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ARTICLE INFO ABSTRACT

Keywords: Tumoral PD-L1 expression is assessed to weigh immunotherapy options in the treatment of various types of cancer. To
PD'Ijl expression determine PD-L1 expression, each tumor cell needs to be assessed to calculate the percentage of PD-L1 positive tumor
Angiosarcoma cells, called tumor proportion score (TPS). Pathologists cannot evaluate each cell individually due to time constraints
Artificial intelligence . . .

L and thus need to approximate TPS, which has been shown to result in low concordance rates.

Digital pathology .. . . - . « s,
I th Decision quality could be improved by an Al-based TPS prediction tool which serves as a “second opinion”.
mmunotherapy

Establishing such a tool requires a certain amount of training data, which manifests a bottleneck for rare cancer
types such as Angiosarcoma.

To address this challenge, we developed and open sourced a pipeline that leverages pre-trained and generalist models
to achieve strong TPS prediction performance on limited data. Pathologists were asked to reassess patients for which
their TPS strongly disagreed with the AT's prediction. In many of these cases, pathologists updated their TPS score, im-
proving their assessment, thus demonstrating the technical feasibility and practical value of Al-based TPS scoring as-
sistance for rare cancers.

Al-assisted diagnosis

1. Introduction

Angiosarcoma, a rare and aggressive cancer that arises from the endo-
thelial cells of blood or lymphatic vessels, often has a poor prognosis.'
Treatment includes surgery, radiation, or chemotherapy, yet these modali-
ties have shown limited improvement in patient survival.*®

* Corresponding author at: Philippstral3e 13, Haus 18, 10115 Berlin, Germany.
E-mail address: fabian.reith@mdc-berlin.de (F.H. Reith).
! These authors contributed equally to this work.
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Immunotherapy, targeting proteins such as the programmed cell death pro-
tein (PD-1) and its ligand, PD-L1, has emerged as a promising option.”
PD-L1 expression, when present on cancer cells, allows cancer cells to
evade the immune surveillance and worsens the prognosis.®'* PD-L1
inhibitors have shown great potential in the treatment of various cancers,
including subtypes of Angiosarcoma.'?*
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Therefore, a most accurate determination of PD-L1 expression in tumor
samples is of high importance in order to identify patients who will likely
benefit from PD-L1 inhibition. The current standard method to determine
PD-L1 expression is the visual analysis of immunohistochemically (IHC)
stained whole slide images (WSIs) by trained pathologists to estimate the
PD-L1 expression tumor proportion score (TPS).!*"'” Pathologists have
limited time to evaluate a tumor and therefore cannot assess the PD-L1
status of each cancer cell individually. Thus, approximate PD-L1 expression
is performed by estimating the percentage of stained tumor tissue. Along
with variabilities in staining, such an approach can lead to different
PD-L1 expression assessments with a low concordance rate between
pathologists.'® ! These challenges underscore the benefits of a deep
learning-based, quantifiable approach to accompany the pathologists'
diagnosis.

Multiple deep learning approaches have been proposed for processing
and analyzing immunohistochemically (IHC) stained tissue slides. For a
prominent example, DeepLIIF? is a framework that provides quantitative
robust scoring across a variety of IHC stainings. However, DeepLlIIF is tai-
lored to nuclear staining, whereas PD-L1 is localized on the cell membrane.
Motivated by a strong correlation between IHC-detected PD-L1 expression
and patient response rates,>>>* some approaches directly target PD-L1 sta-
tus prediction for lung-, head and neck- and breast cancer entities.?>~>°
However, the adaptation of these approaches to Angiosarcoma PD-L1 status
prediction is hindered by two factors: First, the rarity of Angiosarcoma en-
tails that there is relatively little annotated training data available, which
has been shown to be detrimental to model performance in a wide range
of diverse application scenarios. Second, none of the existing PD-L1 status
prediction approaches shared their code and models in a fully open source
manner, thus hindering benchmarking of these approaches on new data
and new cancer entities as well as dissemination to practitioners.

In response to this gap, we developed a deep learning-based approach
that tackles the scarcity of training data faced in rare cancer entities. To
this end our approach builds upon generalist models and the fine-tuning
of pre-trained weights. Furthermore, we fully open source our approach
in the form of the library PEERCE (PD-L1 Expression Estimation for Rare
Cancer Entities).>’ Beyond shipping code and trained models for
Angiosarcoma TPS prediction, PEERCE allows users to train and fine-tune
on their own data to improve TPS accuracy.

This open nature of our work allows for straightforward integration into
standardized interfaces, such as the EMPAIA platform,>? further increasing
the usage of PEERCE by pathologists.

Our method works by identifying tumor regions, assessing PD-L1 status
at the cellular level, and aggregating these findings into a PD-L1 expression
TPS. Our approach allows us to create a useful deep learning model based
on limited data and annotations available for Angiosarcoma: We compare
the performance of our approach to the TPS assessment of three experi-
enced, board-certified pathologists, revealing correlation coefficients be-
tween 0.83 and 0.93. Our method, which provides a robust and
interpretable cell count-based TPS, is not intended to replace the
pathologist's assessment, but to complement it and provide a reliable
“second opinion”. In cases of significant discrepancy between the
Al-derived TPS and the pathologist's assessment, re-analysis by the pathol-
ogist can be suggested, potentially improving diagnostic accuracy.

2. Material and methods
2.1. Data

2.1.1. Tissue specimens (data set)

A total of 63 patients with histopathologically confirmed angiosarcoma
were included in the entire collective. The patients were presented to
Charité Universitatsmedizin between 2010 and 2022. At least one represen-
tative tumor-bearing formalin-fixed paraffin-embedded tissue block was
available from all 63 patients. Of these, 27 were female and 36 were
male. Their age at diagnosis ranged from 27 to 96 years with an average
of 66 years. Tumor sampling was performed via surgical operation for 39
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Table 1
Characteristics of angiosarcoma patients.
Category Subcategory Value
Total Patients Angiosarcoma 63
Sex Assigned at Birth Male 36
Female 27
Sampling Method Surgical Operation 39
Biopsy 24
Age at Diagnosis Average 66
Range 27-96
PD-L1 TPS <1 % 48
1-50 % 9
=50 % 6
Range 0-100 %

patients, as well as via biopsy for the remaining 24 patients (see Table 1).
The study was approved by the local ethic committee (approval number
EA4/012/22) and was performed in accordance with the Declaration of
Helsinki.

Following H&E staining and additional immunohistochemistry, all
slides were annotated with regions of interest (ROIs) indicating tumor pres-
ence. In addition to the 63 angiosarcoma patients, 16 sarcoma cases were
available that were initially incorrectly classified as angiosarcoma during
routine diagnostics, however this diagnosis was not confirmed during the
course of the study. After digitization, 27,916 patches of confirmed
angiosarcoma were available and 6101 patches of sarcomas that could
not be clearly classified as angiosarcoma. In total, 34,017 patches were ex-
tracted for training. During cross-validation, only confirmed angiosarcoma
patches were used in the validation set.

Due to the nature of staining procedures on adjacent tissue slices, per-
fect cell alignment between H&E and PD-L1 slides is not always possible.
In 61 out of 79H&E tissue samples, H&E and PD-L1 slides were so well-
aligned that tissue structures closely overlap in both slides. Out of these
well-aligned slides, 48 WSIs with 20,739 patches came from 47 patients
with verified angiosarcoma. The remaining 14 WSIs, each from a unique
patient, contributed 4810 patches. These were also used for training but
not for validation.

2.1.2. H&E and PD-L1 staining

After formalin fixation and paraffin embedding (FFPE), 3 pm tissue sec-
tions were cut, afterwards deparaffinized by heat (70 °C), H&E-stained and
covered by Sakura Tissue-Tek Prisma® Plus.** PD-L1 staining was per-
formed using DAB-staining on a Leica Bond.>* The PD-L1 antibody was
used at 1:200 dilution (Cell Signaling Technology Inc., clone E1L3NR, cat-
alog number 13684S). After staining, tissues were rehydrated in graded al-
cohols and xylene. Finally, all slides were film coverslipped using Sakura
Tissue-Tek Film®.>*

2.1.3. Digitization

All WSIs were scanned via a 3DHISTECH PANNORAMIC 1000
scanner>> at 40 X magnification, yielding a resolution of 0.25 pm per
pixel. At this magnification, WSI dimensions ranged widely from 15840
X 22496 pixels to 184992 x 91136 pixels. The patches, to be utilized by
the convolutional neural network (CNN), were extracted from the WSI at
20 X magnification. At this downscaled magnification, WSIs ranged from
7920 x 11248 pixels to 92496 x 45568 pixels. Patches, as well as the
WSIs themselves, were retrieved in RGB format.

2.1.4. Annotation

For annotation purposes Omero Plus*® was used. In the process of creat-
ing the dataset used for training and evaluation, annotations were con-
ducted at two distinct levels, the tumor area annotation and the cell type
annotation.

2.1.4.1. Tumor area annotation. On the WSI level, tumor ROIs were anno-
tated to mark all tumor regions within the WSI. A pathologist, specialized
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in sarcoma pathology, recognized, and marked tumor regions. All WSIs
have tumor areas which were annotated. Most WSIs just have one tumor
ROI, while others possess up to 23 tumor ROIs, with an average of 4.83
tumor ROIs per WSL

2.1.4.2. Cell type annotation. The study involved detailed cell type annota-
tion on 512 x 512 patches without specifying cellular structures. While
some PD-L1 expression scores focus on both tumor and immune cell PD-
L1 expression or immune cell scoring alone, we focused exclusively on
tumor cell PD-L1 expression, TPS, for this study, as TPS represents a widely
validated biomarker for immunotherapy patient selection.?”-*® Annotation
of immune cells was therefore not required. Cells were categorized into PD-
L1 positive tumor cells (TC +), PD-L1 negative tumor cells (TC-) and non-
tumor (other) cells (OC). OCs include, among others, lymphocytes, plasma
cells, neutrophils and macrophages, although their lineage differentiation
was not investigated further. Marking cells without specifying their exact
outline sped up annotations. The process is visualized in Fig. 1.

Patches for annotation were chosen using two methods: directly from
tumor ROISs to ensure tumor cell presence, and through a CNN that detects
tumor patches in WSIs. This CNN is further described in the Tumor Patch
Detection section and may in rare cases by mistake identify non-tumor
areas. These CNN-identified patches were included in the training set to
mimic the variety in WSI-wide predictions. From 65 WSIs of 63 verified
angiosarcoma patients, 451 patches were annotated by a pathologist with
7487 cells including 2413 OCs and 5074 tumor cells (708 TC+ and 4366
TC-). Additionally, 13 WSIs from 13 patients provided 57 patches with
1072 cells (453 OCs, 619 tumor cells; 132 TC+ and 487 TC-) for training
only, not validation, as their tumor type was unclassified. This amounted
to 8559 annotated cells across 76 patients in total, consisting of 840 PD-
L1 TC+ cells, 4853 PD-L1 TC- cells, and 2866 OCs.

2.1.4.3. Assessment of the PD-L1-expression tumor proportion scores. The TPS
indicates the ratio of PD-L1 positively stained tumor cells in relation to all
tumor cells. It is given as a percentage:

) TC,
ExpressionScorepp _ ;| = W
where TC, is the number of positively PD-L1 stained tumor cells, whereas
TC _ represents the number of negatively PD-L1 stained tumor cells.

Three pathologists independently assessed PD-L1 expression on all avail-
able angiosarcoma WSIs, resulting in three different TPS for each slide. We
chose a discrepancy from the Al's prediction of more than 10 percentage
points to prompt the respective pathologists to re-evaluate their TPS assess-
ment, and potentially revise the score. Only the initial TP scores were used to
evaluate the predictive performance of the deep learning model.

2.2. Data preprocessing
Data Preprocessing steps include tissue patch extraction via Otsu

thresholding®® as well as a series of patch augmentations to improve
model generalizability, as detailed in the following.

Fig. 1. Annotation process. The slide is analyzed (1), and tumor regions of interest
(ROIs) are annotated WSI-wide (2). A small number of 512 x 512 patches were
then taken from each investigated WSI to individually annotate the cell- and
staining type (TC+, TC- or OC) in a subset of the patch's cells (3).
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2.2.1. Tissue patch identification and extraction

The WSIs provided often comprise sizes larger than 10,000 x 10,000
pixels, being too large to be processed by a CNN in one pass. Hence, we
split the WSI into smaller patches for subsequent processing, as is usually
done when applying deep learning techniques to WSIs.***!

The WSIs also harbor white spaces (tissue cutting artifacts and tissue
structure features). As only tissue patches are needed for further processing
and in order to save computational resources, we used Otsu thresholding®”
to distinguish tissue regions from the white background. We downscaled
the WSI by a factor of 16 and slightly modified it to improve tissue detec-
tion performance. There are some WSIs with black edges around the slide,
resulting in problematic thresholds. We excluded these by setting all pixels,
whose channel values were lower than 20 for all color channels, to white.
For PD-L1 WSIs, downscaled WSI was converted into grayscale. For H&E
WSIs we converted the downscaled WSI to Haematoxylin-Eosin-DAB
(HED) color space, using the eosine channel alone for Otsu thresholding.
In rare cases, Otsu's method yielded high thresholds which exclude
tissue. To avoid tissue exclusions, we established a fixed upper-bound
threshold.

Applying the identified thresholds onto the downscaled WSI image
yielded our tissue mask. Using the tissue mask, we iterated through all po-
tential patch locations. As the tissue mask was downscaled, we used a step
size of 32 pixels, both vertically and horizontally. Each 32 X 32 pixel patch,
corresponding to a 512 X 512 pixel patch within the overall WSI, was then
individually evaluated.

The 32 X 32 pixel patch was divided into 16 smaller, equally sized 8
X 8 pixel sub-patches, on which the number of thresholded tissue pixels
was counted. If five or more pixels of the sub-patch were considered tissue
pixels, it was considered to be a tissue sub-patch. Patch tissue coverage
was then calculated as the number of sub-patches covered in tissue di-
vided by all sub-patches. If this coverage was more than 60 %, the entire
patch was considered a tissue patch. For such patch locations, the coordi-
nates were converted back to the corresponding 512 X 512 pixel coordi-
nates of the original WSI and stored in a list of suitable tissue patch
locations.

When we extracted patches from both PD-L1 and the aligned H&E, we
calculated an overlapping tissue mask by performing a logical ‘and’ opera-
tion on both tissue masks. In some cases, tissue was missing from one of the
two WSIs, even though they are well aligned. Using an overlapping tissue
mask ensured that only tissue-containing patches for both, PD-L1 and
H&E, were extracted.

The number of identified tissue patches generally ranged from around
50 to more than 6000, per WSI, with a mean of 1846. For training purposes,
500 tissue patches were extracted from WSIs with more than 500 tissue
patches, while all patches were extracted for WSIs with less than 500
patches identified. We also created a tumor mask for each patch based on
provided Omero annotations.

2.2.2. Patch augmentation

During the training process, data augmentation techniques were used to
enhance performance and generalizability of our model. For our pipeline,
we employed the Albumentations library,*? an efficient and adaptable
tool, which allows the user to apply identical augmentation operations to
more than one image. This was useful in cases where we fed both, H&E
and PD-L1 patches, into the CNN.

First, we employed horizontal and vertical flipping with a 50 %
probability for each flip. Then, various affine transformations were ap-
plied, including random translation, scaling and shearing, all within a
specified range. We also included color jittering, which randomly alters
brightness, saturation, contrast and hue, all again within a specified
range.

As the model weights were pre-trained on ImageNet, we normalized
our patches to resemble the mean and standard deviation of that
dataset. Normalization was applied to all patches, including those used
for validation, while all other augmentations were only applied during
training.
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2.3. Artificial intelligence

Our deep learning approach for PD-L1 expression TPS estimation fol-
lows a three-step pipeline (Fig. 2): First, it identifies tumor patches. Then
it detects and classifies cells within these patches into PD-L1 expressing
tumor cells (TC+), non-expressing tumor cells (TC-), and other cells
(OQ). Finally, our approach aggregates the identified cell types among all
WSI tumor patches to calculate the WSI wide PD-L1 expression TPS. All
methods were evaluated via five-fold cross-validation, with 80 % of the
data used for training and 20 % for testing in each fold.

2.3.1. Tumor patch detection

To detect whether a patch consists of tumor tissue or not, we used a
U-Net,*® an encoder-decoder neural network architecture. We chose the
EfficientNetV2 M architecture** as our encoder, with weights pretrained
on ImageNet.*> We used the standard decoder with randomly initialized
weights. In cases where we fed both, H&E and PD-L1 patches, into the
model, we increased the number of input channels of the model from
three to six.

We used PyTorch as our core deep learning library. The U-Net archi-
tecture implementation was sourced from the Segmentation Models
Pytorch library,*” while the EfficientNet encoder model was from Pytorch
Image Models.*® The U-Net is trained for 50 epochs, a number after
which our tests didn't show any further improvements. Optimization was
carried out via the AdamW*° optimizer with weight decay to avoid
overfitting. The learning rate starts at 0.001 and is continuously decreased
by a cosine annealing learning rate scheduler to optimize more fine-grained
in later epochs. The chosen batch size was 8 and the model was trained
using a cross-entropy loss function.

For each patch it receives as input, the U-Net outputs a 512 x 512 seg-
mentation mask with two channels. One channel predicts the non-tumor
likelihood, while the other predicts tumor likelihood for each pixel.
Softmax was applied for each pixel individually, resulting in a channel
where tumor likelihood for each pixel was scored in a range between zero
and one.

To create an overall tumor score, we calculated the average over all the
pixel values of the tumor likelihood channel. This way, we obtained an
overall tumor score between zero and one for each patch. To reduce the oc-
currence of false positives, we used a threshold of 0.6 to determine relevant
tumor patches. This threshold was determined through validation testing to

79 patients (63 34,017 Trainin i
. , g of segmentation CNN
a ) Angiosarcoma, 16 other =] to detect tumor regions

patches
sarcoma)

Training of
segmentation CNN to
detect cell types

Total annotated cells: TC+
(840), TC- (4,853), OC (2,866)

76 patients ——>|

b) 1

TPS

Fig. 2. CNN Training process. a) Shown is the number of patients and patches
utilized to train the segmentation CNN to detect tumor regions, as well as the
number of patients and annotated cells employed to train for the segmentation of
cell types. b) Visualization of the deep learning pipeline: First, all 512 X 512
patches containing tumor regions are identified via a U-Net CNN (1). After this,
cell instances in the identified patches are determined via Cellpose (2). Then, a U-
Net predicts the cell type for each cell instance (3). The blue colored cells are TC-,
while the yellow ones are OC. Finally, cell type counts are aggregated over all
patches identified in (1). The tumor prediction score (4) is then calculated via
division of the number of PD-L1 positive tumor cells by all tumor cells identified
within the whole-slide image. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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minimize false positives and maximize recall. In some cases, the number of
identified tumor patches within a WSI was smaller than 10. In these cases,
we lowered the tumor detection threshold so that there were at least 10
identified tumor patches.

For evaluation, precision and recall were used to assess the effectiveness
of our U-Net model to identify tumor patches across the WSL. In addition,
Dice coefficient was used to examine prediction performance at the pixel
level, by comparing the overlap between the model's prediction and manual
annotations. All evaluation metrics for tumor patch detection are the result
of a five-fold cross-validation with three independent runs for each fold.

2.3.2. Tumor cell and staining detection

To detect tumor cells and their staining, cell outlines were identified
using Cellpose,* a deep learning framework capable of segmenting cell nu-
clei instances. To overcome detection challenges due to PD-L1 staining, an
additional transform using the DeepLIIF?* framework was applied. Follow-
ing this, a U-Net model was trained to classify cells into different types, such
as tumor-cell positive, tumor-cell negative or other non-tumor cells. The
counts of identified cell types were aggregated for the whole WSI and
lead to the calculation of the PD-L1 expression score.

2.3.2.1. Cell outline detection via Cellpose. For cell outline detection, we uti-
lized Cellpose,>® a deep learning-based cell segmentation model capable
of accurately segmenting cell nuclei from microscopic images. Cellpose
generalizes well without the need to retrain or fine-tune the model, making
it ideally suited for use in our pipeline.

Before feeding a patch into the model, we converted the patch into gray-
scale and inverted it. Inverting allows the patch to more closely resemble
the data on which Cellpose was trained. For model prediction, we em-
ployed nuclei detection with the nuclei diameter being set to 15 pixels.
We enabled network averaging, where four built-in CNNs make predictions
that are averaged, as well as augmentation. Such a prediction is non-
deterministic but has been shown to improve cell detection performance.
All other parameters are left at their default value.

In some PD-L1 stained cases, the patch contained a significant amount
of brown immunohistochemical staining. This proved challenging, as
brown color is similar to the blueish nucleus color in a grayscale image,
making it difficult for Cellpose to correctly detect cell nucleus contours.
To overcome this issue, we utilized a sub-model from the DeepLIIF
framework,>" which consists of a ResNet> based generator that transforms
any immunohistochemistry image into a hema-only slide. We then com-
pared the number of identified cell ROIs, first for the original PD-L1 patch
and second for the hema-transformed patch, selecting the Cellpose outlines
from the patch with the most detected cells. In case of a tie, we use the out-
lines of the original patch.

2.3.2.2. U-net cell type segmentation. Using U-Net segmentation, we first clas-
sify each pixel into one of four classes:

+ Tumor-cell positive (TC+) - a tumor cell with PD-L1 expression,

+ Tumor-cell negative (TC-) - a tumor cell without PD-L1 expression,
+ Other non-tumor cell type (OC) - all other cells, and

» Background

We used an EfficientNet B5 encoder backbone®® for our U-Net model,
pretrained on the ImageNet*® dataset. This consistent choice of architecture
and pre-training helped to ensure uniformity across different segmentation
tasks within our pipeline, as well as straightforward reproducibility.

The model was trained for 25 epochs with AdamW*® optimization. The
learning rate starts at 0.001 and decreases via a Cosine Annealing.*® As for
tumor patch detection, we used the cross-entropy loss function, a standard
choice for multi-class classification or segmentation problems, which
allowed us to mask unannotated pixels.

The number of annotated cells was only a small fraction, approximately
20 to 30 cells of the several hundred cells found in most of the identified
tumor patches. Due to the masking-out of most non-annotated cell pixels,
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the background class has significantly more pixels compared to the cell type
classes, resulting in a class imbalance. To address this, we decreased the
weight of background pixels in the loss function to 0.0004, while other clas-
ses (TC+, TC- and OC) are assigned a weight of 1. This way, the loss of the
model is less biased towards the background.

Finally, softmax was applied to each pixel, transforming the raw output
of the model into a probability distribution across the four classes. This en-
abled the identification of cell type and staining for each pixel which later-
on allowed us to determine the cell type and staining for each cell outline.

2.3.2.3. Identification of cell type from predicted pixels. The U-Net creates a
segmentation mask with softmax predictions for each pixel. Combined
with the cell outlines obtained from Cellpose, we can leverage these
pixel-level predictions. To do this, we created a mask for each cell outline
and overlaid it on top of the U-Net's softmax prediction mask. The softmax
scores of all pixels within the cell mask were then averaged, yielding a sin-
gle softmax score vector for each cell outline.

This vector represents the aggregated prediction of each class (TC+,
TC-, OC and background) for the whole cell within the cell outline. We
did not consider the background class in our cell type prediction as the out-
line only included cellular elements. Using the remaining classes, the cell
type was then determined via the highest softmax score. We evaluated
cell type prediction performance via five-fold cross-validation with three in-
dependent runs for each fold.

2.3.3. Calculation of WSI PD-L1 tumor proportion score

After the identification of cell type composition within each identified
WSI tumor patch, we then aggregated this data to calculate the WSI-wide

A Tumor Patch Prediction — H&E vs PD-L1
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PD-L1 expression score. To compute this score, we counted the number of
TC+ and TC- cells across all identified tumor patches within the WSI.
The PD-L1 TPS score is then determined via the division of TC+ cells by
all tumor cells.

During cross-validation, the Al predicted PD-L1 TPS scores for all 63
verified angiosarcoma cases, with each angiosarcoma case being in the
model's validation set for one fold. The results were then compared to the
evaluations made by three pathologists, who independently assessed each
case. These experts assessed membrane-bound PD-L1 expression using es-
tablished criteria. The key validation metric was the correlation between
the pathologists' assessment and the Al-generated scores.

3. Results
3.1. Tumor patch detection

Comparing the tumor patch detection performance of PD-L1 and H&E
staining, our analysis revealed that both HE staining and PD-L1 immunohis-
tochemistry performed well, but with subtle differences. As shown in Fig. 3,
the H&E model achieved a slightly higher precision of 89.17 % (SD 0.75),
compared to the PD-L1 model's precision of 87.01 % (SD of 0.60). The
PD-L1 model was superior at both recall and at the Dice coefficient. For re-
call, the PD-L1 model achieved 67.07 % (SD 1.29) compared to the H&E
model's performance of 63.85 % (SD 1.01). For the Dice coefficient, the
PD-L1 model achieved 0.790 (SD 0.001), while the H&E model achieved
0.783 (SD 0.003).

Given the similar efficacy of both modalities, we decided to use only PD-
L1 slides for our subsequent analyses, allowing us to utilize a more
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extensive dataset, with a total of 67 WSIs from 63 distinct patients. Within
this larger dataset, we managed to not only improve the Dice coefficient,
but also to find a better balance between precision and recall. Specifically,
the model achieved a precision of 89.19 % (SD 0.45). In terms of recall, the
model had a mean score of 65.76 % (SD 0.76). The Dice coefficient reached
a mean value of 0.799 (SD 0.002), indicating a consistently high level of
performance.

3.2. Cell type prediction

In our analysis for cell type prediction, we assessed all three cell types
individually, TC+, TC- and OC. We excluded the background class from
validation and calculated the Dice coefficient by aggregating the Dice
scores over all annotated cell masks.

Cell type prediction results are illustrated in Fig. 3. For TC+ cells, the
model achieved a mean Dice coefficient of 84.45 % (SD of 0.367). The pre-
cision was at 84.30 % (SD 1.475), and the recall was 82.16 % (SD 1.072).
For TC- cells, the performance was significantly better, with mean Dice co-
efficient 91.27 % (SD 0.044), precision 87.13 % (SD 0.088), and the recall
89.70 % (SD 0.253). In the case of OC, the mean Dice coefficient was 72.18
% (SD 0.148), the precision was 80.46 % (SD 0.667), and the recall was at
76.75 % (SD 0.412).

These results indicate that the model performs best for TC- cells,
followed by TC+, and then OC. OCs are typically smaller than cancer
cells and were therefore pixel-wise underrepresented in the dataset. The
overall cell type prediction accuracy for all three cell classes combined is
84.81 % (SD 0.057).

3.3. TPS prediction

Comparing the PD-L1 TPS predictions of our Al system with the inde-
pendent assessment of three pathologists revealed an average correlation
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coefficient of 0.87. The individual correlations were 0.82, 0.86 and 0.93.
The pathologists' assessment also deviated substantially for various cases
as illustrated in Fig. 4.

Four patients had multiple slides. In these cases, the TPS scores across
slides for the same subject were very similar, thereby emphasizing the ro-
bustness of our approach. In one case, where all pathologists predicted a
TPS of 0 %, our pipeline predicted a TPS of 0.08 % for one slide and 0.20
% for another. In another case, the pathologists predicted an average TPS
of 17.33 % with 2 %, 30 % and 20 % individually. The TPS predictions of
our Al were 12.33 % and 11.39 %. For another patient with a pathologist
assessment of 0 %, 1 %, and 15 %, our model predicted 0.35 % and 2.15
% for the individual slides. In one case, the TPS predictions were at 0.03
% and 9.04 %. Closer examination revealed that this case had one slide
from the primary tumor while the other slide was derived from a liver me-
tastasis, which could account for the difference in TPS scores.

To make our model more applicable for clinical decision-making, we in-
troduced a cut-off TPS score of 20 %. With this cut-off, the model's accuracy
rate reached an average of 95.24 % with individual pathologist accuracies
0f 96.83 %, 93.65 % and 98.41 %. Specifically, only 2, 4, or 1 case were dif-
ferentially assessed, respectively.

3.4. Pathologist reassessment

To evaluate our model's performance on whole slide PD-L1 expression
prediction, three pathologists independently assessed PD-L1 expression
TPS in angiosarcoma using established histopathological criteria. Tumor
cells with membrane-bound PD-L1 expression were evaluated in relation
to all tumor cells and a respective score was determined. Comparing the
pathologists' evaluation and our Al model, we chose a discrepancy of
more than 10 percentage points as an indicator of potential immunohisto-
chemical misscoring. In these cases, the pathologist's carried out a
re-evaluation.

Pathologist Assessment vs Al Prediction

O Pathologist 1 vs Al (Correlation of 0.93) Gaseias o Cased
Pathologist 2 vs Al (Correlation of 0.86) ; et
801 4 Pathologist 3 vs Al (Correlation of 0.82) /
’ o
/(;/
A
pd
60 //
,,/,.’
A/\(
e
c P
.2 e
© 7 Case 9
5 (c] — = -+
£ 40 + ; / S
P /_f.,/ 2 o~
Case18 4« : Caseaiiw/ = Case 47
Case 32 /"") O = ¥ =+
+o J/ Y i Case 63 )
g & - g
20
Case 25 '
0
0 20 40 60 80 100

Pathologist Assessment
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Over- and Underscoring as well as Other Causes for Changes in PD-L1 Expression Assessment
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Fig. 5. Distribution of over- and underscoring, as well as other causes leading the pathologists to update their PD-L1 assessment. These self-reported errors were identified in a
secondary review process, where discrepancies between AI and pathologist prediction prompted a renewed assessment.

In the course of this process 17 of the 63 patients were flagged for a re-
view by at least one pathologist, resulting in 33 of all 189 assessments being
re-evaluated (17.46 %). The pathologists changed their PD-L1 expression
estimate in 27 cases (17 patients), not changing their score in the 6 remain-
ing cases.

When pathologists revised their assessment, they furthermore provided
their rationale for doing so. These reasons are shown via a bar chart in Fig.
5. It was found, for example, that cytoplasmic staining in tumor cells was
overscored in 11 instances, and underscored in 2. Other diagnostic chal-
lenges were heterogeneous expression patterns, as well as PD-L1-stained
immune cells.

4. Discussion

In our study, we developed a data-driven deep learning pipeline for bio-
marker prediction in small tissue cohorts with limited data availability, fo-
cusing on PD-L1 expression in angiosarcoma.

The diagnostic inaccuracy in everyday's medical practice leads to misin-
terpretation and therefore to overscoring of strong PD-L1 expression and
underscoring of weak PD-L1 expression in angiosarcoma. We found that re-
ceiving feedback from our Al-based tool, PEERCE, allows pathologists to
identify errors and potentially improve their scores, which may lead to im-
provements in immunotherapy treatment and ultimately, patient survival.

Our findings align with related work in demonstrating the value of au-
tomated image analysis for PD-L1 assessment,?>*7-2>3 where recent
work also showed that Al assistance can significantly improve concordance
between pathologists in PD-L1 scoring.?® In line with the underlying goal to
standardize PD-L1 assessment in other cancers, our tool strives to provide
reliable quantitative scoring, thereby improving accuracy for
angiosarcoma. For rare cancers, Al assistance as a “second opinion” has a
particular value, as pathologists may have limited experience with PD-L1
scoring compared to more common malignancies. Our findings demon-
strate that Al can help identify potential misinterpretations, particularly
in cases with challenging features such as heterogeneous expression pat-
terns or the presence of PD-L1 positive immune cells. Thereby, our tool

provides pathologists with a quantitative backup for their assessment deci-
sions. The proposed workflow is depicted in Fig. 6.

Our work showcases the feasibility and impact of Al-based assistance in
PD-L1 expression assessment for the case of angiosarcoma as a rare cancer
entity. By making PEERCE available to the wider research- and clinical com-
munity under Massachusetts Institute of Technology license, we aim to em-
power the creation of advanced diagnostic tools for further cancer types,
particularly rare ones such as soft tissue sarcomas®*>° and especially for en-
tities like liposarcomas®® and osteosarcomas.>”

Our study is not without limitations. The inherent scarcity of data faced
for rare cancer entities such as angiosarcoma poses a challenge in creating
an external test set, limiting our ability to validate the generalizability of
our findings. Furthermore, a significant challenge encountered was the dif-
ferentiation between tumor cells and other nonmalignant cells. This is par-
ticularly intricate in angiosarcoma, which can arise anywhere in the body,
resulting in extensive variability in the appearance and characteristics of
the nonmalignant tissue cells in the tumor microenvironment. Moreover
we used the E1L3N PD-L1 antibody clone which, while having shown
high concordance with FDA-approved clones,*® is not FDA-approved as a
companion diagnostic. Finally, as mentioned above, we employed a cut-
off at 20 % for our evaluation. There are currently no established PD-L1 ex-
pression cut-offs for treatment response in angiosarcoma. Current ESMO
guidelines report that PD-L1 inhibitors can be considered in treatment™®
with case reports showing remission in scalp angiosarcomas,®® but specific
thresholds remain to be established. Therefore, we used a threshold of 20 %
as is used in other tumor entities.®*

Looking forward, there are several avenues for enhancement: incorpo-
rating further foundation models, in particular very recent ones that specif-
ically target H&E,%*"** could further reduce the need for expert annotations
and further refine the model's predictive capabilities.

In summary, our study demonstrates the technical feasibility and prac-
tical value of advanced machine learning models in a medical context
with limited data. These models not only augment human expertise but
also open up new possibilities for future research and enhancements in
the field of medical diagnostics.
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Fig. 6. PD-L1 Expression Evaluation Workflow. An Al-based method and a pathologist independently determine PD-L1 expression on a tumor slide, resulting in TC scores.
Significant TC score variances trigger a detailed pathologist reassessment. The extended evaluation time enables score correction, illustrating how Al facilitates improved

accuracy in time-sensitive diagnostic tasks.
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