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Figure S1. Co-translational mRNA decay reveals genome-wide -1 ribosome 

frameshift, Related to Figure 1 (A) Heatmap for metagene analysis displaying the 5′P 

reads coverage for each amino acid for YPD (left) and CSM (right). 5′P reads coverage 

is calculated by reads per million and the heatmap is row normalized. (B) Metagene 

analysis displaying the 5′P reads coverage for proline codons (CCG) in SC (in green, 

left), glucose deprivation for 5 mins (in blue, middle) and glucose deprivation for 15 mins 

(in dark blue, right) using HT-5PSeq. 5′P reads coverage for proline codons in YPD (in 

purple) used as control in all conditions. Dotted lines at −17 corresponding to the in-

frame 5′ end of protected ribosome located at the A site. (C) Relative 5′P coverage with 

average of 20 codons for each frame in SC (left), glucose deprivation for 5 mins 

(middle), glucose deprivation for 15 mins (right) from the middle of genes. The fractions 

calculated for each frame for metagene analysis (excluding the first and last 50 nt for 

each gene), are shown in the histogram. (D) Number of genes where ribosome 

collisions are detected by FFT analysis (see methods for details). A disome provides a 

signal at 30nt, a trisome at 60 nt and a tetrasome at 90nt. We show values for YPD, 

CSM and minimal media without histidine (SD-His). SD-His is shown as a positive 

control for inducing disomes8. Higher level of ribosome collisions are observed in YPD 

than in CSM growth.  (E) Sucrose gradient analysis of polysomes and ribosomes after 

RNase I digestion in YPD (left) and CSM (right). Ribosomes were separated by 

ultracentrifugation in a linear 10-50% sucrose density gradient. (F) Metagene analysis 

displaying the 5′P reads coverage for out-of-frame stop codons (i.e. TGA) in YPD (left), 

CSM (center) and normalized peak by dividing the relative peaks in CSM with in YPD 

(right) (See in Methods section). (G) as C, but for ribosome profiling in YPD. Data 

obtained from Santos et.al 59. (H) as C, but for ribosome profiling in CSM generated in 

this study. (I) The distributions (read counts in rpm) of frames in ribosome profiling for 

fragment sizes ranging from 27 to 30 nt are shown for YPD (left) and CSM (right, 

merged three replicates). 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/proline
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/proline


 

Figure S2. Genome-wide out-of-frame mRNA decay is environmentally regulated, 

Related to Figure 2. (A) Scatter plot comparing the frameshift index (log2(F1/F0)) of 



individual genes in YPD (x-axis) and CSM (y-axis) among three replicates. Histograms 

marked with red highlight genes that exhibited a mainly out-of-frame decay. Namely 

those genes with log2(F1/F0) < 0 in each replicate. (B) as (A), but for ribosome profiling. 

(C-F) as A, but for stress in YPD, i.e. (C) heat shock for 30 mins; (D) H2O2 (0.2 mM) 

exposure for 5 mins; (E) H2O2 (0.2 mM) exposure for 30 mins; (F) transfer from YPD to 

CSM medium lacking amino acids for 30 mins; (G-J) as C-F, but for cells grown long 

term in CSM. (K) Boxplot comparing frameshift index change for genes been detected 

among all stresses (All, N = 813), environmental response genes (ESR, N =38) and 

ribosomal protein genes (RP, N = 24) in Fig2C. Statistical analysis was performed using 

two-sided Wilcoxon rank-sum tests. (L-P) Spearman correlations between frameshift 

index change (x-axis) with RNA features, i.e. (L) gene length (nt); (M) Total RNA half-life 

in log scale (from Xu et al 60) ; (N) 5′UTR length (from Pelechano et.al 61) ; (O) 3′ UTR 

length (from Pelechano et.al 61) ; (P) Codon stabilization coefficient (from Presnyak et al 

10). (Q) GC contents in CDS (from Latorre et al 62). (R) Comparison of frameshift index 

(left panel) and codon adaptation index (right panel) between long and short genes 

within region 300 to 600bp. Long mRNAs are defined as the longest 20% (≥1934 nt, 

N=432) and Short RNA as the shortest 20% (≤752 nt, N=432). 



Figure S3. NMD and frameshifting-dependent decay in low nutrients conditions, 

Related to Figure 3. (A) Violin plot comparing the degradation rate (mins -1) between 



wildtype (BY4741) and NMD mutant (upf1Δ) both in YPD and CSM across all three 

biological replicates. Only reads containing at least 1 T>C conversions were considered 

as labelled reads. Only coding mRNA with at least 20 total reads were considered for 

RNA degradation calculations. (B) as (A), but displayed as RNA half-life (in mins). (C) 

Distribution of the number of premature termination codons (PTC) in frame -1 per CDS 

in the S. cerevisiae genome. The average distance between two PTC in the –1 frame is 

32bp (D) Distribution of the position of the last -1 out-of-frame stop codon versus CDS 

length. Assuming a uniform probability of frameshift along the CDS length, 94% of 

frameshifts will result in recognizing a PTC. (E) Degradation rate according to the 

likelihood that a frameshift event will lead to the recognition of downstream PTC. Gene 

groups as in Fig 3G. (F) Violin plot comparing the median degradation rate (mins-1) for 

wildtype (BY4741), upf1Δ, gcn1Δ, gcn1Δ upf1Δ, dcp2Δ, dhh1Δ both in YPD and CSM 

across biological replicates (n >=2). Only reads containing at least 1 T>C conversions 

were considered as labelled reads. Only coding mRNA with at least 20 total reads were 

considered for RNA degradation calculations. (G) Analysis of overlap between genes 

exhibiting mutant specific environment-dependent mRNA decay regulation and genes 

showing environment-dependent frameshifts (log2(F1/F0) YPD > 0.2 and log2(F1/F0) CSM 

< -0.2) (shown in green) (left). The intersection of all factor-sensitive transcripts is 

shown on the right.  Specific environment -sensitive transcripts were defined based on 

their degradation rate between wild-type and mutant strains under different growth 

conditions: (wildtype/mutant)CSM > 1.2 and (wildtype/mutant)YPD < 0.8. Upf1-sensitive 

(purple), Dcp2-sensitive (grey), and Dhh1-sensitive (red) transcripts were identified 

using these criteria. Statistical significance of overlap between each factor-sensitive 

group and frameshift genes was assessed using Fisher's exact test (n = 5,375) *** p < 

0.001. (H) Overlap between Upf1- and Dcp2-sensitive genes, defined by their 

degradation rate ratios as in G. Statistical significance was assessed using Fisher's 

exact test (n = 2722) *** p < 0.001.  



 

Figure S4. Codon optimality controls out-of-frame mRNA decay, Related to Figure 

4. (A) Heatmap comparing 5PSeq coverage across three frames (F0, F1 and F2) with 

respect to slippery sequences in YPD (left) and CSM (right). Slippery sequence 

regarding to programmed ribosomal frameshift (PRF) were obtained from PRFdb23 
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(Supplementary Data 4). The average proportion of each frame are showed with sliding 

window of 3 nucleotides extended to 99 nt both upstream and downstream of slippery 

sequence. (B) Heatmap comparing ribosome profiling coverage at log2 ratio of -15 

(corresponding to F1) and -16 (corresponding to F0) relative to the A-site of codons in 

YPD (Data from Santos, et.al 59) and CSM (from this study). The codons ordered by the 

differences of frameshift index between YPD and CSM. Codon stability coefficients 

(CSC) and Codon optimality were obtained from Presnyak et al.10. (C) Density plot 

comparing gene-specific frameshift index distributions between S. cerevisiae growing in 

YPD and in CSM using 5PSeq (left). A cumulative fraction plot with the frameshift index 

distribution is shown (right). Statistical analysis was performed using Kolmogorov–

Smirnov test with P-value and D as effect size. (D) Correlation coefficients (Pearson) 

between frameshift index and codon compositions among frameshift genes (log2(F1/F0) 

control > 0.2 and log2(F1/F0) treatment < -0.2) in S. cerevisiae. Optimal codons and non-

optimal codons are showed in red and blue, respectively. (E) Heatmap comparing the 

change in codon frameshift index for the top 30% of codons, when supplemented with 

arginine (from 50 to 85.6 mg/L) (left) and proline (from 0 to 85.6 mg/L) (right) as 

compared to CSM alone. The codons are ordered by the differences of frameshift index 

between CSM and the respective amino acid additions. (F) Boxplot comparing 

frameshift index change per codons between CSM and the respective amino acid 

additions (left). Barplot comparing the differences in frameshift index change between 

non-optimal and optimal codons for each amino acid addition (right). The codons 

highlighted in blue (non-optimal) and red (optimal) corresponding to respective amino 

acids (arginine, CGG/CGA/CGC/AGA/AGG/CGT; proline, CCT/CCC/CCA/CCG; serine, 

TCT/TCC/TCA/TCG/ AGT/AGC). Statistical analysis was performed using two-sided t 

tests.  



 

Figure S5. Proteomics change upon long-term amino acid limitation, Related to 

Figure 5. (A) Gene ontology terms for up-regulated and down-regulated protein 



abundance. Only statistically significant enrichments are showed (p-adj < 0.01). (B) 

Volcano plot comparing protein abundance change in gcn1∆ mutation between YPD 

and CSM in log2 fold change (x-axis) versus the statistical significance (-log10Q) (left). 

Gene ontology terms for up-regulated and down-regulated protein abundance (right). 

(C) as (B), but for gcn1∆upf1∆ mutant. (D) Comparison of protein abundance changes 

(fold change in CSM versus YPD) between wildtype (x-axis) and gcn1Δ (y-axis) strains. 

  



Figure S6. Out-of-frame co-translational decay of mRNA is evolutionary 

conserved, Related to Figure 6. (A) Density plot comparing frameshift index 

distributions between B. subtilis growing in stationary for 24h and in rich medium (LB). 

Data obtained from Huch, et.al.11 (B) Heatmap comparing 5PSeq coverage at log2 ratio 

of -14 (corresponding to F1) and -15 (corresponding to F0) relative to the A-site codons 
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for B. subtilis growing in LB and in stationary phase for 24h (left). B. subtilis growing in 

poor minimal growth medium (minimal growth medium) (Details in Method section). (C) 

Scatterplot comparing frameshift index (x-axis) and tRNA adaptation index (y-axis) for 

B. subtilis growing in stationary for 24h (upper) and B. subtilis growing in poor minimal 

growth medium (below). The correlation between the two datasets was evaluated using 

Spearman correlation analysis. Optimal codons and non-optimal codons are 

represented in red and blue, respectively. (D) Frameshift index distributions across 

different breast cancer cell lines MCF10A, MCF7, T47D, MDA-MB-231, and Hs578T 

measured by Ribosome profiling. Data obtained from Loayza-Puch,et.al43. A generalised 

frameshift can be observed for all cell lies after glutamine deprivation. The red line in 

box plot indicates the median gene frameshift index. (E) Scatter plot comparing the 

frameshift index (log2(F1/F0)) of individual genes in rich DMEM medium (x-axis) and 

glutamine-deprived conditions (y-axis). Namely those genes with log2(F1/F0) < 0 in 

each condition. The upper panel in corresponds to the Hs578t cell line, while the lower 

panel corresponds to the T-47D cell line. 

SUPPLEMENTARY TABLES 

Table S1, Related to Figure 1. Growth medium composition in CSM and SC. 

Table S2, Related to Figure 2. Frameshift index in YPD, CSM and stress conditions.  

Table S3, Related to Figure 3. RNA half-life measured by SLAM-Seq in wildtype and 

mutant. 

Table S4, Related to Figure 4. Codon frameshift index measurement in 5PSeq and 

Riboseq  

Table S5, Related to Figure 5. MS measured canonical protein abundance. 

Table S6, Related to Figure 6. Gene-specific frameshift index in bacteria and human.  

Table S7, Related to Figure 7. Cell growth in CSM and YPD.  


