 
transplanted mouse was anaesthetized 10 months after transplantation 
and perfused. Subsequently, lungs were extracted from the chest cavity, 
and a single-cell suspension was prepared using a protease and DNAse 
solution from a Lung Dissociation kit (Miltenyi Biotech, 130–095-927) 
followed by mechanical dissociation using gentleMACS ‘C’ columns 
(Miltenyi Biotech, 130–093-237) according to the manufacturer’s  
instructions. The dissociated cells were filtered using a 70 μm strainer 
and centrifuged at 400g for 5 min at room temperature. The superna-
tant was removed by aspiration and red blood cell lysis was performed 
using RBC lysis buffer (BioLegend, 420302). Cells were then washed 
with FACS buffer and pelleted at 400g for 5 min at 4 °C. The supernatant 
was removed, and the pellet was resuspended in FACS buffer before  
being passed through a 40 μm strainer and stained for the mature  
myeloid cell marker. Cells were stained with the following fluorescently 
labelled antibodies: PerCP/Cyanine5.5 anti-mouse/human CD11b (Bio-
Legend, 101227; clone M1/70) and PE/Cyanine7 anti-mouse CD45.2 
(BioLegend, 109829; clone 104). Cells were also labelled with TotalSeq-B 
antibody cocktail. We then sorted CD45.2+CD11b+LARRY(GFP)+ immune 
cells from lung. In parallel, we also sorted and stained LSK and LK cells 
and mature CD11b+ populations from both bone marrow and peripheral 
blood, followed by single-cell profiling.

Mature immune cell experiment. For this experiment (M.5; Fig. 2 and 
Supplementary Fig. 4), a single LARRY-transplanted mouse was eutha-
nized 5 months after transplantation, and cells from the spleen and 
bone marrow were collected as described above. After red blood cell 
lysis, equal amounts of cells from both organs were pooled, washed and 
blocked with FcX. The cells were then stained with the following fluo-
rescently labelled antibodies: Pacific Blue anti-mouse FcεRIα (BioLeg-
end, 134313; clone MAR-1); PE/Cyanine5 anti-mouse CD19 (BioLegend, 
115509; clone 6D5); Brilliant Violet 605 anti-mouse CD11c (BioLegend, 
117333; clone N418); PerCP/Cyanine5.5 anti-mouse/human CD11b (Bio-
Legend, 101227; clone M1/70); APC/Cyanine7 anti-mouse Ly-6G (Bio-
Legend, 127623; clone 1A8); APC anti-mouse CD3 (BioLegend, 100235; 
clone 17A2); and PE/Cyanine7 anti-mouse CD115 (CSF-1R) (BioLegend, 
135523; clone AFS98). We then sorted the following populations from 
LARRY+ live cells based on their surface markers: T cells (CD3+CD19–), 
B cells (CD3–CD19+), neutrophils (CD11b+CD3–CD19–Ly6G+), mono-
cytes (CD11b+CD3–CD19–Ly6G–CD115+) and eosinophils and basophils 
(CD11b+CD3–CD19–FcεR1a+).

Lung EC experiment. For profiling ECs from 100-week-old mice 
(experiment M.6; Extended Data Fig. 5), dissociated lung cells were 
collected as described above. The resultant cell population was then 
enriched for CD31 expression using CD31 MicroBeads (mouse, 130-
097-418, Miltenyi Biotec) per the manufacturer’s guidelines. These 
CD31-enriched cells were then washed, blocked with FcX and stained 
with the following fluorescently labelled antibodies: PE anti-mouse 
CD31 (BioLegend, 102507; clone MEC13.3) and PE/Cyanine7 anti-mouse 



CD45.2 (BioLegend, 109829; clone 104). Following staining, CD31+ and 
CD45.2– cells were sorted as illustrated in Extended Data Fig. 5a and 
Supplementary Table 1.

Native haematopoiesis experiments in old and young mice. For this 
experiment (M.7; Fig. 3 and Supplementary Figs. 5–7), the KIT-enriched 
cell fraction was stained and subsequently sorted to collect LSK and 
LK populations as described above. Samples were collected from two 
young (12-week-old) BL6/J (CD45.2) mice and two aged (100-week-old) 
BL6/J (CD45.2) mice.

LARRY transplant experiments in old mice. For this experiment (M.8; 
Fig. 3 and Extended Data Fig. 6), half of the HSC population from a 
100-week-old mouse that was profiled as part of experiment M.7 were 
labelled with LARRY lentivirus and transplanted into lethally irradi-
ated mice. Six months after transplant, mice were euthanized, and a 
KIT-enriched cell fraction was isolated from the femur, tibia, pelvis and 
sternum, following the protocol outlined above. This KIT-enriched cell 
population was stained with FcX block to prevent nonspecific binding 
and subsequently stained again with the following panel of fluores-
cently labelled antibodies: APC anti-mouse CD117 (clone ACK2, Bio-
Legend, 105812); PE/Cy7 anti-mouse Ly6a (SCA1) (BioLegend, 108114); 
and Pacific Blue anti-mouse Lineage cocktail (BioLegend, 133310). After 
staining, LK and LSK cells were sorted as described above.

Experimental procedures (human study)
Human samples and their previous characterization by genomic 
assays. Bone marrow samples were obtained from different sources. 
Samples A.1, A.6 and A.7 were bone marrow aspirates from healthy vol-
unteers collected at the Heidelberg University Hospital after informed 
written consent. This study was approved by the Ethics Committee of 
the Medical Faculty of Heidelberg University (S-480/2011). Sample A.4 
was a TBM sample obtained through the Banc de Sang i Teixits (Bar-
celona, Spain) and approved by the Ethics Committee of the Hospital 
Clinic de Barcelona (HCB/2023/0367). Samples B.1–B.5 and X.1 were 
commercially available samples of purified CD34+ cells from organ 
donors (Ossium Health). No genomic characterization was performed 
on these samples before this study. Samples A.2, A.3 and A.5 were col-
lected after informed written consent from individuals undergoing 
elective total hip replacement surgery at the Nuffield Orthopaedic 
Centre under the ‘Mechanisms of Age-Related Clonal Haematopoiesis’ 
(MARCH) study. This study was approved by the Yorkshire and The 
Humber–Bradford Leeds Research Ethics Committee (NHS REC ref: 
17/YH/0382). These samples were screened for somatic mutations 
with a variant allele frequency of ≥0.01 by targeted DNA sequencing 
of a panel covering 97 genes (347 kb) recurrently mutated in myeloid 
malignancies and CH, as previously described43. Samples with somatic 
mutations in DNMT3A and PPM1D were selected for analyses. Finally, 
sample X.2. was a peripheral blood sample collected and characterized 
by mt-scATAC–seq as previously described46. Informed consent was 
given and approved for genomics profiling by the Stanford Institutional 
Review Board (number 14734).

All experiments involving human samples were approved by the 
corresponding ethics committees and were in accordance with the 
Declaration of Helsinki.

Bone marrow samples were thawed and stained using CD34 and CD3 
sorting antibodies (BioLegend, 343517) and a pool of oligonucleotide-
conjugated antibodies from the TotalSeq-D Heme Oncology Cocktail 
from BioLegend (MB53-0053) as well as additional TotalSeq-D anti-
bodies from BioLegend (Supplementary Table 6). Samples were then 
sorted for CD34+ and CD34– populations and subjected to scTAM-seq 
(see below). For details on sorting, see Supplementary Table 1.

Multiplexing. Samples B.1 and B.5, B.2 and B.4, and A.2 and A.5 were 
in pairs, multiplexed into single Tapestri lanes. Demultiplexing was 

performed on the basis of germline single-nucleotide polymorphisms 
on autosomes with vireo53. Chromosome Y and pre-characterized so-
matic single-nucleotide variants (SNVs) were used as controls (Supple-
mentary Fig. 10 and see the section on ‘Bioinformatic analysis (human)’).

Single-cell DNA methylation profiling with scTAM-seq
Single-cell DNA methylation profiling. For profiling DNA methylation 
at single-cell resolution, we used scTAM-seq5, which leverages the Mis-
sion Bio Tapestri technology to investigate up to 1,000 CpGs in 1,000s 
of cells per experiment. In brief, we loaded 120,000–140,000 cells into 
the Tapestri machine and followed the default Mission Bio DNA+Protein 
protocol for V2/V3 chemistry for the experiments (v.2: https://mis-
sionbio.com/wp-content/uploads/2021/02/Tapestri-Single-Cell-DNA- 
Protein-Sequencing-V2-User-Guide-PN_3360A.pdf; v.3: https:// 
missionbio.com/wp-content/uploads/2023/08/Tapestri-Single-Cell-
DNA-Protein-Sequencing-v3-User-Guide_MB05-0018.pdf; see also 
Supplementary Table 1), but with the following modifications: (1) we 
added a DNA methylation-sensitive restriction enzyme (HhaI) to digest 
non-methylated targets (CpGs) before amplification; and (2) in the case 
of the mouse experiments, we used TotalSeq-B antibodies and different 
primers for the amplification of antibody oligonucleotide tags. The 
default Mission Bio protocol uses a different type of oligonucleotide 
tag, TotalSeq-D, which we used here for the experiments using human 
samples, but which are currently not available for mouse antigens.

For the mouse samples stained with TotalSeq-B, we added 5 μl of 
highly concentrated HhaI (150,000 U ml–1, NEB) enzyme and 2 µl of 
30 µM of a custom antibody tag primer specific for the amplification 
of the oligonucleotide tags of TotalSeq-B antibodies (ACTCGCAG 
TAGTCTTGCTAGGACCGGCCTTAAAG) to the Tapestri barcoding mix 
reagent. An incubation at 37 °C for 30 min was added to the start of 
the targeted PCR thermal cycling program to allow for the restriction 
enzyme digest to take place before the PCR amplification step. The 
use of TotalSeq-B antibodies primarily affected the ‘Protein Library 
Cleanup I’ section of the protocol, for which we replaced the 2× bind-
ing and washing (B&W) buffer from the kit with the following buffer 
prepared with nuclease-free water: Tris-HCl (final concentration 10 mM, 
pH 7.5), EDTA (final concentration 1 mM) and NaCl (final concentra-
tion 2 M). We used 2 µl of 5 µM of our custom biotin oligonucleotide 
(/5Biosg/GTGACTGGAGTTCAGACGTGTG/3C6/) to isolate the antibody 
tags. Moreover, during the isolation of antibody tags, we performed 
the second wash of streptavidin beads with 1 ml nuclease-free water 
instead of 1× B&W buffer. Finally, each tube of streptavidin beads was 
resuspended in 45 µl of nuclease-free water then transferred and com-
bined into a new tube for a total of 90 µl. To amplify the final protein 
target library, we used 5 µl of 4 µM of each custom indexed primers 
(forward: CAAGCAGAAGACGGCATACGAGAT[i7 index]GTGACTG 
GAGTTCAGACGTGTGCTCTTCCGATCT; reverse: AATGATACGGCGA
CCACCGAGATCTACAC[i5 index]TCGTCGGCAGCGTC). Typically, we 
performed twice as many reactions to amplify the DNA target library, 
but this may be increased to achieve sufficient yield. Last, we adjusted 
the AMPure XP reagent-to-sample ratio in the second size-selection step 
in the ‘DNA Library Cleanup II’ section from 0.72× to 0.65×.

For the human samples stained with TotalSeq-D, we followed the 
scTAM-seq protocol as previously described5.

Using the stained cells that we used as input to scTAM-seq, we also 
performed 10x Genomics Chromium Single Cell 3′ for transcriptomic 
profiling of the cells, following the standard protocol. This step was 
exclusively performed for experiment M.1 (Supplementary Table 1). 
For the transcriptomic data, LARRY barcodes were later amplified 
using a modified version of the protocol8 (see Supplementary Table 4 
for an updated list of primers).

Mouse panel design for scTAM-seq. We aimed to design a panel 
with CpGs dynamically methylated in HSCs, as well as in more com-
mitted progenitors (MPPs). We collected bulk whole-genome 

https://missionbio.com/wp-content/uploads/2021/02/Tapestri-Single-Cell-DNA-Protein-Sequencing-V2-User-Guide-PN_3360A.pdf
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bisulfite sequencing data from a previous publication22 profiling 
DNA methylation in three replicates of HSCs (LSK and CD135−CD48− 
CD150+CD34−), MPP1 (LSK and CD135−CD48−CD150+CD34+), MPP2 
(LSK and CD135−CD48+CD150+CD34+), and a mixture of MPP3 (LSK 
and CD135−CD150−CD48+CD34+) and MPP4 (LSK and CD135+CD150−

CD48+CD34+). Using these data, we selected CpGs that were variably 
methylated in HSPCs (Extended Data Fig. 1b,c) using three criteria:  
(1) CpGs differentially methylated between the HSCs and the different 
MPP populations (DMCs); (2) CpGs intermediately methylated within 
HSCs (IMCs); and (3) CpGs harbouring within-sample heterogeneity 
in HSCs (WSHs). The code for selecting CpGs is available from GitHub 
(https://github.com/veltenlab/EPI-CloneSelection).

For DMCs, we used RnBeads54 to determine CpGs that were specifi-
cally methylated in one of the HSPCs (that is, in HSC, MPP1, MPP2 or 
MPP3/MPP4) but not methylated in all the remaining HSPC populations. 
We only focused on CpGs that were covered by at least 10 sequencing 
reads in all samples and that had a methylation difference of at least 0.2 
between the target cell type and the average of the remaining cell types.

IMCs had to be non-overlapping with DMCs and were then defined 
by a DNA methylation level in the bulk samples (HSCs) between 0.25 
and 0.75. Such CpGs may be differentially methylated between two 
sub-cell types of HSCs. IMCs were required to have a low proportion 
of discordant reads (PDRs)55 together with a high quantitative fraction 
of discordant read pairs (qFDRPs)56. PDR and qFDRP are measures of 
WSH in bulk bisulfite sequencing data and quantify the concordance of 
methylation states on the same sequencing read (PDR) or of multiple 
CpGs across different sequencing reads (qFDRP).

CpGs with high WSH were non-overlapping with DMCs and IMCs. 
The CpGs were then identified on the basis of the high levels of both 
PDR and qFDRP. These CpGs were therefore located in regions show-
ing variable methylation profiles in bulk sequencing data and might 
represent regions with stochastic methylation in HSCs.

After identifying all CpGs that fulfilled the above criteria, we excluded 
any CpGs that were not in the context of a HhaI cut site and enriched 
the selected CpGs for those located in the vicinity (100 bp) of at least 
one TFBS of an important haematopoietic transcription factor (Sup-
plementary Table 5). We then selected 105 CpGs specifically methylated 
in HSCs, 70 in MPP1, 70 in MPP2, 75 in MPP3/MPP4, 210 IMCs and 80 
WSH (Extended Data Fig. 1b,c). We also included the following control 
amplicons: 20 constitutively methylated, 20 constitutively unmethyl-
ated and 50 amplicons without a HhaI cut site. Control amplicons were 
required to identify cells from the data because the remaining ampli-
cons were digested depending on their methylation state. We uploaded 
this list to the Mission Bio Designer tool (https://designer.missionbio.
com/) to receive a final list of 663 amplicons and corresponding primer 
sequences (Supplementary Table 5). The CpGs were further annotated 
according to their location in the genome with respect to chromatin 
states as previously defined57. From the 573 non-control amplicons, a 
subset of 453 amplicons with low dropout rate in an experiment without 
HhaI digest was used for analysis.

For amplifying the LARRY barcodes, we spiked in an additional 
primer into the primer pool targeting the LARRY barcode sequence 
(forward: GCATCGGTTGCTAGGAGAGA; reverse: GGGAGTGAATTAGCC 
CTTCCA). We could therefore read out the LARRY barcode together 
with information about the DNA methylation state from the same 
single cell.

Human panel design for scTAM-seq. The design for the human panel 
closely followed the strategy applied for the mouse panel. Two previ-
ously published datasets21,58 were used to similarly profile DMCs, IMCs 
and, additionally, CpGs with interindividual heterogeneity (IIH). Sites 
were selected to not include single-nucleotide polymorphisms accord-
ing to dbSNP v.151 and to be located in the HhaI cut sequence.

For DMCs, we considered peripheral blood and bone marrow samples 
from a previous study21. Samples with an average coverage across all 

CpGs below 1 were removed. DMCs between HSCs, MPPs, multilym-
phoid progenitors (MLPs; combining MLP0, MLP1, MLP2 and MLP3), 
common lymphoid progenitors (CLPs), common myeloid progenitors 
(CMPs) and GMPs were computed using RnBeads. CpGs with a mean 
methylation difference higher than 0.1 between the cell types were 
identified as DMCs.

We performed IMC detection on HSC-enriched lineage-negative 
(LIN−CD34+CD38−) samples from eight male donors using a previously 
published dataset58. To deal with data sparsity, we set the maximum 
quantile of missing values per site to 0.005 and removed any sites 
that exceeded this threshold. IMCs were defined as CpGs with a DNA 
methylation level between 0.25 and 0.75 in at least 5 samples. When 
checking for a HhaI cut site, we allowed for a maximum of 25 CpG sites 
in the extended region around the IMC.

For CpGs with IIH, we used the same dataset to identify CpGs with a 
variance higher than 0.1 across all individuals of the dataset from ref. 58.

We also created genotyping amplicons that cover mutations in ASXL1, 
DNMT3A, TET2, TP53, JAK2, IDH2, PPM1D, SF3B1, IDH1 and SRSF2. We 
used 62 amplicons covering these genes from the Tapestri single-cell 
DNA myeloid panel by Mission Bio (https://missionbio.com/products/
panels/myeloid/) as a base panel, excluding amplicons with the HhaI 
restriction sequence GCGC. We designed further amplicons for exons 
in the aforementioned genes that had a coverage of less than 60% in 
the default myeloid panel. To prevent these amplicons from having 
a recognition site, we performed a virtual digestion of the exonic 
sequences using the HhaI cut sequence. We then uploaded a list con-
taining the fragmented genomic regions to the Mission Bio Designer 
tool, which resulted in 82 additional amplicons. We also included 20 
amplicons targeting chromosome Y and 50 control amplicons with-
out a HhaI cut-sequence. We uploaded the CpG targets and readily 
designed genotyping, chromosome Y, and control amplicons using 
the Mission Bio Designer tool. The final list comprises 665 amplicons 
and corresponding primer sequences. The resulting 448 CpG target-
ing amplicons are divided into 215 DMC, 145 IMC and 88 IIH amplicons 
(Supplementary Table 6).

Sequencing. Libraries were sequenced on an Illumina NovaSeq 6000 
with 2 × 100 bp (scTAM-seq mouse), 2 × 150 bp (scTAM-seq human), 
2 × 50 bp (scRNA-seq) and 2 × 50 bp (protein libraries) reads. For an 
overview of the sequencing statistics, see Supplementary Table 7.

Combined profiling of DNA methylation and RNA in the same 
cell. To jointly profile DNA methylation and RNA in the same cell 
(scTAMARA-seq, experiment X.1), we took advantage of the recently 
published SDR-seq method45 and combined it with scTAM-seq. In  
total, we profiled 120 RNA and 367 gDNA (200 DNA methylation and 
167 genotyping) targets (Supplementary Table 6). DNA methylation 
targets were a subset of the original set, excluding amplicons that 
were not identified as consensus static or dynamic CpGs in the total 
bone marrow original cohort and low-performing amplicons. RNA 
targets were selected from a RNA-seq reference map59 using LASSO 
regression to identify 120 RNAs most predictive of cell state in the 
CD34+ compartment. We followed the SDR-seq protocol45 using the 
glyoxal fixation condition. Once the cells had been fixed, permeabi-
lized and reverse-transcribed, they were loaded onto the Mission Bio 
Tapestri platform and processed as for scTAM-seq. The final RNA and 
DNA sequencing libraries were individually generated as previously  
described45.

Combined profiling of DNA methylation and mitochondrial variants. 
For this experiment (scTAMito-seq, experiment X.2), we performed 
scTAM-seq using the same 367 DNA methylation and genotyping ampli
cons as for scTAMARA-seq. We spiked in a pre-designed mitochon-
drial panel (https://designer.missionbio.com/catalogpanels/Virtual- 
mtDNA) at a ratio of 1:20 as previously described60.
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Bioinformatic analysis (mouse)
Data processing. For processing of raw data, we used a modified pipe-
line that was based on the originally described pipeline for scTAM-seq5 
(https://github.com/veltenlab/scTAM-seq-scripts), which is available 
from GitHub (https://github.com/veltenlab/EPICloneProcessing). In 
brief, cellular barcodes were extracted from the raw sequencing files 
before alignment to the reference genome subset to the CpG panel. 
Reads mapping to each of the amplicons were quantified to generate 
a count matrix, and DNA methylation states were determined using 
a cut-off value of one sequencing read as in the original scTAM-seq 
publication5. We used those cellular barcodes that had more than 10 
sequencing reads in at least 70% of the control (non-HhaI) amplicons. 
Doublets were removed using the DoubletDetection tool (https:// 
zenodo.org/record/2678042).

At the single-cell level, we differentiated methylated from unmethyl-
ated CpGs through the presence of at least one sequencing read for the 
corresponding amplicon as in the original publication of scTAM-seq5. 
Sequencing reads can uniquely originate from amplicons with methy
lated CpGs, whereas the lack of sequencing reads from an amplicon 
originates either from an unmethylated CpG or from a dropout. To 
minimize the effect of dropout, we determined the primer combina-
tions that reliably amplified in our panel using a single experiment 
without the restriction enzyme. For this experiment in mice, LIN−KIT+ 
cells from a young, wild-type mice (12 weeks) were used and we deter-
mined that 453 out of the 573 non-control amplicons (79%) amplified in 
more than 90% of the cells. These amplicons were used for subsequent  
analyses.

For the surface-protein data, the Mission Bio pipeline was used 
to extract sequencing reads for a particular cell-barcode–antibody- 
barcode combination. We restricted analyses of the protein data to 
those cellular barcodes identified in the DNA methylation library.

Processing of LARRY barcodes. LARRY barcodes could be directly 
identified from the scTAM-seq sequencing library because an additional 
primer pair capturing the LARRY barcode was included (see the section 
‘Mouse panel design for scTAM-seq’). Sequencing reads mapping to 
the amplicon with the LARRY barcode were extracted from the raw 
sequencing reads using the fluorophore sequence GCTAGGAGAGACC 
ATATGGGATCCGAT. The LARRY barcode was determined using the base 
pairs following the GFP sequence, given that the sequence matches 
the rules by which the LARRY barcode was constructed (see the sec-
tion ‘Barcode lentivirus library generation and diversity estimation’). 
Barcode extraction was performed using a modified version of the 
scripts provided in the original LARRY publication8 (https://github.
com/AllonKleinLab/LARRY). Barcodes supported by fewer than five 
sequencing reads were discarded, and LARRY barcodes with a Hamming 
distance lower than three were merged for each of the experimental 
batches individually.

Notably, each cell can have more than one unique LARRY barcode 
owing to multiple lentiviral infections. In these cases, groups of LARRY 
barcodes were jointly passed on to the progeny. To call clones in this 
setting, we computed for any pair of LARRY barcodes the extent to 
which these two barcodes were observed in an overlapping set of cells 
(formally a Jaccard index). LARRY barcodes were then clustered accord-
ing to this distance metric. We used a permutation test to determine 
LARRY barcodes that are merged together to a clone. When LARRY 
barcodes were merged, cells were assigned to the merged clone if any 
constituent LARRY barcode was observed.

Data integration and annotation of cell states. We constructed 
Seurat61 objects for each of the scTAM-seq samples individually using 
the binary DNA methylation matrix. To integrate all the samples from  
experiments M.1–M.3, we used Seurat’s IntegrateData62 function. Then 
we used Seurat’s standard workflow without normalization to obtain a 

low-dimensional representation of our data using UMAP. We removed 
cells in low-density parts of the UMAP because we found that these cells 
were of lower quality using the non-digested control amplicons. To 
annotate the cell-type clusters we obtained as result of the Seurat work-
flow, we inspected the expression of surface proteins, the DNA meth-
ylation states of CpGs in bulk data and the DNA methylation states of 
important lineage-specific transcription factors. To compare single-cell 
to bulk DNA methylation we computed the relative methylation state 
by dividing the average methylation state of all CpGs in the given group 
of bulk data (for example, HSC-specific) by the mean methylation state 
of all CpGs. To that end, we performed differential analysis for each 
cell-type cluster individually and selected CpGs with a log fold change 
larger than 1 for each cluster. For those sites, we investigated whether 
they are in the vicinity (100 bp) of any of the 39 transcription factors 
in Supplementary Table 5 and computed enrichment P values with 
the Fisher exact test. A full vignette is available from GitHub (https://
github.com/veltenlab/EPI-clone).

All remaining experiments (M.4–M.8) were analysed without batch 
correction, as the samples were processed as single batches. Annota-
tion of the cell-type clusters was performed in dynamic CpG space 
(see below) using bulk methylation values, demethylation of TFBSs 
and surface-protein expression. In addition to this information, for 
experiments M.7 and M.8, we projected cell-type labels from the initial 
analysis (experiments M.1–M.3) using scmap63. EPI-Clone was then used 
with the standard parameters as described below.

For processing the protein data of scTAM-seq, we used the centred- 
log-ratio (CLR) normalization methods. To generate a low-dimensional 
representation of the protein data only, we opted to use SCTransform64, 
which produced an improved cell-state resolution.

For the scRNA-seq dataset, we used cellranger to generate trans
criptomic and surface-protein count matrices, which were used as input 
to Seurat. Harmony65 was used for batch integration and the cell-type 
annotation was performed using known haematopoietic marker genes 
together with the expression of surface proteins.

EPI-Clone. The EPI-Clone algorithm is divided into three steps:  
(1) identification of static CpGs, (2) identification of cells from expan
ded clones and (3) clustering of cells from expanded clones. A detailed, 
step-by-step vignette is available from GitHub (https://github.com/
veltenlab/EPI-clone; v.2.0 used in this article). A brief description is 
given below.
1)	To identify static CpGs, for each combination of CpG and surface 

protein, EPI-Clone performs a Kolmogorov–Smirnov test to inves-
tigate whether cells with methylated CpG differ in surface-antigen 
expression relative to cells with unmethylated CpG. CpGs with no 
significant antigen association (determined by the lowest P value 
for any of the surface proteins) according to a Bonferroni criterion 
were then selected if their average methylation across all cells was 
less than 90% but higher than 25% in mouse and higher than 5% in 
human. In the main LARRY experiment in Figs. 1 and 2, this resulted 
in the identification of 110 CpGs, which we annotated for enhancer–
heterochromatic regions57 and early–late-replicating domains66.

2)	To identify cells from expanded clones, cells stemming from an 
expanded clone should be in a higher density region of the space 
defined by the static CpGs than cells stemming from non-expanded 
clones. A density estimate was therefore computed as follows. PCA 
was performed on all static CpGs from step (1). In the reduced dimen
sional space obtained by the first n = 100 principal components, 
the average Euclidean distance to the k = 5 nearest neighbours was 
determined. Effects of cell state, batch and sequencing depth on this 
measure of local density were then removed by linear regression. 
We observed that smoothing the resulting quantity locally over 20 
nearest neighbours additionally improved performance. Optimal 
parameters n and k of this step, as well as the density threshold for 
a cell to be classified as stemming from an expanded clone, were 
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identified through a systematic grid search on experiment M.1, using 
LARRY barcodes as a ground truth. Here clones >0.25% in size were 
defined as expanded.

3)	To cluster expanded clones, cells from expanded clones were clus-
tered using the standard Seurat workflow, again in a space spanned 
by n = 100 principal components.
The parameters of steps (2) and (3) were established on the basis 

of the original LARRY experiment (M.1: LARRY main experiment) and 
used for all subsequent analyses of the mouse haematopoietic system 
(M.2–M.5, M.7 and M.8) without further adjustments. Static CpGs were 
defined in experiment M.1 and used for all remaining experiments. In 
particular, the performance on a replicate LARRY ground-truth experi-
ment (M.2) is analysed in Extended Data Fig. 3.

In the native ageing experiment (M.7), we opted for a more conserva-
tive threshold for defining large, expanded clones (1%), as native hae-
matopoiesis is more polyclonal than the transplantation setting. This 
threshold resembled what we found in human native haematopoiesis, 
using CH mutations and mitochondrial mutations as a partial ground 
truth (Fig. 4).

For when no or only a partial ground truth was available (mouse 
endothelia (M.6), see below for more details, and the human analysis), 
we opted instead for a parameter-free approach to identify expanded 
clones. We used a recently published clustering method, CHOIR44, 
which automatically determines clusters that have statistical support in 
the data. Unlike the density-based criterion, CHOIR does not have free 
parameters (for example, number of principal components, density 
threshold, number of nearest neighbours to consider). We confirmed 
that on the mouse LARRY experiment, CHOIR had a similar quantita-
tive performance to the density-based criterion at optimal parameter 
values (Extended Data Fig. 3g).

EPI-Clone of endothelial data. As the first step of this experiment 
(M.6), all CpGs were used for dimensionality reduction and clustering. 
Consequently, we identified a cluster of contaminating non-endothelial 
(CD31–) cells that we removed. We then used the dynamic CpGs de-
fined in experiment M.1 to construct a cell-state map of ECs. The 
CLR-transformed protein levels enabled us to annotate ECs as capil-
lary, Car4 or lymphatic, in concordance with transcriptomic references. 
Finally, the 110 static CpGs defined in experiment M.1 were used to iden-
tify clones in these lung ECs. Binary data were used as input for CHOIR44 
using false-discovery rate adjustment. Only clones with a relative clone 
size greater than 1% are highlighted in the figures. For comparison with 
transcriptomic data, the Mouse LungMAP31 was downloaded from 
CELLxGENE Datasets (Mus musculus + Lung + 10×3′ v.2 + Smart-seq2) 
and subset for adult samples. The lung EC atlas67 was also downloaded 
(https://endotheliomics.shinyapps.io/ec_atlas/).

EPI-Clone of transplantation. To understand whether EPI-Clone  
robustly identifies clones before and after transplantation, we investi-
gated replicate 2 (old mouse) of the M.7 experiment together with the 
transplanted mouse (experiment M.8). Notably, the HSCs that were 
barcoded with LARRY and used for transplantation were obtained from 
replicate 2 (old mouse) of experiment M.7 (donor mouse). We then per-
formed EPI-Clone on the combined Seurat object of the transplanted 
mouse with its donor using the static CpGs identified in experiment 
M.1 without further adjustments of the parameters. Moreover, and 
to estimate the false-positive rate of this approach, we performed the 
same analysis using replicate 1 (old mouse) of experiment M.7. This 
mouse had no relationship with the transplanted mouse and we would 
not expect clonal clusters to have cells from both samples to appear 
from a joint analysis.

Bioinformatic analysis (human)
Data processing, demultiplexing and mutation calling. Data pro-
cessing followed the methods described for mice. For sample pairs 

that had been multiplexed into a single Tapestri lane (B.1 and B.5, B.2 
and B.4, and A.2 and A.5), vireo53 was used for donor deconvolution 
based on germline SNVs. SNVs were called with cellsnp-lite using a 
minimum allele frequency of 0.05 and a count threshold of 5. Donor 
assignments were validated by detecting the presence of the Y chro-
mosome in cases when male and female donors had been multiplexed, 
and/or the presence of previously known donor-specific CH mutations 
(Supplementary Fig. 9).

For samples with previously characterized CH mutations, the muta-
tional status of each cell was determined using a custom script written 
in pysam. Any cell for which more than 5% of reads covering the relevant 
genomic site displayed the CH mutation were classified as mutant. Cells 
with a low number of reads covering the site were excluded, using a 
read threshold that was determined as a function of total site coverage.

Additional CH mutations were identified using SComatic68 based on 
the assumption that T cells and B cells are depleted from CH mutations. 
For that purpose, the BAM files of the TBM cohort were split by cell type. 
Base counts per cell type were calculated using BaseCellCounter with a 
minimum mapping quality of 30 and a maximum depth proportional 
to the number of cells in each group. Beta-binomial parameters were 
estimated across 35,000 genomic sites to model the distribution of 
reference and alternate alleles. Final mutation calling was performed 
using BaseCellCalling, considering all identified cell groups and esti-
mated beta-binomial parameters. Mutations of interest were then 
identified by comparing T cells to myeloid cells. This strategy led to 
the identification of CH mutations in donors A.4 and A.7. Finally we 
repeated the same analysis for the TBM and CD34+ cohorts and com-
paring cells that EPI-Clone had annotated as expanded clones to cells 
annotated as stemming from non-expanded clones. This enabled us 
to identify the CH mutation in donor B.5, and the DNMT3A(C666Y) 
variant in donor A.4.

Data integration. Unlike in mouse data, data integration across all CpGs 
in the human dataset did not effectively remove interindividual differ-
ences (for example, large CH clones still clustered apart). However, a 
larger set of CITE-seq antibodies was included in the human cohort. We 
therefore identified surface-protein associated (‘dynamic’) CpGs across 
all cells in the TBM cohort and performed data integration using three 
approaches: CITE-seq data alone, dynamic CpG data alone or a com-
bination of both modalities concatenated into a single feature matrix. 
All three strategies produced similar results (Extended Data Fig. 7c). 
Notably, the inclusion of both modalities provided more consistency 
across donors than dynamic CpGs alone, and was less susceptible to 
technical variation within the donors than CITE-seq data alone. Data 
integration was performed using scanorama69, as it offered a higher 
biological resolution of cell types or cell states compared with Seurat 
integration. In the TBM cohort, we identified a cluster of overstained 
cells (positive for all antibodies) that were removed before further 
analyses.

EPI-Clone applied to human samples. The same strategy was foll
owed as for mouse; however, several adjustments were made as des
cribed below.

EPI-Clone analyses were performed while excluding mature T cells 
and B cells, unless denoted otherwise.

For identification of static CpGs, we proceeded as described above 
for each donor from cohort A (TBM) individually. We then defined 
consensus static CpGs as those CpGs that were identified as ‘static’ 
in at least five donors. Eventually, the same set of 94 consensus static 
CpGs was used for EPI-Clone analysis in all samples. The use of con-
sensus static CpGs in some donors led to substantial improvements in 
the performance of EPI-Clone with respect to the ground-truth clonal 
labels (for example, CH mutations). Moreover, it eliminated the need 
for a static CpG identification step in future studies, as it established 
a reference set of static CpGs.

https://endotheliomics.shinyapps.io/ec_atlas/


We used CHOIR44 with false-discovery rate adjustment for identi
fying expanded clones, see the section on EPI-Clone (above)

Analysis of scTAMARA-seq data. For this experiment (X.1), DNA 
methylation data were projected to the CD34+ reference (Fig. 4b) using  
scmap63. The RNA-seq reads were processed as previously described45, 
and data were analysed using default Seurat routines. EPI-Clone was 
used on the DNA methylation data with identical settings to all other 
human samples.

Analysis of scTAMito-seq data. For this experiment (X.2), cell types 
were identified by clustering on all surface antigens. EPI-Clone was then 
applied using consensus static CpGs. Heteroplasmies of mitochondrial 
mutations that had previously been identified for that sample using 
mt-scATACseq46 were called in single cells using pysam by dividing the 
number of reads supporting the mutant allele by the total number of 
reads covering the site. Cells with fewer than ten reads on the site were 
excluded as potential dropout.

Data visualization
Plots were generated using the R packages ggplot2 (ref. 70) and 
ComplexHeatmap71. Boxplots are defined as follows: the middle 
line corresponds to the median; the lower and upper hinges corre-
spond to first and third quartiles, respectively; the upper whisker 
extends from the hinge to the largest value no further than 1.5× the 
interquartile range (or the distance between the first and third quar-
tiles) from the hinge and the lower whisker extends from the hinge to 
the smallest value at most 1.5× the interquartile range of the hinge. 
Data beyond the end of the whiskers are called ‘outlying’ points and 
are plotted individually. For computing lineage-specific output as 
shown in Fig. 3, we defined output as the fraction of all HSC/MPP1 or 
myeloid cells per EPI-Clone cluster compared with all HSC/MPP1 or 
myeloid cells per experiment. In the bubble plots of Fig. 3 and Sup-
plementary Fig. 7, the radius of the circles scales with the square of  
frequency.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The following single-cell DNA methylation datasets and scRNA-seq 
dataset are available as Seurat objects from Figshare: M.1–M.3 
(https://doi.org/10.6084/m9.figshare.24204750)72; M.4 (https://
doi.org /10.6084/m9.figshare.25472467.v1)73; M.5 (https://
doi.org/10.6084/m9.figshare.27917427.v1)74; M.6 (https://doi.
org/10.6084/m9.figshare.27960771.v1)75; M.7, replicate 1 (https://
doi.org/10.6084/m9.figshare.25472434.v1)76 and replicate 2 
(https://doi.org/10.6084/m9.figshare.27917454.v1)77; M.8 (https://
doi.org/10.6084/m9.figshare.27917331.v1)78; A.1–A.7 (https://
doi.org/10.6084/m9.figshare.25526899.v2)79; B.1–B.5 (https://
doi.org/10.6084/m9.figshare.28082048.v1)80; X.1 (https://doi.
org/10.6084/m9.figshare.27991574.v1)81; X.2 (https://doi.org/10.6084/
m9.figshare.28082066.v1)82; and scRNA-seq (https://doi.org/10.6084/
m9.figshare.24260743.v1)83. Count matrices are available from the 
Gene Expression Omnibus under accession number GSE282971. Raw 
reads for the mouse experiments are available from the NCBI Sequence 
Read Archive with BioProject number PRJNA1191391. Raw sequenc-
ing data for the human cohort has been deposited into the European 
Genome-phenome Archive (accession number EGAS00001008056). 
To address ethics board mandates and patient privacy concerns, access 
is restricted to research projects in haematology and development 
of bioinformatic methods, and excludes ancestry research, surname 
inference and other research. Requests for access need to be addressed 

to L.V. For comparison of our endothelial data with published data, 
we downloaded the following data from the CELLxGENE database: 
https://cellxgene.cziscience.com/collections/48d354f5-a5ca-4f35-
a3bb-fa3687502252. The lung EC atlas was downloaded from https://
endotheliomics.shinyapps.io/ec_atlas/. Source data are provided with 
this paper.

Code availability
The code used for processing scTAM-seq data, the EPI-Clone algorithm 
and generating the figures of the paper is available from GitHub (https://
github.com/veltenlab/EPI-clone). Release v.2.0 was used for the work 
included in this article.
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Extended Data Fig. 1 | Overview of experimental design and CpG panel.  
a. Experimental design of the mouse experiments M.1-M.8. See also 
Supplementary Table 1. LSK: LIN−SCA1+KIT+, LK: LIN−KIT+. b. Distribution of the 
CpGs covered by all 663 amplicons in our panel. From this set of amplicons,  
453 WSH/DMC/IMR CpGs were selected based on a low dropout in a control 
experiment, see methods. c. Schematic overview of the CpG selection for 
scTAM-seq. Bulk DNA methylation data was collected from Cabezas-Wallscheid 

et al.22. We identified three classes of CpGs, which we included in the final  
panel design shown in Fig. 1b: DMCs, IMCs, and WSH. DMCs are defined by 
comparisons between cell types, IMCs are regions with intermediate 
methylation in HSCs, and WSHs are regions with intermediate methylation  
in HSCs and a high degree of intra-molecule variability. The lines represent 
sequencing reads, where filled circles stand for methylated and unfilled circles 
for unmethylated CpGs, respectively.
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Extended Data Fig. 2 | Comparison of different data modalities for the 
identification of cell state (experiment M.1-M.3). a. UMAP of transcriptomic 
data from the same cell pool as for DNAm for experiment M.1. b. Confusion 
matrices between scRNA-seq celltypes and scTAM-seq celltypes (Fig. 1c vs. panel 
A). To compute the confusion matrix, a random forest classifier was trained to 
predict cell type from surface antigen expression data, using the scRNA-seq 
modality. The confusion matrix for that classifier during 10-fold cross validation 
is shown in the plot on the left. The same classifier was then applied to predict 
cell type in the scTAM-seq experiment, where the same surface antigens were 
measured using the same TotalSeq-B cocktail. Label transfer accuracy is shown. 
c. Integrated UMAP of the LARRY main experiment, replicate, and native 

haematopoiesis (experiments M.1-M.3) as in Fig. 1c, highlighting the LARRY 
barcodes and donor mouse. d. UMAP defined only on the dynamic CpGs. The 
plot shows all 13,885 cells from the experiment M.1 (LARRY main experiment). 
Indicated in colors are the cell types defined in Fig. 1c. e. Surface protein UMAP 
of experiment M.1 (13,885 cells) with the cell type labels obtained from the  
DNA methylation UMAP as shown in Fig. 1c. Protein data was normalized using 
SCTransform64 prior to generating a low-dimensional representation with PCA 
and UMAP. f. Expression of selected surface proteins in the protein UMAP. g. Bar 
chart depicting the percentage of static and dynamic CpGs within early/late 
replicating domains66, respectively.



Extended Data Fig. 3 | Validation of EPI-clone’s capability on a biological 
replicate (experiment M.2). a,b,c. Clonal UMAP based on static CpGs as in 
Fig. 2b, computed for experiment M.2: LARRY replicate experiment. Indicated 
are the cell state (A) and the LARRY barcode (B). C highlights cells that were 
selected as part of expanded clones, based on local density in PCA space.  
d. Receiver-Operating Characteristics Curve characterizing the performance 
of the local density criterion in selecting expanded clones for the biological 
replicate. e. Overlap between clones defined using EPI-clone and ground  
truth labels for the biological replicate. The remark ‘small clones’ indicates all 
LARRY clones with a relative size less than 0.25%. f. Same UMAP as in Fig. 2b 
highlighting the LARRY donor labeled by two unique fluorophore sequences. 

For experiment M.1, two donor mice were sacrificed and HSCs were labeled 
with LARRY constructs containing a GFP label in one case, and LARRY constructs 
containing a Sapphire label in the other case. Subsequently, labeled cells from 
each donor were transplanted into two recipient mice each. Accordingly, the 
data set contains cells from four mice that contain two sets of clones, labeled 
with GFP and Sapphire, respectively, see also methods. g. Comparison between 
the performance of the density-based clustering of EPI-Clone with the 
performance of CHOIR44, a parameter-free clustering method. Precision and 
recall were calculated for the identification of cells from expanded (>0.25%) 
clones. ARI: Adjusted rand index. The results are shown for experiment M.1: 
LARRY main experiment.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | EPI-Clone’s performance in mature myeloid cells 
(experiment M.4). a. Overview of the sorting scheme for experiment M.4: 
Mature myeloid cells. b. UMAP based on dynamic CpGs (defined from 
experiment M.1) showing the differentiation state of mature myeloid cells and 
their progenitors. c. Enrichment of CpGs specifically unmethylated in a cell-
type cluster according to the vicinity to the annotated TFBS, see also main 
Fig. 1e. d. Expression of surface proteins in the different cell type clusters for 
stem-cell-specific markers (KIT, SCA1, CD201) and markers of mature myeloid 
cells (CD9, CD44). e. UMAP as in B, highlighting relative methylation state of 
cells across all CpGs that are methylated in HSCs or MPP3/4 in bulk data. See 
also main Fig. 1d. f. UMAP computed on static CpGs (defined from experiment 
M.1) with the LARRY barcodes indicated. g. Same UMAP as in F, with the cell 
states as defined in B indicated. h. UMAP representation as in F visualizing the 

different cellular compartments including progenitors (LSK, LK) and mature 
cells from lung and BM/PB. i. Overlap between clones defined using EPI-clone 
and ground truth clonal labels for the mature myeloid experiment. j. Receiver-
Operating Characteristics Curve characterizing the performance of the local 
density criterion in selecting expanded clones for the mature myeloid 
experiment. k. Adjusted rand indices quantifying the overlap between  
EPI-clone clusters and LARRY barcodes stratified by the different cell types 
identified in B. l. Cell type distribution and clone sizes in different clones 
identified by EPI-Clone and stratified by cellular compartment m. Number of 
unique LARRY barcodes per cell type cluster. The elevated number of LARRY 
barcodes per cell in the macrophage cluster suggests the presence of 
contaminant DNA from doublets or phagocytosis in this cluster.
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Extended Data Fig. 5 | Cell type mapping and clonality of lung endothelial 
cells by scTAM-seq and EPI-clone (experiment M.6). a. Lung cells were 
isolated from an old mouse, then purified and sorted to filter out CD45+ cells 
and enrich for CD31 + , before profiling with scTAM-seq. b. UMAP embedding 
and low-resolution clustering of endothelial cells using the dynamic CpGs 
identified in experiment M.1. c. Differential expression analysis of surface 
markers in the different clusters from panel B. d. CLR-normalized expression 
values of surface markers across the different clusters. e. Normalized 
expression of the corresponding genes (scRNA-seq) for endothelial cells from 

the Mouse LungMAP, only for adult samples31. f. Normalized expression of the 
corresponding genes (scRNA-seq) for endothelial cells from the lung EC atlas67. 
g. UMAP computed on static CpGs (identified in experiment M.1). Colors 
highlight clones identified by EPI-Clone with a relative clone size greater than 
1%. h. Barplot of endothelial cell types contributions across clones; again, only 
EPI-clones with a relative clone size greater than 1% are visualized; numbers  
in the top of the bars represent the absolute clone size, i.e. number of cells.  
i. Mutual information between methylation status of all CpGs and the EPI-
clones for endothelial and haematopoietic cells.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Transplantation experiment profiling EPI-clones 
before and after transplantation (experiment M.8). a. Overview of the 
experimental design for experiment M.8: transplantation experiment. HSCs 
from an old donor mouse (100 weeks) were either LARRY-barcoded and 
transplanted into a recipient mouse or directly used for processing with 
scTAM-seq/EPI-clone. In the negative control, we performed EPI-clone analysis 
on a set of unrelated HSCs from an old mouse (100 weeks) and the transplanted 
mouse. b. Joint EPI-clone clustering of the donor and the transplanted mouse. 
Highlighted in red are HSCs from the donor mouse. c,d. Same EPI-clone  
UMAP as in B highlighting the sample origin (C) and the LARRY barcode (D).  
e. Quantification of the fraction of EPI-clone clones that have at least one HSC 
from the donor mouse. This would indicate that a progenitor cell of this HSC 
gave rise to this clone. If a HSC successfully engrafts, it should keep its clonal 

DNA methylation pattern (i.e., EPI-clone identity) and pass it to all of its progeny. 
Since all blood progeny in the transplantation setting comes from the 
transplanted HSCs, the donor HSC giving rise to the blood cells should also  
be part of the same EPI-clone cluster. We observe that this is the case for the 
transplantation experiment, but not for clustering together the transplanted 
mouse with an unrelated, aged mouse (negative control). f. Correlation between 
the clone sizes observed in the Donor and in the transplanted mouse for the 
shared EPI-clones. The values indicate the Pearson correlation coefficient  
and corresponding p-values from a Correlation test. g. Spearman correlation 
between the clonal output of each clone towards the three main blood lineages 
compared between the donor mouse and the transplanted mouse. The asterisk 
indicated p-values below 0.1 from a correlation test.



Extended Data Fig. 7 | Application of EPI-Clone to human bone marrow 
samples. a. Scheme illustrating selection of target CpGs from bulk whole 
genome bisulfite sequencing data, see also Methods. DMCs are differentially 
methylated between cell types, IMCs display intermediate methylation levels 
in HSCs and IIH are variably methylated across individuals in HSCs. b. Bar chart 
illustrating the composition of the panel. c. Cell state clustering for the TBM 
cohort using antibodies, DNA methylation or both modalities. Colors correspond 
to clustering on the DNA methylation (DNAm)+AB data, see main Fig. 4b for 
color scheme. UMAPs were computed using data integration by scanorama 

across donors from the TBM cohort, using the indicated modality. d. Average 
protein expression levels in the different clusters, for the TBM cohort. e. UMAPs 
of the CD34+ cohort highlighting the surface expression of various antigens.  
f. Selection of static and dynamic CpGs for donor A.6, see also main Fig. 1i.  
g. Scatter plot depicting for all CpGs the average methylation across myeloid 
cells per donor, as well as the classification of the CpG as static or dynamic.  
h. CpGs that were classified as static in at least five donors were selected as 
consensus static CpG and used for the EPI-clone analysis.
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Extended Data Fig. 8 | Characterization of human EPI-Clones. a. Static CpG 
UMAPs and EPI-clone clustering result for donor B.5. Left panel highlights a  
CH mutation identified in this donor, right panel highlights EPI-clone clusters.  
b. Scatter plot displaying the percentage of cells from each EPI-Clone displaying 
CH mutations, for the CD34+ cohort. Dots in colors correspond to EPI-clones 
dominated by a CH mutation, see Fig. 4c for a color scheme. All donors from the 
CD34+ cohort with a detected CH mutation are shown. c. Scatter plot displaying 
the percentage of cells from each EPI-Clone displaying CH mutations, for NK and 
immature B cells. EPI-Clone was run on all cells except T and mature B cells, but 
the overlap was computed on NK and immature B cells only. See main Fig. 4c for 
color scheme. d. Static CpG UMAPs as in main Fig. 4c,d, highlighting NK and 

immature B cells classified according to CH status. e. Static CpG UMAP 
computed for all cells (including mature B and T cells) for patient A.4, 
highlighting T cells classified according to CH status. Mature and immature  
B cells are also highlighted to demonstrate that mature B and T cells mostly 
cluster in lymphoid clusters. Barchart depicts precision and recall for the task  
of classifying T cells as CH or non-CH based on EPI-Clone labels. f. Scatter plot 
depicting the fraction of the different cell types observed per clone, relative to 
the fraction of the same cell type observed in non-expanded clones from the 
same patient. Grey dots correspond to EPI-clones with no known driver mutation. 
Dots in colors correspond to EPI-clones dominated by a CH mutation, see Fig. 4c 
for a color scheme. g. Same as F, for cell states within the CD34+ compartment.



Extended Data Fig. 9 | scTAMARA-seq enables multiplexed readout out 
RNA, DNA methylation and genotyping amplicons from the same single 
cell. a. Scheme of the method, adapted from45. b. Composition of the panel 
used, see Supplementary Table 6. RNA-seq amplicons were selected using a 
scRNA-seq reference59 to identify the set of 120 genes with highest information 
on cell states in the CD34+ compartment by LASSO regression. c. Scatter plot 
depicting the number of RNA, DNA methylation (DNAm) and genotyping 
amplicons observed per cell. d. Boxplot comparing the number of features 

(RNA species) observed per cell in scTAMARA-seq to the number of features 
observed in whole transcriptome analysis (WTA) on CD34+ cells for the same 
120 genes59. See methods, section Data visualization for a definition of boxplot 
elements. e. Heatmap depicting correlation in DNA methylation profiles 
between sample X.1 and the other CD34+ BM donors. f. UMAPs computed on 
the RNA information from scTAMARA-seq highlighting cell state annotation 
based on RNA (left) and based on DNAm (right). g. Heatmap depicting scaled 
expression of marker genes for the different RNA-based cell states.
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Extended Data Fig. 10 | Comparison of EPI-Clone and mitochondrial lineage 
tracing by scTAMito-seq. a. Static CpG UMAP computed on all cells from the 
patient, highlighting cell types identified using surface antigen expression 
levels. b. Average coverage in reads per cell for the mitochondrial variants 
previously described for donor X.246. c. Scatter plot comparing average 
heteroplasmies for these mutations, as determined by mt-scATAC-seq 
(reference46) or scTAMito-seq (this study). d. Scatter plot depicting, for all 

mitochondrial variants, the average heteroplasmy and the statistical 
association with EPI-Clone. Specifically, a linear model was trained on EPI-
Clone clusters to predict heteroplasmy at the single cell level, and the p value 
from an F-test is shown. e. Heatmap relating the single-cell heteroplasmies of 
mitochondrial variants to EPI-Clones, for T cells only. The columns correspond 
to different T cells and the rows comprise mitochondrial mutations measured 
by scTAMito-seq.
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