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Figure S1. Co-translational mRNA decay reveals genome-wide -1 ribosome
frameshift, Related to Figure 1 (A) Heatmap for metagene analysis displaying the 5'P
reads coverage for each amino acid for YPD (left) and CSM (right). 5'P reads coverage
is calculated by reads per million and the heatmap is row normalized. (B) Metagene
analysis displaying the 5'P reads coverage for proline codons (CCG) in SC (in green,
left), glucose deprivation for 5 mins (in blue, middle) and glucose deprivation for 15 mins
(in dark blue, right) using HT-5PSeq. 5'P reads coverage for proline codons in YPD (in
purple) used as control in all conditions. Dotted lines at =17 corresponding to the in-
frame 5' end of protected ribosome located at the A site. (C) Relative 5'P coverage with
average of 20 codons for each frame in SC (left), glucose deprivation for 5 mins
(middle), glucose deprivation for 15 mins (right) from the middle of genes. The fractions
calculated for each frame for metagene analysis (excluding the first and last 50 nt for
each gene), are shown in the histogram. (D) Number of genes where ribosome
collisions are detected by FFT analysis (see methods for details). A disome provides a
signal at 30nt, a trisome at 60 nt and a tetrasome at 90nt. We show values for YPD,
CSM and minimal media without histidine (SD-His). SD-His is shown as a positive
control for inducing disomess. Higher level of ribosome collisions are observed in YPD
than in CSM growth. (E) Sucrose gradient analysis of polysomes and ribosomes after
RNase | digestion in YPD (left) and CSM (right). Ribosomes were separated by
ultracentrifugation in a linear 10-50% sucrose density gradient. (F) Metagene analysis
displaying the 5'P reads coverage for out-of-frame stop codons (i.e. TGA) in YPD (left),
CSM (center) and normalized peak by dividing the relative peaks in CSM with in YPD
(right) (See in Methods section). (G) as C, but for ribosome profiling in YPD. Data
obtained from Santos et.al 5°. (H) as C, but for ribosome profiling in CSM generated in
this study. () The distributions (read counts in rpm) of frames in ribosome profiling for
fragment sizes ranging from 27 to 30 nt are shown for YPD (left) and CSM (right,

merged three replicates).
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Figure S2. Genome-wide out-of-frame mRNA decay is environmentally regulated,

Related to Figure 2. (A) Scatter plot comparing the frameshift index (log2(F1/F0)) of



individual genes in YPD (x-axis) and CSM (y-axis) among three replicates. Histograms
marked with red highlight genes that exhibited a mainly out-of-frame decay. Namely
those genes with log2(F1/F0) < 0 in each replicate. (B) as (A), but for ribosome profiling.
(C-F) as A, but for stress in YPD, i.e. (C) heat shock for 30 mins; (D) H202 (0.2 mM)
exposure for 5 mins; (E) H202 (0.2 mM) exposure for 30 mins; (F) transfer from YPD to
CSM medium lacking amino acids for 30 mins; (G-J) as C-F, but for cells grown long
term in CSM. (K) Boxplot comparing frameshift index change for genes been detected
among all stresses (All, N = 813), environmental response genes (ESR, N =38) and
ribosomal protein genes (RP, N = 24) in Fig2C. Statistical analysis was performed using
two-sided Wilcoxon rank-sum tests. (L-P) Spearman correlations between frameshift
index change (x-axis) with RNA features, i.e. (L) gene length (nt); (M) Total RNA half-life
in log scale (from Xu et al ) ; (N) 5'UTR length (from Pelechano et.al 1) ; (O) 3' UTR
length (from Pelechano et.al 6!) ; (P) Codon stabilization coefficient (from Presnyak et al
10). (Q) GC contents in CDS (from Latorre et al ¢2). (R) Comparison of frameshift index
(left panel) and codon adaptation index (right panel) between long and short genes
within region 300 to 600bp. Long mMRNAs are defined as the longest 20% (21934 nt,
N=432) and Short RNA as the shortest 20% (<752 nt, N=432).
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Figure S3. NMD and frameshifting-dependent decay in low nutrients conditions,

Related to Figure 3. (A) Violin plot comparing the degradation rate (mins -') between



wildtype (BY4741) and NMD mutant (upf1A) both in YPD and CSM across all three
biological replicates. Only reads containing at least 1 T>C conversions were considered
as labelled reads. Only coding mRNA with at least 20 total reads were considered for
RNA degradation calculations. (B) as (A), but displayed as RNA half-life (in mins). (C)
Distribution of the number of premature termination codons (PTC) in frame -1 per CDS
in the S. cerevisiae genome. The average distance between two PTC in the —1 frame is
32bp (D) Distribution of the position of the last -1 out-of-frame stop codon versus CDS
length. Assuming a uniform probability of frameshift along the CDS length, 94% of
frameshifts will result in recognizing a PTC. (E) Degradation rate according to the
likelihood that a frameshift event will lead to the recognition of downstream PTC. Gene
groups as in Fig 3G. (F) Violin plot comparing the median degradation rate (mins-1) for
wildtype (BY4741), upf1A, gecn1A, gen1A upf1A, dcp24, dhh1A both in YPD and CSM
across biological replicates (n >=2). Only reads containing at least 1 T>C conversions
were considered as labelled reads. Only coding mRNA with at least 20 total reads were
considered for RNA degradation calculations. (G) Analysis of overlap between genes
exhibiting mutant specific environment-dependent mRNA decay regulation and genes
showing environment-dependent frameshifts (log2(F1/F0) yrp > 0.2 and log2(F1/F0) csm
< -0.2) (shown in green) (left). The intersection of all factor-sensitive transcripts is
shown on the right. Specific environment -sensitive transcripts were defined based on
their degradation rate between wild-type and mutant strains under different growth
conditions: (wildtype/mutant)csm > 1.2 and (wildtype/mutant)yro < 0.8. Upf1-sensitive
(purple), Dcp2-sensitive (grey), and Dhh1-sensitive (red) transcripts were identified
using these criteria. Statistical significance of overlap between each factor-sensitive

*k%

group and frameshift genes was assessed using Fisher's exact test (n = 5,375) p <
0.001. (H) Overlap between Upf1- and Dcp2-sensitive genes, defined by their
degradation rate ratios as in G. Statistical significance was assessed using Fisher's

exact test (n = 2722) *** p < 0.001.
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(Supplementary Data 4). The average proportion of each frame are showed with sliding
window of 3 nucleotides extended to 99 nt both upstream and downstream of slippery
sequence. (B) Heatmap comparing ribosome profiling coverage at logz ratio of -15
(corresponding to F1) and -16 (corresponding to FO) relative to the A-site of codons in
YPD (Data from Santos, et.al 5°) and CSM (from this study). The codons ordered by the
differences of frameshift index between YPD and CSM. Codon stability coefficients
(CSC) and Codon optimality were obtained from Presnyak et al.19. (C) Density plot
comparing gene-specific frameshift index distributions between S. cerevisiae growing in
YPD and in CSM using 5PSeq (left). A cumulative fraction plot with the frameshift index
distribution is shown (right). Statistical analysis was performed using Kolmogorov—
Smirnov test with P-value and D as effect size. (D) Correlation coefficients (Pearson)
between frameshift index and codon compositions among frameshift genes (log2(F1/F0)
control > 0.2 and log2(F1/F0) treatment < -0.2) in S. cerevisiae. Optimal codons and non-
optimal codons are showed in red and blue, respectively. (E) Heatmap comparing the
change in codon frameshift index for the top 30% of codons, when supplemented with
arginine (from 50 to 85.6 mg/L) (left) and proline (from 0 to 85.6 mg/L) (right) as
compared to CSM alone. The codons are ordered by the differences of frameshift index
between CSM and the respective amino acid additions. (F) Boxplot comparing
frameshift index change per codons between CSM and the respective amino acid
additions (left). Barplot comparing the differences in frameshift index change between
non-optimal and optimal codons for each amino acid addition (right). The codons
highlighted in blue (non-optimal) and red (optimal) corresponding to respective amino
acids (arginine, CGG/CGA/CGC/AGA/AGG/CGT; proline, CCT/CCC/CCA/CCG; serine,
TCT/TCC/TCA/TCG/ AGT/AGC). Statistical analysis was performed using two-sided t

tests.
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Figure S5. Proteomics change upon long-term amino acid limitation, Related to

Figure 5. (A) Gene ontology terms for up-regulated and down-regulated protein



abundance. Only statistically significant enrichments are showed (p-adj < 0.01). (B)
Volcano plot comparing protein abundance change in gcn1A mutation between YPD
and CSM in log2 fold change (x-axis) versus the statistical significance (-log10Q) (left).
Gene ontology terms for up-regulated and down-regulated protein abundance (right).
(C) as (B), but for gcn1Aupf1A mutant. (D) Comparison of protein abundance changes

(fold change in CSM versus YPD) between wildtype (x-axis) and gcn1A (y-axis) strains.
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Figure S6. Out-of-frame co-translational decay of mRNA is evolutionary

conserved, Related to Figure 6. (A) Density plot comparing frameshift index

distributions between-B. subtilis growing in stationary for 24h and in rich medium (LB).

Data obtained from Huch, et.al.'’ (B) Heatmap comparing 5PSeq coverage at log> ratio

of -14 (corresponding to F1) and -15 (corresponding to FO) relative to the A-site codons



for B. subtilis growing in LB and in stationary phase for 24h (left). B. subtilis growing in
poor minimal growth medium (minimal growth medium) (Details in Method section). (C)
Scatterplot comparing frameshift index (x-axis) and tRNA adaptation index (y-axis) for
B. subtilis growing in stationary for 24h (upper) and B. subtilis growing in poor minimal
growth medium (below). The correlation between the two datasets was evaluated using
Spearman correlation analysis. Optimal codons and non-optimal codons are
represented in red and blue, respectively. (D) Frameshift index distributions across
different breast cancer cell lines MCF10A, MCF7, T47D, MDA-MB-231, and Hs578T
measured by Ribosome profiling. Data obtained from Loayza-Puch,et.al*3. A generalised
frameshift can be observed for all cell lies after glutamine deprivation. The red line in
box plot indicates the median gene frameshift index. (E) Scatter plot comparing the
frameshift index (log2(F1/F0)) of individual genes in rich DMEM medium (x-axis) and
glutamine-deprived conditions (y-axis). Namely those genes with log2(F1/F0) < 0 in
each condition. The upper panel in corresponds to the Hs578t cell line, while the lower

panel corresponds to the T-47D cell line.

SUPPLEMENTARY TABLES

Table S1, Related to Figure 1. Growth medium composition in CSM and SC.

Table S2, Related to Figure 2. Frameshift index in YPD, CSM and stress conditions.
Table S3, Related to Figure 3. RNA half-life measured by SLAM-Seq in wildtype and
mutant.

Table S4, Related to Figure 4. Codon frameshift index measurement in 5PSeq and
Riboseq

Table S5, Related to Figure 5. MS measured canonical protein abundance.

Table S6, Related to Figure 6. Gene-specific frameshift index in bacteria and human.

Table S7, Related to Figure 7. Cell growth in CSM and YPD.



