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Abstract
Objective This systematic literature review (SLR) was conducted to explore the role of serum neurofilament light chain 
(sNfL) as a biomarker in multiple sclerosis (MS) disease management.
Methods The review was conducted in accordance with the recommendation laid by the Cochrane Handbook for System-
atic Reviews. A comprehensive literature search was performed in key biomedical databases  (EMBASE®,  MEDLINE®, 
 MEDLINE®-In-Process, and all Evidence-Based Medicine [EBM] Reviews databases) to retrieve studies reporting the 
association between sNfL and disease activity in patients with MS. Additional evidence was also identified through hand 
searching of key conference proceedings and gray literature.
Results Following review of 1831 records, 75 studies from 180 publications were included in the review. The studies included 
in the SLR consistently demonstrated an association between higher sNfL levels and an increased risk of future relapses 
within 2 years and MS disease progression. Higher levels of sNfL were also linked to an increased likelihood of experiencing 
gadolinium-enhancing T1 and T2 lesions. Patients with lower sNfL levels had a higher likelihood of achieving no evidence 
of disease activity status. Furthermore, an inverse correlation was observed between sNfL levels and cognitive impairment 
as assessed via the Symbol Digit Modalities Test performance and Timed 25-Foot Walk scores.
Conclusion This SLR demonstrates the significance of sNfL as a sensitive biomarker for monitoring MS progression. 
Convenient and reliable sNfL measurement could benefit routine clinical practice, providing clinicians with a simple and 
effective tool to monitor disease and treatment response.

Keywords Multiple sclerosis · Serum neurofilament light chain (sNfL) · Systematic review · Biomarker · Relapse · Disease 
progression

Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease of 
the central nervous system characterized by inflammation, 
neurodegeneration, and disability accumulation [1, 2]. MS 

affects 2.9 million people globally and approximately 1 mil-
lion in the United States [3, 4]. It imposes a considerable 
burden on patients, healthcare providers, and society and 
creates economic challenges for the healthcare system [5–8]. 
The management of MS necessitates continuously tracking 
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disease activity and optimizing treatments. However, diag-
nostic approaches based on traditional clinical assessment 
and magnetic resonance imaging (MRI) techniques have lim-
itations in accurately capturing (subclinical) disease activ-
ity, assessing treatment response, and predicting short- and 
long-term outcomes [9, 10]. Consequently, the availability of 
a sensitive and minimally invasive biomarker is imperative, 
particularly for the early identification of patients at high risk 
for progression (early progression).

Neurofilament light chain (NfL), a cytoplasmic protein 
found in neurons, is released in response to neuroaxonal 
pathology and can be detected at elevated levels in both 
the cerebrospinal fluid (CSF) and blood [11, 12]. Elevated 
NfL levels are markers of neuroaxonal injury and are sig-
nificantly higher in the CSF and blood of patients with 
neurological conditions like MS, traumatic brain injury, 
amyotrophic lateral sclerosis, and other neurodegenerative 
conditions compared with age-matched controls [13]. Moni-
toring changes in blood NfL (plasma or serum [sNfL]) or 
CSF NfL (cNfL) from baseline provides valuable insights 
into disease progression, prognosis, and efficacy of disease-
modifying therapies (DMT) [14–16]. It also correlates 
with MRI metrics of inflammation and tissue loss, retinal 
nerve fiber layer (RNFL) thickness, and macular ganglion 
cell layer/inner plexiform layer thickness, independent of 
acute episodes of optic neuritis [17]. NfL offers a real-time 
measurement of neuronal injury as levels change in relation 
to neuronal injury and remain elevated for approximately 
3 months. Other conventional/nonconventional metrics such 
as MRI provide only a retrospective view.

Despite the potential of elevated cNfL levels as an MS 
biomarker, its practical application is hindered by the inva-
sive nature of lumbar puncture and the need for frequent 
longitudinal measurements. In comparison, sNfL measure-
ments present distinct advantages such as being minimally 
invasive, cost-effective, and more feasible for periodic 
monitoring requirements [18]. However, it is critical to 
realize that sNfL does not serve as a substitute for MRI, 
which is essential for determining spatial localization and 
is, therefore, a critical part of the diagnostic workup [13]. 
The single-molecule array (Simoa) assay is widely used 
to quantify low concentrations of sNfL [19]. A plethora 
of clinical trials and real-world evidence studies provide 
evidence for the association of high sNfL levels with 
adverse clinical outcomes, such as development of new 
T2 lesions and relapses, in patients with MS. Nonetheless, 
effectively incorporating sNfL into clinical practice war-
rants caution and further exploration in different clinical 
settings [20]. The key considerations include the timing 
and frequency of measurements as well as proper inter-
pretation of values. Addressing these aspects remains an 
important unmet need [15, 21–23]. Notably, discrepancies 
observed in the reported utility of measuring sNfL are 

potentially due to differences in study design, sample size, 
assays deployed, and the specific outcomes measured. To 
support evidence-based clinical decision-making, a sys-
tematic literature review (SLR) was performed to collect 
and assess existing evidence concerning the relationship 
between sNfL and MS disease activity, progression, and 
response to DMT. The specific objectives of the SLR were 
to (1) provide evidence on the use of sNfL as a prognostic 
and monitoring marker in MS, (2) provide guidance on 
the interpretation of sNfL assay results with respect to 
association with disease outcomes/treatment response, (3) 
examine the correlation of changes in sNfL with different 
disease outcomes, and (4) substantiate sNfL values as a 
marker of treatment response.

Methods

An SLR was performed in accordance with the guidelines 
recommended by the National Institute of Health and Care 
Excellence (NICE) [24] and Cochrane Collaboration [25, 
26] and reported in alignment with the Preferred Reporting 
Items for Systematic Reviews and Meta-Analysis (PRISMA) 
statement [27].

A comprehensive literature search was conducted 
in Excerpta Medica  (EMBASE®), Medical Literature 
Analysis and Retrieval System Online  (MEDLINE®), 
 MEDLINE®-In-Process, and all Evidence-Based Medicine 
(EBM) Reviews databases for original research articles (up 
to September 14, 2023) reporting the association of sNfL 
with MS disease progression/treatment outcomes. The list 
of search terms (Table S1; Online Resource) included mul-
tiple sclerosis, neurofilament, neurofilament light chain, 
sNfL, and pNfL among others. Additionally, conference 
proceedings from the American Academy of Neurology 
(AAN), Americas Committee for Treatment and Research 
in Multiple Sclerosis (ACTRIMS), Consortium of Multiple 
Sclerosis Centers (CMSC), European Committee for Treat-
ment and Research in Multiple Sclerosis (ECTRIMS), and 
European Academy of Neurology (EAN) were searched 
(from January 1, 2021, to December 31, 2023) to identify 
abstracts not yet indexed in the aforementioned biomedi-
cal databases at the time of the search. Furthermore, the 
ClinicalTrials.gov database, gray literature, and bibliogra-
phies of relevant SLRs were searched to retrieve potentially 
eligible studies. This article relies on previously conducted 
research and does not present results of any novel studies 
involving human participants or animals conducted by the 
authors.
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Eligibility criteria and article selection

The SLR included English language articles of original 
research studies in adult patients with MS that reported 

the relationship between sNfL levels and disease activ-
ity/treatment response. The studies pertaining to plasma 
NfL levels have been treated as equivalent to sNfL lev-
els in terms of their implications and interpretations. A 

Table 1  Review eligibility criteria

CDW, confirmed disability worsening; CIS, clinically isolated syndrome; DMT, disease-modifying therapy; EDSS, Expanded Disability Status 
Scale; MS, multiple sclerosis; NEDA, no evidence of disease activity; NfL, neurofilament light chain; PIRA, progression independent of relapse 
activity; RAW , relapse-associated worsening; RCT , randomized controlled trial; RWE, real-world evidence, SLR, systematic literature review

Criteria Inclusion Exclusion

Patient population  Adults (aged ≥ 18 years) with MS  Children/adolescents (aged < 18 years)
Patients without MS
 Studies conducted exclusively in patients with CIS
 Non-human studies

Interventions  No restrictions (All DMTs)  None
Comparator (if any)  No restrictions  None
Key outcomes  NfL levels (serum, plasma)  Studies that do not measure NfL (serum, plasma) as an 

outcome
 Measures of association of NfL (serum, plasma) with  Studies that do not have any information on association of 

NfL with outcomes of interest
 Disease activity
 T2 and T1 gadolinium-enhancing lesions
 Disability
 EDSS
 Relapses
 CDW
 NEDA
 Brain volume
 PIRA
 RAW 
 Silent progression (worsening of disability in the absence of 

signs of inflammation)
 Cognition
 Disease progression or disease worsening
 Optical coherence tomography including peripapillary 

retinal nerve fiber layer thickness, ganglion cell layer and 
inner plexiform layer thickness, and macular cube volume

Study designs  Clinical trials (Phase 2, 3, or 4 RCTs or non-RCTs), RWE, 
retrospective and prospective studies

 Phase 1 studies

 SLR or meta-analysis (to be used for bibliographic search-
ing)

 Reviews/editorials

 Economic studies
 Study protocols
 Letters
 Opinions
 Case reports
 News/notes
 Model-based studies/simulations

Language  Studies published in English language  Non–English language studies
Search timeframe Database searches: No restriction –

Conference abstracts: Last 3 years (2021–2023)
 Hand searching (i.e., desktop searches, ClinicalTrials.gov 

searches, bibliographic searches of relevant studies/SLRs)
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predefined list of inclusion and exclusion criteria are 
described in Table 1. Two reviewers (SM and SH) screened 
the abstracts of all the records retrieved from the literature 
search, as well as potential full-text publications, against 
the predetermined inclusion criteria. Any disagreements 
between the two reviewers at both stages were resolved by 
a third independent reviewer (MKB).

Data extraction and quality assessment

Two reviewers from a pool of three (SM, SH, or MKB) 
extracted and validated data from the final list of included 
publications. In the event of discrepancies, a third inde-
pendent reviewer was engaged to resolve any conflicts. 
Multiple publications from the same study/cohort were 
linked and extracted as a single reference. The extracted 
details encompassed the publication details, study design, 
total study population, research objective, inclusion/exclu-
sion criteria for the study population, baseline patient data, 
and conclusions drawn by the authors. The baseline patient 
data captured included age, gender, disease duration, pre-
vious therapies, Expanded Disability Status Scale (EDSS) 
score, and sNfL levels (including the measurement tech-
nique used). The extracted outcomes included sNfL levels 
at different time points (including the change from base-
line) as well as associations of sNfL with disease activity, 
T2 and T1 gadolinium-enhancing (Gd +) lesions, disa-
bility, EDSS score, relapses, confirmed disability wors-
ening (CDW), no evidence of disease activity (NEDA), 
brain volume, progression independent of relapse activity 
(PIRA), relapse-associated worsening (RAW), silent pro-
gression (characterized by worsening disability without 
signs of inflammation), cognition, disease progression or 
worsening, and optical coherence tomography parameters 
such as peripapillary RNFL (pRNFL) thickness, ganglion 
cell layer and inner plexiform layer (GCIPL) thickness, 
and macular cube volume.

The quality assessment of the randomized controlled tri-
als (RCTs) and non-RCTs included in the SLR was con-
ducted using the modified Cochrane risk of bias assessment 
tool (RoB 2.0) for RCTs [28] and the modified Downs and 
Black checklist for non-RCTs [29]. The RoB 2.0 is a vali-
dated instrument that identifies and evaluates five potential 
biases in studies, including biases related to the randomiza-
tion process, deviations from intended interventions, miss-
ing outcome data, outcome measurement, and selection of 
reported results. The tool classifies the risk of these biases 
as high, low, or unclear [28]. Similarly, the Downs and Black 
checklist consists of 27 questions across five subscales, 
assessing study aspects such as reporting, external validity, 
internal validity bias, internal validity confounding (selec-
tion bias), and power. Based on the total score, studies are 

categorized as poor (≤ 14), fair (15–19), good (20–25), and 
excellent (26–28) [29]. Two independent reviewers evalu-
ated the studies as part of the appraisal process. At instances 
where there were inconsistencies, a third reviewer was con-
sulted to achieve consensus.

Results

A comprehensive search of key biomedical databases resulted 
in the identification of 1771 potential records, with an addi-
tional 60 records obtained from other sources such as confer-
ence proceedings and bibliographic searching. After screening 
the titles and abstracts based on predefined eligibility crite-
ria (Table 1), 1299 records were excluded. The subsequent 
detailed assessment of 532 full-text publications resulted in 
the inclusion of 75 pertinent studies from 180 publications. 
Data extraction followed a predetermined template and the 
PRISMA flow chart demonstrating the literature screening and 
study selection process is depicted in Fig. 1.

Study characteristics

Among the studies included in the review (n = 75), 24 were 
identified as RCTs or their respective post hoc analyses/long-
term extensions. The remaining 51 studies were grouped 
as non-RCTs, comprising a range of study types, including 
prospective and retrospective studies, case–control studies, 
open-label extensions of multiple RCTs, and noncomparative 
clinical studies. Most studies primarily focused on patients 
with relapsing MS (RMS), comprising over 80% of the study 
population (n = 52), followed by studies that included patients 
with all MS subtypes (n = 16) and those with progressive mul-
tiple sclerosis (PMS; n = 7). Most studies (n = 54) employed 
the original or revised McDonald criteria for the diagnosis of 
MS [30–33], while criteria were not reported in 13 studies. 
Notably, the McDonald criteria for MS diagnosis are being 
revised and the publication is expected by the first quarter 
of 2025 [34]. Additionally, the McDonald criteria were used 
alongside the Lublin/Poser criteria in four studies [15, 16, 35, 
36]. One study each utilized the Schumacher criteria [37], the 
2013 revised Lublin criteria [38], the Poser criteria [39], and 
physician-confirmed criteria [40]. Most of the studies (n = 47) 
were multicenter investigations, demonstrating a collaborative 
effort among multiple institutions. There were 22 single-center 
studies providing focused data from a specific institution. 
Information regarding the number of centers was not reported 
in six studies. All RCTs included in the analysis were deter-
mined to have a low risk of bias based on the assessment using 
the RoB 2.0 tool. Additionally, a majority of the non-RCTs 
(n = 43) were identified as being of fair quality when evalu-
ated using the modified Downs and Black checklist (Table S2; 
Online Resource).
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sNfL measurement methods

Most studies (n = 65) used SIngle MOlecule Array (Simoa) 
assay for measuring sNfL levels, with HD-1 analyzer (n = 
15), SR-X analyzer (n = 7), HD-X analyzer (n = 3), and no 
further details (n = 40) on the specific analyzer variants used. 
Two studies measured sNfL using an assay that involves 
the use of capture monoclonal antibody 47:3 and the bioti-
nylated detector monoclonal antibody 2:1 from UmanDiag-
nostics, and the assay was run on a Simoa HD‐1 instrument 
(Quanterix) using a 2‐step Assay Neat 2.0 protocol [41, 42]. 
The acridinium-ester immunoassay [40],  ADVIA® Centaur 
NfL assay (Siemens) [21], and  Atellica® immunoassay [43] 
were employed in one study each. The sNfL assay used was 
not specified in seven studies.

The patients with MS were reported to have higher sNfL 
levels compared with healthy controls [16, 44, 45]. The sNfL 
levels were generally higher in PMS compared with RMS 
[16]. As outlined in Table 2, in studies that employed the 
Simoa assay to measure sNfL levels, the reported median 
baseline levels varied among patients with RMS and PMS 
(RMS 5.7 to 35.8 pg/mL [46, 47]; PMS 2.4 to 26.9 pg/
mL [48, 49]). These variations could be attributed to the 

substantial heterogeneity across the included patient popula-
tion such as number of prior therapies, age, disease duration, 
and gender. The levels of sNfL reported in studies using the 
 Atellica® immunoassay analyzer and  ADVIA® Centaur NfL 
assay were comparable to those reported in studies using 
the Simoa assay. In the study by Kuhle et al., sNfL levels 
measured using capture antibody 47:3 and detector antibody 
2:1 from UmanDiagnostics were markedly higher than those 
obtained with the commercially available Simoa assay or 
Siemens assays (Table 2) [41, 42].

The patients with MS who received DMTs demonstrated 
clinical benefits compared with untreated patients. The thera-
peutic effects of DMTs were accompanied by a reduction in 
sNfL levels compared with the baseline measurements. In gen-
eral, monoclonal antibodies (i.e., ofatumumab, ocrelizumab, 
alemtuzumab, natalizumab, and rituximab), which exhibit 
higher clinical benefits compared with oral therapies (i.e., 
dimethyl fumarate, fingolimod, siponimod, and teriflunomide) 
and platform therapies (interferons and glatiramer acetate), 
were associated with greater decreases in sNfL levels relative 
to the baseline measurements (Table S3; Online Resource).

Fig. 1  Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram [27]
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Table 2  Baseline sNfL levels reported across included studies

Author year Intervention N Assay Mean (SD)/median (range) in 
pg/mL

All multiple sclerosis subtypes (RRMS, SPMS, PPMS, CIS)
Sotirchos 2023 [40] DMTs 6974 Atellica® solution platform 

using acridinium-ester immu-
noassay (Siemens)

11.1 (IQR: 8.4–14.8)

Pauwels 2022 [67] DMTs 115 Simoa® NF-light™ Advantage 
Kit (Quanterix) using HD-1 
analyzer

12.12 ± IQR: 7.5a

Sotirchos 2022 [17] NR 403 Simoa assay (Quanterix) using 
HD-1 analyzer

8.3 (IQR: 6.3–12.4)

Disanto 2021 [68] Rituximab 59 Simoa® NF-light™ Kit (Quan-
terix) using HD-X analyzer

7.9 (IQR: 5.9–45.2)

Lin 2021 [56] NR 78 Simoa assay (Quanterix) 19.7 (IQR: 15.2–28.8)
Jakimovski 2020 [49] DMTs 127 Simoa assay 21.1 (IQR: 13.9–31.7)
Sehr 2019 [69] Fingolimod 15 Simoa® NF-light™ Kit (Quan-

terix) using HD-1 analyzer
8.42b (NR)

Barro 2018 [16] DMTs 257 Simoa assay (Quanterix) 32.9 (IQR: 23.2–46.6)
Relapsing multiple sclerosis (studies with ≥ 80% RRMS)
Bar-Or 2023 [44]
(OPERA I and II)

Ocrelizumab 720 Simoa® NF-light™ Kit (Quan-
terix) using HD-X analyzer

10.7 (2.7–230.7)

IFNβ−1a 701 Simoa® NF-light™ Kit (Quan-
terix) using HD-X analyzer

10.4 (2.7–339)

Bar-Or 2023 [21] Ofatumumab 284 ADVIA® Centaur NfL assay 
(Siemens)

9.1 (IQR/range: NR)

Bove 2023 [70] Ofatumumab 278 NR 9.4 (NR)
Cutter 2023 [50] IFNβ−1a 159 Simoa Human Neurology 4-Plex 

A assay (Quanterix) using 
HD-1 analyzer

17 (16.4)

Glatiramer acetate 172 Simoa Human Neurology 4-Plex 
A assay (Quanterix) using 
HD-1 analyzer

20.5 (30.5)

IM IFNβ−1a + glatiramer 
acetate

344 Simoa Human Neurology 4-Plex 
A assay (Quanterix) using 
HD-1 analyzer

19.6 (20.6)

Gimenez 2023 [71] Pooled (dimethyl fumarate/
natalizumab)

49 Simoa assay 9 (5.3)

Hauser 2023 [43]
Alvarez 2023 [66]

Ofatumumab/ofatumumabc 690 Atellica® Immunoassay Ana-
lyzer part of Antelleca solution 
(Siemens)

8.26 (IQR/range: NR)

Teriflunomide/ofatumumabc 677 Atellica® Immunoassay Ana-
lyzer part of Antelleca solution 
(Siemens)

10.42 (IQR/range: NR)

Seiberl 2023 [72] Cladribine 14 Simoa® NF-light™ Advantage 
Kit (Quanterix) using SR-X 
analyzer

24.7 (23.8)

Wessels 2023 [73] Natalizumab 89 NR 14.61 (IQR/range: NR)
Ocrelizumab 266 NR 9.45 (IQR/range: NR)

Brune 2022 [45] DMTs 257 Simoa assay (Quanterix) 6.7 (2.2–93.2)
Harris 2022 [74] Placebo 79 Simoa® NF-light™ Kit (Quan-

terix)
11.7 (IQR: 8.2–16.3)

Ozanimod 0.92 mg daily 82 Simoa® NF-light™ Kit (Quan-
terix)

11 (IQR: 7.7–15)

Kuhle 2022 [75] Alemtuzumab 354 Simoa assay (Quanterix) 31.7 (IQR: 17.1–60.4)
SC IFNβ−1a 159 Simoa assay (Quanterix) 31.4 (IQR: 17.5–61.1)
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Table 2  (continued)

Author year Intervention N Assay Mean (SD)/median (range) in 
pg/mL

Kuhle 2022 [76] Ponesimod 248 Simoa® NF-light™ Advantage 
Kit (Quanterix)

14.9 (15.66)

Teriflunomide 268 Simoa® NF-light™ Advantage 
Kit (Quanterix)

15.8 (21.17)

Masanneck 2022 [63] DMTs 46 Simoa® NF-light™ Advantage 
Kit (Quanterix) using HD-1 
analyzer

14.5 (17.5)

Paolicelli 2022 [38] Cladribine 18 Simoa® NF-light™ Advantage 
Kit (Quanterix) using SR-X 
analyzer

21.78 (14.75)

Pauwels 2022 [67] DMTs 87 Simoa® NF-light™ Advantage 
Kit (Quanterix) using HD-1 
analyzer

10.66 ± IQR: 6.93

Sotirchos 2022 [17] NR 316 Simoa assay (Quanterix) using 
HD-1 analyzer

7.7 (IQR: 5.8–11)

Stenberg 2022 [77] NR 44 Simoa assay 12.1 (IQR: 8.4–23.5)
Tiu 2022 [62] DMTs 50 Simoa assay 20.5 (3.2–208.0)d

Zhou 2022 [47] Teriflunomide NR Simoa® NF-light™ Advantage 
Kit (Quanterix) using HD-1 
analyzer

35.82 (IQR: 47.5)

Akgün 2021 [78] Fingolimod 131 Simoa assay 9.8 (95% CI 7.7–12.5)
Bridel 2021 [79] Natalizumab 89 Simoa® NF-light™ Advantage 

Kit (Quanterix)
14.8 (IQR: 10–27.1)

Calabresi 2021 [80] Pooled (natalizumab/
placebo)

792 Simoa® NF-light™ Advantage 
Kit (Quanterix)

16.7 (21.1)

Dal-Bianco 2021 [46] DMTs 29 Simoa® NF-light™ Kit (Quan-
terix) using SR-X analyzer

5.7 (3.2–23.7)

Harris 2021 [55]
(SUNBEAM)

IFNβ−1a 448 Simoa® NF-light™ Advantage 
Kit (Quanterix) using HD-1 
analyzer

14.8 (IQR: 9.8–24.4)

Ozanimod 0.46 mg 451 Simoa® NF-light™ Advantage 
Kit (Quanterix) using HD-1 
analyzer

14.1 (IQR: 9.7–22.4)

Ozanimod 0.92 mg 447 Simoa® NF-light™ Advantage 
Kit (Quanterix) using HD-1 
analyzer

15.1 (IQR: 10.9–22.8)

Harris 2021 [55]
(RADIANCE)

Ozanimod 0.46 or 0.92 mg/
IFNβ−1a (pooled)

1109 Simoa® NF-light™ Advantage 
Kit (Quanterix) using HD-1 
analyzer

13.35 (IQR: 9.42–20.41)

Uher 2021 [81], Uher 2021 [82] IFNβ−1a 142 Simoa assay 21.7 (IQR: 13.5–43)
Vollmer 2021 [83] Ocrelizumab 582 NR 14.5e

Walo-Delgado 2021 [84] Dimethyl fumarate 80 Simoa assay (Quanterix) using 
SR-X analyzer

10.1 (6.3–15.6)

Anderson 2020 [53] DMTs 164 Simoa® NF-light™ Advantage 
Kit (Quanterix) using HD-1 
analyzer

13.7 (2.7–159.3)

Bsteh 2020 [85] DMTs 80 Simoa® NF-light™ Advantage 
Kit (Quanterix) using SR-X 
analyzer

6.7 (IQR: 4.5–10.1)
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Table 2  (continued)

Author year Intervention N Assay Mean (SD)/median (range) in 
pg/mL

Delcoigne 2020 [86] Alemtuzumab 89 Simoa® NF-light™ Advantage 
Kit (Quanterix)

10.5 (IQR: 6.3–24.8)f

Dimethyl fumarate 339 Simoa® NF-light™ Advantage 
Kit (Quanterix)

11.1 (IQR: 8.2–15.6)f

Fingolimod 275 Simoa® NF-light™ Advantage 
Kit (Quanterix)

12.3 (IQR: 8.7–16.9)f

Natalizumab 284 Simoa® NF-light™ Advantage 
Kit (Quanterix)

15.5 (IQR: 9.9–26.9)f

Rituximab 122 Simoa® NF-light™ Advantage 
Kit (Quanterix)

12.3 (IQR: 9.7–18.2)f

Teriflunomide 152 Simoa® NF-light™ Advantage 
Kit (Quanterix)

9.0 (IQR: 7.0–12.2)f

Ferraro 2020 [87] NR 21 Simoa assay (Quanterix) using 
HD-1 analyzer

9.7 (IQR: 8.3–11.2)

Häring 2020 [42] Fingolimod 301 Simoa assay (Quanterix) 29.7 (NR)e

Hauser 2020 [88]
(ASCLEPIOS I)

Ofatumumab 465 Simoa® NF-light™ Kit (Quan-
terix)

13.3 (13.2)

Teriflunomide 462 Simoa® NF-light™ Kit (Quan-
terix)

11.7 (9.3)

Hauser 2020 [88]
(ASCLEPIOS II)

Ofatumumab 481 Simoa® NF-light™ Kit (Quan-
terix)

14.7 (18.2)

Teriflunomide 474 Simoa® NF-light™ Kit (Quan-
terix)

13.4 (14)

Jakimovski 2020 [49] DMTs 85 Simoa assay 18 (IQR: 12.6–26.6)
Manouchehrinia 2020 [89] 

(EIMS cohort)
DMTs 3092 Simoa® NF-light™ Advantage 

Kit (Quanterix)
11.19 (IQR: 7.81–17.43)

Manouchehrinia 2020 [89] 
(IMSE cohort)

DMTs 1293 Simoa® NF-light™ Advantage 
Kit (Quanterix)

12.46 (IQR: 8.69–18.66)

Mattioli 2020 [90] IFNβ−1a 18 Simoa assay (Quanterix) using 
SR-X analyzer

7.22 (4.23–11.7)

de Flon 2019 [91] Rituximab 75 Simoa assay (Quanterix) 9.73 (7.04)
Gafson 2019 [92] Dimethyl fumarate 27 Simoa assay (Quanterix) 13.2 (18.56)
Kuhle 2019 [41]
(FREEDOMS)

Pooled (fingolimod/
placebo)

269 Assay using the capture mAB 
47:3 and the biotinylated 
detector mAB 2:1 from Uman-
Diagnostics and transferred 
onto the Simoa HD‐1 instru-
ment (Quanterix)

27.1 (8.4–589.5)

Kuhle 2019 [41]
(TRANSFORMS)

Pooled (fingolimod/
placebo)

320 Assay using the capture mAB 
47:3 and the biotinylated 
detector mAB 2:1 from Uman-
Diagnostics and transferred 
onto the Simoa HD‐1 instru-
ment (Quanterix)

24.1 (2.2–372.7)

Sejbaek 2019 [93] Dimethyl fumarate 52 Simoa assay (Quanterix) 16.4 (14.4)
Chitnis 2018 [94], Galetta 2021 

[95]
DMTs 304 Simoa assay (Quanterix) 7.885 (1.23–78.3)

Novakova 2017 [22] DMTs 204 Simoa® NF-light™ Kit (Quan-
terix)

16.9 (1.6–1480)
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MRI outcomes (relapse, MRI lesions)

RMS (studies with ≥ 80% relapsing–remitting MS [RRMS])

A positive correlation between sNfL levels and relapse activ-
ity was observed in ≥ 85% of studies investigating this out-
come, and higher sNfL levels were associated with higher 
risk of relapses within the following 2 years (Table 3). A 

study by Kuhle et al. revealed that patients with high blood 
NfL concentrations (> 60 pg/mL) at baseline had 2.5 
times more relapses compared with those with low base-
line NfL concentrations (< 30 pg/mL) (difference 153%) 
[41]. Patients with a baseline sNfL level ≥ 16 pg/mL were 
reported to have a shorter mean time to the first relapse (by 
100.5 days) compared with those with a baseline sNfL level 
< 16 pg/mL (384.3 vs. 484.8 days, p = 0.0404) [50]. As 

Table 2  (continued)

Author year Intervention N Assay Mean (SD)/median (range) in 
pg/mL

Progressive multiple sclerosis (SPMS, PPMS)
Bar-Or 2023 [44]
(ORATORIO)

Ocrelizumab 391 Simoa® NF-light™ Kit (Quan-
terix) using HD-X analyzer

10.3 (2.7–198.9)

Placebo 205 Simoa® NF-light™ Kit (Quan-
terix) using HD-X analyzer

10.3 (3.3–102)

Chow 2023[35] Dimethyl fumarate 20 Simoa assay (Quanterix) 12.8 (IQR: 8.5–16.6)
Placebo 22 Simoa assay (Quanterix) 13.4 (IQR: 11–16.2)

Brune 2022 [45] DMTs 52 Simoa assay (Quanterix) 10.7 (IQR: 4.2–28.4)
Comabella 2022 [37] IFNβ−1b 51 Simoa assay (Quanterix) using 

HD-1 analyzer
9.1 (IQR: 7.5–13.7)

Leppert 2022 [96]
(EXPAND)

Siponimod/
placebo

1452 Simoa assay 32.1 (1.3–538.2)e

Leppert 2022 [96]
(INFORMS)

Fingolimod/
placebo

378 Simoa assay 22.0 (1.8–208.4)e

Pauwels 2022 [67] DMTs 28 Simoa® NF-light™ Advantage 
Kit (Quanterix) using HD-1 
analyzer

15.76 ± IQR: 8.88

Sotirchos 2022 [17] NR 87 Simoa assay (Quanterix) using 
HD-1 analyzer

10.8 (IQR: 8.3–15.4)

Giarraputo 2021[48] DMTs 25 Simoa Neurology 4-Plex B assay 
(NF-light) (Quanterix) using 
SR-X analyzer

2.42 (IQR: 2.19–2.67)g

Ferraro 2020 [87] NR 70 Simoa assay (Quanterix) using 
HD-1 analyzer

12.8 (IQR: 10–16)

Jakimovski 2020 [49] DMTs 42 Simoa assay 26.9 (IQR: 19.9–39.3)
Chitnis 2018 [94], Barro 2023 

[97]
DMTs 257 Simoa assay (Quanterix) 11.8 (IQR: 8.5–16.5)

Novakova 2017 [22] DMTs 82 Simoa® NF-light™ Kit (Quan-
terix)

23 (5.6–310)

pg/mL and ng/L were considered equivalent units as 1 pg/mL = 1 ng/L. Some studies reported use of log normal sNfL levels for analysis; how-
ever, no information was reported for other studies
CI, confidence interval; CIS, clinically isolated syndrome; DMT, disease-modifying therapy; IFNβ, interferon beta; IM, intramuscular; IQR, 
interquartile range; mAB, monoclonal antibody; NF, neurofilament; NR, not reported; PPMS, primary progressive multiple sclerosis; RRMS, 
relapsing–remitting multiple sclerosis; SC, subcutaneous; SD, standard deviation; sNfL, serum neurofilament light chain; SPMS, secondary pro-
gressive multiple sclerosis
a Median ± IQR
b Unit reported as pg/L in the article
c Ofatumumab/ofatumumab: patients receiving continuous ofatumumab; teriflunomide/ofatumumab: patients who switched from teriflunomide to 
ofatumumab
d Unit not reported
e Geometric mean
f sNfL normalized to age 40 years
g Log-transformed data
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Table 3  List of studies reporting association of sNfL and relapse/MRI outcomes

Author year Key outcomes relevant to the current SLR

Relapsing multiple sclerosis (studies with ≥ 80% RRMS)
Bar-Or 2023 [44]
(OPERA 1 & II)

Relapse
 Higher baseline NfL levels were independently associated (multiple linear regression model) with shorter 

duration since the last relapse (effect on  log10sNfL =  − 0.03, 95% CI − 0.05 to − 0.02, p < 0.0001)
Lesions
 Higher baseline NfL levels were independently associated (multiple linear regression model) with greater 

Gd + lesion count (effect on  log10 sNfL = 0.11, 95% CI 0.09–0.12, p < 0.0001) and higher T2LV (effect 
on  log10 sNfL = 0.10, 95% CI 0.08–0.11, p < 0.0001)

Bar-Or 2023 [21] (APLIOS) Relapse or lesions
 Compared with low baseline sNfL levels, high baseline sNfL levels were associated with an increased risk 

of subsequent on-study confirmed clinical relapses or Gd + T1 lesions (HR = 2.81, 95% CI 1.78–4.42, p < 
0.0001) in the overall population

 Among patients who were free of Gd + T1 lesions at baseline, high baseline sNfL levels also predicted an 
increased risk of on-study confirmed clinical relapses or Gd + T1 lesions compared with low baseline 
sNfL levels (HR = 2.48, 95% CI 1.15–5.39, p = 0.0213)

Relapse
 The proportion of patients with confirmed clinical relapses was higher among patients with sNfL levels 

constantly above the baseline median (15%) vs. patients with sNfL levels that crossed the baseline median 
(2.7%) or were constantly below the baseline median (2.6%)

Lesions
 The proportion of patients with Gd + T1 lesions was higher among patients with sNfL levels above the 

baseline median vs. those with sNfL levels that crossed the baseline median or were below the baseline 
median, respectively
  Week 4: 64.7% vs. 31.1% and 16.2%
  Week 8: 25.9% vs. 10.8% and 9.0%
  Week 12: 11.9% vs. 4.4% and 3.9%

Bose 2023 [59], Galetta 2021 [95], 
Chitnis 2018 [94]

Relapse
 There was a limited correlation with ARR during the 2 years following baseline assessment  (rs = 0.010, p = 

0.870)
Lesions and brain volume
 Higher 10-year T2LV was associated with higher baseline sNfL (univariate analysis; β = 0.37, 95% CI 

0.25–0.50, p < 0.001)
 When sNfL and sGFAP were included together, only baseline sNfL remained associated with worse T2LV 

(β = 0.34, 95% CI 0.21–0.48, p < 0.001)
 Without consideration of clinical measures, a lower BPF was significantly associated with higher sNfL 

levels at baseline (β = − 1.22%, 95% CI − 2.17 to − 0.27, p = 0.012)
 Higher follow-up sNfL levels remained significantly associated with lower BPF (β = − 2.53%, 95% CI 

− 4.18 to − 0.89, p = 0.003) following the incorporation of both baseline and 1-year follow-up levels in 
the same model

Cutter 2023 [50] Relapse
 Baseline sNfL ≥ 16 pg/mL significantly predicted relapse within 90 days (HR = 2.01, p = 0.0149) and 

6 months (HR = 1.51, p = 0.0449) but not at 12 months from baseline (HR = 1.33, p = 0.0877) nor over 
the entire 3-year study duration (HR = 1.06, p = 0.6468)

 The mean time to the first relapse was 100.5 days shorter in patients with baseline sNfL ≥ 16 pg/mL com-
pared with those with baseline sNfL < 16 pg/mL (384.3 vs. 484.8 days, p = 0.0404)

 Baseline Gd + lesions and sNfL ≥ 16 pg/mL were synergistic predictors of relapse as the combination of 
these two factors was a stronger predictor of relapse within 90 days than either factor alone

Fedičová 2023 [58] Relapse
 Among patients with an annual sNfL increase of > 10%, a significantly higher proportion had experi-

enced a relapse in the past year compared with patients who had either any annual decrease or an annual 
increase of up to 10% in sNfL levels (40% vs. 8.3%, p < 0.001)

Lesions and brain volume
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Table 3  (continued)

Author year Key outcomes relevant to the current SLR

 Patients with an annual sNfL increase of > 10% experienced greater T1LV compared with patients who 
had either any annual decrease or an annual increase of up to 10% in sNfL levels (median [IQR] = 7.04 
[3.9–14.3] vs. 5.1 [1.8–12.2])

 Patients with an annual sNfL increase of > 10% experienced greater annual brain volume reduction com-
pared with patients who had either any annual decrease or an annual increase of up to 10% in sNfL levels 
(% median [IQR] volume change =  − 0.29 [− 0.57 to − 0.02] vs. − 0.12 [− 0.29–0.1], p < 0.001)

Fernandez 2023 [98] Relapse
 Baseline sNfL correlated with relapses in the previous 2 years (rho = 0.268, p < 0.001)
 sNfL at the 1-year follow-up correlated with relapses (rho = 0.222, p < 0.001)

Benkert 2022 [51], Abdelhak 2023 
[15]

Relapse
 SMSC cohort
  Higher sNfL Z-scores were associated with a greater probability of relapse (OR 1.41, 95% CI 1.30–1.54, 

p < 0.0001)
Validation cohort (EIMS, IMSE, COMBAT-MS)

  Higher sNfL Z-scores were associated with a higher probability of relapses in the following year (OR 
1.24, p < 0.05)

Brune 2022 [45] Relapse
 High baseline sNfL levels (≥ 8 pg/mL) were associated with an increased risk of experiencing a new clini-

cal relapse (OR 3.3, 95% CI 1.38–7.8, p = 0.007) in the follow-up period
 High baseline sNfL levels (≥ 75th age-corrected percentile) were not associated with an increased risk of 

experiencing a new clinical relapse (OR 1.978, 95% CI 0.914–4.281, p = 0.083)
 However, sNfL levels ≥ 80th and 85th age-corrected percentiles were associated with an increased risk of 

experiencing a new clinical relapse in the follow-up period
Lesions
 Higher baseline sNfL levels were significantly associated with higher T2 lesion count at baseline  (rp = 

0.15, p = 0.02)
 High baseline sNfL levels (≥ 8 pg/mL) were associated with an increased risk of developing new T2 

lesions (OR 3.97, 95% CI 1.7–9.3, p = 0.002) in the follow-up period
 High baseline sNfL levels (≥ 75th age-corrected percentile) were associated with an increased risk of 

developing new T2 lesions (OR 2.3, 95% CI 1.1–4.9, p = 0.034)
 High baseline sNfL levels were significantly associated with the presence of new lesions  (rp = 0.28, p < 

0.001) as well as increase in lesion volumes  (rp = 0.21, p = 0.01) in the follow-up period
Kuhle 2022 [52], Kuhle 2023 [36] Relapse

 Compared with low baseline sNfL (< 11.36 pg/mL), high baseline sNfL levels (≥ 11.36 pg/mL) were 
associated with significantly higher odds of qualified relapse (OR 6.07, p = 0.0038)

 A higher proportion of patients with an NfL Z-score ≥ 1 experienced relapses vs. those with an NfL 
Z-score < 1 stratified at Week 48
  Weeks 48–96 (NfL Z-score < 1 vs. ≥ 1):
  No relapse: 90.5% vs. 82.5%
  1 relapse: 7.1% vs. 12.5%
   ≥ 2 relapses: 2.4% vs. 5%

A similar, albeit less pronounced, trend was observed in the relapse activity between Week 96 and Week 
144 (stratified at Week 96)
  Weeks 96–144 (NfL Z-score < 1 vs. ≥ 1):
  No relapse: 95.4% vs. 94.1%
  1 relapse: 4.6% vs. 2.9%
   ≥ 2 relapses: 0% vs. 2.9%

Lesions
 Patients with high baseline sNfL levels had higher Gd + T1 and T2 activity
 The proportions of patients with no T1 Gd + lesions and no new/enlarging T2 lesions (both at Week 96 and 

Week 144) were higher among patients with an NfL Z-score < 1 vs. those with an NfL Z-score ≥ 1
  Week 96 (NfL Z-score < 1 vs. ≥ 1):
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Table 3  (continued)

Author year Key outcomes relevant to the current SLR

  No T1 Gd + lesion: 89.4% vs. 50%
  1 T1 Gd + lesion: 6.1% vs. 12.5%
  2 T1 Gd + lesions: 4.5% vs. 6.3%
  3 T1 Gd + lesions: 0% vs. 9.4%
   ≥ 4 T1 Gd + lesions: 0% vs. 21.9%
  Week 144 (NfL Z-score < 1 vs. ≥ 1):
  No T1 Gd + lesion: 84.5% vs. 57.1%
  1 T1 Gd + lesion: 12.1% vs. 25%
  2 T1 Gd + lesions: 3.4% vs. 7.1%
  3 T1 Gd + lesions: 0% vs. 3.6%
   ≥ 4 T1 Gd + lesions: 0% vs. 7.1%
  Week 96 (NfL Z-score < 1 vs. ≥ 1):
  No T2 Gd + lesion: 53% vs. 25%
  1–2 T2 Gd + lesions: 25.8% vs. 12.5%
  3–5 T2 Gd + lesions: 15.2% vs. 6.3%
  6–10 T2 Gd + lesions: 6.1% vs. 21.9%
   > 10 T2 Gd + lesions: 0% vs. 34.4%
  Week 144 (NfL Z-score < 1 vs. ≥ 1):
  No T2 Gd + lesion: 65.5% vs. 28.6%
  1–2 T2 Gd + lesions: 13.8% vs. 14.3%
  3–5 T2 Gd + lesions: 12.1% vs. 10.7%
  6–10 T2 Gd + lesions: 6.9% vs. 28.6%
   > 10 T2 Gd + lesions: 1.7% vs. 17.9%

Masanneck 2022 [63] Relapse
 sNfL levels were associated with the occurrence of relapses (coefficient = 0.03, 95% CI 0.01–0.06, p = 

0.02)
van Lierop 2022 [99],
Bridel 2021 [79]

Lesions and brain volume
 High sNfL levels at Year 1 predicted worse PBVC (std. β = − 0.257, p = 0.016), worse thalamus volume 

change (std. β = − 0.259, p = 0.016), and worse ventricle volume change (std. β = 0.338, p = 0.001)
 Lesion volume did not show any longitudinal associations with sNfL

Ziemssen 2022 [54] Relapse
 sNfL at baseline was not prognostic for on-study ARR, and relapse rates were not statistically different 

between high and low sNfL groups (relative rate reduction: ofatumumab, 27.0%, p = 0.075; teriflunomide, 
6.6%, p = 0.614). Results were similar in the subgroup of recently diagnosed, treatment-naive patients

Lesions and brain volume
 High versus low sNfL at baseline was prognostic of increase in new or enlarging T2 lesions

  Relative increase (vs. baseline) at Year 1: ofatumumab, 157.5% and teriflunomide, 68.6%, p < 0.001 for 
both

  Relative increase (vs. baseline) at Year 2: ofatumumab, 64.5%, p = 0.124 and teriflunomide, 45.6%, p = 
0.003

 Baseline sNfL had a significant correlation with the percentage change in whole brain volume from base-
line to 12 months
  Ofatumumab: R = − 0.200, p < 0.0001
  Teriflunomide: R = − 0.203, p < 0.0001

Akgün 2021 [78] Relapse
 Change from baseline in sNfL levels was significantly correlated with relapse activity in the first 12 months 

(r =  − 0.226)
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Table 3  (continued)

Author year Key outcomes relevant to the current SLR

Calabresi 2021 [100] Lesions and brain volume
 Reduction in sNfL to < 16 pg/mL at 12 months was associated with 3-fold decrease in the number of new 

T2 lesions compared with patients with no reduction in sNfL levels (p < 0.01)
 Reduction in sNfL to < 16 pg/mL at 6 months was associated with a decrease in 4-year PBVC (0.89%, p = 

0.05)
Fox 2021 [101], Fox 2022 [102] Lesions

 Patients in the high quartile of baseline sNfL levels had high incidence of combined unique active lesions 
at 24 weeks (mean [SD] lesions = 1.1 [2.3] vs. 1.2 [2.4] vs. 7.4 [22.2] vs. 9.0 [16.9] for 1st, 2nd, 3rd, and 
4th quartiles respectively)

Harris 2021 [55] Relapse
 Baseline sNfL was higher in those with vs. without on-treatment relapse
 sNfL reduction was associated with lower ARR 
 The probability of having ≥ 1 relapse in the next 12 months (SUNBEAM) or 24 months (RADIANCE) 

increased with increasing baseline sNfL
SUNBEAM
 Based on model estimates, a 25% and 13% reduction in sNfL (similar to that observed with ozanimod 0.92 

mg and IFNβ−1a in SUNBEAM) predicted an ARR (SE) of 0.22 (0.04) and 0.36 (0.04), respectively
 At 12 months, the model-predicted ARR was 0.5111 + 0.0116 × ΔNfL
RADIANCE
 Based on model estimates, a 25% and 13% reduction in sNfL (similar to that observed with ozanimod 0.92 

mg and IFNβ−1a in SUNBEAM) predicted an ARR (SE) of 0.19 (0.04) and 0.29 (0.04), respectively
 At 24 months, the model-predicted ARR was 0.4079 + 0.0088 × ΔNfL
Lesions and brain volume
 Baseline Gd + and T2 lesion counts increased and brain volume decreased with increasing baseline sNfL

Srpova 2021 [57], Uher 2020 
[103], Uher 2021 [81]

Relapse

 sNfL change showed a weak association with cumulative number of relapses (regression coefficient 
= 0.058, p = 0.036)

 High sNfL levels were associated with higher odds of experiencing a relapse in the following year (41.3% 
vs. 26.2%; βOR 2.10, 95% CI 1.07–4.12, p = 0.031)

Lesions and brain volume
 Higher sNfL levels were associated with higher odds of whole brain volume loss during the following year 

(β = − 0.36%, 95% CI − 0.60 to − 0.13, p = 0.002); Early increase in sNfL levels were associated with 
delayed brain volume loss after 48 months (p < 0.001)
  For every 10% increase in the sNfL level, whole brain volume loss in the following year increased by 

0.015% (βadd = − 0.15, 95% CI − 0.028 to − 0.001, p = 0.033)
 sNfL levels showed a strong association with T1LV (rho = 0.36, p < 0.001) and T2LV (rho = 0.46, p < 

0.001)
 Percentage changes in sNfL levels over time (change between Months 1 and 12, Months 1 and 24, and 

Months 1 and 36) were most closely associated with the following:
  T2LV absolute change (regression coefficient = 0.104, p < 0.001)
  T1LV absolute change (regression coefficient = 0.256, p < 0.001)
  Increase in T2 lesion number (regression coefficient = 0.062, p < 0.001) (change between Months 0 and 

12, Months 0 and 24, and Months 0 and 36)
  In the multivariate model, T1LV absolute change and T2 lesion number change were the best independ-

ent correlates of sNfL percentage change over follow-up
 In multivariable-adjusted analysis, sNfL > 90th percentile was linked to a higher likelihood of having ≥ 3 

active lesions compared with those in the 31st–90th percentile (OR 7.8, 95% CI 4.1–14.8, p < 0.0001)
Uphaus 2021 [104], Steffen 2023 

[105]
Lesions

 sNfL levels at study entry correlated with signs of inflammatory activity at baseline such as the following:
  Number of Gd + lesions (r = 0.391, p < 0.001)
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Table 3  (continued)

Author year Key outcomes relevant to the current SLR

  T2 hyperintense lesion number (r = 0.185, p = 0.022)
  T2 hyperintense lesion number at Year 6 (r = 0.232, p = 0.004)

 Moreover, development of new T2 hyperintense lesions after 6 years correlated with Year 0 sNfL values (r 
= 0.280, p < 0.001)

 However, a correlation was found between Year 0 sNfL and development of new T1 hypointense lesions (r 
= 0.336, p < 0.001), suggesting that although initially high Year 0 sNfL values reflect current inflamma-
tory activity, they also have a predictive value for the future development of new T1 hypointense and T2 
hyperintense lesions

Anderson 2020 [53] Relapse
 No significant association was noted between baseline sNfL levels and odds of relapse at 12 months when 

adjusted for age and DMT use (log-transformed sNfL OR 1.15, 95% CI 0.86–1.53, p = 0.351; sNfL </> 
13.7 pg/mL OR 1.93, 95% CI 0.95–3.92, p = 0.071) or the hazard of relapse over 5 years of follow-up

Delcoigne 2020 [86], Piehl 2018 
[23]

Relapse
 Baseline sNfL showed a tendency for association with the number of relapses (0 or 1 vs. 2 or 3) before 

treatment start (univariate analysis: β = 0.101, SE = 0.060, p = 0.097), and the association remained 
significant using multivariate analysis as well (β = 0.144, SE = 0.069, p = 0.04)

 Change in sNfL levels from baseline to 12 months was highly associated with the number of relapses in 
the year before the start of fingolimod (univariate analysis: β = 11.90, SE = 4.02, p = 0.0035; multivariate 
analysis: β = 7.43, SE = 3.08, p = 0.017)

Kuhle 2020 [39] Brain volume
 sNfLlevels at Year 3 were associated with BPF change at the 8-year follow-up (r =  − 0.36, p < 0.05)

Häring 2020 [42] Brain volume
 High baseline sNfL (≥ 30 pg/mL) compared with low baseline sNfL (< 30 pg/mL) levels was prognostic of a 

higher brain volume loss over 120 months (least squares mean difference =  − 1.12%, 95% CI − 2.07 to − 0.17)
 Similar trends (though not always significant) were observed following stratification based on the geomet-

ric mean of sNfL measured over either 12 or 24 months
Manouchehrinia 2020 [89] Relapse

 ARR in the years before sampling was significantly higher in patients with sNfL levels above vs. below the 
respective calculated percentiles of the controls

 Mean (SD) ARR:
   ≥ 80th vs. < 80th percentile: 0.43 (0.62) vs. 0.30 (0.46)
   ≥ 95th vs. < 95th percentile: 0.49 (0.67) vs. 0.31 (0.48)
   ≥ 99th vs. < 99th percentile: 0.52 (0.73) vs. 0.34 (0.51)

Kuhle 2019, [41],
Sormani 2019 [106]

Relapse

FREEDOMS
 sNfL at 6 months significantly correlated with number of relapses (r = 0.25, p < 0.001)
 High (> 60 pg/mL) baseline sNfL levels were associated with 2.5 times more MS relapses compared with 

low baseline sNfL levels (< 30 pg/mL) (difference = 153%; rate ratio = 2.53, 95% CI 1.67–3.83, p < 
0.0001)

Lesions and brain volume
FREEDOMS
 sNfL at 6 months significantly correlated with active lesions (r = 0.46, p < 0.001) and brain volume loss (r 

=  − 0.41, p < 0.001) at Month 24
 Post-treatment effect on 24-month relapse and brain volume loss based on 6-month NfL was 25% (95% CI 

8% to 60%) and 60% (95% CI 32% to 132%), respectively
 sNfL concentrations were strongly associated with high baseline T2LV (geometric mean ratio = 1.027, 

95% CI 1.016–1.039, p < 0.0001) and presence of Gd + T1 lesions (geometric mean ratio = 1.642, 95% CI 
1.398–1.930, p < 0.0001)

 Compared with low baseline sNfL levels (< 30 pg/mL), high baseline sNfL levels (> 60 pg/mL) were asso-
ciated with 2.6 times more number of new or enlarging T2 lesions (difference = 164%; mean ratio = 2.64, 
95% CI 1.51–4.60, p = 0.0006) and 2.9 times more brain volume loss (difference = 195%; mean difference 
=  − 0.78%, 95% CI − 1.02 to − 0.54, p < 0.0001)

TRANSFORMS
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Author year Key outcomes relevant to the current SLR

 sNfL concentrations were strongly associated with high baseline T2LV (geometric mean ratio = 1.039, 
95% CI 1.025–1.054, p < 0.0001) and presence of Gd + T1 lesions (geometric mean ratio = 1.480, 95% CI 
1.251–1.752, p < 0.0001)

All multiple sclerosis subtypes (RRMS, SPMS, PPMS, CIS)
Schaefer 2023 [107] Lesions

 In an analysis adjusted for age, DMT, EDSS, and disease course, a point change in sNfL levels was associ-
ated with an increased odds of contrast enhancement (OR 1.045, 95% CI 1.001–1.090, p = 0.043)

 NfL Z-scores were more predictive of contrast enhancement compared with sNfL levels (OR 1.521, 95% 
CI 1.061–2.181, p = 0.023)

Sotirchos 2023 [40] Lesions
 Elevated sNfL was associated with lower BPF and higher T2LV compared with normal sNfL (adjusted 

differences in Z-scores—BPF =  − 0.20, 95% CI − 0.28 to − 0.12; T2LV = 0.42, 95% CI 0.33–0.51, p < 
0.001 for both)

 17.2% of patients with elevated sNfL vs. 6.4% of patients with normal sNfL had ≥ 1 Gd + lesion (adjusted 
OR 3.68, 95% CI 1.97–6.79, p < 0.001)

 Over 2 years of follow-up, patients with elevated sNfL exhibited 63% faster whole brain atrophy com-
pared with those with normal sNfL (annualized percent change in BPF =  − 0.26%/year vs. − 0.16%/year; 
adjusted difference =  − 0.10%/year; 95% CI − 0.14% to − 0.06%, p < 0.001)

 26.3% of patients with elevated sNfL vs. 10.9% of patients with normal sNfL had ≥ 1 new T2 lesion 
(adjusted OR 2.66, 95% CI 1.86–3.77, p < 0.001)

 Over 2 years of follow-up, 20.5% of patients with elevated sNfL vs. 12.1% of patients with normal sNfL 
had ≥ 1 new T2 lesion (adjusted OR 1.94, 95% CI 1.42–2.62, p < 0.001)

Disanto 2017 [14], Meier 2023 
[61],

Abdelhak 2023 [15]

Relapse
 The probability of having experienced a relapse within 60 days before sampling was increased for sNfL 

levels above vs. below the 80th, 90th, 95th, 97.5th, and 99th percentiles
 Patients with sNfL levels > 97.5th percentile had ~ 4.0-fold odds of having experienced a relapse in the pre-

vious 60 days (OR 3.89, 95% CI 2.30–6.58, p < 0.001)
 The incidence of relapses 1 and 2 years before sampling was ~ 1.5 − 2.0 times higher for sNfL levels 

> 97.5th percentile (IRR = 2.08, 95% CI 1.64–2.63, p < 0.001 and IRR = 1.39, 95% CI 1.18–1.64, p < 
0.001, respectively)

 The incidence of relapses was ~ 2.0 times higher both 1 and 2 years after sampling for sNfL levels > 97.5th 
percentile (IRR = 1.94, 95% CI 1.21–3.10, p = 0.006 and IRR = 1.96, 95% CI 1.22–3.15, p = 0.005, 
respectively)

Lesions and brain volume
 Patients with either brain or spinal (43.4 pg/mL, IQR: 25.2–65.3) or both brain and spinal Gd + lesions 

(62.5 pg/mL, IQR: 42.7–71.4) had higher sNfL levels than those without lesions (29.6 pg/mL, IQR 
= 20.9–41.8; β = 1.461, p = 0.005 and β = 1.902, p = 0.002, respectively)

 Doubling of baseline sNfL levels was associated with an additional loss of white matter volume (− 0.26%, 
95% CI − 0.38% to − 0.15%, p < 0.001) but not gray matter volume (− 0.01%, 95% CI − 0.11–0.09, p = 
0.78)

Lin 2021 [56] Relapse
 Abnormal  sNfLa alone was not associated with risk of a new relapse (HR = 2.21, 95% CI 0.97–5.03, p = 

0.058); risk was numerically higher in patients with high sNfL levels
 However, compared with abnormal sNfL alone, Cox regression analysis showed a higher risk associated 

with
  Abnormal sNfL + thin GCIPL (HR = 5.38, 95% CI 1.61–17.98, p = 0.006)
  Abnormal sNfL + thin pRNFL (HR = 4.77, 95% CI 1.39–16.38, p = 0.013)
  Abnormal sNfL + thick INL (HR = 3.26, 95% CI 1.09–9.76, p = 0.034)

Lesions
 Abnormal baseline sNfL alone was associated with a higher risk of developing a new brain lesion (HR 

= 2.47, 95% CI 1.30–4.69, p = 0.006)
 Compared with abnormal sNfL alone, abnormal sNfL + thin GCIPL was associated with an even higher 

risk of developing a new brain lesion (HR = 3.19, 95% CI 1.51–6.76, p = 0.002)
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Table 3  (continued)

Author year Key outcomes relevant to the current SLR

Uher 2020 [103], Barro 2018 [16] Relapse
 Univariate analyses showed a significant positive association of sNfL with presence of relapse within 120 

days before sampling (βmult = 1.118, 95% CI 1.034–1.208, p = 0.005)
 Multivariate analysis confirmed the association of higher sNfL levels with a recent relapse (βmult = 1.144, 

95% CI 1.054–1.241, p = 0.001), whereas higher values of progressive vs. relapsing MS were no longer 
statistically significant

Lesions
 In multivariate analysis, contrast-enhancing and new/enlarging T2 lesions were independently associated 

with increased sNfL (17.8% increase per lesion; βmult = 1.178, 95% CI 1.078–1.287, p < 0.001 and 4.9% 
increase per lesion; βmult = 1.049, 95% CI 1.031–1.067, p < 0.001), respectively)

 The higher the sNfL percentile level, the more pronounced was future brain and cervical spinal volume 
loss

 sNfL above the 97.5th percentile was associated with an additional average loss in brain volume of 1.5% 
(p < 0.001) and spinal cord volume of 2.5% over 5 years (p = 0.009)

 A 10 pg/mL increase in sNfL was associated with an average additional reduction in brain volume of 
0.17% after 2 years (univariable βadd = 0.171%, 95% CI 0.226% to 0.116%, p < 0.001, n = 197 observa-
tions). An estimated additional 0.35% reduction was observed in brain volume over 5 years per 10 pg/mL 
increase in sNfL levels at baseline

 Confirming the 2-year results, baseline sNfL was a highly significant predictor of percentage brain volume 
change over 5 years of follow-up (multivariate βadd = 0.287%, 95% CI 0.432% to 0.142%, p < 0.001, n = 
132)

 In multivariable-adjusted analysis, sNfL > 90th percentile was linked to a higher likelihood of having ≥ 3 
active lesions compared with those in the 31st–90th percentile (OR 5.8, 95% CI 3.2–10.6, p < 0.05)

Canto 2019 [60], Abdelhak 2023 
[15]

Relapse
 Baseline sNfL levels were significantly associated with presence of relapse in the 90 days before sampling 

(β = 1.478, 95% CI 1.279–1.707, p < 0.001)
 Compared with lower sNfL levels, higher sNfL levels were associated with a greater risk of having experi-

enced a relapse in the 60 and 360 days before sampling; however, extreme sNfL levels were not associated 
with future relapses

 At the last visit available for each participant, sNfL levels did not show an association with presence of 
relapse in the 90 days before sampling (β = 1.031, 95% CI 0.817–1.300, p = 0.80)

Lesions and brain volume
 sNfL levels over time were associated with T2LV (β = 3.361, 95% CI 2.300–4.420, p = 5.8 ×  10−10)
 sNfL levels over time were associated with brain fraction (β = 2.0 ×  10−4, 95% CI 4 ×  10−6 to 0.000396, 

p = 0.02)
Jakimovski 2019 [108], Jakimo-

vski 2020 [49]
Lesions and brain volume
 sNfL levels at baseline were associated with baseline volumes of T1-, T2-, and gadolinium-enhancing 

lesions (q = 0.002, q = 0.001, and q < 0.001, respectively); however, correlation was not observed with the 
longitudinal changes in lesion volumes

 sNfL at baseline was correlated with a longitudinal decline in the whole brain volume (β = − 0.356, q = 
0.002)

Chitnis 2018 [94] Lesions and brain volume
 sNfL levels at Year 5 had a negative correlation with BPF at Year 10  (rs = − 0.22, p = 0.0479)
 In univariate analysis, a 10 pg/mL increase in the average yearly NfL levels (from Years 1–5) was associ-

ated to an average decrease of 0.849% in BPF. Average reduction in BPF was 0.920% when adjusted for 
sex, baseline age, and disease duration in the multivariate analysis

 Higher sNfL levels were associated with an increased T2 brain lesion load (Year 1  rs = 0.39, p < 0.01, Year 
2  rs = 0.38, p < 0.01, Year 3  rs = 0.24, p = 0.04, Year 4  rs = 0.32, p < 0.01)

Progressive multiple sclerosis (SPMS, PPMS)
Bar-Or 2023 [44]
(ORATORIO)

Lesions
 Higher baseline NfL levels were independently associated (multiple linear regression model) with greater 

Gd + lesion count (effect on  log10 sNfL = 0.06, 95% CI 0.05–0.08, p < 0.0001) and higher T2LV (0.04, 
95% CI 0.03–0.06, p < 0.0001)
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reported by Brune et al., patients with high sNfL (≥ 8 pg/
mL) at baseline had an increased risk of experiencing a new 
clinical relapse (odds ratio [OR] = 3.3, 95% confidence 
interval [CI] 1.38–7.8, p = 0.007) in the follow-up period. 

However, the association between sNfL and the occurrence 
of new clinical relapse was observed only among patients 
having sNfL ≥ 80th age-corrected percentiles [45]. Nota-
bly, the association between recent relapse (within the past 

Table 3  (continued)

Author year Key outcomes relevant to the current SLR

Brune 2022 [45] Lesions
 Higher sNfL concentrations at baseline were significantly associated with higher T2 lesion count  (rp = 

0.41, p = 0.004) and increased T2LV  (rp = 0.39, p = 0.01) at baseline
 Furthermore, higher sNfL concentrations at follow-up were significantly associated with higher T2 lesion 

count  (rp = 0.36, p = 0.04)
Comabella 2022 [37] Lesions and brain volume

 Baseline sNfL levels were associated with T2LV (β = 1.01, 95% CI 1.00–1.01, p = 0.004), T1LV (β = 1.02, 
95% CI 1.00–1.03, p = 0.005) but remained at trend level for BPF (β = 0.97, 95% CI 0.95–1.001, p = 0.05)

 sNfL levels at baseline showed a significant correlation with changes in lesion volume
  T1LV after the first year: β = − 9.69, 95% CI − 18.66 to − 0.73, p = 0.03
  T1LV after the second year: β = − 10.52, 95% CI − 21.64–0.59, p = 0.06
  T2LV after the second year: β = − 10.38, 95% CI − 21.24–0.49, p = 0.06

Leppert 2022 [96] EXPAND cohort
Relapse
 High baseline sNfL levels were strongly and independently associated with relapses in the previous 2 years 

(geometric mean ratio = 1.075, 95% CI 1.016–1.137, p = 0.0116)
Lesions and brain volume
 High baseline sNfL levels were strongly and independently associated with high baseline T2LV (geometric 

mean ratio = 1.007, 95% CI 1.005–1.009, p < 0.0001) and presence of Gd + T1 lesions (1.441, 1.347–
1.541, p < 0.0001)

 High vs. low sNfL baseline levels were associated with higher rates of brain volume loss at Months 12 and 
24

INFORMS cohort
 High baseline sNfL levels were strongly and independently associated with high baseline T2LV (geometric 

mean ratio = 1.014, 95% CI 1.008–1.020, p < 0.0001) and presence of Gd + T1 lesions (1.571, 1.306–
1.890, p < 0.0001)

 High vs. low sNfL baseline levels were associated with higher rates of brain volume loss at Months 12 and 
24

Barro 2018 [16] Lesions
 Patients with vs. without contrast-enhancing lesions had higher sNfL levels (median [IQR] = 51.4 

[40.9–60.2 vs. 40.8 [30.6–52.5] pg/mL), but this did not reach statistical significance (βmult = 1.121, 95% 
CI 0.933–1.346, p = 0.223; after age correction: βmult = 1.123, 95% CI 0.932–1.352, p = 0.222)

Chitnis 2018 [94], Barro 2023 [97] Relapse
 sNfL was associated with relapse within the previous 90 days (adjusted β = 1.69, 95% CI 1.32–2.17, p < 

0.001)
Lesions
 sNfL was associated with Gd + lesions within the previous 30 days (adjusted β = 1.46, 95% CI 1.08–1.96, 

p = 0.014)

sNfL levels reported in pg/mL; pg/mL and ng/L were considered equivalent units as 1 pg/mL = 1 ng/L. Some studies reported use of log normal 
sNfL levels for analysis; however, no information was reported for other studies
ARR , annualized relapse rate; BPF, brain parenchymal fraction; CI, confidence interval; CIS, clinically isolated syndrome; DMT, disease-modi-
fying therapy; EDSS, Expanded Disability Status Scale; GCIPL, ganglion cell and inner plexiform layer; Gd +, gadolinium-enhancing; HR, haz-
ard ratio; IFN, interferon; INL, inner nuclear layer; IQR, interquartile range; IRR, incidence rate ratio; MRI, magnetic resonance imaging; MS, 
multiple sclerosis; NfL, neurofilament light chain; OR, odds ratio; PBVC, percentage brain volume change; PPMS, primary progressive multiple 
sclerosis; pRNFL, peripapillary retinal nerve fiber layer; rp, partial correlation; RRMS, relapsing–remitting multiple sclerosis; SD, standard devi-
ation; SE, standard error; sGFAP, serum glial fibrillary acidic protein; SLR, systematic literature review; sNfL, serum neurofilament light chain; 
SPMS, secondary progressive multiple sclerosis; T1LV, T1 lesion volume; T2LV, T2 lesion volume
a In this study, abnormal sNfL was defined as sNfL levels > 80th percentile of age-corrected reference values
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4 months before sampling) and sNfL Z-scores was stronger 
compared with that with absolute sNfL concentrations. Indi-
viduals with higher sNfL Z-scores had a higher probability 
of relapses in the 1-year follow-up period (OR 1.41, 95% CI 
1.30–1.54, p < 0.0001), as indicated by a model with Z-score 
as a continuous predictor [51].

Evidence from a subset of studies (n = 2) suggested that 
the association of sNfL with relapse activity weakens after 
24 months. A study by Cutter et al. reported that a base-
line sNfL level of ≥ 16 pg/mL was associated with a relapse 
occurrence within 90 days and 6 months. However, this 
association was not observed at 12 months or throughout 
the entire 3-year study duration [50]. Another study revealed 
that a higher proportion of patients with an NfL Z-score 
≥ 1 experienced relapses compared with those with an NfL 
Z-score < 1 between Week 48 and Week 96 (stratified at 
Week 48), but the association with relapse activity was less 
pronounced between Week 96 and Week 144 (stratified at 
Week 96) [36, 52]. Only a couple of studies suggested no 
significant association between high sNfL levels and the 
risk of new relapse [53, 54]. The study by Ziemssen et al. 
reported that sNfL at baseline was not prognostic for on-
study annualized relapse rate (ARR) and relapse rates were 
not statistically different between high and low sNfL groups. 
This may be explained by the low ARR observed in both 
treatment groups, pooled across two trials (ofatumumab 
= 0.11 and teriflunomide = 0.24) [54]. Notably, a study by 
Cutter et al. demonstrated that the combination of baseline 
Gd + lesions and sNfL ≥ 16 pg/mL had a synergistic predic-
tive value for relapse within 90 days compared with either 
factor alone [50].

A predictive modeling study conducted based on data 
from the SUNBEAM and RADIANCE studies suggested a 
linear relationship between the median percentage change in 
baseline sNfL and the ARR [55]. Specifically, a 25% reduc-
tion in sNfL among patients receiving ozanimod 0.92 mg 
in SUNBEAM predicted an ARR of 0.22 (standard error 
[SE] = 0.04), while a 13% reduction in sNfL with interferon 
beta-1a predicted an ARR of 0.36 (SE = 0.04). A similar 
relationship was observed in the RADIANCE study, where 
patients receiving ozanimod demonstrated 25% reduction in 
sNfL and had an ARR of 0.19 (SE = 0.04) compared with a 
13% sNfL level reduction and an ARR of 0.29 (SE = 0.04) 
among patients receiving teriflunomide [55]. A study by 
Ziemssen et al. reported that ofatumumab resulted in a sig-
nificantly lower ARR compared with teriflunomide, with 
relative reductions of 60% and 48% in the high and low 
sNfL groups, respectively [54]. Furthermore, Kuhle et al. 
reported that there was no significant treatment-by-NfL cat-
egory interaction, suggesting consistent treatment effects of 
fingolimod across all NfL categories and demonstrating the 
prognostic value of sNfL in both placebo- and fingolimod-
treated patients [41].

Higher baseline sNfL levels were associated with a 
higher risk of developing MRI lesions (Table 3). Multiple 
linear regression modeling demonstrated that higher base-
line NfL levels were independently associated with greater 
Gd + lesion count (effect on  log10 sNfL = 0.11, 95% CI 
0.09–0.12, p < 0.0001), higher T2 lesion volume (effect 
on  log10 sNfL = 0.10, 95% CI 0.08–0.11, p < 0.0001) [44]. 
Another study provided evidence of early associations 
between sNfL levels and Gd + T1 lesions. At Week 4, the 
patients with sNfL levels above the baseline median dem-
onstrated a higher proportion of Gd + T1 lesions compared 
with those with sNfL levels that either crossed the baseline 
median or fell below it (64.7% vs. 31.1% and 16.2%). This 
trend persisted at Week 8 (25.9% vs. 10.8% and 9.0%) and 
Week 12 (11.9% vs. 4.4% and 3.9%), indicating a consist-
ent relationship between sNfL levels and the presence of 
Gd + T1 lesion [21]. The study by Brune et al. reported 
that patients with high sNfL levels at baseline had a signifi-
cantly increased risk of developing new T2 lesions during 
the follow-up period (OR 3.97, 95% CI 1.7–9.3, p = 0.002) 
[45]. The study by Kuhle et al. demonstrated a significant 
correlation between patients having baseline sNfL levels 
≥ 60 pg/mL compared with those < 30 pg/mL and a signifi-
cant increase in the number of new or enlarging T2 lesions. 
Specifically, patients with higher NfL levels experienced a 
2.6-fold rise in the occurrence of these lesions (difference 
= 164%; ratio of mean = 2.64 [1.51–4.60], p = 0.0006). 
Furthermore, elevated baseline NfL levels were associated 
with a 2.9 times higher rate of brain volume loss (differ-
ence = 195%; difference in means =  − 0.78% [− 1.02 to 
− 0.54], p < 0.0001) [41]. The results were corroborated in 
another study wherein the proportion of patients with no 
T1 Gd + lesions and no new/enlarging T2 lesions (both at 
Week 96 and Week 144) were higher among patients with 
NfL Z-score < 1 vs. those with an NfL Z-score ≥ 1 [36, 52]. 
These results underscore the considerable impact of elevated 
NfL levels on both the occurrence of new or enlarging T2 
lesions and the extent of brain volume loss (Table 3).

All MS subtypes (RRMS, secondary PMS [SPMS], primary 
PMS [PPMS], and clinically isolated syndrome [CIS])

Among studies included in the SLR (n = 75), the association 
between sNfL levels and relapse activity appeared compa-
rable across patients with different types of MS, mirroring 
the patterns observed in those with RMS. The elevated 
sNfL levels were indicative of a higher likelihood of expe-
riencing relapses and MRI lesions (Table 3). A study by 
Lin et al. reported a numerically higher risk of new relapse 
among patients with high sNfL levels (hazard ratio [HR] 
= 2.21, 95% CI 0.97–5.03, p = 0.058); however, the risk of 
relapse was significantly higher in patients with abnormal 
sNfL levels combined with thin GCIPL (HR = 5.38, 95% 
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CI 1.61–17.98, p = 0.006), thin pRNFL (HR = 4.77, 95% 
CI 1.39–16.38, p = 0.013), or thick inner nuclear layer (INL; 
HR = 3.26, 95% CI 1.09 to 9.76, p = 0.034) [56]. A study 
by Disanto et al. reported that patients exhibiting sNfL lev-
els > 97.5th percentile had a twofold increase in the rate of 
relapses at both 1 and 2 years after sampling (incident rate 
ratio [IRR] = 1.94, 95% CI 1.21 to 3.10, p = 0.006 and IRR 
= 1.96, 95% CI 1.22–3.15, p = 0.005) [14]. The multivariate 
analysis conducted as a part of the Barro et al. study con-
firmed the association of higher sNfL levels and presence of 
relapse within 120 days before sampling (βmult = 1.144, 95% 
CI 1.054–1.241, p = 0.001) [16]. It was also observed that 
increase in sNfL levels were associated with higher contrast-
enhancing, new/enlarging T2 lesions and reduction in brain 
volume (Table 3). Furthermore, compared with patients with 
abnormal sNfL levels, those with both abnormal sNfL lev-
els and thin GCIPL had an even higher risk for new brain 
lesions (HR = 3.19, 95% CI 1.51–6.76, p = 0.002) [56].

PMS (SPMS and PPMS)

Only a few studies (n = 6) that included SPMS and PPMS 
reported an association between sNfL levels and MRI 
lesions/relapse activities; however, the results were in line 
with those reported for patients with RMS. Higher sNfL 
levels were associated with higher number of prior relapses 
and MRI lesions (Table 3). Higher sNfL levels at follow-up 
were significantly associated with greater Gd + lesion count 
(effect on  log10 sNfL = 0.06, 95% CI 0.05–0.08, p < 0.0001) 
[44], higher T2 lesion volume (effect on  log10 sNfL = 0.04, 
95% CI 0.03–0.06, p < 0.0001) [44], and higher T2 lesion 
count  (rp = 0.36, p = 0.04) [45].

Disease worsening (EDSS worsening, disability, 
and cognition)

RMS (studies with ≥ 80% RRMS)

Most studies (~ 75%) investigating the association between 
sNfL levels and disease worsening consistently demon-
strated a strong link between sNfL and disease worsening/
progression (Table S4; Online Resource). Patients with 
higher sNfL Z-scores were found to have a greater likeli-
hood of experiencing EDSS worsening (OR 1.11, 95% CI 
1.03–1.21, p = 0.0093) and evidence of disease activity-3 
(EDA-3; OR 1.43, 95% CI 1.31–1.57, p < 0.0001). More-
over, patients with higher sNfL Z-scores also displayed a 
higher probability of experiencing EDA-3 in the following 
year (OR 1.33, p < 0.001). The risk of EDA-3 increased 
incrementally with higher sNfL Z-score cutoffs, with a max-
imum 2.1-fold risk observed in patients with sNfL above 
the 97.7th percentile (Z-score > 2.0) compared with those 
below it. Among patients with NEDA-3 status, those with 

sNfL levels above the 93.3rd percentile (Z-score > 1.50) had 
a 2.64-fold (95% CI 1.30–5.37, p = 0.0074) higher risk of 
experiencing EDA-3 in the following year [51]. A study by 
Bar-Or et al. reported that the proportion of patients achiev-
ing NEDA-3 status was higher in those with sNfL levels 
below the baseline median (65.4%) compared with those 
with levels above (21.7%) or crossing the baseline median 
(50.0%) [21]. These findings are supported by the study by 
Srpova et al., which showed that patients who lost NEDA-3 
status within 36 months had higher sNfL levels over follow-
up among patients with active MS. High sNfL levels were 
associated with higher odds of having EDSS worsening at 
12 months (8.0% vs. 2.8%; βOR 3.70, 95% CI 1.09–12.60, 
p = 0.036); however, the association between sNfL levels 
and EDSS worsening weakened over a period of 3 years (rho 
= 0.21, p = 0.01) [57]. It was also observed that patients 
who experienced an annual sNfL increase of > 10% had a 
significantly higher number of patients with EDSS worsen-
ing compared to those who either experienced any annual 
decrease or an annual increase of up to 10% in sNfL levels 
(42.2% vs. 6.3%, p < 0.001) [58].

In contrast to the aforementioned evidence, a study by 
Anderson et al. found only a modest association between 
log-transformed baseline sNfL levels and baseline EDSS 
scores (β = 0.272, 95% CI 0.051–0.494, p = 0.016). Fur-
thermore, the study found no significant association between 
baseline sNfL levels and changes in EDSS scores over a 
5-year period (β = − 0.180, 95% CI − 0.436–0.076, p = 
0.167) [53]. Similarly, another study by Bose et al. reported 
no significant association between sNfL levels, both at base-
line or during the follow-up, and 10-year EDSS progression 
[59] (Table S4; Online Resource).

All MS types (RRMS, SPMS, PPMS, and CIS) and PMS (SPMS 
and PPMS)

In accordance with the reported association between sNfL 
levels and disease progression in patients with RMS, most 
studies conducted across all MS types and PMS further sup-
ported these findings (Table S4; Online Resource). Baseline 
sNfL levels were found to have significant associations with 
EDSS scores (β = 1.080, 95% CI 1.047–1.114, p < 0.001), 
indicating that with each EDSS increment, sNfL levels rose 
by 8.0%. Furthermore, a significant interaction was observed 
between EDSS worsening and changes in sNfL levels over 
time, with progressors exhibiting a steeper trajectory of 
sNfL levels (β = 1.015, 95% CI 1.007–1.023, p < 0.001). 
This result remained significant even after accounting for 
age, sex, and disease duration [60]. According to the Jaki-
movski et al., initial sNfL levels were found to be predic-
tive of 5-year EDSS scores (r = 0.25, q = 0.012), and in a 
cross-sectional analysis using follow-up data, sNfL levels 
were strongly associated with the EDSS score (r = 0.356, q = 
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0.002) [49]. The findings from the included studies reported 
that patients with elevated sNfL levels (Z-score > 1.3) had 
a twofold increased risk of future CDW (HR = 2.26, 95% 
CI 1.24–4.14, p = 0.008) [61]. The results also align with 
those observed in patients with PMS, further supporting 
the association between sNfL levels and disease progres-
sion (Table S4; Online Resource).

Cognition and data gaps

A total of 13 studies found a correlation between sNfL lev-
els and cognitive impairment, as assessed by Symbol Digit 
Modalities Test (SDMT) performance, Paced Auditory 
Serial Addition Test (PASAT), California Verbal Learn-
ing Test-II (CVLT-II), or Montreal Cognitive Assessment 
(MoCA) scores. The available evidence predominantly 
focused on the RMS population, with limited studies report-
ing the association of sNfL with cognition in patients with 
PMS  (rp =  − 0.32, p = 0.03) [45]. Based on the findings 
from the included studies, it was evident that higher sNfL 
levels were linked to reduced cognitive function, particu-
larly reflected by lower performance on the SDMT score 
(Table S4; Online Resource). Additionally, there was a nega-
tive correlation observed between sNfL levels and follow-up 
MoCA scores (baseline: R = − 0.33, p = 0.019; 3 months: 
R = − 0.32, p = 0.021; 6 months: R = − 0.42, p > 0.001) 
[62]. Furthermore, a study by Häring et al. demonstrated 
that sNfL levels measured in patients with RMS over a 12- 
or 24-month timeframe were indicative of a 20% decline in 
PASAT scores (12 months HR = 2.59, 95% CI 1.04–6.47, 
p = 0.0410; 24 months HR = 3.03, 95% CI 0.72–12.69, p = 
0.1300) [42].

Only a few of studies included in the SLR reported on 
the association between sNfL and progression associated 
with relapse activity (PARA), PIRA, and RAW (Table S4; 
Online Resource). Among them, the only study that exam-
ined the link between sNfL levels and RAW revealed a weak 
but statistically significant association with the occurrence 
of RAW (coefficient = 0.03, 95% CI 0.01–0.05, p = 0.01), 
indicating the predictive value of sNfL levels in the occur-
rence of RAW [63]. In addition, the available evidence was 
limited in showing that baseline sNfL levels could serve 
as a predictor for PARA (HR = 2.3, 95% CI 1.1–5.1, p = 
0.037) [64]. There was insufficient evidence to establish a 
clear association between sNfL and PIRA. However, a study 
by Meier et al. reported that baseline sNfL levels showed 
potential prognostic value for future PIRA (HR = 1.77, 95% 
CI 1.11–2.83, p = 0.02). Nevertheless, these results did not 
reach statistical significance after adjusting for factors such 
as age, sex, body mass index, and disease duration [61]. 
Taking into consideration the available evidence, there is 
a clear need to understand the impact of sNfL levels on 
both PARA and PIRA in future studies. This is especially 

important given recent findings that indicate a substantial 
occurrence of PIRA in a noteworthy percentage of patients 
with CIS/early MS [65].

Discussion

This is the first SLR to extensively investigate the role of 
sNfL as a prognostic and monitoring biomarker, as well 
as its association with disease progression and treatment 
response. Among the studies included in the SLR, the 
Simoa immunoassay was the most-used method for meas-
uring sNfL levels. The use of varying cutoff values to define 
abnormal or elevated sNfL levels across the included stud-
ies led to significant heterogeneity in reporting the relation-
ship between higher sNfL levels and clinical outcomes. This 
variation reflects the complexity and diversity of the patient 
populations, including differences in prior therapies, age, 
disease duration, and gender. These factors emphasizes the 
importance of defining standardized cutoff values for sNfL 
to ensure its effective and reliable use in routine clinical 
care. The present review emphasized the elevated levels of 
sNfL in patients with MS compared with healthy controls, 
highlighting its reliability as a biomarker for MS. Notably, 
sNfL levels were generally higher in patients with PMS as 
opposed to those with RMS. Furthermore, this review dem-
onstrated a correlation between increased sNfL levels and 
advanced age, as well as a higher frequency of relapses in 
the previous 12 months or a higher baseline EDSS score 
among patients.

The included studies in the SLR consistently demon-
strated an association between higher sNfL levels and an 
increased risk of future relapses and disease progression. 
The higher levels of sNfL were also linked to a higher like-
lihood of experiencing GD + T1 and T2 lesions, as well 
as worsening EDSS scores. Additionally, there was a nota-
ble correlation between lower sNfL levels and a higher 
likelihood of achieving NEDA-3, while higher sNfL lev-
els were associated with an elevated risk of experiencing 
EDA-3, 3-month confirmed disability progression (CDP), 
and 6-month CDP. Patients who displayed disease progres-
sion generally exhibited higher sNfL levels compared with 
nonprogressors. Some studies highlighted the persistence of 
the association between sNfL and relapse activity for up to 
2 years of follow-up, although the strength of this associa-
tion tended to diminish thereafter. Further, combining sNfL 
levels with other markers like thin GCIPL, thin pRNFL, and 
thick INL demonstrated greater sensitivity in disease man-
agement compared with sNfL levels alone. In addition to 
sNfL levels, the NfL Z-score has also emerged as a sensitive 
prognostic marker for predicting future relapses, MRI dis-
ease activity, and disease progression. Thus, future research 
should focus on exploring the potential use of sNfL Z-score 
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or a combination of sNfL with other biomarkers as promis-
ing tools in the management of MS.

Multiple clinical trials have consistently demonstrated 
the clinical benefits of DMTs in patients with MS [44, 54, 
66]. The studies included in the current SLR reported that 
treatment with DMTs resulted in a reduction in sNfL levels. 
In clinical setting, monoclonal antibodies such as alemtu-
zumab, natalizumab, ofatumumab, and ocrelizumab have 
demonstrated higher efficacy compared with oral therapies 
(such as dimethyl fumarate, fingolimod, siponimod, and teri-
flunomide) and platform therapies (such as interferons and 
glatiramer acetate). These differences in efficacy were mir-
rored by the effects on sNfL levels, where monoclonal anti-
bodies led to a more pronounced reduction in sNfL levels 
compared with oral and platform therapies. These findings 
highlight the potential role of sNfL as a valuable marker for 
evaluating the treatment response to DMTs in MS. Further 
research is needed to explore the utility of sNfL as a bio-
marker for monitoring treatment effectiveness in MS.

The results of this SLR should be interpreted with cau-
tion, considering that it is based on secondary research. As 
with any SLR, the findings of this study were derived from 
a diverse set of primary studies that encompassed various 
study designs (including clinical and real-world studies) and 
study populations with variations in age, disease severity, 
and treatment settings. However, it is important to note that 
the included studies generally demonstrated a low risk of 
bias when assessed using the RoB 2.0 and Downs and Black 
checklist tools. This suggests that the overall quality of the 
included studies was acceptable, enhancing the reliability 
of the findings.

Consistent with the recent study by van Lierop et al. [20], 
this SLR highlighted the robust and significant associa-
tion between sNfL levels and the progression of disease in 
patients with MS. Importantly, measuring sNfL is a simple, 
reliable, and cost-effective approach compared with measur-
ing cNfL and traditional imaging tools such as MRI. With its 
ease of use, sNfL measurement can effectively contribute to 
routine clinical practice by facilitating the monitoring of MS 
disease progression and assessing treatment response. These 
findings underscore the potential value of sNfL as a valu-
able tool for clinical decision-making in the management of 
MS. Further research and implementation studies are recom-
mended to establish the integration of sNfL measurement 
into standard clinical practice.
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