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SUMMARY

Cells need to adapt their transcriptome to quickly match cellular needs in changing environments. mRNA

abundance can be controlled by altering both its synthesis and decay. Here, we show how, in response to

poor nutritional conditions, the bulk of the S. cerevisiae transcriptome undergoes − 1 ribosome frameshifts

and experiences an accelerated out-of-frame co-translational mRNA decay. Using RNA metabolic labeling,

we demonstrate that in poor nutritional conditions, nonsense-mediated mRNA decay (NMD)-dependent

degradation represents at least one-third of the total mRNA decay. We further characterize this mechanism

and identify low codon optimality as a key factor for ribosomes to induce out-of-frame mRNA decay. Finally,

we show that this phenomenon is conserved from bacteria to humans. Our work provides evidence for a

direct regulatory feedback mechanism coupling protein demand with the control of mRNA abundance to limit

cellular growth and broadens the functional landscape of mRNA quality control.

INTRODUCTION

The modulation of gene expression in response to evolving envi-

ronmental conditions is fundamental for cellular survival. This

adaptive capability holds particular significance for unicellular

organisms such as budding yeast or bacteria, as they rely on pre-

cise adjustment in gene expression to thrive amidst changing

surroundings. mRNA abundance depends on the fine balance

between mRNA synthesis and decay, and mRNA decay controls

the abundance of pre-existing mRNA molecules, modulates their

availability for translation, and facilitates rapid transcriptomic

changes.1 Defects in mRNA decay have been associated

with multiple diseases ranging from neurodegeneration2 to viral

infection,3 underscoring its significance in controlling gene

expression.

Multiple mechanisms control mRNA decay in response to

environmental changes, for example, by destabilizing specific

mRNAs in response to RNA-binding proteins,4 by regulating

the activity of proteins involved in mRNA decay,5,6 or through

co-translational mRNA decay.7–9 A general process where the

translation process modulates mRNA decay is the coupling be-

tween the demand of tRNAs by translating ribosomes and the

available supply of charged tRNAs (codon optimality), which

has been shown to regulate mRNA stability.10–13 In addition to

general processes controlling mRNA decay, multiple specialized

mRNA surveillance pathways exist to ensure the elimination of

faulty mRNAs and to facilitate ribosome recycling.12,14 Classic

examples include the nonsense-mediated mRNA decay (NMD)

pathway associated with the elimination of transcripts containing

premature termination codons (PTCs)14–16 or the no-go decay

(NGD) pathway associated with the removal of mRNAs with

stalled ribosomes.11 Importantly, in addition to eliminating faulty

transcripts, those pathways can also modulate the abundance of

canonical mRNAs.17 In general, NMD recognizes transcripts

containing PTCs that can originate from genetic mutations, alter-

native splicing, or frameshifting events.14

Frameshifts can regulate mRNA stability by causing premature

translation termination and thus recruiting the NMD machinery.

The frequency of spontaneous ribosome frameshifts is usually

very low, as it requires the presence of a slippery sequence
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followed by a secondary structure element.18,19 Frameshifts can

also occur during ribosome translocation via tRNA slippage at

the P-site while the A-site is vacant,20 especially associated

with limitations in specific charged aa-tRNAs.19 While ribosomal

frameshifts have previously been linked to the degradation of

specific transcripts, it is unclear if those events play a significant

role in controlling global mRNA abundance, particularly when

considering that most genes do not contain putative pro-

grammed ribosomal frameshift (PRF) sites.21,22

We have previously shown that during co-translational mRNA

decay, 5′-3′ exonucleases produce an in vivo toeprint of the

position of the last (most 5′) trailing ribosome in yeast8 and bacte-

ria.9 Here, by investigating ribosome position associated

with mRNA decay,8,23,24 we discovered that the bulk of the

S. cerevisiae transcriptome (∼77% of the degradation pool) un-

dergoes − 1 nt ribosome frameshifting in response to poor nutrient

conditions. We characterize this process and identify both gene-

and codon-specific features favoring frameshifting events. Next,

we use genome-wide RNA metabolic labeling to demonstrate

that in nutrient-poor conditions a sizable fraction of the transcrip-

tome is degraded in an NMD-dependent manner. We further char-

acterized this mechanism and showed that low codon optimality,

rather than the presence of PRF sites or ribosome collisions, is

central to this process and that amino acid supplementation can

partially reverse this phenomenon. Next, we show that out-of-

frame mRNA decay also contributes to changes in the proteome

abundance. Surprisingly, this phenomenon is evolutionarily

conserved and occurs not only in yeast and human cells but

also in bacteria that lack canonical NMD machinery. Finally, we

show that this mechanism restricts cellular growth and conserves

limiting resources under low-nutrient conditions. We suggest that

ribosome frameshifting followed by co-translational mRNA decay

provides direct regulatory feedback coupling the demand of new

proteins and the control of mRNA abundance encoding them.

RESULTS

Study of co-translational mRNA decay reveals

generalized –1 ribosome frameshifts

Sequencing the 5′ phosphate (5′P) mRNA degradation interme-

diates naturally present in cells with 5PSeq provides the in vivo

position of the last translating ribosomes.8 Specifically, this tech-

nique relies on the fact that in budding yeast, the 5′-3′ exonu-

clease Xrn1p follows the last translating ribosome, trimming

the exposed 5′P ends in vivo. It differs from ribosome profiling,

which uses in vitro RNase digestion to obtain footprints of all

soluble ribosomes independent of whether the mRNAs are un-

dergoing decay or not. 5PSeq is particularly well suited for inves-

tigating ribosome stalls associated with mRNA degradation

because it produces a toeprint of the subset of ribosomes

engaged in co-translational mRNA decay, unlike ribosome

profiling, which instead studies the bulk of ribosomes present

in the cell.23,24 In S. cerevisiae, ribosomes protect a region of

17 nt comprising the distance between the exposed 5′P of an

mRNA undergoing degradation and the ribosome A-site. The

ribosome-protected region at the 5′ of mRNA has a constant

size of 17 nt in different cellular conditions, such as during oxida-

tive stress, heat shock, cycloheximide treatment, or different

growth media.8,24–26 However, we serendipitously discovered

that in very poor nutritional conditions, the 17 nt ribosome

protection pattern is displaced backward by 1 nt (− 1 nt)

(Figures 1A and S1A). When cells are grown in complete supple-

ment medium (CSM), this apparent − 1 frameshift can be clearly

observed in the body of the genes but not close to the start

codon (Figures 1B and 1C). In fact, the − 1 nt displaced frame

(F0) only becomes predominant around 400 nt from the start

(Figure 1C, middle). However, we did not observe such alter-

ations of the ribosome protection in other conditions with limited

nutrients, such as cells depleted of glucose during early station-

ary phase or even using other synthetic defined media with

slightly higher concentrations of nutrients (synthetic complete

[SC] medium; see STAR Methods) (Figures S1B and S1C;

Table S1). Long-term growth in CSM did not lead to disome

accumulation (Figures S1D and S1E), suggesting that ribosome

collisions do not drive the observed frameshifts as in other

cases.27

To explain the generalized − 1 ribosome frameshift, we pro-

pose a working model where, under poor nutrient conditions, ri-

bosomes undergo standard translation initiation but experience

an increased frequency of − 1 ribosome frameshift during trans-

lation elongation (Figure 1D). At the metagene level, this would

cause a − 1 frameshift to accumulate a few hundred nucleotides

downstream of the start codon, in agreement with our observa-

tions (Figures 1B and 1C). Frequent ribosome frameshifts lead to

the recognition of out-of-frame stop codons in the body of the

genes and increased mRNA degradation via NMD. Reassuringly,

we observed that putative out-of-frame stop codons increase

5PSeq ribosome footprints similar to those that we have previ-

ously described for canonical stop codons24 in CSM but not in

Yeast Peptone Dextrose medium (YPD) (Figure S1F).

Our model suggests the existence of two populations of

mRNA degradation intermediates: a canonical population with

in-frame co-translational degradation and a second population

subjected to frameshift-dependent NMD-enhanced degradation

after − 1 frameshift. At the metagene level, and dependent on the

relative importance of each pathway, we should observe canon-

ical co-translational degradation profiles in the 5′ region of the

genes (before the frameshift event) and potentially altered pro-

tection (− 1 frameshift) in the body of the genes (after the frame-

shift). This scenario is consistent with our observations (Figures 1

and S1) and suggests that the bulk of the degradome of cells

growing in poor media arises from a frameshift-mediated degra-

dation pathway.

Our working model also predicts that methods such as

5PSeq, focusing on transcripts undergoing decay, should easily

identify frameshift events associated with mRNAs subjected to

increased decay. By contrast, in methods such as ribosome

profiling, footprints derived from non-frameshifted ribosomes

over stable mRNAs would likely mask frameshift events

(Figures S1G and S1H). This would also explain why the dramatic

phenomenon that we describe here has not been reported

before. To test this scenario, we performed ribosome profiling

in CSM conditions. We observed a clear increase of out-of-frame

reads in CSM, showing that ribosome frameshifting could also

be detected using ribosome profiling (Ribo-seq) in the form of

a − 1 nt shoulder (Figures 1E, S1H, and S1I). However, the
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increase in out-of-frame protection measured by ribosome

profiling was modest in comparison to the one measured by

5PSeq, where out-of-frame ribosome protection clearly domi-

nates (Figure 1A). Importantly, the observed shoulder agrees

with previous observations showing that NMD-regulated tran-

scripts tend to have a higher ratio of out-of-frame reads.28 Taking

all this together, our results confirm the existence of environmen-

tally regulated genome-wide ribosome frameshift events en-

riched in mRNAs undergoing co-translational decay.

Most genes experience environmentally induced –1

ribosome frameshifts

After showing the widespread existence of − 1 frameshifts

affecting the bulk of the transcriptome, we investigated the spec-

ificity of this process at the gene-specific level. We defined a

simple metric to measure gene-specific frameshifts using the

3-nt periodicity associated with ribosome movement. For each

gene, we compared the in-frame 5PSeq sequencing coverage

with respect to the coverage for a − 1 frameshift (i.e., log2(F1/

F0)). Using this metric, only 212 genes (5.8 % of the 3,645

analyzed) present evidence for a − 1 frameshift (log2(F1/F0) < 0)

for exponentially growing cells in rich media (YPD) (Figures 2A

and S2A; Table S2A). By contrast, for exponentially growing cells

in CSM − 1 frameshift-associated decay dominates the mRNA

degradation in 2,804 genes (77% of analyzed) (Figures 2A and

S2A; Table S2A). To corroborate this, we performed the same

analysis using ribosome profiling. In ribosome profiling, the − 1

frameshift is predominant for 34 genes in YPD (0.9%), and this

number increases to 2,326 genes in CSM (58%) (Figure S2B).

This result confirms our previous observation showing that

5PSeq provides higher resolution to investigate ribosome frame-

shifts associated with mRNA decay (Figures 1A and 1E). Next,

A B

C

D

E

Figure 1. Study of co-translational mRNA decay reveals generalized –1 ribosome frameshifts

(A) Metagene analysis displaying the abundance of 5′P reads coverage for all proline codons (CCG) across the transcriptome in YPD (in purple) and in CSM (in

green) using HT-5Pseq. Dotted lines at − 17 and − 18 correspond to the in-frame and out-of-frame 5′ end of protected ribosome located at the A-site, respectively.

The same phenomenon can be seen for all codons. See Figure S1A.

(B) Relative 5′P coverage for each frame in YPD from around the start codon (left), the middle of genes (middle), and the stop codon (right). A histogram displaying

the relative coverage for each protection frame is shown. In 5PSeq, standard in-frame decay displays an increased coverage for F1, while a − 1 nt frameshift will

lead to a relative increase of coverage for F0.

(C) Same as (B), but for CSM.

(D) Working model: in rich media conditions, in-frame mRNA degradation intermediates dominate the degradome. Under poor nutrient conditions, ribosomes will

experience a higher frequency of − 1 frameshifts. This will increase the proportion of out-of-frame mRNA degradation intermediates. mRNAs undergoing − 1

frameshift would likely be degraded by NMD.

(E) Same as (A), but for ribosome profiling. Dotted lines at − 15 and − 16 correspond to the in-frame and out-of-frame distance of the 5′ ends from the A-site of

protecting ribosomes as measured after in vitro RNase digestion.
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we investigated if this − 1 frameshift phenomenon was specific to

exponential growth in poor nutrition or if it was induced also by

other environmental challenges. To test these hypotheses, we

investigated the effect of heat shock (30 min at 37◦C), oxidative

stress (5 and 30 min after 0.2 mM H2O2 addition), and amino acid

deprivation for 30 min after growth in both rich and poor media

(Figures 2B and S2C–S2J; Table S2B). Although the applied

stressors differentially modulated the likelihood of frameshifts

(as measured by the log2(F1/F0) ratio), it was clear that the

used growth medium was the main driver of the phenotype

(Figure 2B).

We used the 5PSeq data generated across the 10 tested

growth conditions to investigate gene-specific − 1 frameshifts

(Figure 2C). Genes associated with regulation of RNA localiza-

tion and intracellular protein transport presented a higher degree

of frameshifting, while this was less pronounced in genes asso-

ciated with proteolysis (Table S2C). Ribosomal protein (RP)

genes also had a relatively low tendency to experience an envi-

ronment-dependent − 1 ribosome frameshift (Figures 2C and

S2K). As we saw that stress conditions can modulate the level

of frameshifting, we also investigated the behavior of the envi-

ronmental stress response (ESR) genes.29 However, we did not

A

B

C

Figure 2. Gene-specific –1 ribosome frameshifts are environmentally regulated

(A) Scatterplot comparing the frameshift index log2(F1/F0) for individual genes in rich (YPD, x axis) and poor (CSM, y axis) nutritional conditions. Histograms

display the distribution of gene-specific frameshift indices. Genes dominated by out-of-frame decay (log2(F1/F0) < 0) are highlighted in red, namely 212 genes in

YPD and 2,807 genes in CSM (5.8% and 77%, respectively, of total analyzed genes). Genes that were detected in all three replicates were considered for further

analysis.

(B) Frameshift index distributions across tested conditions in YPD (left) and CSM (right). Stresses include heat shock at 42◦C for 30 min (HS t30), 0.2 mM H2O2

exposure for 5 or 30 min (H2O2 t5 and H2O2 t30), and amino acid deprivation (transfer to CSM lacking amino acids) for 30 min (CSM-AAt30). The red line indicates

the median gene frameshift index. Statistical analysis was performed using two-sided Wilcoxon rank-sum tests to its original condition (YPD and CSM)

(***p < 2.2 × 10− 16; **p < 6.3 × 10− 9). The numbers of analyzed genes are displayed.

(C) Heatmap of frameshift index log2(F1/F0) for genes detected under all tested conditions (as in B) starting from YPD (right) or CSM (left) clustered by k-means.

Heatmap represents frameshift index log2(F1/F0), red to blue. The percentages of optimal codons for each gene are shown in green. Environmental stress

response (ESR)29 genes and ribosomal protein genes are indicated in purple and blue, respectively. Frameshift index across all stress conditions were clustered

using k-means (rightmost column). Gene ontology enrichment terms for high and low frameshifted gene clusters are displayed (p adj < 0.05).
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observe any clear association between the ESR genes and the

frameshift events (Figure S2K).

Finally, we investigated if other gene-specific features could

explain the observed differences in gene-specific frameshift-

ing propensity. Factors, such as gene or UTR length, did not

affect the observed differences (Figures S2L–S2R). However,

GC content in the coding sequences (CDS) and especially

lower codon optimality10 and lower mRNA stability were

clearly associated with the gene-specific frameshifting sensi-

tivity (Figures 2C, S2M, S2P, and S2Q). We found the associ-

ation between lower codon optimality and increased frame-

shifts particularly interesting, as it suggests a direct role of

the ribosomes in this process. Additionally, our working model

suggests that mRNAs experiencing a higher level of frame-

shifting events will be mainly degraded by an NMD-dependent

pathway (Figure 1D), consistent with the fact that NMD-

regulated transcripts tend to have lower codon optimality

scores.28

Global frameshifting in poor nutritional conditions

promotes mRNA decay

A central prediction of our model is the co-existence of two alter-

native co-translational mRNA degradation pathways: a canoni-

cal in-frame decay and an accelerated frameshift-dependent

out-of-frame one (Figure 1D). To estimate the fraction of the tran-

scriptome degraded by each pathway, we leveraged our 5PSeq

data, which provides a snapshot of all mRNAs undergoing

degradation. We used the conservative assumption that the

fraction of out-of-frame transcripts in YPD is nearly 0%, and

then simulated a dataset with a 100% theoretical out-of-frame

decay (shifting all YPD reads by − 1 nt). By mixing reads of these

two datasets at varying ratios, we obtained a theoretical distribu-

tion of codon protection indexes, based on which we estimated

that at least 52% of the degradome originates from out-of-frame

decay in CSM (Figures 3A and 3B; Table S3A; see STAR

Methods for details). This number is a very conservative esti-

mate, as out-of-frame decay is not negligible in cells exponen-

tially growing in YPD.

To test our model using an independent approach, we

measured mRNA decay using pulse and chase RNA metabolic

labeling followed by RNA sequencing (SLAM-seq).30 This

approach does not rely on the capture of transient mRNA degra-

dation intermediates and measures the disappearance of

mRNAs, independent of the decay occurring co-translationally

or not. We incubated cells for 60 min in a medium containing

4-thiouracil (4tU) and measured mRNA prior (t0) and after chang-

ing cells to a medium without 4tU after 15 and 30 min in both YPD

and CSM (see STAR Methods for detail). Despite the known gen-

eral association between faster cell growth and increased mRNA

turnover in budding yeast,31 we observed an increased mRNA

decay (lower mRNA stability) in CSM (Figure 3C), where cell

growth is slower. This suggests that in CSM, in addition to the

standard mRNA decay pathways associated with cell growth,

another mechanism contributes to accelerated decay. As our

previous results suggest that out-of-frame co-translational

decay is associated with NMD, we compared the wild-type strain

with an NMD-deficient strain (upf1Δ) (Figures 3D and S3B). In rich

media, deletion of UPF1 did not increase mRNA stability and, in

fact, led to a subtle increase in the mRNA degradation rate (sug-

gesting potential adaptation of mRNA turnover in the upf1Δ
strain). By contrast, in poor CSM conditions, deletion of UPF1

led to an increased mRNA stability (decrease of mRNA degrada-

tion rate). This confirms that in nutritionally poor conditions (in

CSM), NMD is actively degrading a big fraction of the transcrip-

tome. Using the generated mRNA metabolic data, we fitted the

labeled mRNA abundance (normalized to total library size)

across time to a non-linear decay model equation to calculate

degradation rate for each condition.30 We estimated that in

CSM the median NMD-dependent degradation rate (measured

from upf1Δ, 1.87 min− 1) corresponds to at least 32% of the total

decay rate (measured from wild type, 2.75 min− 1), while non-

NMD-dependent degradation represents the remaining 68%

(Figure 3D; Table S3C). Thus, even using conservative assump-

tions, under poor nutrition conditions at least one-third of the

transcriptome is degraded via environmentally induced ribo-

some frameshifts.

Next, we investigated the changes in gene-specific mRNA sta-

bility for cells with and without UPF1 in rich and poor media. We

classified those genes experiencing an increased NMD-depen-

dent decay in CSM as environmental upf1-sensitive genes (i.e.,

the 712 genes where degradation rate (WT/upf1Δ)CSM > 1.2 and

(WT/upf1Δ)YPD < 0.8). Those genes were enriched for cell cycle

and chromosome organization (Figure 3E; Table S3D). We then

compared environmental NMD-sensitive genes with those experi-

encing environmentally induced frameshift (log2(F1/F0) YPD > 0.2

and log2(F1/F0) CSM < − 0.2), see STAR Methods) and found a sig-

nificant overlap (Figure 3F). Since a small fraction of − 1 frameshift

events will not lead to the downstream recognition of a PTC (e.g.,

those occurring close to the canonical stop codon), we classified

genes according to the frequency and position of the expected

PTC (Figures S3C–S3E). Reassuringly, genes where frameshift

events are more likely to result in the downstream recognition of

a PTC and subsequently trigger NMD showed increased NMD-

dependent stabilization under CSM conditions (Figures 3G and

S3E). Given the complex interplay between mRNA decay and

translation,32 we investigated how frameshifting intersects with

nutrient stress signaling (Gcn1), RNA decapping (Dcp2), and

codon optimality-mediated decay (Dhh1) (Figures S3F and S3G;

Table S3E). The gcn1Δ strain shows slower mRNA decay rates

in CSM compared with wild-type cells, while it leads to a clear in-

crease in mRNA degradation in YPD. The gcn1Δupf1Δ double also

has slower decay rates in CSM. However, it shows an unexpected

RNA stabilization relative to gcn1Δ. This indicates a possible

interaction or compensatory mechanism between nutrition-

dependent NMD and GCN1-mediated regulation and highlights

the complexity of this interplay. Next, we assessed the interaction

between NMD and decapping using a dcp2Δ strain. As

expected, nutrition-regulated Dcp2-sensitive and Upf1-sensitive

transcripts clearly overlap (Figure S3H). Finally, we tested the

overlap with codon optimality-mediated decay using a dhh1Δ
strain. Although UPF1-mediated NMD may function indepen-

dently of codon optimality-mediated decay under rich nutrient

conditions, our data suggest that in low-nutrition environments,

UPF1-mediated NMD becomes indirectly dependent on codon

optimality (see below). In agreement with our working model, nu-

trition-regulated Dhh1-sensitive and Upf1-sensitive transcripts
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overlap (Figure S3H). This finding isconsistent with the fact that the

influence of codon optimality on mRNA decay is modulated by

cellular metabolic states and energy levels.33 Taking all these ob-

servations together, we concluded that out-of-frame NMD-

dependent degradation is responsible for the degradation of an

important fraction of the transcriptome in poor nutritional

conditions.

Codon optimality controls environmentally regulated –1

frameshifts and out-of-frame mRNA decay

After confirming the genome-wide nature of the environmentally

regulated − 1 frameshifts and their consequences for mRNA sta-

bility, we focused on their mechanisms. First, we investigated

whether known mRNA slippery sequences21,22 caused the

frameshifts. We reasoned that ribosome protection frames

should be different before and after the ribosome encounters

those regions if it was the case. However, we did not observe

any evidence for enhanced frameshifting surrounding slippery

sequences (Figure S4A).

Since we observed massive frameshifts under poor nutrient

conditions, it could be due to limited availability of charged

tRNAs. This is a phenomenon previously described for specific

codons or mRNAs34–36 named ‘‘hungry codon’’ frameshift.37

To test if a similar mechanism could be operating at a

genome-wide scale, we measured the degree of frameshift

associated with each codon. We computed a relative protection

frame for each codon (i.e., comparing 5PSeq coverage at − 17 nt

(F1, in-frame) and − 18 nt (F0, out-of-frame) from the A-site;

Figure 4A). Next, we compared the change in protection frame

between YPD and CSM and defined a frameshift index such

that codons more likely to induce a frameshift will present a

higher value (i.e., log2(F1/F0)YPD − log2(F1/F0)CSM). This analysis

revealed that codons with lower optimality were more likely to

engage in frameshifting in poor nutrient conditions. To further

A B C D

E F G

Figure 3. Ribosome frameshifts promote mRNA degradation in poor nutritional conditions

(A) Distribution of gene-specific codon protection index for cells in YPD (median 0.26, red), in CSM (median − 0.18, green), and simulated 100% out-of-frame

decay (median − 0.58, purple). Codon protection index was calculated as the ratio of the reads corresponding to the protected frame (F1) with respect to the

average number of reads of the non-protected frames: log2(F1/((F2 + F0)/2)).

(B) Relationship between median codon protection index (y axis) and percentage of out-of-frame reads (x axis). Data were generated by mixing different ratios of

0% and 100% out-of-frame decay (see STAR Methods). The green dotted line represents the median of codon protection index in CSM (− 0.18) and corre-

sponding estimated out-of-frame reads percentage (52%).

(C) Line plot displaying the average percentage of 4tU-labeled reads after 15 and 30 min 4tU pulse-chase. Data for YPD (pink) and CSM (green) are shown. Dotted

lines provide the mean and median range.

(D) Violin plot comparing the median degradation rate (min− 1) for wild-type (BY4741) and NMD mutant (upf1Δ) both in YPD and CSM. Only coding mRNAs with at

least 20 total reads are considered for RNA turnover analysis.

(E) Gene Ontology terms for genes classified as environmentally dependent Upf1-sensitive genes (degradation rate (wild type/upf1Δ)CSM > 1.2 and (wild type/

upf1Δ)YPD < 0.8) in three aspects (BP, biological process; CC, cellular component; MF, molecular function). Only top enrichments are shown (p adj < 0.01). Gene

set universe (N = 5,375) was set to the genes detected by SLAM-seq across all conditions (Table S3E).

(F) Overlap between genes subjected to environmentally dependent NMD decay (Upf1-sensitive) and genes showing environmentally dependent frameshifts

(log2(F1/F0)YPD > 0.2 and log2(F1/F0)CSM < − 0.2). Statistical analysis was performed by Fisher’s exact test (N = 5,375) (Table S3E).

(G) Relative NMD-dependent (Upf1) stabilization in YPD and CSM. Genes are classified by the relative distance of the last − 1 frameshift PTC to the canonical stop

codon. PTC proximal genes (the last downstream − 1 PTC occurs after ≥ 94% of CDS length, and thus most frameshifts can lead to PTC recognition and NMD)

and PTC distal genes (the last downstream − 1 PTC occurrs ≤ 60% of CDS length, and only a fraction of frameshift events will engage NMD). Statistical analysis

was performed using two-sided t tests. *p = 0.019.
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Figure 4. Codon optimality controls out-of-frame mRNA decay

(A) Heatmap comparing 5PSeq coverage at log2 ratio of − 17 nt (F1) and − 18 nt (F0) relative to the A-site of codons in YPD and CSM. The codons are ordered by

the differences of frameshift index between YPD and CSM (i.e., log2(F1/F0)YPD − log2(F1/F0)CSM). Codon stability coefficients (CSCs) and codon optimality from

Presnyak et al.10

(B) Scatterplot comparing frameshift index using HT-5PSeq and ribosome profiling. Spearman correlation is shown. Optimal codons and non-optimal codons are

represented in red and blue, respectively.

(C) Boxplot comparing the frameshift index among different combinations. The four combinations include (1) non-optimal codons at both 17 nt (F1) and − 18 nt

(F0), (2) non-optimal codons at F1 and optimal codons at F0, (3) optimal codons at F1 and non-optimal codons at F0, and (4) optimal codons at both F1 and F0.

Non-optimal codons at F1 (in frame) are represented by blue, and optimal codons at F1 are represented by red. Statistical analysis was performed using two-

sided Wilcoxon rank-sum tests. ***p < 2.2 × 10− 16.

(D) Metagene plot showing the frameshift index change after amino acid supplementation. Serine, arginine, or proline were added to reach the comparable

concentration as SC medium. Statistical analysis was performed using two-sided Wilcoxon rank-sum tests. ***p < 2.2 × 10− 16; ns, p = 0.58; Number of analyzed

genes are displayed.

(E) Schematic diagram of the frameshift reporter construct, showing the frameshift test sequence inserted upstream of RFP and GFP coding regions.

(F) Effect of frameshift frequency in YPD using the reporter system. Data were normalized to the mutated PRF (in frame) as a control.

(G) Effect of various amino acid supplementation on frameshift frequency using the reporter system. Each amino acid was supplemented at a concentration of

85.6 mg/L. Data were normalized to YPD controls. Statistical significance was determined by t test comparing CSM with individual amino acid supplements

(*p < 0.05, n = 4 biological replicates).
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test this, we performed the same analysis using ribosome

profiling data, which showed a similar trend (R = 0.69), albeit

with less sensitivity (Figures 4B and S4B; Tables S4A and

S4B). To investigate the impact of codon abundance at the

gene-specific level, we compared the frameshift index distribu-

tions between YPD and CSM (Figure S4C) and focused on genes

with high frameshift values (log2(F1/F0)YPD > 0.2 and log2(F1/

F0)CSM < − 0.2). We then calculated the Pearson correlation co-

efficient between the measured frameshift change (i.e., log2(F1/

F0)YPD − log2(F1/F0)CSM) and codon occurrence among these

genes (Figure S4D). Consistent with our expectations, we found

a positive correlation between a high frameshift index and the

abundance of non-optimal codons, while low frameshift values

were associated with a greater prevalence of optimal codons.

All these results agree with our previous observation that mRNAs

with lower codon optimality tend to display more frameshifts in

CSM conditions (Figures 2B and S2P). Finally, we reasoned

that in those conditions where a rare codon was in the A-site

and a − 1 ribosome frameshift could lead to the incorporation

of a common tRNA, the likelihood of frameshifting could

increase. However, the nature of the incorporated codons after

the frameshift played a minor role in this phenomenon

(Figure 4C).

To experimentally validate if the continued low amino acid

availability for cells growing exponentially in CSM was a key

driver of the observed phenomenon, we raised the final concen-

tration of selected amino acids in CSM to the one present in SC

media (see STAR Methods). We first increased the concentration

of amino acids whose codons are associated with a higher

frequency of frameshifts: arginine and proline (from 50 to

85.6 mg/L and 0 to 85.6 mg/L, respectively). Reassuringly,

both decreased the observed genome-wide frameshift events

with respect to CSM (p value < 2.2 × 10− 16) (Figures 4D and

S4). While increased serine levels did not alter global frameshift

patterns, they induced specific codon-level changes (Figures 4D

and S4F), with non-optimal codons showing stronger responses

to proline and arginine than to serine supplementation

(Figure S4F). To further validate the role of amino acid availability

in nutritionally induced frameshifts, we used an orthogonal

approach. We designed a dual fluorescent reporter (red fluores-

cent protein [RFP]-linker-green fluorescent protein [GFP]) to

measure frameshifting through GFP/RFP ratios (Figure 4E;

Table S4). As in our conditions, frameshift events are not

restricted to the linker region, and our system will detect any

frameshift preventing the expression of a functional GFP (i.e.,

frameshifts occurring in the linker or the GFP CDS). We tested

four linker sequences: a known PRF sequence,38 its mutated

version, and stretches of non-optimal codons (6xCCG proline

or 6xCGA arginine). In agreement with expectations,38,39 the

PRF derived from HIV-1 resulted in an increase of approximately

13% in frameshift frequency. While the linker sequences con-

taining proline and arginine stretches did not clearly induce

frameshift in rich YPD media (Figure 4F), all constructs exhibited

∼50% lower GFP/RFP ratios (increased frameshift) in nutrient-

limited conditions. This shows that in more than half of the trans-

lation events resulting in the production of a fully folded RFP,

translation does not continue up to the point of yielding a func-

tional GFP. Proline supplementation reduced frameshifting in

proline-rich linkers by 7%, while asparagine and methionine sup-

plementation broadly suppressed frameshifting across all con-

structs (Figure 4G). This shows that long-term limitation in amino

acid availability contributes to the appearance of genome-wide

frameshifts and accelerates mRNA degradation. However, it is

important to note that the reporter assay used does not directly

measure − 1 frameshifting and could be influenced by any other

factor altering the measured GFP/RFP ratios.

Long-term amino acid limitation rewires the cellular

proteome downstream of ribosome frameshifting

To further characterize the cellular state during conditions with

high frameshifting, we analyzed the proteome of cells grown in

CSM and YPD. We identified 487 proteins differentially ex-

pressed (Q value < 0.01), with 315 proteins significantly upregu-

lated in CSM (log2foldchange [FC] > 1) and 172 proteins signifi-

cantly downregulated (log2FC < − 1) (Figure 5A; Table S5).

Upregulated proteins involved mainly the proteasome complex,

amino acid metabolic process, and ergosterol biosynthetic pro-

cess (Figures 5B and S5A), supporting that cells grown in CSM

have a limited availability of amino acids in the media and there-

fore need to upregulate the amino acid biosynthesis. Downregu-

lated proteins were associated with components such as ribo-

somes, mitochondrial ribosomes, and nucleosomes, in

agreement with the slower growth rate in CSM. To further inves-

tigate the role of amino acid-dependent translation repression,40

we compared proteome changes between gcn1Δ and wild-type

strains in different media (Figures S5B–S5D; Table S5). The pro-

teome changes in CSM are likely influenced by multiple factors

such as transcription regulation or slow growth. To focus on

the downstream consequences of the frameshifts, we investi-

gated if the observed frameshifts, in addition to modulating

mRNA stability, also led to changes in protein abundance. We

compared protein abundance changes for those genes experi-

encing a relatively high level of frameshift (i.e., 588 genes where

log2(F1/F0)YPD > 0.2 and log2(F1/F0)CSM < − 0.2 and proteins are

detected [Q value < 0.01]) with those without frameshifts (362

genes where log2(F1/F0 YPD and CSM) > 0 ). We observed that pro-

tein abundance for genes with a higher frameshifting decreases

more drastically in CSM than the relative protein abundance for

those genes without frameshifts (Figure 5C). All this confirms

that, in addition to regulating the mRNA stability, this process

also leads to differential protein abundance.

Generalized nutrition-induced frameshifts are

evolutionarily conserved

Having characterized environmentally induced out-of-frame co-

translational mRNA decay in S. cerevisiae, we explored the

evolutionary conservation of this process. We reasoned those

unicellular organisms, which are more exposed to the environ-

ment and need to adapt faster to changing conditions, should

in principle be more susceptible to this phenomenon. As we

have recently shown that 5′-3′ co-translational mRNA decay

is also frequent in bacteria,9 we investigated this process in

Lactobacillus plantarum, where the 5′-3′ exonuclease RNase J

generates an in vivo toeprinting of the bacterial ribosome (14 nt

from the A-site). We reanalyzed our previous data9 where

L. plantarum was grown exponentially in rich (MRS broth) and
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transferred to low-nutrient media (0.5 × LB media, lysogeny

broth) for 15 min. Despite the short exposure to low-nutrient con-

ditions, we observed a significant increase for − 1 frameshift

(log2(F1/F0) < 0) events in 6% of genes, up from 2% (48 genes)

under rich conditions (Figure 6A; Table S6).

To further test the conservation of this phenomenon at longer

times, we investigated the 5′P degradome for Bacillus subtilis.

Specifically, we compared the co-translational ribosome protec-

tion pattern for B. subtilis exponentially growing in rich (LB) and in

poor media (minimal growth medium; see STAR Methods).

Reassuringly, we observed a similar pattern where only 83 genes

(3 % of measured) present evidence for − 1 frameshifts in rich

media, but this number increased to 336 genes (12%) in poor

media (Figure 6B; Table S6). This pattern also held true when

we checked B. subtilis during early stationary phase (after 24 h

growth in LB), where the number of genes dominated by − 1

frameshifts increased to 17% of measured genes (Figure S6A).

This shows that environmentally dependent out-of-frame co-

translational mRNA decay that we described in budding yeast

(Figure S4C) is also common in prokaryotes, even in the absence

of NMD. To investigate if the − 1 frameshift followed a similar

mechanism to the one studied in eukaryotes, we analyzed the

codon compositions of genes with varying susceptibility to fra-

meshifting. Our findings, similar to those in yeast (Figure S4C),

show a clear positive correlation between a high frameshift

change (i.e., log2(F1/F0)control − log2(F1/F0)treatment) and a high

occurrence of non-optimal codons among genes with frame-

shifts (log2(F1/F0)control > 0 and log2(F1/F0)treatment < 0) and vice

Figure 5. Long-term amino acid limitation rewires cellular proteome

(A) Volcano plot comparing protein abundance change between YPD and CSM in log2 fold change (x axis) versus the statistical significance (− log10Q). We used a

threshold of Q value < 0.01 and log2FC > 1 or log2FC < − 1 to define 315 upregulated and 172 downregulated proteins. Only proteins with at least 2 peptides were

considered for analysis (4,094 proteins in total).

(B) Gene set enrichment analysis (GSEA) for differential protein abundance ranking according to log2FC with ClusterProfiler using Fisher’s exact test with

p adjusted value < 0.05.

(C) Boxplot comparing protein abundance levels for genes that are also detected in 5PSeq. Genes categorized as all genes (N = 1,440), high frameshifted genes

(log2(F1/F0) YPD > 0.2 and log2(F1/F0) CSM < − 0.2, N = 496 genes), and not frameshifted genes (log2(F1/F0) YPD and CSM > 0, N = 319 genes). Statistical analysis is

performed using Wilcoxon rank-sum tests with p value < 0.05.

(D) Upregulated and downregulated proteins highlighting their protein-protein interactions. Analysis was performed using performed metascape v3.5. Only

statistically significant enrichments are shown (p adj < 0.05).
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Figure 6. Nutrition-induced frameshifts are evolutionarily conserved from bacteria to human

(A) Distribution of gene-specific frameshift index for L. plantarum growing in rich (MRS broth) and after transferring it to low-nutrient conditions (0.5× LB media) for

15 min (data obtained from Huch et al.9). A cumulative fraction plot with the frameshift index distribution is shown on the right. Statistical analysis is performed

using a Kolmogorov-Smirnov test with p value and D as the distance between control and treatment distributions.

(B) Same as (A), but for B. subtilis exponentially growing in rich media (LB) and in low-nutrient conditions (minimal growth medium) (see STAR Methods section).

(C) Pearson correlation between gene-specific frameshift index and codon usage. Only genes (log2(F1/F0) control > 0 and log2(F1/F0) treatment < 0) in L. plantarum

were used for calculating correlations. Codons defined as optimal (in green) or non-optimal (in red) codons according to codon adaptation index obtained from

Fuglsang.41

(D) Same as (C), but for B. subtilis. tRNA adaptation index was obtained from Perach et al.42

(legend continued on next page)
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versa (Figures 6C, 6D, S6B, and S6C; Table S6). This analysis

demonstrates that also in prokaryotes, mRNAs more prone to

displaying environmentally regulated frameshifts are enriched

in non-optimal codons.

Lastly, we expanded our analysis to explore whether low-

nutrient conditions induce generalized ribosome frameshifting

in human cells (Figures 6E–6H). We reanalyzed ribosome

profiling data from basal and luminal breast cancer cell lines after

48 h growth in glutamine-free medium.43 All analyzed cell lines

exhibited a significant increase in out-of-frame ribosome protec-

tion patterns (Figure S6D). This was particularly clear for Hs578t

(frameshift transcripts increased from 3,237 to 5,222 transcripts,

from 61.4% to 99% of detected transcripts) and T-47D (frame-

shift transcripts increased from 13 to 5,830, from 0.1% to 83%

of detected transcripts) (Figures 6E, 6F, and S6E). Although

out-of-frame ribosome protection appears to dominate at the

RNA level, a significant portion of each mRNA may still undergo

canonical translation, potentially supporting the slow growth

observed in glutamine-free conditions. Overall, our findings

show that environmentally induced ribosome frameshifting is a

conserved process from bacteria to humans.

NMD limits cellular growth in low-nutrient conditions

Having observed that accelerated global mRNA decay via ribo-

some frameshifting in response to low-nutrient conditions is gen-

eral in biology, we wondered in which conditions this would be

advantageous for the cells. Our data suggest that cells can repur-

pose the NMD degradation machinery to limit mRNA abundance.

We hypothesize that this should also restrict translation and thus

cell growth. To test this, we first compared the maximum growth

rate of exponentially growing cells with (wild type) and without

active NMD (upf1Δ) (Figure 7A; Table S7). The upf1Δ strain

showed significantly increased growth rates compared with wild

type in CSM media, suggesting that NMD plays a crucial role in re-

straining cell growth under nutrition limitation. Restricting cell

growth and conserving limiting resources during nutrient depriva-

tion is reminiscent of the bacterial stringent response that allows

cells to survive the metabolic stress and enter a dormancy state

in a reversible way.45 We hypothesized that growth limitation

caused by NMD-dependent mRNA decay could facilitate the

adaptation of eukaryotic cells to nutrient-limited conditions by

promoting entry into a quiescent state, thereby potentially

enhancing cell survival during stress. To test this hypothesis, we

assessed cell viability after prolonged starvation. We cultured

cells to stationary phase and monitored cell viability over 8 days

(Figure 7B; Table S7). Consistent with our hypothesis, wild-type

cells exhibited higher viability compared with upf1Δ. We propose

that this observed phenotype represents an adaptive strategy

whereby wild-type cells conserve energy and resources by slow-

ing down cell division in unfavorable environments.

DISCUSSION

Quality control pathways are essential to ensure that aberrant

mRNAs or proteins are cleared out from the cells. In general, qual-

ity control mechanisms are energetically expensive. Thus, check-

point mechanisms are in place to ensure that they only act on

aberrant molecules. Here, we have shown that mRNA quality con-

trol is repurposed to globally control mRNA stability during poor

nutrient conditions. Our work shows that ribosomes induce

massive genome-wide frameshift events by sensing limiting nutri-

tional conditions. We hypothesize that this could be a mechanism

for ribosomes to easily control mRNA life by facilitating its decay.

Here, we have examined the position of ribosomes associated

with mRNA decay and identified that about 77% of the

S. cerevisiae transcriptome is undergoing − 1 frameshift-associ-

ated decay under low-nutrition conditions. Although this phenom-

enon is obvious in poor media, a small fraction of genes also

shows preferential out-of-frame 5′P degradation signatures in

optimal growth conditions. This suggests that out-of-frame decay

plays a central role in gene expression and that, despite the known

ability of NMD to target canonical mRNAs,14–16 the magnitude of

its effect has likely been underestimated. We suspect that it is due

to the fact that previous work focused mainly on the bulk of trans-

lating ribosomes and ignored the subset of mRNAs undergoing

degradation that are transient and difficult to study. Importantly,

this environmentally induced out-of-frame decay was also evident

when investigating the mRNA turnover using RNA metabolic la-

beling. Using SLAM-seq,30 we estimated that NMD-associated

decay accounts for a minimum of 32% of the total decay rate in

low-nutrition conditions.

To understand how ribosomes induce genome-wide − 1

frameshifts in poor nutritional conditions, we investigated

the potential involvement of known PRF sites. − 1 PRF is often

(E) Same as (A), but for cell line Hs578t growing in rich media (DMEM medium) and in glutamine-deprived conditions. Data obtained from Loayza-Puch et al.43

(F) Same as (A), but for cell line T-47D.

(G) Same as (C), but for Hs578t. Optimal codons and non-optimal codons are shown in green and red, respectively, according to Forrest et al.44

(H) Same as (G), but for cell line T-47D.

A B

Figure 7. NMD limits cell proliferation in low-nutrient condition

(A) Maximum growth rates estimated from growth curve in wild-type (BY4741)

and NMD mutant (upf1Δ) both in YPD and CSM. Statistical analysis was per-

formed using two-sided t tests. **p = 0.008.

(B) Cell viability after stationary phase in CSM. Cells were grown in CSM for

3 days to reach stationary phase (day 3, time 0). Samples were then collected

every 48 h and plated for colony counting (n = 3 biological replicates).
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associated with the presence of a heptanucleotide slippery

sequence (X XXY YYZ) and a downstream secondary structure

element.46 The slippery sequence promotes ribosome slippage

into the alternative frame, enabling codon-anticodon interac-

tions in both frames, while the secondary structure element

serves to slow down the ribosome at that position. The more

optimistic estimates suggest that PRF sites exist in around

10% of all protein-coding genes across organisms.21,22 How-

ever, our work indicates that in our experimental conditions,

the bulk of the transcriptome experiences a frameshift indepen-

dent of known PRF sites (Figure S4; Table S4).

On the contrary, we highlight the role of low codon optimality in

the appearance of environmentally induced ribosome frame-

shifts. This suggests that the molecular mechanism underlying

the massive frameshifts that we report here could be related to

the hungry codon frameshifts that occur during ribosome trans-

location via tRNA slippage of the P-site while the A-site is

vacant.19,36,37 This frameshift mechanism can be coupled47 or

be independent36 of cis elements, enhancing its efficiency (i.e.,

secondary structure elements), and is conserved from bacteria

to mammals. Recent work has demonstrated that lower concen-

trations of charged tRNAGln-CUG enhance frameshifts associated

with the CAG-encoded polyglutamine repeats in huntingtin

(Htt).48 Similarly, it has been shown in mouse embryonic fibro-

blasts that amino acid deprivation can lead to selective uncharg-

ing of glutamine-specific tRNAs and an increase of frameshifts in

proteins containing polyglutamine tracks.49 While previous

studies focus on particular genes or tRNAs, our work demon-

strates how a similar phenomenon can rewire gene expression

by affecting the bulk of the transcriptome.

The model for environmentally induced frameshifts that we

propose here suggests that the action of NMD will be key to

regulating mRNA stability in those conditions (Figure 1D). Inter-

estingly, NMD has been previously shown to preferentially target

transcripts with lower codon optimality.28 In fact, Celik et al.

showed that NMD substrates tend to have a significantly higher

ratio of out-of-frame reads as measured by ribosome profiling,

something that further supports our working model. Here, we

show that NMD targeting through ribosome frameshifting is

modulated by nutritional conditions. Although we describe a

nutrition-induced frameshift mechanism, our work supports a

general strategy in which NMD can be used to regulate mRNA

abundance, as previously proposed by the Dinman lab.50

Furthermore, we show that the correlation between low codon

optimality and frameshift-associated decay is maintained in bac-

teria that lack canonical NMD.51 This suggests that not only NMD

but also general mRNA degradation and quality control mecha-

nisms are used to transfer environmental information into mRNA

decay signatures via ribosome frameshifting in both eukaryotes

and prokaryotes. Interestingly, the mechanism that we report

here is different from the previously reported role of ribosome

collisions in signal transduction.52 In fact, in our conditions, we

do not observe an increase but rather a decrease of disomes

(Figure S1D). We hypothesize that, when low-nutrition conditions

are maintained over time, both translation initiation and elonga-

tion are limited (Figures S1D and S1E). This would reduce the

likelihood of ribosome collisions but not affect the frameshift-

mediated mechanism that we propose here.

In addition to mRNA degradation, the massive frameshifting

we describe can be expected to affect the proteome. Decreasing

the abundance of available mRNA templates for translation

directly affects protein synthesis. As expected, we observe

that genes with a higher level of frameshifts present a lower rela-

tive protein abundance than those with lower frameshifts

(Figure 5C). Furthermore, using a reporter system, we show

that this mechanism leads to a dramatic decrease in ribosome

efficiency, where less than 50% of the translation events lead

to a full protein synthesis (Figure 4G). Our observations are

congruent with previous work investigating alternative mRNA

quality control pathways. For example, it has previously been

demonstrated that ribosome stalling at non-optimal codons

can reduce protein synthesis rates by increasing mRNA decay

rates via NGD.11 As we observe a decrease in ribosome colli-

sions during continued growth in low nutrients (Figures S1D

and S1E), our work suggests that frameshifts and not only ribo-

some collisions can transduce nutritional information into gene

expression regulation. The regulation of protein abundance via

frameshifting and increased mRNA decay further supports the

role of ribosomes as nutritional sensors for dynamic regulation

of a functional and balanced proteome. Our data showing that

NMD can restrict cellular growth in low-nutrient conditions sug-

gest that in eukaryotes, nutritional sensing by ribosomes fol-

lowed by NMD decay could exert a function similar to the strin-

gent response in bacteria. Namely, allowing cells to conserve

limiting resources during nutrient deprivation, survive the meta-

bolic stress, and enter a dormancy state in a reversible way.45

Altogether, our work suggests that the translation process can

act as a sensor for the dynamic regulation of a functional and

balanced proteome by directly regulating mRNA life. Increased

mRNA decay under poor nutritional conditions will limit energy

used for translation. This raises the possibility that frameshifting

may be beneficial for cells also in terms of releasing ribosomes

and facilitating the degradation of peptides for subsequent recy-

cling in response to low-nutrition conditions. Finally, faster

mRNA turnover should also facilitate rewiring of the transcrip-

tome and a swifter adaptation to new environments, something

especially beneficial for unicellular organisms.

Limitations of the study

We have shown that environmentally induced frameshift is gen-

eral in biology. Although our work demonstrates that the activa-

tion of NMD is a significant downstream consequence of these

frameshifts, our results also highlight a complex interplay among

various RNA degradation pathways, warranting further investi-

gation. This is particularly important when considering that

RNA degradation can be influenced by environmental changes.6

In addition to the general response regarding mRNA stability,

frameshift events during translation elongation can be expected

to generate aberrant proteins with canonical N-terminal poly-

peptide sequences and altered C-terminal regions.53 Although

those events are expected to be very rare, the presence of pro-

teins with altered C-terminal regions could lead to the increase of

protein aggregates or other proteostasis problems, as sug-

gested by our reporter system. Additional research will be

required to determine the potential impact on cell physiology

of the putatively generated frameshifted peptides. Our work
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also proposes a model where NMD limits cell growth in low-nutri-

tion conditions. This raises the appealing possibility that ribo-

some frameshifting followed by NMD decay could facilitate the

entry into quiescence for eukaryotic cells. We hypothesize that

in eukaryotes, NMD could exert an analogous function to the

type II RelE/RelB toxin-antitoxin system in bacteria that leads

to a generalized mRNA degradation in response to low-nutrition

conditions.54,55 This mechanism could be relevant to under-

standing how eukaryotic cells could escape antifungal treatment

or even chemotherapy. However, additional work would be

required to explore this hypothesis.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Bacillus subtilis 168trpC2 Huch, et.al,9 N/A

Chemicals, peptides, and recombinant proteins

Acid-Phenol:Chloroform, pH 4.5 (with IAA, 125:24:1) Thermo Fisher Scientific AM9722

dNTP set, 100mM solution Thermo Fisher Scientific R0181

Phenol Solution. Saturated with 0.1M citrate buffer,

pH 4.3 ± 0.2

Sigma-Aldrich P4682

Chloroform:isoamyl alcohol 24:1 Sigma-Aldrich C0549

Nuclease-free water, not DEPC treated Thermo Fisher Scientific AM9937

Ribolock RNase inhibitor 40 000U/mL Thermo Fisher Scientific EO0382

Glycoblue coprecipitant (15mg/mL) Thermo Fisher Scientific AM9515

T4 RNA ligase 1 NEB M0204L

SuperScript™ II Reverse Transcriptase Thermo Fisher Scientific 18064071

Phusion® High-Fidelity PCR Master Mix NEB M0531S

AMPure XP Beckman Coulter A63881

RNAClean XP Beckman Coulter A63987

Glass beads, acid-washed Sigma-Aldrich G8772

Sodium Acetate buffer solution, pH 5.3 Sigma-Aldrich S7899

Duplex-specific nuclease Evrogen EA002

COMPLETE CSM MIXTURE Formedium DCS0019

SC-URA MP Biomedicals 114410622-CF

SC-HIS MP Biomedicals 114410222

Uracil MP Biomedicals 02103204-CF

iron ammonium citrate Fisher Scientific 0971350G

Tryptophan Sigma 93659

Arginine Sigma A1270000

Proline Sigma 81709

Serine Sigma 84959

Alanine Sigma A7627

Histidine Sigma H0750000

Lysine Sigma L5501

Methionine Sigma 64319

Leucine Sigma L8912

Asparagine Sigma A0884

RNase I Ambion AM2294

SuperaseIn Thermo Fisher AM2696

15 % TBE-urea gel Thermo Scientific EC6885BOX

4-thiouracil Sigma 440736

Cycloheximide Sigma C7698

MES Sigma M3671-50G

T4 PNK NEB M0201S

Superscript II Fisher Scientific 18064071

Critical commercial assays

Turbo Dnase kit Thermo Fisher Scientific AM1907

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

High-sensitivity DNA kit Agilent 5067-4626

Qubit™ dsDNA HS Assay Kit Thermo Fisher Scientific Q32854

Qubit™ RNA HS assay kit Thermo Fisher Scientific Q32852

Qubit™ RNA Nano 6000 kit Thermo Fisher Scientific Q33221

RiboPools Depletion Kit siTOOLs Biotech N/A

Small RNA Sample Preparation Kit NEXTFLEX NOVA-5132-32

Ultra™ II Directional RNA Library Prep Kit NEB E7760S

Deposited data

The raw and processed sequencing data for HT5Pseq This study GSE230202

The raw and processed sequencing data for SLAM-Seq This study GSE230204

The raw and processed sequencing data for Ribosome profiling This study GSE230203

Proteomics This study PXD042854

Experimental models: Organisms/strains

Saccharomyces cerevisiae strains:BY4741:(MATa his3Δ1

leu2Δ0 met15Δ0 ura3Δ0)

NA NA

Saccharomyces cerevisiae strains:upf1Δ(MATa his3Δ1

leu2Δ0 met15Δ0 ura3Δ0 upf1Δ)

NA NA

Saccharomyces cerevisiae strains: DCP2-7::KanR; his3̂1

leu2̂0 ura3̂0 met15̂0

NA NA

Saccharomyces cerevisiae strains: dhh1Δ(MATa his3Δ1

leu2Δ0 met15Δ0 ura3Δ0 dhh1Δ)

NA NA

Saccharomyces cerevisiae strains: gcn1Δ(MATa his3Δ1

leu2Δ0 met15Δ0 ura3Δ0 gcn1Δ)

NA NA

Saccharomyces cerevisiae strains: gcn1Δupf1Δ(MATa

his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 gcn1Δupf1Δ)

This study NA

Saccharomyces cerevisiae strains: BY4741:: p416TEF-RFP-

PRF-GFP (see Table S4)

This study NA

Saccharomyces cerevisiae strains: BY4741::

p416TEF-RFP-mutated_PRF-GFP(see Table S4)

This study NA

Saccharomyces cerevisiae strains: BY4741::

p416TEF-RFP-6xProline-GFP(see Table S4)

This study N/A

Saccharomyces cerevisiae strains: BY4741::

p416TEF-RFP-6x Arginine-GFP(see Table S4)

This study N/A

Oligonucleotides

Primer for frameshift reporter, see Table S4 This study N/A

Recombinant DNA

Plasmid: p416TEF Li et al.6 N/A

Software and algorithms

Fivepseq package 1.2.0 Nersisyan et al.23 https://github.com/lilit-nersisyan/fivepseq

bcl2fastq v2.20.0 Illumina https://emea.support.illumina.com/

sequencing/sequencing_software/

bcl2fastq-conversion-software.html

Cutadapt v1.16 GitHub https://github.com/marcelm/cutadapt/

UMI-tools Smith et al.56 https://github.com/CGATOxford/UMI-tools

STAR v2.7.0 Dobin et al.57 https://github.com/alexdobin/STAR

IGV Thorvaldsdóttir et al.58 https://igv.org

RStudio v4.0.4 RStudio, Inc., Boston, MA N/A

slamdunk v0.4.3 nfcore pipeline https://nf-co.re/slamseq

riboSeqR RStudio, Inc., Boston, MA N/A

metascape v3.5 Zhou et al.59 https://metascape.org/gp/index.html#/

main/step1
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Strains and growth conditions

All yeast experiments were performed using Saccharomyces cerevisiae strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) if not

stated otherwise. S. cerevisiae was grown to mid exponential phase (OD600∼0.6) at 30 ◦C with rotati using YPD (1% yeast extract, 2%

peptone, 2% glucose), Complete Supplement Mixture (CSM from Formedium™) or Synthetic Complete (SC from MP Biomedicals™)

medium (composition details seen in Table S1). For bacteria, B. subtilis (168 trpC2) was collected after reaching the mid-exponential

phase (OD600∼0.6) in LB or in Minimal growth medium.

METHOD DETAILS

To measure the growth curve, cells were initially pre-cultivated at 30◦C with rotation overnight until reaching the mid-exponential

phase (OD600∼0.6). Subsequently, the cells were diluted to an OD600 of approximately 0.01 in preparation for measurement using

a plate reader. OD600 was measured every 10 minutes with 5 minutes of pre-shaking before each measurement. This process

continued for a total duration of 40 hours.

Bacillus subtilis 168 (trpC2) strain was pre-cultivated at 37◦C with rotation in LB and minimal growth medium (per 50 ml: 5X minimal

salts solution,10 ml; glucose (50% (w/v)), 0.5 ml; casamino acids (2% (w/v)), 0.5 ml; tryptophan (10 mg/ml), 0.1 ml; iron ammonium

citrate (2.2 mg/ml), 0.05 ml, deionized water, 39 ml) with tryptophan supplementation at OD600 < 0.8. Cultures were diluted to

OD600∼0.05 and collected until reaching the mid-exponential phase (OD600∼0.6).

For stress treatments in S. cerevisiae, we grew the cells to exponential phase, then split them into different flasks for different stress

treatments. For heat shock, cells were exposed to 42◦C for 30 minutes. For oxidative stress, cells were treated with 0.2 mM H2O2 for

either 5 or 30 minutes. To induce amino acid deprivation, cells were quickly collected by centrifugation and then washed with CSM

medium lacking amino acids. The cells were then incubated for 30 minutes (starting from the time they were first exposed to the

amino acid deprived CSM medium). For glucose deprivation, mid exponential S.cerevisiae cultures at OD600 ∼0.8 were spun

down, washed twice, and resuspended in pre-warmed YP (lacking glucose) and then grown at 30◦C for 5 minutes and 15 minutes

as time points. To induce ribosome collisions in S. cerevisiae, we grew the cells to exponential phase in SC medium and then transfer

them to SC media without histidine medium for 30 minutes. For addition of single amino acid experiment, arginine, proline, or serine

were individually added as single amino acids to reach the comparable concentration as present in SC medium. Specifically, we

increased the concentration of each amino acid from 50 to 85.6 mg/L for arginine, and from 0 to 85.6 mg/L in the case of proline

and serine. S. cerevisiae was inoculated into each medium overnight as precultures. Cultures were diluted to OD600∼0.05 and

collected until reaching the mid-exponential phase (OD600∼0.6) at 30◦C.

All yeast and bacteria samples prepared for HT-5Pseq libraries were collected through centrifugation and preserved by freezing

them in liquid nitrogen. Total RNA was isolated by the standard phenol: chloroform method and DNA was removed by DNase I treat-

ment. RNA concentration was measured with Qubit and RNA quality was checked by 1.2% agarose gel or on a BioAnalyzer using an

RNA Nano 6000 chip (Agilent Technologies).

For cell viability analysis after stationary phase in CSM, cells were grown in CSM medium for 3 days to reach stationary phase

(designated as time 0). Samples were collected every 48 hours and plated on CSM agar plates for colony counting. Cell viability

was quantified as colony-forming units per milliliter (CFU/mL).

HT-5Pseq library preparation

HT-5Pseq libraries were prepared following a previously established protocol24 if not stated otherwise. Briefly, 6 μg of total RNA was

subjected to DNase treatment, and the resulting DNA-free total RNA was ligated with an RNA oligo containing UMI (rP5_RND oligo).

The ligated RNA was reverse transcribed using Illumina PE2 compatible oligos with random hexamers and oligo-dT as primers. To

eliminate RNA in RNA/DNA hybrids, samples were treated with sodium hydroxide at 65◦C for 20 minutes. Ribosomal RNAs were

depleted using DSN (Duplex-specific nuclease) and a mixture of ribosomal DNA probes. To deplete Ribosomal RNAs in B. subtilis

168 (trpC2), we used the in-house rRNA DNA oligo depletion mixes described previously.9 Finally, the samples were amplified by

PCR and sequenced on an Illumina NextSeq 2000 instrument using an average of 45 cycles for read1.

HT-5Pseq data processing and analysis

HT-5Pseq reads were demultiplexed using bcl2fastq (v2) and the 3’sequencing adapter was trimmed using cutadapt V4.0. After that,

the 8-nt random barcodes located on the 5′ ends of reads were extracted and added to the fastq file header as UMIs using UMI-

tools56. Reads were mapped to the reference genome (SGD R64-1-1 for S. cerevisiae and GCF_000009045.1_ASM904v1 for

B. subtilis) using star/2.7.060 with the parameter –alignEndsType Extend5pOfRead1 to exclude soft-clipped bases on the 5′ end.

Duplicated 5′ ends of read introduced by PCR during library preparation were removed based on random barcodes sequences using

UMI-tools. Analysis of 5′ end positions was performed using the fivepseq package23 version 1.2.0. This included analysis of the rela-

tive positions of the 5’ ends of the mRNA reads with respect to the start codon, stop codon, and codon-specific pausing. Specifically,

the unique 5′mRNA reads in biological samples were averaged and normalized to reads per million (rpm). The relative position of

5′ mRNA reads at each codon were summed up and used for all additional analyses. Metagene plots for frame (F0, F1 or F2)
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preference are shown as the average sum (in rpm) of each frame over a sliding window of 20 codons, for +/- 100 bp from the start and

end, and for +/- 300 bp from the middle of CDS for each gene. Fivepseq output files will be deposited at the SciLifeLab Data repos-

itory. Genomic tracts from BAM files were visualized using IGV.58

To calculate gene-specific frameshift index, we summed the reads for each frame of every transcript after excluding the first and

last 50 nt. Transcripts with greater than 20 reads per million (rpm) were considered for subsequent analysis in each biological repli-

cate. The frameshift index of each transcript was determined by dividing the number of in-frame reads (F1) by out-of-frame reads (F0),

with the result expressed in logarithmic scale. Only transcripts that were present in all biological replicates were included in the calcu-

lation of frameshift index. Similarly, the frameshift index for each codon was calculated by dividing the in-frame reads at position -17

(F1) by the out-of-frame reads at position -18 (F0), with the result expressed in logarithmic scale. High frameshift genes are defined

as: log2(F1/F0) YPD > 0.2 and log2(F1/F0) CSM < -0.2) (according to mean value in each distribution) and non-frameshift genes are

defined as: log2(F1/F0) YPD, CSM > 0).

Disomes were detected by the fivepseq package23 in the queue statistics output using default parameters. For each gene, fivepseq

first determines windows of periodicity 30 nt +/- 3.6 nt that have a Fast Fourier transform (FFT) signal of more than 20. The identified

windows are then continuously extended and/or merged to bigger windows until the periodicity signal is no longer increasing. The

merged windows are then sliced to a range between the two tallest peaks. Those peaks are determined based on the p value of a

count falling withing a Poisson distribution with a lambda corresponding to the average count in the given range. Counts with a p

value less than 0.001 are considered peaks. In the context of FFT signals, a periodicity of 30 nt ± 3.6 nt indicates the occurrence

of two collided ribosomes (disomes). This periodicity indicates the presence of 2 adjacent protection sites separated exactly

30 nt (that is the distance covered by a full ribosome). Similarly, a length of 60 nt ± 3.6 nt corresponds to the presence of three ribo-

somes, and this pattern continues for subsequent lengths.

To determine the proportion of the transcriptome degraded through out-of-frame co-translational decay in CSM, we used a simu-

lation in which we mixed the codon protection index,8 defined as log2(F1/((F2+F0)/2)) from two samples at different ratios. Specif-

ically, we combined the in-frame decay data from YPD (assuming a 100% of in-frame degradation) with simulated out-of-frame

decay data (by shifting the YPD data by -1nt to generate a theoretical 100% out-of-frame decay). The use of the codon protection

index instead of the frameshift index in this context is based on the fact that the YPD data shifted by -1nt, resulting in a change in all

frames to the new corresponding -1nt frames. By using the codon protection index, we ensure that all frame changes are taken into

consideration and properly accounted for in the analysis. We mixed both samples at different ratios (increasing 10% out-of-frame

decay at each mixing) to estimate the median of each codon protection index distribution. Each mixing process was iterated

1000 times to obtain 95% confidence intervals. Finally, we used the generated distribution of codon protection indexes to estimate

the percentage of out-of-frame co-translational decay.

To analyse whether the frameshift is induced by the programmed ribosomal frameshift slippery motif, we utilized putative PRF sites

downloaded from PRFdb22 (Data S4). 5PSeq reads were aligned to the annotated slippery sequences motifs with an extension of

99 bp both upstream and downstream. We calculated the coverage for each frame by applying a sliding window of 3 nucleotides

and taking the average. Finally, we plotted the calculated proportion for each frame.

To analyse frameshift in B. subtilis 168 trpC2 at early stationary phase and L. plantarum in low nutrients, we obtained the

dataset from Huch et al.9 with GEO accession number: GSE153497. The calculation of frameshift index for each gene was performed

as described above, with the only modifications of using in-frame reads at position -14 (F1) and the out-of-frame reads at position -15

(F0) due to the difference of ribosomal fragment protection size between yeast and bacteria. Transcripts with greater than 30 reads

and 10 reads per million (rpm) were considered for subsequent analysis in each biological replicate.

Gene-specific frameshift index for B. subtilis 168 and L. plantarum were computed as follows: log2(F1/F0)control > 0 and

log2(F1/F0) treatment < 0. Statistical analysis for frameshift index distribution between two populations was performed with a

Kolmogorov–Smirnov test.

To infer codon optimality in B. subtilis 168 and L. plantarum, we obtained tRNA adaptation index and Codon adaptation index from

Perach etal.42 and Fuglsang41 respectively.

All clustering analyses and heatmap were performed by k-means using Complexheatmap packages from R and Bioconductor.60

Gene Ontology enrichment analysis was performed with ClusterProfiler61 using Fisher’s exact test with p adjusted value < 0.05. Data-

sets for S. cerevisiae tRNA adaptation index, mRNA codon stability index, translation efficiency were obtained from Carneiro et al.,62

gene expression level, mRNA half-life, 3’/5’ UTR length and GC contents were obtained from Xu etal.,63 Presnyak etal.,10 Pelechano

etal.64 and Latorre etal.65 respectively.

SLAM-seq metabolic labeling

Metabolic labelling of newly synthesized RNA molecules was performed as previously described.30,66,67 Briefly, 4-Thiouracil (4tU,

Sigma) was dissolved in NaOH (83 mM) used for labelling RNA molecules. The final concentration of 4tU for YPD and CSM was

5 mM66 and 0.2 mM,67 respectively. MES buffer (pH 5.9) with a final concentration of 10 mM was prepared with media to avoid

the pH change due to 4tU addition. Wildtype (BY4741), NMD mutant (upf1Δ), dcp2-7Δ, dhh1Δ, gcn1Δ, gcn1upf1Δ were used for these

experiments. To perform pulse and chase experiment, RNA molecules were labelled with 4tU (prepared as above) for 1h during cell

ll
OPEN ACCESSArticle

Molecular Cell 85, 2017–2031.e1–e7, May 15, 2025 e4



growth at mid exponential phase. Cells were washed and resuspended in prewarmed medium (YPD with MES buffer or CSM with

MES buffer) without 4tU and time points were collected at 0, 15 and 30 mins by centrifugation and snap frozen in liquid nitrogen

immediately.

To perform thiol(SH)-linked alkylation, the reaction including 5 μg of RNA was incubated with iodoacetamide (final concentration at

0.5 M) at 50◦C for 15 minutes.30 The reaction was stopped by adding 0.1 M DTT (final concentration at 20 mM). RNA was then precip-

itated by 3 M of sodium acetate and pure ethanol. Purified RNA was subjected for ribosomal RNA depletion using RiboPools Deple-

tion Kit (siTOOLs Biotech). Libraries were prepared by Ultra™ II Directional RNA Library Prep Kit for Illumina® following manufac-

turer’s instructions. Sequencing was performed on Illumina Nextseq 2000 sequencer with single end read length for 150 cycles.

SLAM-seq data analysis

SLAM-Seq data analysed was performed with slamdunk (v0.4.3) provided by nfcore pipeline(v1.0.0)(https://nf-co.re/slamseq).

Firstly, fastq compressed files (fastq.gz) were converted to reverse complementary reads method and feed into slamdunk nf core

pipeline as stranded libraries were prepared with dUTP. Adapter contamination and low-quality bases were trimmed using

TrimGalore(v 0.6.4) (trim length 27bp). Slamdunk was used for mapping, quantifying nucleotide-conversions and collapsing quanti-

fications on gene level. At least 1 T>C conversions per read was regarded as a confident call for labelled RNA reads. Genes with less

than 20 reads were filter out. SNP masking was employed to distinguish filter T>C SNPs from converted nucleotides. T > C reads

counts in each library were normalized to total library read counts. Normalized T > C reads counts across time were fitted to non-

linear decay model equations with R function nls to calculate degradation rate for each condition:

y ∼ C ∗ exp(-a ∗ tm)

where normalized T > C reads counts fitted to y, with chasing time points from 0, 15 and 30 mins being fitted to tm. The model

was used to estimate parameters C and a, from which the RNA half-life was calculated as log2(a). Degradation rate was calculated

as 60 * ln(2) / t1/2 (t1/2 is half-time of gene). To show the percentage of labelled read across time, T>C conversions were normalized to

chase-onset (t0). Only samples with more than 1,000 detected genes and reliable RNA degradation rate estimates were retained for

subsequent analysis. Environmental decay-sensitive genes are defined according to degradation rate in wildtype and mutant: degra-

dation rate (wt/mutantΔ)CSM > 1.2 and (wt/ mutantΔ)YPD < 0.8).

Ribosome profiling library preparation

Yeast overnight cultures were diluted to OD600 0.05 in 1000 ml CSM medium and grown at 30 ◦C. All cells were collected by vacuum

filtration and freezing by liquid nitrogen. To perform lysis, 200 μl glass beads and 500 μl of freshly prepared lysis buffer (composed of

20 mM Tris pH 8.0, 140 mM KCl, 1.5 mM MgCl2, 1% Triton X-100, 0.1 mg/mL cycloheximide, 2 mM DTT, and an EDTA-free protease

inhibitor tablet) were added. Cells were pulverized by vortexing using a Multimixer for 2 minutes, followed by a 5 minute incubation on

ice. This process was repeated three times to maximize the yield of RNA. After adding an additional 200 μl of lysis buffer to compen-

sate for volume loss, the lysate was then centrifuged at 3000 g for 5 minutes at 4◦C. After quantifying RNA concentration, 200 μg RNA

was incubated with 2 μl 100 U/μl RNase I (Ambion) for 1 h at 22 ◦C with gentle agitation (700 rpm) and the reaction was inhibited by the

addition of 15 μl SuperaseIn (Thermo Fisher). Another 50 μg RNA from the lysate was kept on ice undigested to use for polysome

profiles. Linear sucrose gradient centrifugation and fractionation were then performed as described previously,68 except we modified

the 10X sucrose gradient buffer (consisting of 0.5 M Tris-Acetate pH 7.0, 0.5 M NH4Cl, and 0.12 M MgCl2) to make it suitable for yeast

cells. RNA was extracted in 20 mM Tris-HCl (pH 7.5), 300 mM sodium acetate, 2 mM EDTA, 0.25% SDS overnight at room temper-

ature with rotating and then precipitated. Monosome fraction RNA was isolated by the standard phenol: chloroform method. RNA

footprints were isolated at 20-35 nucleotide size using 15% TBE-urea gel. To further ligate 3’ and 5’ adapters, RNA samples were

treated with PNK to obtain 5’ phosphorylated and 3’ hydroxylated ends, followed by ribosomal RNA depletion by using the

RiboPools Depletion Kit (siTOOLs Biotech). For total RNA, ribosomal RNA was depleted (as described above) followed by fragmen-

tation with magnesium at 80◦C for 5 mins. RNA samples were treated with PNK to obtain 3’ hydroxylated ends for further 3’ ligation.

Monosome RNA footprints and total RNA were prepared using a Small RNA Sample Preparation Kit for NEXTFLEX® following manu-

facture instructions. Sequencing was performed with single end setting, read length 47 bp on Illumina Nextseq 2000 sequencer.

Ribosome profiling data analysis

Ribosome profiling data was trimmed using cutadapt and the following parameters: -a TGGAATTCTCGGGTGCCAAGG. To keep the

minimum length, the cutoff set to 10 nt. After that the 4-nt random barcodes from both 5′ and 3’ ends of reads were extracted as UMIs.

Ribo-seq reads and RNA seq reads were selected at 28-32 nt and 20-70 nt, respectively. Reads were mapped to reference genome

(SGD R64-1-1) using star/2.7.0. Analysis of 5′ end positions was performed using Fivepseq package as described above. The dis-

tribution of frames with respect to the size of the ribosome-protected fragments were determined using the riboSeqR package

in R (v4.0.4).

Ribosome profiling data for amino acid deprivation in human cell lines was obtained from Loayza-Puch et al.43 with GEO accession

number: GSE59821. Ribosome profiling data were adapter trimmed using cutadapt by the following parameters: -a AAAAAAAAAA

–minimum-length=13. Reads were mapped to reference genome (GRCh38) using star/2.7.0. Analysis of 5′ ends positions was per-

formed using Fivepseq package as described above. The calculation of frameshift index for each gene were described above, with
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modifications as follows: 1) using in-frame reads at position -17 (F1) and the out-of-frame reads at position -18 (F0) according to hu-

man ribosome protection fragment size. 2) Only genes whose length was divisible by 3 and whose coding sequence (CDS) started

with ATG and ended with either TAG, TGA, or TAA stop codons were considered. Codon optimality data was downloaded from Forr-

est etal.44

Dual-fluorescent frameshifting assays

To construct the frameshift reporters, we designed test sequences containing programmed frameshifting regions (PRF), mutated

PRF sites, and stretches of proline and arginine codons. These sequences were inserted between Red Fluorescent Protein (RFP)

at the 3’ end and Green Fluorescent Protein (GFP) at the 5’ end, synthesized with SpeI and XhoI restriction sites at their 5’ and 3’

ends, respectively (sequences provided in Table S4). The four resulting constructs were digested with SpeI and XhoI, cloned into

the p416-TEF plasmid, and transformed into BY4741 yeast cells. After isolating individual colonies, successful integration was

confirmed by Sanger sequencing (primers listed in Table S4). For fluorescence measurements, cells were grown to exponential

phase in an orbital shaker with appropriate medium, and cells grown in YPD were harvested and washed with PBS. Fluorescent ac-

tivity was measured using a BMG plate reader according to manufacturer’s specifications. For analysis, the background subtracted

GFP signal was divided by RFP signal, and this ratio was normalized to the GFP/RFP ratio of the mutated PRF reporter to determine

the frameshift rate.

To assess the impact of amino acid supplementation on frameshifting efficiency, we individually supplemented the growth medium

with nine different amino acids: arginine, alanine, proline, histidine, leucine, lysine, serine, asparagine, and methionine. Each amino

acid was supplemented at a concentration of 85.6 mg/L. The effect of amino acid supplementation on frameshifting was quantified by

comparing GFP/RFP ratios between amino acid-treated and untreated samples, with measurements performed in 4 replicates for

each condition.

Sample preparation for proteomics analysis

Yeast cells grown in YPD or CSM media were quenched by adding pure trichloroacetic acid (Sigma Aldrich) to the yeast cultures to a

final concentration of 10% (v/v) and incubating for 10 min on ice. Samples were then centrifuged at 2500 g for 5 min at 4◦C and the

supernatant was discarded. The pellet was washed twice with 10 ml cold acetone before being transferred into a new tube. After an

additional centrifugation step at 3000 g for 5 min at 4◦C, the acetone was removed and the pellet was further processed for protein

extraction.

Cell lysis and protein extraction for proteomics analysis

To lyse the cells, cell pellets were first mixed with glass beads (Sigma Aldrich) and 500 μl of lysis buffer containing 8M urea, 50 mM

ammonium bicarbonate and 5 mM EDTA (pH 8). The mixture was then transferred to a FastPrep-24TM 5G Instrument (MP Biomed-

icals) where cells were disrupted at 4◦C by 4 rounds of bead-beating at 30 seconds with 120 seconds pause between the runs. Sam-

ples were then centrifuged for 10 min at 21’000 x g to remove cell debris and the supernatants were transferred into a new tube. The

protein concentration was determined using the bicinchoninic acid Protein Assay Kit (Thermo Scientific) following the manufacturer’s

protocol.

In-solution protein digestion for proteomics analysis

100 μg of protein extracts were subjected to digestion. Samples were vortexed and sonicated for 5 min. In the first step, dithiothreitol

(Sigma Aldrich) was added to a final concentration of 5 mM and incubated for 30 min at 37 ◦C to reduce the disulfide bridges followed

by the alkylation of free cysteine residues with iodoacetamide (Sigma Aldrich) at 40 mM final concentration (30 min at 25◦C in the

dark). Samples were pre-digested with lysyl endopeptidase (Wako Chemicals) at an enzyme substrate ratio of 1:100 for 4 h at

37◦C and then diluted 1:5 with freshly prepared 0.1 M ammonium bicarbonate to reduce urea concentration to 1.6M. Sequencing

grade trypsin (Promega) was added at an enzyme substrate ratio of 1:100 and digested at 37◦C for 16h. The digestion was stopped

by adding formic acid (Sigma Aldrich) to a final concentration of 2%. The digested samples were loaded onto SepPak C18 columns

(Waters) that were previously primed with 100% methanol, washed with 80% acetonitrile (ACN, Sigma Aldrich), 0.1% FA and equil-

ibrated 3 times with a 1% ACN, 0.1% FA solution. The flow-through was loaded once more onto the columns and the peptides bound

to C18 resins were afterwards washed 3 times with a 1% ACN, 0.1% FA solution and eluted twice with 300 μl 50% ACN, 0.1% FA. The

elution was dried down in a vacuum centrifuge and peptides were resuspended in a 3% ACN, 0.1% FA solution to a concentration of

1 mg/ml before liquid chromatography mass spectrometry (LC-MS) analysis.

Liquid chromatography-mass spectrometry for proteomics analysis

Peptide samples were analysed in a Data-Independent Acquisition mode (DIA) with an Orbitrap Exploris 480 mass spectrometer

(Thermo Fisher Scientific) equipped with a nano-electrospray ion source and a nano-flow LC system (Easy-nLC 1200, Thermo Fisher

Scientific). Peptides were separated with fused silica capillary column (25 or 50 cm) with inner diameter of 75μm packed in house with

1.9 μm C18 beads (Dr. Maisch Reprosil-Pur 120). For LC fractionation, buffer A was 3% ACN and 0.1% FA and buffer B was 0.1% FA

acid in 90% ACN and the peptides were separated by 2 h non-linear gradient at a flow rate of 250 nl/min with increasing volumes of

buffer B mixed into buffer A. The DIA-MS acquisition method consisted of a survey MS1 scan from 350 to 1650 m/z at a resolution of
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120,000 followed by the acquisition of DIA isolation windows. A total of 40 variable-width DIA segments were acquired at a resolution

of 30,000. The DIA isolation setup included a 0.5 m/z overlap between windows.

Quantitative proteomics data analysis

DIA-MS measurements were analysed with Spectronaut 16 (Biognosys AG) using direct searches. In brief, retention time prediction

type was set to dynamic iRT (adapted variable iRT extraction width for varying iRT precision during the gradient) and correction factor

for window 1. Mass calibration was set to local mass calibration. The false discovery rate (FDR) was set to 1% at both the peptide

precursor and protein level. Digestion enzyme specificity was set to Trypsin/P and specific. Search criteria included carbamidome-

thylation of cysteine as a fixed modification, as well as oxidation of methionine and acetylation (protein N-terminus) as variable mod-

ifications. Up to 2 missed cleavages were allowed. The DIA-MS files were searched against the Saccharomyces cerevisiae proteome

(UniProt version 2021-04-02). Differentially regulated proteins were determined with an unpaired t-test statistic with correction for

multiple testing with the Storey method correction. After quantification of protein abundance, the proteins that were upregulated

and downregulated were identified based on log2 (CSM/YPD) values >1 and < -1, respectively. Additionally, a Q-value of less

than 0.01 was used as a criterion for selection. Volcano plot for protein abundance comparison was plotted using the

EnhancedVolcano package from R. Gene set enrichment analysis (GSEA) for proteins was performed with ClusterProfiler61 using

Fisher’s exact test with p adjusted value < 0.05. Protein-protein interactions were performed by metascape59 v3.5 with p adjusted

value < 0.05.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R (version 4.0.4). Specific tests are indicated in figure legends and the methods section.

Significance is denoted as: unlabeled or ns (p>0.05), * (p≤0.05), ** (p≤0.01), and *** (p≤0.001). Bar graphs show mean ± SEM or SD as

indicated. Student’s t-tests and wilcoxon rank sum tests were performed in R.

Graphical abstract Created in BioRender. Pelechano, V. (2025) https://BioRender.com/e96v507.
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