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Spike-in enhanced phosphoproteomics
uncovers synergistic signaling responses to
MEK inhibition in colon cancer cells

Mirjam van Bentum1,2, Bertram Klinger 2,3, Anja Sieber 2,3,
Sheyda Naghiloo 1, Henrik Zauber1, Nadine Lehmann 3, Mohamed Haji1,
Sylvia Niquet1,4, Philipp Mertins 1,4, Nils Blüthgen 2,3 &
Matthias Selbach 1,3

Targeted kinase inhibitors are a cornerstone of cancer therapy, but their
success is often hindered by the complexity of cellular signaling networks that
can lead to resistance. Overcoming this challenge necessitates a deep under-
standing of cellular signaling responses. While standard global phosphopro-
teomics offers extensive insights, lengthy processing times, the complexity of
data interpretation, and frequent omission of crucial phosphorylation sites
limit its utility. Here, we combine data-independent acquisition (DIA) with
spike-in of synthetic heavy stable isotope-labeled phosphopeptides to facil-
itate the targeted detection of particularly informative phosphorylation sites.
Our spike-in enhanced detection in DIA (SPIED-DIA) approach integrates the
improved sensitivity of spike-in-based targeted detection with the discovery
potential of global phosphoproteomics into a simple workflow. We employed
this method to investigate synergistic signaling responses in colorectal cancer
cell lines followingMEK inhibition. Our findings highlight that combiningMEK
inhibitionwith growth factor stimulation synergistically activates JNK signaling
in HCT116 cells. This synergy emphasizes the therapeutic potential of con-
currently targeting MEK and JNK pathways, as evidenced by the significantly
impaired growth ofHCT116 cells when treatedwith both inhibitors. Our results
demonstrate that SPIED-DIA effectively identifies synergistic signaling
responses in colorectal cancer cells, presenting a valuable tool for uncovering
new therapeutic targets and strategies in cancer treatment.

Cell signaling plays a key role in human health and disease, and sus-
tained proliferative signaling is recognized as a hallmark of cancer1.
Correspondingly, kinase inhibitors have established their crucial role
in the arsenal of cancer therapy, demonstrating significant efficacy in
targeting these proliferative pathways2,3. However, cellular responses
to targeted therapies areoften complicatedby resistancemechanisms.

Primary resistance to targeted treatment can be caused by feedback
mechanisms that lead to rewiring or reactivation of signaling path-
ways. For example, resistance to PI3K/mTOR inhibition in breast can-
cer is frequently due to feedback mechanisms that cause activation of
JAK/STAT signaling4. In neuroblastoma, resistance to Mitogen-
Activated Protein Kinase Kinase (MEK) inhibitors can emerge from
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negative feedback mechanisms within the MAPK signaling and via the
IGF receptor, thereby reactivatingMAPK signaling upon treatment5. In
colorectal cancer (CRC), therapy targeting the MAPK pathway is
undermined by negative feedback, which results in increased sensi-
tivity of the EGF receptor and consequently leads to the reactivation of
both MAPK and AKT signaling pathways6,7. These studies collectively
emphasize the importance of characterizing cell signaling to predict
the outcome of targeted treatment.

Genomic and transcriptomic markers often cannot predict cell
line specific resistance to targeted therapy, highlighting the need for
alternative methods to characterize cell signaling5,8,9. Mass
spectrometry-based phosphoproteomics is arguably the best available
technology to comprehensively characterize cellular signaling
states10–12. However, some kinases and phosphorylation sites particu-
larly informative about critical cellular signaling states are low abun-
dant, requiring considerable phosphoproteomics depth to enable
their detection. In addition, correct biological interpretation of phos-
phoproteomic data hinges on the precise and accurate quantification
of identified phosphopeptides.

Classical global phosphoproteomics using data-dependent
acquisition (DDA) can routinely identify thousands of phosphoryla-
tion sites in a single sample, with more than 200,000 human phos-
phorylation sites being mapped in total13–15. To attain adequate
coverage, DDA global phosphoproteomics relies on extensive frac-
tionation, resulting in long data acquisition times. Despite these
efforts, specific phosphorylation sites of interest can still remain
undetected. Data-independent acquisition (DIA) has emerged as an
attractive alternative to classical DDA due to greater proteome cov-
erage of single shot analyses, significantly increasing throughput16,17. In
combination with ion mobility-based peptide fractionation in the gas
phase (diaPASEF), this also results in higher sensitivity18. DIA has also
been applied to phosphoproteomics19–22. However, the number of
unique phosphorylation sites identified by single shot DIA phospho-
proteomics is typically lower than in classical global DDA phospho-
proteomics, aggravating the problem ofmissing specific phosphosites
of interest23. Additionally, due to the highly complex spectra of DIA
runs, false discovery control remains an ongoing point of discussion.

An attractive alternative to global phosphoproteomics is the
targeted detection of a limited set of key phosphorylation sites
reflecting critical kinases and substrates pivotal to cell signaling.
Indeed, targeted (phospho-)proteomics approaches such as selected
reaction monitoring (SRM) and parallel reaction monitoring (PRM)
enable fast, sensitive, and reproducible detection of target peptides
and have been successfully applied to study signaling24–27. More
recently, a number of advanced targeted acquisition methods have
been described that employ more sophisticated acquisition strate-
gies to increase the efficiency of mass spectrometers in detecting
target peptides28. For example, spike-in triggered acquisition meth-
ods enabled targeted detection of several hundred tyrosine phos-
phorylated peptides commonly dysregulated in cancer29. While these
methods significantly enhance the sensitivity and consistency of
target phosphopeptide detection, they demand extensive method
development for each target peptide and often involve partlymanual
data analysis, which can be time-consuming. This complexity limits
their practicality for high-throughput experiments. Additionally,
while targeted approaches offer precise detection of specific
phosphopeptides, they inherently limit the broader discovery
potential that is a hallmark of global DDA and DIA phosphopro-
teomics. Recently, DIA was combined with spike-in triggered
acquisition, enabling integrated targeted and DIA-based discovery
phosphoproteomics30. However, this workflow also requires exten-
sive method optimization and is only available on specific mass
spectrometers. Adding an excess of a heavy stable isotope-labeled
reference has been shown to increase sensitivity in DIA31–33. The use
of heavy stable-isotope labeled synthetic spike-in peptides is also

well-established in targeted proteomics and has been shown to
increase confidence in target identification and the accuracy of
quantification34–36.

Here, we combine these two concepts to develop spike-in
enhanced detection in DIA (SPIED-DIA) as a simple and generic
method to improve detection of key phosphopeptides in DIA phos-
phoproteomics. To this end, we synthesize a custom set of heavy
stable isotope-labeled phosphopeptides covering a wide range of
signaling pathways. We show that spiking-in this heavy stable isotope
labeled reference set improves detection and quantification of key
target phosphorylation sites up to three fold. At the same time, the
method takes full advantage of the discoverypotential of conventional
DIA. Applying SPIED-DIA to CRC cells reveals that MEK inhibition sti-
mulates growth factor-induced JNK signaling in HCT116 cells. Con-
sistently, we observe that combinatorial treatment of this cell line with
MEK and JNK inhibitors synergistically impairs growth. Hence,
phosphorylation-based signaling responses identified by SPIED-DIA
can identify effective drug combinations that overcome primary
resistance.

Results
Spike-in enhanced detection improves sensitivity of DIA
phosphoproteomics
Heavy stable isotope-labeled synthetic peptides are widely used for
targeted (phospho-)proteomics. However, currently available meth-
ods either require extensive optimization of acquisitionmethods, SRM
or PRM28, or complex DDA methods, spike-in triggered acquisition
methods such as TOMAHAQ or Surequant29,37. We hypothesized that
combining a heavy stable isotope-labeled spike-in with standard DIA
could leverage the simplicity of DIA along with the enhanced sensi-
tivity provided by the heavy spike-in (Fig. 1A). Specifically, spiking-in a
set of heavy synthetic phosphopeptides into a complex proteome
sample would both generate (i) global untargeted phosphoproteomic
data and (ii) improve coverage of the targeted phosphopeptides. The
increased sensitivity for targeted phosphopeptides is based on the
idea that the heavy spike-in peptides serve as beacons facilitating the
detection of corresponding endogenous, light, phosphopeptides:
While low abundant endogenous phosphopeptides might escape
detection, their more abundant synthetic heavy peptide counterpart
spiked-in in excess are more readily detectable. This enables identifi-
cation of the correct retention time and ion mobility of the corre-
sponding light endogenous counterpart, facilitating its detection
(Fig. 1B). Additionally, the same heavy peptides spiked into different
samples serves as an internal reference improving across-sample
quantification (by computing the ratio of the within sample light to
heavy ratios). Hence, spike-in peptides serve a dual purpose:
improvement of detection rate and quantitative performance. Impor-
tantly, when applying the final workflow, a single DIA raw data file is
used to perform two distinct types of analyses: one that generates
global untargeted label-free quantified data and another, the SPIED-
DIA analysis, which allows for more sensitive detection and stable
isotope-based quantification of targeted peptides.

We tested this idea bymeasuring the global phosphoproteome of
mixed heavy (H) and light (L) HCT116 cell lysates generated using
stable isotope labeling with amino acids in cell culture (SILAC)38 in
serial dilution (Fig. 1C). Following phosphopeptide enrichment, sam-
ples were measured on a timsTOF Pro2 mass spectrometer in tripli-
cates before being processed with DIA-NN16,17,31 to identify 12,621
unique phosphorylation sites. These data were first analyzed using the
standard workflow (normal SILAC-DIA). Detected median peptide
ratioswere close to expected values, indicating accurate quantification
(Fig. 1D). As expected, we observed a rapid reduction in the number of
quantifiable precursor ratios throughout the dilution series, with
essentially no target precursors detected at 1:63 dilution or higher.
Next we took advantage of the reference peptides as beacons to
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facilitate detection of target peptides, whereby only confident identi-
fication of phosphopeptides in the reference channel was required,
relaxing precursor confidence threshold for the target channel (see
Material and Methods for details). We note that in this experiment, we
are using all the SILAC lights as references for all the corresponding
SILAC heavies. For each precursor that passed the combined

confidence threshold, we extracted intensities in the target channel.
Similar to requantify in MaxQuant39, RefQuant for dimethyl labeling32

and the requantify option in DIA spike-in SILAC33, this spike-in
enhanced detection approach conceptually uncouples detection and
quantification. In this way, it provides intensity information for target
channel precursors that would otherwise escape detection.
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We found that spike-in enhanced detection greatly increased the
number of quantifiable phosphopeptides in the target channel even at
high dilutions (Fig. 1D). As expected, the data obtained in this manner
showed a greater spread (lower precision) and signs of systematic ratio
compression at higher dilutions (lower accuracy). To investigate this
further,webinnedprecursorsby their intensities andplottedobserved
SILAC ratios as a function of the dilution series (Fig. 1E). While pre-
cursors with high intensities accurately reflected the expected ratios
up to a dilution of 1:255, low intensity precursors started to saturate at
dilutions of 1:15. Importantly, despite this ratio compression, the
observed ratios consistently showed the correct trend. We also com-
pared SILAC ratios for precursors quantified in both the standard and
the SPIED-DIA workflow and observed high consistency (Supplemen-
tary Fig. 1). In conclusion, precursors identified by both the standard
and the SPIED-DIA workflow generated similar ratios. However, SPIED-
DIA markedly improved coverage, revealing many additional ratios
with varying degrees of ratio compression.

Since peptides with more than one serine, threonine and tyrosine
residue can be phosphorylated at different positions, we also tested
the quality of phosphorylation site localisation. To this end, we com-
pared H/L ratios for identical heavy and light pairs (that is, peptides
phosphorylated on the same amino acid), and positional isomers (that
is, peptides with identical amino acid sequence but phosphorylated at
different sites). We observed higher precision for pairs than for iso-
mers, especially when filtering for post-translational modification
(PTM) site confidence, indicating that DIA-NN accurately localises
phosphorylation sites (Supplementary Fig. 1). We further assessed
phospho-site localisation by validating the localisation in spectra from
raw files (Supplementary Fig. 2).

Synthetic phosphopeptide panel to study cell signaling
Encouraged by these results, we sought to apply spike-in enhanced
detection to studycell signaling. Specifically,we reasoned that spiking-in
a selected set of synthetic heavy stable isotope-labeled phosphopep-
tides would facilitate detection of their endogenous, light, counterparts.
To this end, we selected a panel of phosphosites informative for the
activity of awide range of biologically relevant signaling pathways either
manually or based on the PhosphositePlus database (Fig. 1F). From the
PhosphoSitePlus database, we selected phosphosites that either had
known annotated kinases, influenced enzymatic activity or were present
on proteins part of selected KEGG signaling pathways. Selected sites
were mapped to an in silico tryptic digest of the human proteome and
485 peptides meeting criteria for synthesis were ordered as SpikeMix™
PeptidePools. Analysing this heavy syntheticpeptidepool via single shot
DDA analysis (see Materials and Methods for details) we identified 240
peptides that we used to create a heavy phosphopeptide library (Sup-
plementary Fig. 1, Supplementary Data 1).

Next, to benchmark target peptide detection, we added the heavy
synthetic phosphopeptide pool to HEK293 cell lysate, performed
phosphopeptide enrichment and measured samples using DIA-PASEF.
To investigate the gain in coverage of targeted sites, we compared
SPIED-DIA to conventional label-free quantification without the spike-
in (Fig. 1G, Supplementary Fig. 1). For the label-free analysis we tested

both an in silico predicted spectral library and an empirically deter-
mined library obtained from DDA analysis of deeply high-pH HPLC
fractionated phosphopeptide samples (see Materials and Methods for
details). Comparing bothworkflows, we observed amarked increase in
identified target peptides from 12 to 24 identified targets to 40 iden-
tified target phosphosites, whilemaintaining a false positive rate of 5%,
i.e., 2 targets (Fig. 1G). This increasewasnot only the result of increased
sensitivity from the spike-in but also from the ability to use the smaller
empirical phosphopeptide library for the search. Using this library for
the sample without the spike-in did not yield any identifications (data
not shown). Hence, the increased coverage depends on both the
library and the increased sensitivity of spike-in enhanced detection.

Next, we looked at the quantitative performance of SPIED-DIA for
the panel of selected phosphosites. To this end, we spiked the same
amount of the heavy synthetic peptides into decreasing amounts of
light human phosphopeptides. As negative control we also added the
same amount of E. coli to each sample (Fig. 1H). We observed good
accuracy and precision throughout the dilution series, as well as a
slight loss of target phosphopeptides at higher dilutions (Fig. 1I),
consistent with the global data (Fig. 1D, E). In the negative control, no
peptides passed our filtering criteria, highlighting the specificity of our
workflow (Fig. 1I). Consequently, our approach reliably distinguishes
between low-abundance target peptides that are present and those
that are truly absent.

Missing values pose a significant challenge in quantifying changes
in peptide abundance across conditions, as they can either represent
truly absent peptides or peptides that were missed for technical rea-
sons. In both scenarios, the result is an NA value that cannot be used
for reliable comparisons across conditions. The inclusion of a heavy
spike-in uncouples detection from quantification, providing a key
advantage: when the heavy spike-in is consistently detected, it is
unlikely that the corresponding light target peptide is missed for
purely technical reasons. Instead, the absence of the light peptide can
be more reliably attributed to its genuine absence or low abundance.
Making more confident absence calls is a key advantage of targeted
proteomic methods like SPIED-DIA. We leveraged this feature to
improve quantification of target peptides across conditions by rescu-
ing data in cases where the light peptide was not detected but the
heavy peptide was. To implement this advantage, we implemented
specific filtering criteria: For a peptide to be used for quantification, it
needs to be consistently detected as a heavy spike-in across all sam-
ples. Additionally, the light target peptide is required to pass filtering
criteria in at least two out of three replicates in at least one experi-
mental condition. This ensures that comparisons across samples
reflect changes between signal and signal (light target peptide detec-
ted in both conditions) or signal and background noise (light target
peptide detected in only one condition), but not background noise
and background noise (light target peptide not detected in either
condition).

To assess the quantitative performance of our pipeline in more
detail, we present L/H ratios for all target peptides that were identified
in the 400ng sample across the dilution series (Supplementary Fig. 3).
For most peptides, we consistently detect the expected abundance

Fig. 1 | Design and benchmarking of Spike-In Enhanced Detection in Data-
Independent Acquisition (SPIED-DIA). Spike-in enhanced detection in data inde-
pendent acquisition (SPIED-DIA) (on previous page) (A) Workflow depicting the
integration of Label-free (LF) DIA with SPIED-DIA. BQuantification and identification
in LF-DIA and SPIED-DIA. C Schematic of the dilution series used to benchmark the
performance of SPIED-DIA. D Number of phospho-sequences identified in at least 2
out of 3 technical replicates and corresponding H/L channel intensities. E SILAC ratio
variability by light intensity and dilution derived from all quantified precursors in
three technical replicates. Lines show median log2 SILAC ratios across dilution fac-
tors, binnedby reference channel (L) intensitywith equally sizedbins. Expected ratios
are shown as a dotted line. Histogram depicts precursor count distribution by log10

light intensity. Boxplots show standard deviation of log2 SILAC ratios by dilution and
bin, aggregated at the modified sequence level. F Signaling pathway origins of
phosphosites selected for spike-in peptide library. G Improved target peptide iden-
tification with SPIED-DIA. Targets identified in 2 out of 3 biological replicates, with a
CV lower than 10%. Upset plot depicts intersections > 1. wMBR: withmatch-between-
runs, HpH-lib: library created by high pH fractionation phosphoproteomics.
H Dilution series of heavy peptides in light samples in 100ng E. coli background, 3
replicates. I Relative mean intensity (n= 3) of precursors normalised to 400ngL
condition, filtered as in panel G Red lines depict expected relative intensity. All
Boxplots show themedian, interquartile range, whiskers atmax 1.5×IQR, and exclude
outliers. Source data are provided as a Source Data file.
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changes across the dilution series, including the negative control. As
expected, quantification was better for more intense precursors. We
also compared our automated DIA-NN-based workflow to semiauto-
matic analysis using Skyline (seeMethods). Globally, the Skyline-based
analysis identified fewer peptides with overall poorer quantitative
performance (Supplementary Fig. 4), even though chromatographic
traces for selected peptides looked convincing (Supplementary Fig. 5).
We conclude that SPIED-DIA increases identification of target pep-
tides, maintaining good accuracy and precision.

A screen for synergistic signaling responses in 11 CRC cell lines
Intrinsic resistance of cancer cells to targeted therapies is a significant
therapeutic challenge. One known mechanism involves negative
feedback from signaling pathways to upstream receptors. Inhibiting a
pathway can disrupt this feedback, causing (hyper-)activation of

upstream receptors that subsequently activate parallel signaling
pathways. In colorectal cancer, we and others observed that inhibiting
Mitogen-Activated Protein Kinase Kinase (MEK) rapidly activates the
epidermal growth factor receptor (EGFR), which synergistically
enhances AKT signaling6,7.

To more systematically investigate CRC cell responses to MEK
inhibition, we initially conducted a screen across a panel of 11 cell lines.
We stimulated cells with seven different growth factors or serum, both
with and without the MEK inhibitor (MEKi) Selumetinib (AZD6244),
and monitored AKT activation using specific antibodies (Fig. 2A). In
this experiment, synergistic signalingwasdefined as an increase inAKT
activation caused by growth factors whenMEKwas inhibited, meaning
that the MEKi enhances growth factor-induced AKT activation
(Fig. 2B). In addition to confirming the known synergy with EGF, we
found that MEK inhibition also led to synergistic AKT activation via
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FGF2 and VEGF-C in a subset of cells (Fig. 2C, Supplementary Fig. 6).
Notably, the two mutant KRAS cell lines, HCT116 and DLD-1, exhibited
marked synergistic responses while the KRAS wild-type cell line Caco2
did not display a notable increase in AKT activation in response to any
of the growth factors (Fig. 2C, D). We therefore selected these three
cell lines for more detailed analysis via SPIED-DIA.

Targeted phosphoproteomics of synergistic signaling responses
in HCT116, DLD-1 and Caco2 CRC cells
To uncover additional pathways that could contribute to intrinsic
resistance through synergistic activation in CRC, we focused on
HCT116, DLD-1, and Caco2 cells for in-depth phosphoproteomic ana-
lysis via SPIED-DIA. Cell lines were treated with either MEKi or DMSO
control for 3.5 h, followed by 30min exposure to a growth factor
cocktail (EGF, HGF, FGF2, and VEGF-C) or BSA control (Fig. 3A). Cells
were subsequently harvested and analyzed using our established
workflow. In the global phosphoproteome data we identified 6000 to
8,000 confidently localised phosphorylation sites per sample (Fig. 3B).
SPIED led to a two to threefold increase in the number of identified
target phosphopeptides, surpassing the results from a parallel label-
free analysis (Fig. 3B).

Principal Component Analysis (PCA) of the global phosphopro-
teomic data across all cell lines showed that cell line identity was the
primary factor driving differences (Fig. 3C), confirmingprior research8.
We therefore conducted PCA on each individual cell line (Fig. 3D) to
evaluate the impact of treatment. Interestingly, responses reflected
the mutational profile of the cell lines. For instance, HCT116, char-
acterized by oncogenic mutations including KRASG13D, PIK3CAH1047R,
CTNNB1S45del40,41, exhibited a noticeable shift in its phosphoproteome
along the first principal component (PC1) following MEKi treatment,

with the second principal component (PC2) showing the response to
the growth factor mix. Similarly, DLD-1, which has a mutational profile
that includes KRASG13D, PIK3CAE545K and PIK3CAD549Nmutations and APC
truncation42, displayed treatment responses that clustered closely
together. Caco2, lacking mutations in RAS/RAF/PIK3CA, showed no
phosphoproteomic shift with MEKi treatment alone. However, adding
the growth factor mix caused a significant change that was largely
mitigated when combined with MEKi treatment.

To further understand signaling responses, we initially focused on
targeted phosphopeptides. Hierarchical clustering of differentially
abundant phosphosites confirmed the expected decrease in ERK1
Tyr204 and ERK2 Tyr187 phosphorylation with MEKi treatment,
alongside an increase with growth factor treatment across all cell lines
(Fig. 4A–C, Supplementary Fig. 7). Phosphorylation of EGFR Tyr1172
consistently increased across all cell lines in response to growth factor
treatment, confirming established signaling patterns. Additionally, we
observed a potentially synergistic increase in JNK1 phosphorylation at
Tyr185 in both HCT116 and DLD-1 cells, a site essential for JNK
activation43. We note that the same phosphorylation site also maps to
JNK3 (Tyr223), however this isoform is mostly expressed in the brain,
heart and testes44.

To more formally explore the synergistic regulation of targeted
phosphorylation sites, we performed a factor analysis (Supplementary
Fig. 8 and Material and Methods). Briefly, we defined contrasts to
evaluate the individual and combined effects of growth factors and
MEKi, including a special interaction contrast to detect synergies. A
linear model with an empirical Bayesian estimate of variances and
moderated t-test statisticswas used to precisely assess the effects. This
approach allowed us to accurately assess the influence of MEKi and
growth factor stimulation on the levels of specific phosphopeptides,
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both separately and together. SPIED once again identified a larger
number of regulated phosphosites, demonstrating its effectiveness
(Fig. 4D). This analysis revealed synergistic regulation of a number of
phosphorylation sites (Supplementary Figs. 8 and 9). JNK was indeed
synergistically activated in HCT116 and to a lesser extent in DLD-1 cells
(Fig. 4E). In summary, our data indicates that MEK inhibition potenti-
ates growth factor-induced JNK activation in HCT116 and DLD-1 cells.
Also, the data underscores that focusing on a small number of func-
tionally relevant phosphorylation sites yields clear, interpretable data.

Global phosphoproteomics confirm synergistic activation of
JNK signaling in HCT116 cells
A key advantage of SPIED-DIA is its ability to yield global phospho-
proteomic data alongside the targeted analysis. We used these global
data to complement the findings from our targeted study. Among the
22,326 phosphopeptide precursors passing our filtering criteria across
all cell lines, 3255 were identified as significantly regulated (Supple-
mentary Fig. 8). Hierarchical clustering of these sites produced various
clusters. Notably, cluster 6 in HCT116 cells and cluster 10 in DLD-1 cells
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exhibited patterns suggestive of synergistic signaling (Supplementary
Fig. 10, 11).

Kinase activity can be inferred from phosphoproteomic data
using computational approaches45–48. To identify kinases involved in
synergistic signaling in the global data, we performed enrichment
analysis for cluster 6 and 10 in HCT116 and DLD-1 cells, respectively,
using annotated kinase substrates from PhosphoSitePlus14 and ikip-
DB49. This analysis indicated synergistic activation of AKT1 in both
HCT116 and DLD-1, consistent with the data from our screen (Fig. 3B).
Although we included several AKT1 phosphorylation sites among our
target peptides, the synthesis of heavy peptides failed, which explains
their absence in the targeted data (Supplementary Data 1, 2). Impor-
tantly, we also observed a significant enrichment of JNK1/2 targets in
cluster 6 of HCT116 cells, supporting the results from the targeted
analysis (Fig. 5A). This cluster contains the well known JNK target Jun
Ser63 (Supplementary Fig. 10). Hence, enrichment analysis of syner-
gistic clusters identified kinase signatures consistent with the targeted
data.Of note, no cluster indicating synergismwas found inCaco2 cells,
consistent with the lack of synergistic signaling responses in this cell
line (Supplementary Fig. 12).

As an orthogonal way to analyze the global data, we also applied
the factor analysis described above for each phosphorylation site
identified in the global phosphoproteome. We then performed PTM
signature enrichment analysis (PTM-SEA)48 on phosphorylation site
lists ranked by their fold-change signed p-values from the moderated
t-test. Consistentwith the targeted analysis results, this revealed kinase
activities aligned with established biological mechanisms. For exam-
ple, the growth factor induced ERK1 and ERK2 signatures (“GFmix w
MEKi” and “GFmix w/o MEKi”) while MEKi reduced ERK1/2 signaling
(“MEKi w GFmix” and “MEKi w/o GFmix”). We confirmed synergistic
AKT activation in both HCT116 and DLD-1 cells, while JNK was only
significantly activated in HCT116 (Fig. 5B, Supplementary Fig. 13). In
accordancewith the SPIED-DIA data, no synergistic activation of JNKor
AKT signaling was found in Caco2, based on the global data (Fig. 5B,
Supplementary Figs. 12 and 13).

A recent study employed synthetic peptide libraries and in vitro
kinase assays to systematically profile the substrate specificities of the
human serine/threonine kinome, generating a comprehensive atlas
that enables the prediction of kinase-substrate relationships50. Lever-
aging this independent dataset, we analyzed the enrichment of kinase
motifs in the factor analysis results of our global phosphoproteomic
data. This analysis revealed significant enrichment of JNK motifs in
HCT116 cells, confirming a signatureof synergistic JNK activation in the
global dataset (Fig. 5C, Supplementary Fig. 14).

The experiments described thus far were conducted using a
cocktail of growth factors. To investigate the specific contributions of
individual growth factors to synergistic JNK activation in HCT116 cells,
we performed additional stimulation experiments using single growth
factors. For this purpose, cells were pretreated with a MEK inhibitor
and then stimulated individually with EGF, HGF, FGF2, or VEGF-C, or
solvent control BSA (Supplementary Fig. 15). Both targeted and global
SPIED-DIA analysis (Supplementary Figs. 15 and 16) revealed that EGF,
HGF, and FGF2— but not VEGF-C—are capable of mediating synergistic
JNK activation. This finding suggests that the observed signaling
response is broad and does not depend on a single growth factor.

In summary, the targeted and global data highlighted the same
pathways. We therefore proceeded with experimental validations,
measuring cell growth in HCT116 and DLD-1 cells under specific tar-
geted treatment combinations.

JNK inhibition sensitizes CRC cells to MEKi
Our findings revealed the involvement of both JNK and PI3K/AKT/
MTOR pathways in the synergistic signaling responses to MEK inhibi-
tion. This indicates that combining MEKi treatment with drugs tar-
geting JNK or PI3K/AKT/MTOR could be a promising strategy for

combinatorial therapy. To assess this experimentally, we treated
HCT116 and DLD-1 cells with MEKi (Selumetinib) and either a JNK
inhibitor (JNK-in-VIII) or a PI3K inhibitor (GDC-0941) in different con-
centrations and monitored cell growth over 48 h via live cell ima-
ging (Fig. 6A).

We observed a synergistic effect of MEKi and PI3Ki on DLD-1 and
HCT116 growth (Fig. 6B, C), confirming previous reports of KRAS
mutated CRC models, including HCT116 and DLD-1 cells6,51–56. The JNK
inhibitor (JNKi) had minimal effect on DLD-1 cell division, both alone
and when combined with MEKi (Fig. 6D, E). In contrast, a 5 µM dose of
JNKi significantly slowed the division of HCT116 cells, nearly doubling
the cell division time.MEKi alone exhibited amoremodest impact, even
at the highest concentration tested. Notably, while low doses of JNKi or
MEKi alone did not significantly affect HCT116 cell division, their com-
binationmarkedly inhibited cell growth (Fig. 6D). Specifically, 1 µM JNKi
or 0.2 µMMEKi alone extended HCT116 cell cycle times from 25 to 27 h,
but combining both drugs increased this to 37 h. Hence,MEK inhibition
sensitizes HCT116 cells to JNKi. Collectively, these results show that our
targeted phosphoproteomic approach has uncovered synergistic sig-
naling responses that are functionally relevant.

Discussion
In this study, we explored synergistic signaling in colorectal cancer cell
lines by integrating DIA with spike-in synthetic heavy stable isotope-
labeled phosphopeptides, enhancing the detection of specific phos-
phopeptides. Our method, SPIED-DIA, marries the sensitivity of tar-
geted detection with DIA’s broad discovery capabilities, offering a
streamlined approach that does not require specialized data acquisi-
tion schemes and is compatible with standard mass spectrometers,
simplifying the detection of keyphosphorylation siteswhile leveraging
the full benefits of label-free DIA phosphoproteomics. Despite these
advantages, SPIED-DIA also has limitations. SPIED-DIA provides only a
modest sensitivity boost for target peptides because it lacks the longer
selective ion collection periods found in other targeted
approaches29,30,37. Moreover, like other spike-in strategies, obtaining
target-specific heavy reference peptides is challenging and expensive.
To economize, we opted for pooled synthesis of heavy reference
peptides. However, this approach led to unsuccessful synthesis of
some desired peptides, rendering them unusable in our targeted
strategy. A viable alternative is utilizing off-the-shelf reference peptide
collections like the PQ500 standard for plasma proteomics (Biog-
nosys), the kinase activation loop peptides collection (JPT) or the
recently introduced multipathway phosphopeptide standard
(Thermo)57. Another advantage of these standardized sets is that they
also enhance data consistency across different research labs. The
community would benefit if other target sets like the SigPath and
T-loop libraries were to also become commercially available26,27. Ide-
ally, such target sets would include peptides from MAPK activation
loops that arephosphorylated atboth threonine and tyrosine residues,
as phosphorylation at both sites is essential for activation. Moreover,
including non-phosphorylated versions of target phosphopeptides in
the spike-in strategy could provide additional insights into changes in
protein abundance and phosphorylation site occupancy.

In CRC, the classical MAPK signaling pathway is chronically acti-
vated, often bymutations in RAS or RAF58. This suggests that inhibiting
the central kinase, MEK, could be a valid therapeutic strategy. How-
ever, signaling in CRCs rewires due to strong feedbacks leading to
reactivation of the pathways as well as cross-activation of parallel
pathways7,59,60, often mediated by the EGF receptor. Based on a screen
with 11 CRC cell lines and different growth factors, we observed that
MEKi-induced synergistic AKT activation is not only mediated by EGF
but also by HGF, FGF2 and VEGF-C. We then applied SPIED-DIA to
investigate synergistic signaling responses in three selected cell lines in
detail. Our results highlight the key advantages of the SPIED-DIA
approach. Firstly, the targeted analysis of functionally relevant
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phosphorylation sites provides easily interpretable data that directly
highlight key changes in cell signaling. Secondly, the global data
obtained in parallel can be used to extract kinase activity profiles.
Interestingly, both approaches revealed synergistic activation of JNK
signaling in HCT116 cells, suggesting that combinatorial treatment
with MEKi and JNKi could be an attractive therapeutic option. The
consistency between the datasets not only validates our analytical
strategy but also solidifies our confidence in these candidate pathways
as critical mediators of the cellular response in our study model.
Indeed, we confirmed that JNK inhibition sensitizes HCT116 cells to
MEKi treatment, leading to marked reduction in cell proliferation. In

addition to EGF, JNK was also activated by HGF and FGF2, supporting
the notion that synergistic signaling can also be mediated by other
receptors than EGFR.

Oncogenic signaling in CRC involves multiple pathways, notably
EGFR/MAPK, WNT, Pi3K/Akt, JAK/STAT, Notch, SHH, and TGF-beta3,61.
Given that JNK isnot typically linked tooncogenic signaling inCRC, our
observation of its synergistic activation uponMEK inhibition is initially
surprising. However, our data does align with known MEK-JNK inter-
actions.MEKactivation typically upregulates DUSP4, which inactivates
JNK62–65. Additionally, cancer cells with loss of function mutations in
JNK activating kinases MAP3K1 or MAP2K4 are often sensitive to MEK
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inhibitors, highlighting the functional relevance of the ERK-JNK
crosstalk66. Very recently, the KRASG12C inhibitor sotorasib and the
MAP2K4 inhibitor HRX-0233 were shown to synergistically inhibit
growthof a numberKRASmutantCRCand lung cancer cell lines and to

induce durable tumor shrinkage in mouse xenografts of human lung
cancer cells67. Although this recent study focused on different kinases,
its findings bolster the concept of synergistically targeting MEK/ERK
and JNK signaling as a viable approach in cancer therapy.
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Fig. 6 | Experimental workflow and results for combination treatment with
MEKi and JNKi or PI3Ki. A Experimental workflowdepicting inhibitor treatment of
cell lines prior to measurement of cell growth and doubling time with live-cell
imaging. B Cell doubling time fold changes relative to within replicate controls,
48h post-treatment with inhibitors. Insets depict doubling times at selected

concentrations. C Growth curves of cells within selected treatment conditions,
normalized to treatment-start. D, E Similar to panels B, C, these graphs display the
effects of combiningMEKi with JNKi on cell doubling time and growth curves. Data
are presented as mean + standard deviation, shaded ribbons also indicate standard
deviation. n ≥ 3. Source data are provided as a Source Data file.
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Selecting optimal treatments to target cancer remains an impor-
tant challenge. In this study, we demonstrate that targeted phospho-
proteomics using SPIED-DIA can reveal signaling responses, which can
help predict effective combinatorial treatments. While the work pre-
sented here is limited to cancer cell lines, the technology also has the
potential to be applied to patient samples. For example, microscaled
phosphoproteomic techniques have successfully identified 7000
phosphosites in retrospective formalin-fixed paraffin-embedded (FFPE)
tissue samples68. Similarly, a recently developed low input phospho-
proteomics workflow enabled detection of 6000 to 17,000 phospho-
sites from as little as 1 to 20 µg protein starting material69. Finally,
combining ultrasensitive proteomics with laser tissue microdissection
facilitates spatial proteomics in human tissues70,71. In the future, inte-
grating these technologies with SPIED-DIA promises to reveal signaling
pathways and predict treatments directly in patient samples.

Methods
Cell culture and treatment experiment
HCT116, Caco2 and DLD-1 were obtained from ATCC (Manassas, Vir-
ginia, USA). Cell lines were confirmed to be mycoplasma free. All cell-
lines were cultured in DMEM, high glucose, GlutaMAX Supplement,
pyruvate (Gibco, Invitrogen), supplemented with 10% fetal bovine
serum (FBS, Gibco), in a humidified incubator at 37 °C with 5% CO2.
Experiments are performed at 80% confluence. Cells are harvested in
ice cold PBS, by washing two times in ice cold PBS, and scraping from
plate. The cells were rinsed again with 1× PBS and centrifuged at 250 g
for 5min in a centrifuge maintained at 1 °C. The final PBS wash was
removed and the resulting pellet was frozen in ethanol on dry ice and
stored at −80 °C.

Treatment with Growth Factor and MEK Inhibitor
For the interaction experiment, we used theMEK inhibitor Selumetinib
(AZD6244, #S1008, Selleckchem) at a final concentration of 10 µM,
dissolved in DMSO. The growth factors used were HGF (Peprotech
#100-39H, final concentration 0.025 µg/ml), FGF2 (Peprotech #100-
18B,final concentration0.005 µg/ml), EGF (Peprotech#AF-100-15,final
concentration 0.025 µg/ml), and VEGF-C (Peprotech #100-20CD, final
concentration 0.1 µg/ml), all of which were dissolved in 0.1% BSA.
Depending on the specific experiment, these growth factors were
either added individually or combined into a mixture.

Prior to treatment, the cells underwent a starvation period of
approximately 18 h using 0.1% FBS to synchronize their growth. Fol-
lowing this, the cells were treated with either MEKi or a control solu-
tion of DMSO for 3.5 h. At 3.5 h either a control solution (0.1% BSA) or
the growth factor (mixture) was added to the cells for another 30min.
After a total incubation time of 4 h, the cells were harvested for further
analysis.

Selection and synthesis spike-in peptides
Phosphosites were selected for relevance to cellular signaling. The
Kinase-Substrate, Phosphorylation-site and Regulatory-site datasets
were downloaded from PhosphoSitePlus (February 2018). Phosphor-
ylation sites that are present in all three datasets, annotated to regulate
protein activity and annotated to selected KEGG signaling pathways.
Phosphosites annotated to manually selected proteins (CREB1, ABL1,
IGF1R, IRS1, RPS6KA1, PDGFRA, PIK3R1, and RPS6) or with more than
100 references were kept in regardless of activity and pathway anno-
tation. This results in a list of ~1000 phosphorylation sites. These
phosphorylation sites were mapped to an in-silico trypsin digested
proteome, and the resulting phosphopeptides were filtered based on
their MS properties. The peptide is not allowed to be found in the
proteome >10 times and it can not contain >10 phospho-accepting
residues. Phosphopeptides were filtered for synthesis feasibility, and
singly phosphorylated peptides with a length between 7 and 21 amino
acids and N-terminal K/R were selected for synthesis. The list with

shorter peptides contains 524 phosphorylation sites, mapping to 485
unique phosphopeptides, on 277 proteins. Peptides were purchased
from JPT, synthesized using FMOC solid-phase technology with crude
purity and synthetic isotope–labeled c-terminal lysine (K) or arginine
(R) and pooled. These SpikeMix™ Peptide Pools are more cost-
effective than synthesizing individual peptides; however, it is impor-
tant to note that all peptides on the list are anticipated to be synthe-
sized successfully with adequate yields. For each experiment, we
always injected this heavy peptide mixture to create an experiment
specific library. In total, 274 unique heavy phosphopeptides (108 pTyr,
43 pThr, 123 pSer peptides) were detected in at least one experiment.
The list of the initially selected peptides and detected peptides (in
library) can be found in Supplementary Data 1. Lyophilized synthetic
peptide pools were kept at -20.

Phosphoproteomics sample preparation
Cell pelletswere lysedat 4 °Cwithurea lysis buffer (8Murea, 50mMTris
(pH 8),150mM NaCl) supplemented with protease inhibitors (2μg/ml
aprotinin, 10μg/ml leupeptin) and phosphatase inhibitors (10mM NaF,
phosphatase inhibitor cocktail 1 and 2, Sigma Aldrich). The cell lysate
was treated with 5mMdithiothreitol for 1 h to reduce proteins and then
alkylated with 10mM iodoacetamide for 45min in the dark. Sequencing
grade LysC (Wako) was added at a weight to weight ratio of 1:50. After
2 h, samples were diluted 1:4 with 50mMTris–HCl pH 8 and sequencing
grade trypsin (Promega) was added at 1:50 ratio. Digestion was com-
pleted overnight. subsequently samples were acidified using FA and
desalted with Sep-Pak C18 cc Cartridges (Waters). Lyophilized samples
are diluted to 0.7 µg/µL in 80% ACN/0.1% TFA. 200 fm heavy labeled
synthetic peptides are added to 100 µg sample and subjected to auto-
mated immobilized metal affinity chromatography (IMAC) phospho-
peptide enrichment by the Bravo Automated Liquid Handling Platform
(Agilent) with AssayMAP Fe(III)-NTA cartridges72.

Liquid chromatography mass spectrometry
Mass spectrometry raw data were acquired on a Bruker timsTOF Pro2
connected to a Thermo Fischer EASY-nLC 1200 system. Around 300ng
(1=3 of IMAC output) was injected. Samples were separated online on a
25 cm column packed in-house with C18-AQ 1.9 μm beads (Dr. Maisch
Reprosil-Pur 120). AgradientofmobilephaseA (0.1% formic acid and3%
acetonitrile in water) and mobile phase B (0.1% formic acid, 90% acet-
onitrile in water) was used to separate the peptides at a flow rate of
250 nl/min. Mobile phase B was ramped from 2% to 30% in the first
29min, followedby an increase to60%B in 3min and aplateauof 90%B
for 5min. Temperature of the column was kept constant at 45 °C. The
LC system was connected to Bruker timsTOF Pro2 hybrid TIMSQTOF
mass spectrometer via a CaptiveSpray nano-electrospray source. The
raw files were acquired in dia-PASEF mode, using the standard ‘long
gradient’ method as supplied by the vendor. All spectra within a mass
range of 400 to 1201Da and an IM range from 1.6 to 0.6 V s/cm2 were
acquired using equal ion accumulation and ramp times in the dual TIMS
analyzer of 100ms each. The collision energy was lowered as a function
of increasing ion mobility from 59 eV at 1/K0 = 1.6 V s/cm2 to 20 eV at 1/
K0 =0.6 V s/cm2. The estimated cycle time is 1.80 s. The calibration
status of themachine ismonitored constantly and calibration of the ion
mobility dimension is performed linearly using at least three ions from
Agilent ESI LC/MS tuning mix (m/z, 1/K0: 622.0289, 0.9848V s/cm2;
922.0097, 1.1895 V s/cm2; 1221.9906, 1.3820V s/cm2).

Benchmark sample generation and High-pH Reverse-Phase
Fractionation for Library Generation
For the High pH library generation HCT116 was treated with combi-
nations of phosphatase inhibitors, to increase the number detectable
phospho-site relative to normal growth conditions. For inhibition of
phosphatases, HCT116 (ATCC, #7) was treated with 1mM pervanadate
and 50ng/ml calyculin A. To this end, cells were starved in 0.1% FBS for
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3 h. afterwards cells were treatedwith no serum,with 10% FBS, 10% FBS
+ calyculin A, or 10% FBS + calyculin A + Pervanadate. Samples were
processed as described before, and desalted peptides were combined
before drying down.

For library generation, the peptides are subjected to offline high
pH reverse phase fractionation by HPLC on an Agilent 1290 Infinity II
HPLC instrument. To this end, the driedpeptideswere reconstituted in
high pH buffer A (4.5mM ammonium formate, 2% ACN, pH 10), and
loaded on a XBridge BEH C18 4.6 × 250mm column (130 Å, 3.5μm
bead size; Waters), and separated using a 96-min gradient with a flow
rate of 1ml/min. The gradient was performed by ramping high pH
buffer B (4.5mM ammonium formate, 90% ACN, pH 10) from 0% to
60%72. The 96 fractions were collected and concatenated by pooling
equal interval fractions. The final 48 fractions were dried down and
resuspended for IMAC enrichment as described above. A total of
100 µg of each pooled fraction were used for IMAC enrichment. Per
IMAC enriched fraction 100 ng phospho-enriched peptides were
measured on the timsTOF Pro2.

Same LC conditions as described previously were used. Data were
acquired using default DDA-PASEF mode with a cycle time 1.1 s and 10
PASEF MS/MS scans per topN acquisition cycle. All spectra were
acquired within an m/z range from 100 to 1700 and an IM range from
1.6 to 0.6 V s/cm2.

Raw data was analyzed with MaxQuant (v2.4.0.0) and searched
against the human reference proteome database (downloaded from
UniProt in 06/2023) and default protein contaminants included in
MaxQuant. Fixed modifications were set to carbamidomethylation of
C. Variable modifications included oxidation (M) and N-terminal
acetylation and phosphorylation (STY). Amaximumof 5modifications
per peptide and 2 missed cleavages were allowed. MaxQuant results
are filtered to exclude reverse database hits, potential contaminants
and phospho-sites with a localisation probability lower than 50%.
MaxQuant results were transformed and were necessary combined to
a DIAN-NN compatible library, including ion mobility information.

Synthetic peptides library generation
The synthetic phosphopeptides were measured to generate a library.
Thepeptidesweredissolved in Buffer A (3%ACN,0.1% FA). To generate
a library, 50 fm and 100 fm peptides were measured in DDA-PASEF
mode in triplicates, with the same settings as for HpH-library genera-
tion acquisition. The resulting raw files were analysed in MaxQuant
against a library specific.fasta file. MaxQuant settings and processing
of MaxQuant output as above. A table with peptides in the library,
along with main annotated phosphosite and other annotated phos-
phosites can be found in supplementary data 1.

Full phospho-proteome dilution benchmark
For dilution series with the SILAC labeled phosphoproteome HCT116
was cultured in Heavy or Light SILACmedium. SILACmedium consists
out of arginine- and lysine- free DMEM, supplemented with 10% dia-
lyzed fetal bovine serum (dFBS, Gibco) and either heavy (13C615N4
L-arginine or Arg10 an 13C615N2 L-lysine or Lys8) and light amino acids
(Cambridge Isotope Laboratories) at 0.4mmol/L and 0.8mmol/L. Cell
harvest and lysis as described above. Protein concentration in cell
lysate was determined using BCA and the heavy labeled cell lysate was
sequentially diluted into the light cell lysate. Subsequent sample pre-
paration and phosphopeptide enrichment were performed as usual.
Formass spectrometry 100ng phospho-enriched peptides per sample
were injected per dilution in triplicates and analysed in DIA-PASEF
mode, as described above.

Cell line panel screen for MEKi-dependent receptor-mediated
feedbacks
Bio-Plex data generation. Human colorectal cell-lines used in this
experiment Colo205, Colo678, DLD-1, GEO, HCT116, HT29, LIM1215,

RKO, SW403, SW480 and Caco2 were provided by AG SersMolekulare
Tumorpathologie (Charité-Universitätsmedizin). All cell-lines were
cultured in low glucose DMEM (D5546-6X500ML, Sigma-Aldrich)
supplemented with 10% FBS, 10mM Ultraglutamine and Penicilin-
Streptomycin and were incubated at 37 °C and 5% CO2. Before per-
turbation commenced cells were starved overnight in serum free
medium. At 4 h before lysis the cells were treated with 1 µM AZD6244
(Selleckchem, S1008) or solvent control DMSO and at 20min before
lysis cells were stimulated with ligands, full serum (10% FBS) or solvent
control PBS/BSA (n = 4 replicates). We used the following ligands (all
Peprotech): EGF (25 ng/ml), HGF (50ng/ml), IGF1 (100 ng/ml), FGF2
(5 ng/ml), PDGF (10 ng/ml), VEGF-B (100ng/ml) and VEGF-C (100 ng/
ml). After treatment and incubation, lysates were collected and ana-
lyzedwith the Bio‐Plex Protein Array system (Bio‐Rad, Hercules, CA) as
described earlier using magnetic beads specific for AKTS473, ERK1/
2T202,Y204/T185,Y187 and MEK1S217,S221. The beads and detection antibodies
were diluted 1:3. For data acquisition, the Bio‐Plex Manager software
and the R package lxb was used.

Bio-Plex data processing. First, obvious outliers among replicates
exhibiting an absolute z-score >=3 for all three phosphosite measure-
ments were removed. For each cell-line, data were processed sepa-
rately for each of the 3 measured phosphoproteins. The value of the
control (PBS/BSA +DMSO) was estimated as the mean value of the
replicates and log2 fold changes with respect to the control were then
computed for all conditions. The resulting fold changes x where then
used to calculate the hyperactivation effect of GF and AZD on pAKT:
AKTinteraction_FC = µ(xGF+AZD)-µ(xGF+DMSO) - µ(xBSA+AZD)-µ(xBSA+DMSO).

To estimate the significance of this hyperactivation we conducted
a two-way anova analysis with interaction term and ascribed syner-
gistic hyperactivation if meeting the following three criteria: (i) sig-
nificance (p < =0.05), (ii) synergy (AKTinteraction_FC > 0) and (iii) receptor
dependency (AKTinteraction_FC(GF) > AKTinteraction_FC(PBS/BSA) in the
same cell line).

SPIED-DIA analysis
Rawfile processing. For the label-free analysis of the rawfiles, the raw
files were processed using DIA-NN (v1.8.2 beta 11), with searches con-
ducted against the library derived from the target peptides only
(generated as described above) and reannotation enabled. Settings
included methionine excision and in silico digestion at K/R, with
cysteine carbamidomethylation as a fixed modification. Variable
modifications included methionine oxidation, N-terminal acetylation,
and phosphorylation on STY, with phosphorylation scored indepen-
dently. The analysis allowed for one missed cleavage and a maximum
of three variable modifications. The “report-lib-info” option was acti-
vated to facilitate raw data verification in subsequent stages. SILAC
labeling with a mass delta of 0 at KR was applied as a fixed modifica-
tion, SILAC channels L (K[0], R[0]), H (K[8.0142], R[10.0083]), and a
decoy (K[16.0284], R[20.0165]) were registered.

Process DIA-NN output. Data are filtered to only include Heavy chan-
nel entries (spike-in), Channel.Q.Value < 0.05, PTM.Q.Value <0.05,
PTM.Site.Confidence > 0.5 and a Channel.H > 1000 (spike-in intensity)
and identified in >9 samples (see supplementary table 2 for an overview
of consistently identified heavy peptides). Furthermore, precursors
need to have Channel.L (light, endogenous intensity) > 900 in at least 1
condition to ensure no noise-to-noise comparisons and the light pre-
cursor needs to be identified with a Channel.Q.Value <0.5 in at least 3/
12 samples. Subsequently, for the precursors passing the filters, a
“rescalingfactor” is calculated using the median of Channel H inten-
sities, and light intensities are rescaled to log10-transformed ratios of
Channel L to Channel H, adjusted by this factor like such: log10((-
Channel.L/Channel.H)*rescalingfactor. This transformation is applied to
mitigate intensity disparities and inspired by the RefQuant approach32.
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The rescaled intensities are normalized using the normal-
iseCyclicLoess function from the limma package. The differential
abundance analysis is performed as described in the label-free data
analysis pipeline. Precursors are grouped by unique phosphopeptide
sequence and filtered for precursors with the lowest F-test p value.
Precursors with an F test p value < 0.1 are selected for visualization in a
heatmap.

Visualization rawdata. For the visualizationof the rawMS/MS spectra,
which facilitates validation of phosphorylation site localisation and the
identification of stable isotope-labeled fragments, we employed the
followingprocedure: the ScanIDwas retrieved from theDIA-NNoutput
table. To determine the corresponding exact scan number from the
Bruker raw file, we treated the approximate scan number as the
absolute number of MS/MS scans within the run. The exact scan
number was then directly derived from the raw data file itself. Subse-
quently, the MS/MS spectra were downloaded using the Bruker Data
Analysis tool. Relevant peaks within the spectra were manually anno-
tated in R using the spectral library as used for the DIA-NN analysis
within a 10 ppm mass accuracy range and plotted.

Label-free DIA analysis
Rawfile processing. For the label-free analysis of the rawfiles, the raw
files were processed using DIA-NN (v1.8.2 beta 11), with searches con-
ducted against the high pH library (generated as described above) and
reannotation enabled. Settings included methionine excision and in
silico digestion at K/R, with cysteine carbamidomethylation as a fixed
modification. Variable modifications included methionine oxidation,
N-terminal acetylation, and phosphorylation on STY, with phosphor-
ylation scored independently. The analysis allowed for one missed
cleavage and a maximum of three variable modifications. The “report-
lib-info” option was activated to facilitate raw data verification in
subsequent stages.

Filter and normalise DIA-NN output. DIA-NN output was processed in
R (v4.3.0) filtered with Q.Value <0.05, only phosphorylated precursors,
PTM.Site.Confidence > 0.5 and PTM.Q.Value <0.05 (Supplementary
Fig. 1). Precursor intensities (Ms1.Area) were log10-transformed and
collectively normalised to correct for loading bias between samples
using loess (function: normalizeCyclicLoess) from the limma package
(v3.56.1)73. No imputation was performed at any stage in the analysis.
PCA was performed on precursors identified in every sample within a
group (all cell lines together or individual cell lines).

Differential abundance analysis. Differential abundance analysis of
phosphopeptides within cell lines, across conditions, was conducted
using the limma package, employing a factorial analysis approachwith
MEKi andGFmix as factors in the linearmodel. Precursorswerefiltered
to include only those with a maximum of five missing values. Within
the factorial design, contrasts were strategically defined to investigate
synergistic effects: the differential impact of the growth factor mix
with and without MEKi (“GFmix w MEKi” and “GFmix w/o MEKi”), and
conversely, the effect of MEKi with and without the growth factor mix
(“MEKi w GFmix” and “MEKi w/o GFmix”). Potential synergistic inter-
actions were explored through an “Interaction” contrast. A linear
model was fitted to the data and Bayesian statistics (ebayes function
limma) were then applied to estimate variance among the precursors,
employing moderated t-statistics (two-sided) and moderated
F-statistics (two-sided). Results were extracted and aggregated for
further analysis. Especially, precursors are grouped per unique phos-
phopeptide sequence and the precursor with lowest p-value from the
moderated F-test is selected for downstream analysis.

Clustering significantly interesting phosphosites and investigation
interesting clusters. Precursors with F p-values < 0.1 (as indicated

below figure), indicating significant regulation, were selected and
displayed in a heatmap. Hierarchical clustering was used to organize
the heatmap, with the number of clusters determinedmanually to best
represent the data. For each cluster, means of z-score normalized
precursors were calculated. Clusters suggesting synergistic interac-
tions between GFmix and MEKi were specifically identified for further
analysis. Kinase signatures from PTMsigDB and iKIP-DB were used to
perform kinase overrepresentation analysis via Fisher’s exact test,
identifying enriched kinase activities linked to the treatment effects.

PTM-SEA analysis. PTM signature enrichment analysis (PTM-SEA,
https://github.com/broadinstitute/ssGSEA2.0) was employed to infer
kinase activity from regulated phospho-sites. Precursors with a p-value
lower than 0.1 as derived from the limma moderated F-statistics
(regulated phosphopeptides) were selected. As input we used signed
(according to log2 fold change) -log10-transformed p-values per
comparison, derived from moderated t-test. PTM signatures were
sourced from PTMsigDB48 (v2.0.0) and iKIP-db49. As unique site iden-
tifiers, the 14 amino acid phospho-site flanking sequence window was
used. Multiply phosphorylated peptides were split per phosphoryla-
tion site. PTM-SEA was run with sample.norm.type set to “none” and
weight to “1”.

S/T kinase motif enrichment analysis. For S/T kinase motif enrich-
ment analysis, we utilized the S/T kinase library tool (https://kinase-
library.phosphosite.org/), as detailed in its foundational paper50. The
input comprised the precursor amino acid sequences, in accordance
with the tool’s specifications. Data input included fold changes and
p-values for each comparison, obtained from themoderated t-test. We
applied a fold change threshold of greater than 0.1 and a p-value
threshold of lower than 0.05 to select for significantly abundant
phospho-sites. All predicted kinases were represented in volcano
plots, highlighting those significantly associated with the observed
phosphopeptide regulation.

Skyline analysis
For alternative validation of SPIED-DIA the dilution experiment has
been analysed in addition with Skyline (24.1.0.199). Following adjust-
ments in the settings have been applied. Peptide Settings: Structural
Modifications: Phospho (STY), Ammonia Loss (KNQR), Water Loss
(D,E,S,T), Acetyl (n-term),Oxidation (M);Isotope Modifications: 13 C(6)
15 N(4) (R), 13 C(6)15 N(2) (K); Internal Standard Type: heavy: Precursor
Charges: 1,2,3,4, IonTypes: y,b,a Retention time filtering: Only scans
within 10min of MS/MS IDs. The heavy library was imported using the
‘insert transition list’ option. Peptides were inserted with their corre-
sponding known modifications using the ‘insert Peptides’ option. The
report feature was used to export Transition Results tables including
precursor intensity information. In addition chromatograms were
exported and corresponding peaks as identified by Skyline have been
plotted for selectedpeptides usingR and the ggplot2 package. Light to
heavy ratios were calculated from fragment areas.

Growth curves inhibitor combination treatment HCT116 and
DLD-1
Combination Treatment. The effects of combination treatment were
assessed by monitoring cell proliferation and death through live-cell
imaging. In validation experiments, HCT116 and DLD-1 cell lines
were treated with combinations of a MEK inhibitor (AZD6244, Selu-
mitinib) and either a JNK inhibitor (JNK-IN-8, S4901, Selleckchem) or a
PI3K inhibitor (Pictilisib, GDC-0941, S1065, Selleckchem). Cells were
seeded at densities of 4000 cells per well for HCT116 and 2500 cells
per well for DLD-1 in 96-well plates and cultured in the described
growth medium. Twenty-four hours post-seeding, cells were treated
with inhibitor combinations at concentrations of 0 (duplicated for
double-negative controls), 0.2, 1, and 5 µM, using a quadratic mixing
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format. Tomitigate edge effects, outer rows were left empty and filled
with PBS. Cell growth wasmonitored for an additional three days post-
treatment. Experiments were performed in biological triplicates. For
treatments combining MEK and JNK inhibitors, the protocol included
an additional condition where the medium was supplemented with
growth factors (HGF, EGF, and FGF) at specified concentrations.

Incucyte Live Cell Imaging. Automated phase-contrast and green-
fluorescent long-term imaging was conducted using an Incucyte
instrument (dual-color model 4459, Incucyte Essen Bioscience) in a
standard humidified incubator at 37 °C and 5% CO2. Imaging occurred
every four hours, capturing four frames per well using a Nikon 10x
objective.

Image Processing. Images were processed using Incucyte ZOOM
software (2018A) with the manufacturer’s default masking settings.
Confluence values (percentage of area covered by the confluence
mask) were exported for further analysis. Image frame data were
individually exported and processed in R.

Growth was assessed in multiple ways: raw growth curves were
examined for outliers and excluded from further analysis. To deter-
mine changes in doubling time, the doubling time in the 48h post-
treatment was compared to the baseline (0 µM concentration) within
each replicate. The average doubling time for selected concentrations
of interestwas summarized across all replicates. The growth curves for
selected concentrations were normalized to the confluence at time
zero (treatment) within each well or image frame.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Mass spectrometry raw files as well as MaxQuant and DIA-NN output
files, spectral libraries and associated files have been deposited to the
ProteomeXchange Consortium via the PRIDE74 partner repository. The
accession ID is PXD050961. The processed data such as normalized
intensities and results of the differential expression analysis as derived
from the proteomics experiments are available as Supplementary Data
files. The rawdata of the Bio-Plex and live-cell imaging experiments are
provided as Supplementary Data files. Source data is provided for
Figs. 1D, 1E, 1F, 1I, 2C, 2D, 3C, 3D (Caco2, DLD‑1, and HCT116), 4A, 4B,
4C, 4E, 5C (plus Supplementary Fig. 14), 6B (left/right), 6C, 6D (left/
right), 6E, and the following Supplementary Figs. 1A, 1B, 1C, 3, 4, 9, and
15C. Source data are provided with this paper.

Code availability
The R scripts necessary to perform SPIED-DIA analysis, as well as the
scripts to perform the analyses relevant to the main figures in the
manuscript can be found at https://github.com/Mirjamva/SPIED-DIA.
The repository was linked to Zenodo (https://doi.org/10.5281/zenodo.
15045498)75.
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