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Clinical trials are an essential component of drug development for new cancer treatments, yet the
information required to determine a patient’s eligibility for enrollment is scattered in large amounts of
unstructured text. Genomic biomarkers are especially important in precision medicine and targeted
therapies, making them essential for matching patients to appropriate trials. Large language models
(LLMs) offer a promising solution for extracting this information from clinical trial study descriptions
(e.g., brief summary, eligibility criteria), aiding in identifying suitable patient matches in downstream
applications. In this study, we explore various strategies for extracting genetic biomarkers from
oncology trials. Therefore, our focus is on structuring unstructured clinical trial data, not processing
individual patient records. Our results show that open-source languagemodels, when applied out-of-
the-box, effectively capture complex logical expressions and structure genomic biomarkers,
outperforming closed-source models such as GPT-4. Furthermore, fine-tuning these open-source
models with additional data significantly enhances their performance.

Cancer is one of the leading causes of death in the world1. According to
the Global Cancer Observatory (GLOBOCAN) statistics produced by
the International Agency for Research on Cancer (IARC), the estima-
tion for the year 2022 is almost 20 million new cases of cancer and
around 9.7million cancer deaths, globally2. Surgery, chemotherapy, and
radiotherapy, individually or in combination, represent the standard
treatments for cancer patients3–5. Nevertheless, although these tradi-
tional methods are successful, they still have limitations. For instance,
surgical removal of cancer is the most risk-averse option, but it is only
possible in its early stages5. Moreover, chemotherapy and radiotherapy
are not effective for all cancer types3, as they are not devoid of side effects
since they attack cancerous cells as well as healthy cells4,6. A promising
direction in cancer treatment is precision medicine, which involves
studying the patients’ genetics, lifestyle, and environmental informa-
tion to guide treatment decisions7. This approach improves care quality
while reducing the need for unnecessary diagnostic tests and therapies
by guiding healthcare decisions toward themost effective treatments for
a given patient8.

Therapies targeting specific genes or associated with certain response
biomarkers have demonstrated considerable promise in the treatment of
patients with different cancer types1,9,10. According to a study conducted on
clinical trial records from2000 to 2015, clinical trials that use biomarkers for
patient stratification have higher success rates, particularly for oncology
clinical trials11. As of 2022, the FDA acknowledges 45 genes andMSI-H and
TMB-H as biomarkers that can predict a patient’s response to a drug and
five tumor-agnostic genomic biomarkers12. Despite the benefits of

increasing patient participation in clinical trials, such as accelerating the
development of treatments and improving trial generalizability13, many
clinical trials fail to be completed due to poor recruitment, amongst other
reasons14–16. Even though the final decision to participate in a trial is in the
hands of the patient, various barriers often prevent patients from being
offered the opportunity to enroll in the trial enrollment process17. A sys-
tematic review defined four barrier domains affecting a patient’s partici-
pation in a trial post-diagnosis, leading to only 8.1% of 8883 patients being
enrolled17. Physicians may not discuss possible trials due to barriers such as
treatment preferences17, lack of awareness18, or perceiving the process as
time-consuming19–21. Improving enrollment relies on effective methods to
match patients to clinical trials. Although clinical trial information is
available through platforms like clinicaltrials.gov17, the lack of structured
data and non-standard naming conventions, coupled with the increasing
number of trials lead to a time-consuming and overwhelming search
process.

Historically, the process of finding matching patients for clinical stu-
dies wasmanual and labor intensive, often resulting in under-enrollment of
trials and delays in the medical advancements. To overcome these chal-
lenges and expedite the search process, various computational approaches
have been developed over the years. Early computational efforts utilized
rule-based algorithms to encode eligibility criteria into structured queries22.
These systems required significant manual effort to translate free-text
eligibility criteria into machine-readable formats. While these methods
improved the efficiency of patient-trial matching compared to purely
manual methods, they were limited by their rigidity and inability to handle
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the complexity and variability of natural language used in medical records
and trials descriptions.

In oncology, matching a potential trial to a patient could be evenmore
complicated due to the increasing use of biomarkers and non-standard
naming conventions. To enhance interoperability and standardization,
oncology-based approaches were introduced. These methods employed
medical ontologies like SNOMED CT and UMLS to standardize termi-
nology used in eligibility criteria and patient data23. While these systems
improved the consistencyofdata interpretations, they still struggledwith the
nuances of natural language and the contextual understanding required for
accurate matching.

Advancements in NLP enabled the parsing and interpretation of
free-text eligibility criteria and electronic health records which improved
the patient-trial matching process24. An example of these technologies is
the Watson for Clinical Trial Matching System. The system employs
NLP to process structured and unstructured data such as clinical notes
and pathology reports, alongside structured electronic health records
(EHRs)25. Despite its high accuracy, the system still struggles with the
complex clinical reasoning emphasizing the need for continued
advancements in contextual understanding. Recent advancements in
LLMs, such as GPT-3 and GPT-4, offer significant improvements over
traditional methods. These models demonstrate superior language
understanding as they are trained on vast amounts of data, enabling
them to comprehend complex medical jargon and subtle linguistic
nuances in eligibility criteria26. Their enhanced natural language pro-
cessing (NLP) capabilities allow them to excel in tasks such as entity
recognition, relation extraction, and semantic understanding, which are
crucial for accurately matching patients to trials27. Additionally, LLMs
reduce the need for manual encoding by processing unstructured data
without extensive preprocessing, thereby lightening the workload for
healthcare professionals. Furthermore, their adaptability and scalability
enable them to be fine-tuned for specific domains or updated as new
trials emerge, making them indispensable tools in a rapidly evol-
ving field.

Amidst the rise of LLMs and the largenumber of ongoing clinical trials,
many approaches have emerged to automate patient-to-trial matching,
speedingup the process and increasing the chancesoffinding a suitable trial.
Existing approaches apply either an end-to-endmatching28–30 or a structure-
then-match strategy24,31. In an end-to-end strategy, the LLM is used to
compare a patient’s recordwith an unstructured clinical trial document and
return a final decision on the trial’s eligibility or ranking. In the structure-
then-match strategy, the LLM is used to extract and structure entities from
the clinical trial text, followed by the matching process. This process is
straightforward, assuming the structuring part is done well.

In this study, we took a structure-then-match approach to
enhance biomarker-based patient-to-trial matching by improving the
biomarker extraction process from clinical trials descriptions, with a
focus on the brief summary and eligibility criteria. Our work focuses on
structuring these study descriptions for better patient-trial matching,
without processing individual patient records. The primary challenge
in trial matching is not comparing biomarkers—it’s interpreting
unstructured trial criteria. Our work structures ambiguous, free-text
biomarkers (e.g., ‘HER2/ERRB2 mut’) into standardized formats with
inclusion and exclusion criteria. This step is foundational: without it,
even advanced algorithms fail due to nomenclature noise. We evaluate
the model’s ability to simultaneously extract genomic biomarkers from
a clinical trial, pre-process the extracted data, and structure the logical
connections (AND/OR) between biomarkers in the disjunctive normal
form (DNF)24. The DNF is a representation of a logical formula as a
disjunction (OR) of conjunctions (ANDs).

To achieve this, we investigated multiple large language models
using various prompting techniques and fine-tuned an open-source
model as depicted in Fig. 1. With our fine-tuned model, we achieved
superior performance in extracting and structuring biomarkers in the
DNF form.

Results
Data curation and trial data characteristics
As biomarkers are an important part of cancer drug development and
diagnostics, we focused on curating a representative data set. The CIViC
database (https://civicdb.org) is an open-source knowledgebase that
includes extensive cancer-related biomarker datasets. We identified 500
biomarkers related to cancer diagnostics and therapy. Based on the large-
scale AACR-genie cancer patient cohort, which included data from 171,957
patients we estimate that 23.56% of the patients had at least one mutation
corresponding to a CIViC biomarker, indicating potential clinical relevance
for targeted therapies, or enrollment in biomarker-driven clinical trials. Our
findings also suggest that patients with colorectal cancer, breast cancer, and
glioma had the highest frequencies of mutations associated with CIViC
biomarkers (Fig. 2).

We have obtained the ongoing oncology clinical trials from clinical-
trials.gov. A clinical trial typically includes a summary of the trial plan,
followed by a detailed description, and the inclusion and exclusion eligibility
criteria required for enrollment. Then we query the trials with the list of
biomarkers from the CIViC database. This allowed us to select 296 unique
trials with the potential presence of a biomarker in the eligibility criteria.
From these trials, we manually annotated 166 of the trials, detailing the
inclusion and exclusion biomarkers for each trial in JSON format. We
removed one outlier sample that had a significantly larger token count
(Supplementary Fig. 1).We then split the data into a 70:30 ratio resulting in
116 training samples and 50 testing samples.

We prepared the training dataset for fine-tuning with Direct Pre-
ferenceOptimization (DPO) and split it into an80:20 ratiowhich resulted in
the first fine-tuning dataset DPO-92 with 92 samples as training set and
23 samples as validation set. To create a second fine-tuning dataset, the
original dataset, DPO-92 was augmented with 80 synthetically generated
samples using GPT-4 (See “Generation of Synthetic Dataset” for details).
These additional samples underwent the same process of preparation for
fine-tuning with DPO. The combined dataset was split following an 80:20
ratio resulting in the dataset DPO-156 with 156 samples for training and
39 samples for validation. Refer to “DPO Dataset Preparation” for more
details.

Zero-shot, few-shot and prompt chaining performance
We employ the models using three prompting techniques: zero-shot
prompting where the model is given instructions to be followed, prompt
chainingwhere the task is performed using a chain of requests to themodel,
and finally, few-shot promptingwhere themodel is providedwith examples
to demonstrate the task. Refer to the methods section for a detailed
description of the prompting techniques.

In Table 1 we report the models’ performance with the prompting
techniques using a preliminary evaluation approachwherewe onlymeasure
the model’s ability to extract the inclusion and exclusion biomarkers found
in the clinical trial. With zero-shot prompting, GPT-3.5-Turbo had a
moderateperformance in the extraction of the inclusion biomarkerswith an
F2 score 0.45.However, themodel struggledwith the extraction of exclusion
biomarkers resulting in one of the lowest F2 scores (0.06). This challenge for
the GPT-3.5-Turbomodel to extract the exclusion criteria correctly may be
associated with the length of the clinical trial input and the position of the
exclusion criteria at the end of the input, which might have caused the
increase in hallucination for the model. Swapping GPT-3.5-Turbo with
GPT-4 led to better performance with an F2 score of 0.56 for the inclusion
biomarkers and 0.42 for the exclusion biomarkers. NousResearch/Hermes-
2-Pro-Mistral-7B (https://huggingface.co/NousResearch/Hermes-2-Pro-
Mistral-7B) is a large language model that excels at generating structured
JSON outputs. Moreover, the model it was fine-tuned from, Mistral-7B,
exhibits superior performance over LLAMA-7B across all benchmarks and
outperformed LLAMA-34B in mathematical and coding tasks32.

Hermes-2-Pro-Mistral-7B, demonstrated remarkable capabilities,
outperforming the closed-source models at extracting both inclusion and
exclusion biomarkers, achieving F2 scores of 0.98 and 0.66, respectively.
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Splitting the task into two subtasks with the prompt chaining
technique where the first prompt’s output is the input to the second had
opposite effects on GPT-3.5-Turbo and GPT-4. For GPT-3.5-Turbo,
prompt chaining resulted in a noticeable decline in performance
compared to zero-shot prompting. The F2 score for the inclusion bio-
markers decreased by approximately 42%, while the F2 score for the
exclusion biomarkers decreased by around 16%. In contrast, GPT-4 ’s
performance increased with prompt chaining to reach an F2 score of
0.76 for the inclusion biomarkers and 0.70 for the exclusion biomarkers.
Few-shot prompting (1S and 2S) showed improvement over zero-shot
prompting and prompt chaining for GPT-3.5-Turbo. However, pro-
viding two-shot prompting did not improve over one-shot prompting;
overall there was a slight decrease in performance. This finding is sur-
prising, as we generally observe an increase in performance with an
increase in the number of examples provided to the model33, suggesting

that the selected examples might have introduced some conflict or
caused the model to overfit.

InTable 2we show the resultswith amoremature evaluation approach
where we assess the models’ ability to not only extract the biomarkers
correctly but to also structure the biomarkers inDNF in the JSONoutput as
seen in Fig. 3. GPT-3.5-Turbo with zero-shot prompting performed the
worst with an F2 score of nearly zero for the inclusion and exclusion bio-
markers. GPT-4 had an overall moderate performance with an F2 score of
0.29 for the inclusion and an F2 score of 0.43 for the exclusion biomarkers,
hence outperforming GPT-3.5-Turbo. The open-source model Hermes-2-
Pro-Mistral-7B with zero-shot prompting outperformed GPT-3.5-Turbo
and GPT-4. At the extraction of the inclusion biomarker, Hermes-2-Pro-
Mistral-7B was approximately 3.24 times better than GPT-4 with an
F2 score of 0.94, and around 1.5 times better for the exclusion biomarkers
with an F2 score of 0.65.

Fig. 1 | Overall framework for biomarker extraction and evaluation. This figure
illustrates the prompting techniques explored for extracting genetic biomarkers
from clinical trials. It underlines the evaluation of the extraction process both with
and without assessing the model’s capability to organize the biomarkers in

Disjunctive Normal Form (DNF). The framework includes several prompting
approaches, including zero-shot, one-shot, two-shot prompting, and prompt
chaining, which involves sequential prompts for biomarker extraction and proces-
sing. The framework also highlights the usage of fine-tuned models.
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Employing GPT-3.5-Turbo with prompt chaining (PC) increased
its performance slightly to reach an F2 of 0.14 for the inclusion bio-
markers and an F2 score of 0.06 for the exclusion biomarkers. How-
ever, for GPT-4, applying chain prompting led to a decrease in
performance, specifically, the model’s F2 score decreased by 7%
compared to zero-shot prompting in both inclusion and exclusion
biomarker extractions.

Providing an example to demonstrate the task to GPT-3.5-Turbo (1S)
caused a surprising improvement in its performance for the inclusion
biomarkers to have an F2 score of 0.53. However, for the exclusion bio-
markers even though there was an improvement compared to the zero-shot
prompting (0S) andprompt chaining, themodel still performedpoorlywith
an F2 score of 0.12.When comparing two-shot prompting (2S) to one-shot
prompting (1S) for GPT-3.5-Turbo, the F2 score was nearly zero. In con-
trast, there was no noticeable change in the performance of the inclusion
biomarkers.

Fine-tuned model performance
As mentioned in the previous section, applying Hermes-2-Pro-Mistral-7B
with zero-shot prompting already showed impressive results in performing
our task, compared to the closed-source models. However, we notice a
discrepancy between inclusion and exclusion in the model’s abilities to
extract the biomarkers and organize them in theDNF form as seen in Table
1 and Table 2. To potentially improve the extraction of exclusion bio-
markers, we fine-tuned the model using Direct Preference Optimization
(DPO).Thepurpose offine-tuning is to adapt theLLMtoamore specialized
task by adjusting its parameters. The DPO algorithm adjusts the model’s
parameters to increase the likelihood of generating the desired output by
dragging theprobability distribution towards thepreferredanswer andaway
from the undesired one. Here, we fine-tuned two models, both initialized
fromHermes-2-Pro-Mistral-7B, with eachmodel fine-tuned on a dataset of
different size. Thefirstmodel,Hermes-FTwas trained on the labeleddataset
DPO-92, while the second model Hermes-FT-synth was trained on the
larger datasetsDPO-156. Formore details on the datasets, please refer to the
Methods section “DPO Dataset Preparation”. Table 3 demonstrates how
fine-tuning themodel with DPO-92 which includes 92manually annotated
clinical trials samples decreased the overall performance.We observe a 10%
decrease in the F2 score for the extraction of inclusion biomarkers and
approximately a 7.5% decrease for the extraction of exclusion biomarkers.
Nevertheless, Hermes-FT-synth, fine-tuned with a larger dataset (DPO-
156) demonstrated superb capabilities, outperforming all models with
F2 scores of 0.90 and 0.93 for inclusion and exclusion biomarkers, respec-
tively. Despite the overall superiority in performance, the model demon-
strated a slight decrease in recall for inclusion biomarkers extraction was
observed compared to the base model, Hermes-2-Pro-Mistral-7B. This
suggests that the fine-tuned model overlooked some biomarkers during
extraction. This behavior could be attributed to the model learning to
optimize the extraction of exclusion biomarkers during fine-tuning, thereby
reducing hallucination and false positives. It is also possible that duringfine-
tuning, the model experienced changes in how it handles inclusion and
exclusion criteria, causing it to provide brief responses to minimize hallu-
cination in inclusion biomarkers, which led to a decrease in recall.

InTable 4, usingHermes-FT to extract and structure the biomarkers in
DNF yielded unexpected results: a decrease in inclusion biomarkers’ per-
formance with an F2 score of 0.85, alongside a marginal increase in
extraction of exclusion biomarkers with an F2 score of 0.67. Hermes-FT-
synth resulted in the overall best performance with an F2 score of 0.86 for
inclusion biomarkers and 0.94 for exclusion biomarkers.

Discussion
In this study, we explore the capabilities of both closed-source and open-
source LLMs to enhance patient matching to biomarker-driven oncology

Fig. 2 | Distribution of Top 20 Cancer Types. Bar chart showing the distribution of
the top 20 cancer types among patients who matched at least one of the 500 bio-
markers selected fromCIViC. The patients’ records are collected from the American
Association for Cancer Research (AACR) Project GENIE.

Table 1 | Performance of the open-source and closed-source base models using the different prompting techniques in
extracting the inclusion and exclusion biomarkers from the clinical trials free-text documents

Inclusion Biomarkers Exclusion Biomarkers

Technique Precision ↑ Recall ↑ F2 ↑ Precision ↑ Recall ↑ F2 ↑

GPT-3.5-Turbo (0S) 0.61 0.42 0.45 0.02 0.18 0.06

GPT-3.5-Turbo (PC) 0.21 0.28 0.26 0.02 0.13 0.05

GPT-3.5-Turbo (1S) 0.46 0.60 0.56 0.06 0.21 0.14

GPT-3.5-Turbo (2S) 0.40 0.59 0.54 0.05 0.13 0.10

GPT-4 (0S) 0.55 0.56 0.56 0.47 0.41 0.42

GPT-4 (PC) 0.77 0.76 0.76 0.75 0.68 0.70

Hermes-2-Pro-Mistral-7B (0S) 1 0.97 0.98 0.42 0.77 0.66

The prompting techniques applied include zero-shot (0S) prompting, where the prompt describes the input, output, and task; one-shot (1S) prompting, where an additional example is provided to
demonstrate the task; two-shot (2S) prompting, where two examples are given to illustrate the task; and prompt chaining (PC), which divides the task into subtaskswith the output of one prompt serving as
input for the next. Here, we apply a chain of two prompts where the first prompt handles extraction and its output is the input to the second prompt that handles the pre-processing and structuring the
biomarkers in the JSON output. We ran the Hermes-2-Pro-Mistral-7B model three times, and the results in the table represent the consistent outcomes from these runs.
The bold font represents the best result across different techniques.
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trials. It is worth noting that our study does not involve individual patient
records but rather focuses on extracting biomarkers from clinical trial
descriptions, as this is the primary challenge in trial matching using bio-
markers. Once inclusion and exclusion biomarkers are extracted in a
structured way, it will be more efficient to match patients based on bio-
markers. Our results demonstrated a significant discrepancy between the
closed-sourcemodels and the open-source model. This observed difference
suggests that an increase in the volume of the model does not necessarily
mean better performance34 and highlights the importance of the training
process. The closed-source models GPT-3.5-Turbo and GPT-4 underwent
Reinforcement Learning with Human Feedback (RLHF) which helped the
models excel at various standard natural language tasks. However, RLHF

suffers from a phenomenon known as the “alignment tax”35, which states
that the model’s ability to generate more human-like responses is at the
expense of the model’s deeper understanding of tasks36,37. In our work,
where themodel is required tohandle amulti-step task,GPT-3.5-Turbo and
GPT-4 models struggle to fully comprehend this complex task, even when
applied with prompt chaining, one-shot, and two-shot prompting. While
the 7 billion parameter model, Hermes-2-Pro-Mistral-7B, that underwent
supervised fine-tuning from Mistral-7B, with zero-shot prompting had
overall better reasoning capabilities outperforming the closed-source
models.

To validate the robustness of our results, we ran the base model
(Hermes-2-Pro-Mistral-7B) and the twofine-tunedmodels three timeswith
a temperature setting of 0.Across all runs, themodels consistently produced
identical predictions, leading to the exact same inclusion and exclusion
(with and without DNF) precision, recall, and F2 scores. This confirms the
stability and reproducibility of the models in extracting and structuring
biomarkers from clinical trial descriptions.

In our work, the open-source model, out-of-the-box, demonstrated
superior performance. However, the model presented a disparity in accu-
racy between the inclusion and exclusion biomarkers. Fine-tuning the
model with Direct Preference Optimization using a training dataset con-
sisting of manually extracted samples and synthetically generated samples
by GPT-4 not only helped close this gap but also achieved the best overall
performance (Hermes-FT-synth).

Our study also reveals several key findings. For instance, GPT-3.5-
Turbo with few-shot prompting performed competitively with GPT-4 in
zero-shot prompting. However, the results highlight the importance of the
examples selected, as we notice a significant increase in performance when
extracting the inclusion biomarkers while the model still suffered at
extracting the exclusion biomarkers. Furthermore, with two-shot prompt-
ing themodel’s performance decreased suggesting a bias in the first example
towards our test set since adding a second example introduced conflict for
the model causing it to hallucinate more. We discovered that prompt
chaining was less reliable than zero-shot prompting. This might be that in
prompt chaining the prompts are interdependent leading to a decrease in
coherence, and leaving the model with not enough context to efficiently
extract biomarkers38. Another key finding is that fine-tuning with DPO
presents challenges related to dataset size. Fine-tuningwith a relatively small
dataset decreased the model’s performance (Hermes-FT) due to overfitting

Table 2 | Performance of the open-source and closed-source
base models using the different prompting techniques (zero-
shot (0S), one-shot (1S), two-shot (2S) and prompt chaining
(PC)) in extracting the inclusion and exclusion biomarkers
from clinical trials documents while structuring them in the
JSON output while adhering to the disjunctive normal
form (DNF)

Inclusion Biomarkers Exclusion Biomarkers

Technique Precision ↑ Recall ↑ F2 ↑ Precision ↑ Recall ↑ F2 ↑

GPT-3.5-
Turbo (0S)

0.18 0.04 0.05 0 0 0

GPT-3.5-
Turbo (PC)

0.15 0.13 0.13 0.02 0.12 0.06

GPT-3.5-
Turbo (1S)

0.47 0.54 0.53 0.05 0.18 0.12

GPT-3.5-
Turbo (2S)

0.44 0.55 0.52 0.01 0.02 0.01

GPT-4 (0S) 0.40 0.27 0.29 0.61 0.40 0.43

GPT-4 (PC) 0.47 0.25 0.27 0.62 0.37 0.40

Hermes-2-
Pro-Mistral-
7B (0S)

0.99 0.93 0.94 0.41 0.75 0.65

We ran the Hermes-2-Pro-Mistral-7B model three times to confirm its consistency.
The bold font represents the best result across different techniques.

Fig. 3 | Representation of extracted biomarkers in
the disjunctive normal form. The figure represents
a snippet of the inclusion criteria in the clinical trial
NCT04092673. The figure highlights the inclusion
requirements for two cohorts EMBF and EMBH.
Cohort one EMBF requires the tumor to be ER+
with FGFR amplification. Cohort two required the
patient’s tumor to be ER+ and HER2+ . These
criteria are translated into a structured JSON output
in the Disjunctive Normal Form (DNF), reflecting
that patients are eligible if they meet either the
condition of ER+ with FGFR amplification or ER+
with HER2+ .
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and poor generalization39. Augmenting the training set with synthetically
generated samples with GPT-4 improved the model’s (Hermes-FT-synth)
overall surpassing other models without having negative effects (Fig. 4).

Our results demonstrated that leveraging LLMs to extract a structured
output while adhering to the DNF is possible (Fig. 5). This added layer of
complexity provided insights into the models’ reasoning abilities and
capacity to handle real-world clinical data effectively. An adequate amount

of training data is crucial since it allows for a successful supervised fine-
tuning. Augmenting the manually annotated clinical trials training set with
synthetically generated data reduces the time needed for the generation of a
fully human-annotated dataset, opening the door for improvedfine-tuning.

While this work focuses on clinical trial data, we recognize that the
broader landscape of real-world clinical data often involves unstructured
sources such as physician notes and tumor genotypes embedded in PDFs.

Table 3 | Performance of the fine-tuned open-source models with Direct Preference Optimization (DPO) using zero-shot
prompting in extracting the inclusion and exclusion biomarkers from clinical trial documents

Inclusion Biomarkers Exclusion Biomarkers

Technique Precision ↑ Recall ↑ F2 ↑ Precision ↑ Recall ↑ F2 ↑

Hermes-FT (0S) 0.65 0.97 0.88 0.25 0.95 0.61

Hermes-FT-synth (0S) 0.99 0.88 0.90 0.82 0.96 0.93

The models Hermes-FT and Hermes-FT-synth are fine-tuned from Hermes-2-Pro-Mistral-7B with a training dataset of 92 and 156 samples, respectively, to evaluate the impact of dataset size on model
performance. We executed the evaluation of the models three times, confirming the consistency of the models across all runs.
The bold font represents the best result across different techniques.

Table 4 | Performance of the fine-tuned models Hermes-FT and Hermes-FT-synth using zero-shot prompting in extracting the
inclusion and exclusion biomarkers from clinical trials documents while structuring them in the JSON output while adhering to
the disjunctive normal form (DNF)

Inclusion Biomarkers Exclusion Biomarkers

Technique Precision ↑ Recall ↑ F2 ↑ Precision ↑ Recall ↑ F2 ↑

Hermes-FT (0S) 0.63 0.93 0.85 0.31 0.95 0.67

Hermes-FT-synth (0S) 0.99 0.84 0.86 0.86 0.96 0.94

The comparison highlights the influence of the fine-tuning dataset size on the performance of the model for our task. We ran each of the models three times and confirmed their consistency.
The bold font represents the best result across different techniques.

Fig. 4 | Comparison of biomarker extraction
across models. This figure presents a comparative
analysis of F2 scores for the base models: gpt-3.5-
turbo, gpt-4, Hermes-2-Pro-Mistral-7B, and the
fine-tuned models: Hermes-FT and Hermes-FT-
synth using multiple prompting techniques: zero-
shot (0S), prompt chaining (PC), one-shot (1S), and
two-shot (2S). The figure highlights the perfor-
mance in extracting the inclusion biomarkers (a)
and the exclusion biomarkers (b) without con-
sidering the model’s abilities in formatting the bio-
markers in the Disjunctive Normal Form (DNF).

Fig. 5 | Comparison of biomarker extraction and
representation in the Disjunctive Normal Form
(DNF) across models. The figure presents a com-
parative analysis of F2 scores for the base models:
gpt-3.5-turbo, gpt-4, Hermes-2-Pro-Mistral-7B,
and the fine-tuned models: Hermes-FT and
Hermes-FT-synth using multiple prompting tech-
niques: zero-shot (0S), prompt chaining (PC), one-
shot (1S), and two-shot (2S). The figure demon-
strates the performance in extracting the inclusion
biomarkers (a) and the exclusion biomarkers (b)
while considering the model’s abilities in organizing
the biomarkers in the Disjunctive Normal
Form (DNF).
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These unstructured formats present unique challenges, including variability
in language, lack of standardization, and the difficulty of extracting data
from non-machine-readable documents.

Recent advances in combining Optical Character Recognition (OCR)
and NLP offer promising solutions to these challenges. For instance, deep
learning-based post-correctionmethods have been shown to improve OCR
accuracy for scanned medical documents40. Similarly, NLP approaches like
zero-shot learning tools41 and domain-specific models, such as
CancerBERT42, have successfully abstracted structured information from
free-text oncological pathology reports and unstructured healthcare data.
These advancements illustrate how methodologies similar to ours could
potentially be extended or adapted for applications involving unstructured
clinical data.

Incorporating such techniques into our approach represents an
exciting avenue for future research. These integrations could enable the
methodologies presented here to bridge the gap between different types of
clinical data, addressing critical real-world challenges and broadening the
impact of this work.

This study is not without its limitations. The dataset we used for
testing our models’ performance is rather small. This small
dataset allows us to compare themodels’ performance and demonstrate
the potential of LLM in performing complex tasks requiring reasoning
abilities. However, the test set does not fully encapsulate the complexity
of clinical trials criteria. Moreover, in few-shot learning, the selected
examples showed a clear bias to the samples in our test set. To avoid
such overfitting, more advanced prompting techniques, such as
Retrieval-Augmented Generation43, could be applied. While our study
incorporated a wide range of prompting techniques and fine-tuning
with DPO, two suggestions could help improve performance: hyper-
parameters tuning during supervised fine-tuning, and testing newly
released models such as LLAMA3 (https://github.com/meta-llama/
llama3) that may provide better results. However, one might need to
consider other factors than improving the performance such as the
inference latency and the token usage when optimizing the prompting
techniques. In the real-world applications, scalability and cost con-
straints are key factors. In addition, we are only focusing on biomarkers
in this study, other criteria such as disease stage, disease type, age,
gender, and previous therapies are also important for eligibility for an
oncology trial. However, with the increasing importance of biomarkers
in oncology therapies the goal of this work is to improve this aspect of
trial-matching performance.

Methods
Dataset curation and annotation
Weretrieved andprocessed clinical trials from the clinicaltrials.govdatabase
and performed keyword filtering to focus our study on oncology-related
clinical trials, which resulted in around 15,856 trials stored in the vector
database, ChromaDB. A clinical trial is a text document with a brief
descriptionmentioning the purpose of the trial, a detailed description of the
trial and the participation criteria that lists the inclusion criteria required for
a patient to be considered for enrollment and the exclusion criteria that if the
patient possesses would disqualify them from participating in the trial. Our
database, ChromaDB, includes only the “brief description” and “eligibility
criteria” sections from the clinical trials document. No patient records data
were used in this study.

To select trials that contained genomic biomarkers from our database,
we used a list of 500 genomic biomarkers from the CIViC database to
perform a semantic search against the cancer clinical trials.

Next, we manually annotated 166 clinical trials by assigning each trial
the corresponding JSON output containing the inclusion and exclusion
biomarkers present in that trial. After annotation, we assessed the token
distribution to identifyoutliers that exhibit a significantly larger tokencount,
which we removed to ensure uniformity in the data for downstream ana-
lysis. We used 70% of the trials for supervised fine-tuning as a training
dataset (train set) and 30% as a test dataset.

Manual annotation. The expected output is JSON with two keys,
“inclusion_biomarker” and “exclusion_biomarker”. The “inclusion_bio-
marker” contains the genomic biomarkers required for a patient’s con-
sideration in the enrollment process. In contrast, “exclusion_biomarker”
contains genomic biomarkers that result in the patient being excluded
from the trial enrollment process. To accurately capture the logical
connections between biomarkers in the trial (AND/OR logic), we
represent them in the DNF.

The DNF which can be described as the disjunction (OR) of con-
junctions (ANDs), provides a standardized approach to expressing complex
logical connections. In the context of our study, we implement a list of lists
data structure to represent the biomarkers in the DNF formula. Each inner
list represents a conjunction clause (AND),where all biomarkers conditions
in that list must be satisfied. The outer list connects these conjunction
clauses through disjunction (OR), where only one of the inner conjunction
clausesmust bemet.ThisDNFstructure allows for a better representationof
the complex relationships between genomic biomarkers in clinical trials,
enabling more precise patient-trial matching.

Generation of synthetic dataset
To augment the training dataset used in the supervised fine-tuning
process, we generated synthetic samples with GPT-4 employed with
the prompt provided in Supplementary Fig. 2. We included four
examples selected from our training dataset in the prompt, with the
placeholders in the template indicating where we inserted the exam-
ples. Additionally, we appended at the end of the prompt “Trial:” to
encourage the language model to generate a new clinical trial that
matches the style and format of the given examples. The generated
samples comprise a clinical trial input and the corresponding JSON
output containing the inclusion and exclusion biomarkers.

Additionally, we predicted the JSON output for our four examples
usingGPT-4with zero-shotprompting (SupplementaryFig. 3) toensure the
output was coming from the same distribution to increase the consistency
and reliability of the generated samples. Then, we manually reviewed the
generated trials to ensure their quality and that they do not contain any
unusual or unexpected content that could negatively impact the perfor-
mance. Finally, we added the synthetically generated samples to the
manually annotated training set.

DPO dataset preparation
In this section,wedescribe theprocesswe followed toprepareourdataset for
fine-tuning with Direct Preference Optimization (DPO)44. The DPO algo-
rithm is a technique used to optimize the languagemodel for a downstream
task. This algorithm optimized the model by increasing the likelihood of
preferred responses (winning completions) and decreasing the likelihood of
less preferred responses (losing completions). Refer to “Direct Preference
Optimization (DPO) Fine-tuning” section for more details.

We generated two datasets for fine-tuning with DPO, the first deriving
from themanually annotateddataset (115 samples) and the second from the
mixed dataset (195 samples). A dataset suitable for fine-tuning with DPO
should include the input prompts, winning completions (yW) and losing
completions (yL). The winning completions were either obtained through
manual annotation or synthetically generated by GPT-4, with the latter
being reviewed and validated by human annotators. To generate the losing
completion, we sample from the supervised fine-tuned model Hermes-2-
Pro-Mistral-7B that we used later for fine-tuning, which we will further
describe later.

We used the zero-shot prompt template from Supplementary Fig. 4 to
generate the prompt for each sample. Once the prompts are prepared, we
tokenize them with left padding enabled to ensure that all inputs have the
same length.

Using the tokenized prompts, we perform inference with the Hermes-
2-Pro-Mistral-7B model, setting the temperature to zero. The generated
completion is the losing completion. This inference processwas repeated for
every sample in each of the datasets.
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We further split the samples into 80% as a training set to fine-tune the
model and 20% as a validation set to avoid overfitting during fine-tuning.

Language models
We investigate the performance of the closed-source models from OpenAI
GPT-3.5-turbo and GPT-4, as well as the open-source model NousRe-
search/Hermes-2-Pro-Mistral-7B. To ensure the robustness and con-
sistency of our results, we ran the base model (Hermes-2-Pro-Mistral-7B)
and the two fine-tuned models (Hermes-FT and Hermes-FT-synth)
three times.

Even though for previous GPT models details about model archi-
tecture and training process were transparent, these details have not been
disclosed for GPT-3.5-turbo and GPT4 models. From previous models, we
know thatGPTmodels are based ondecoder-only transformers, a variant of
the original transformer architecture36. It was reported that GPT-3.5-Turbo
is themost capablemodel fromtheGPT-3.5 series37. In this paper,weuse the
GPT-3.5-Turbo-0125 and GPT-4 (GPT-4-0613) models. Additionally, the
technical report released by OpenAI36 mentions that GPT-4 outperforms
their previous 175B parameter GPT-3 model.

Hermes-2-Pro-Mistral-7B is fine-tuned using teknium/OpenHermes-
2.5 (https://huggingface.co/datasets/teknium/OpenHermes-2.5) from
Mistral-7B32, a pre-trained generative text model with seven billion (7B)
parameters and a context length of 8192.

Prompting Techniques
Language models are versatile multitask learners45, during training on large
anddiverse datasets, the pre-trainedmodels learn to performdifferent tasks.
The models’ ability to learn a variety of tasks led to the success of natural
language prompting, a method used to condition the model to perform a
specific task without updating any of the pre-trained weights26. A prompt is
used to provide the model with the necessary information to generate the
desired output. Multiple techniques of prompting exist, in this study we
employ zero-shot prompting, few-shot prompting and prompt chaining.
– Zero-shot prompting: The model is given, at inference time, a prompt

that includes the description of the task that the LLMshould perform. It
usually includes details about the task, the user’s input and the format of
the output to be returned by the language model46.

– Few-shot learning: Often referred to as in-context learning. Few-shot
learning is similar to zero-shot prompting, but in addition, at inference,
the model is provided with a set of k examples that demonstrate the
task26. Each example typically includes an input and the corresponding
expected output. Typically, in few-shot learning the model is given k
examples and then followed by the user’s input.

– Prompt chaining: Recent work47 has shown that for complex tasks,
decomposing the task into subtasks and chaining together prompts of
each subtask can increase output quality. The idea behind prompt
chaining is that the output fromoneprompt is the input of the following
prompt, with each sub-task building on the last. This approach should
inprinciple allow themodel to tackle complex tasks thatmaybe difficult
to accomplish in a single prompt incrementally.

In the zero-shot prompts (Supplementary Figs. 3, 4)we start by giving a
summary of our task. In our instructions, we define in detail the biomarkers
as any changes at the level of chromosomes, genes, or proteins and the exact
JSON output expected including a detailed definition of the DNF logic and
howto represent it in theoutput.One step further, todecrease falsepositives,
we added a description of some common eligibility criteria such as cancer
type, pregnancy history, age, gender, etc. and instructed the languagemodel
to ignore this information since they do not classify as genetic biomarkers.
We also reiterate and mention the important information more than once
such as to focus on genomic biomarkers and ignore other details. At the end
we describe the processing steps to be performed on the extracted bio-
markers. It is noteworthy that while GPT and Hermes-2-Pro-Mistral-7B
prompts differ in structure and wording, the fundamental details remain
the same.

In our study, we applied two forms of few-shot learning: one-
shot prompting, where the model is given only one example (k ¼ 1),
and two-shot prompting, where the model is given two examples
(k ¼ 2). The one-shot (Supplementary Fig. 5) and two-shot (Sup-
plementary Fig. 6) prompts used with GPT-3.5-Turbo are similar to
the zero-shot prompt with the exception of the additional examples
consisting of a clinical trial input document and the corresponding
JSON output. Examples of these prompts are illustrated in Supple-
mentary Figs. 7 and 8, respectively.

For the chain of prompts usedwithGPTmodels, the aimwas to reduce
the number of tokens in the prompt and simplify the task for the language
model by splitting it into two subtasks where the first prompt (Supple-
mentary Fig. 9) focuses on the task of extracting relevant biomarkers from
the clinical trial input and returning a list with AND/OR indicators. While
the second prompt’s (Supplementary Fig. 10) focus is processing the bio-
markers and structuring the final JSON output with DNF.

Direct Preference Optimization (DPO) fine-tuning
Fine-tuning is a technique used to adapt the LLM to a downstream task and
return responses that meet specific requirements. Compared to prompting
techniques, during fine-tuning the model’s pre-trained parameters are
adjusted. The Direct Preference Optimization algorithm (DPO) optimizes
the language model (also referred to as policy) by using preference data
directly and minimizing the loss function, as shown in Eq. (1):

LDPOðπθ; πref Þ ¼ �Eðx;yw;yLÞ�D log σ β log
πθðyW jxÞ
πref ðyW jxÞ � β log

πθðyLjxÞ
πref ðyLjxÞ

 !" #

ð1Þ

Where x is the prompt and y is the completion. The annotation yW refers to
the winning completion (desired output), the completion humans prefer
over the losing yL completion (rejected output). This loss function directly
optimizes the policy model with parameters θ to increase the probability of
the preferred completions πθðyW jxÞ compared to the dispreferred com-
pletions πθðyLjxÞ. The reference model probabilities in the denominator
constrain the update to not deviate too far from the original.

Fine-tuning large language models can be very expensive, it requires a
lot of GPU memory. Parameter-efficient fine-tuning methods, such as
Quantized Low Rank Adaption (QLoRA)48, allow the adaptation of models
with a large number of parameters without sacrificing performance by
significantly reducing the number of trainable parameters. QLoRA com-
bines the concept of quantization and Low-RankAdaptation (LoRA)49. The
LoRA technique assumes that a small number of weight parameters require
adaptation when fine-tuning a pre-trained model with full-rank weight
matrixW0 ϵR

d × k for a downstream task. LoRA takes advantage of this by
decomposing W0 into two low-rank matrices B ϵRd × r and A ϵRr × k, and
rank r≪minðd; kÞ, such that the relationship in Eq. (2) holds.

W0 þ ΔW ¼ W0 þ BA ð2Þ

During fine-tuning, W0 is fixed, and matrices A and B contain the
trainable parameters.

Initially,ΔWiszero since a randomGaussian initialization is used forA
and zero initialization for B. LoRA also rescales ΔW x by α=r, where α is a
constant and r is the rank. This low-rank approximation allows efficient
fine-tuning of a small subset of adapted weights B and A. Additionally,
QLoRA involves freezing the pre-trained parameters in a quantized
representation while fine-tuning the extra set of Low-Rank Adapters.

We employed DPO with QLoRA to fine-tune the Hermes-2-Pro-
Mistral-7Bmodel. During the training process, we used the paged AdamW
32 bit optimizerwith a learning rate of 5e-5, specifying the step size taken by
the optimizer during backpropagation to adjust the trainable parameters
and minimize the loss function. Moreover, we allow the model to train for
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200 steps with a batch size of 8. For the beta factor in the DPO loss function
we used the default value 0.1.

For the LORA configuration, the rank is set to 2 and the scaling factor
to 4. The trainable parameters are limited to the linear projection layers of
the self-attention and multilayer perceptron modules. Furthermore, a
dropout probability for the LORA layers of 0.05 is applied. A summary of
the hyperparameters used during the fine-tuning process is provided in
Supplementary Table 1.

The Hermes-2-Pro-Mistral-7B model weights are quantized to a 4-bit
representation to reduce memory footprint. During the forward and
backward propagation, the model weights are represented in Float16,
making it suitable for neural network computations while maintaining
sufficient precision.

Data availability
We have included all the data used in the github repository publicly and
freely available.

Code availability
The source code is available at https://github.com/BIMSBbioinfo/
oncotrialLLM. Additionally, the fine-tuning and fine-tuned models can be
found at https://huggingface.co/nalkhou. Live demo of certain techniques
for biomarker-based trial matching can be tested at https://onconaut.ai.

Received: 11 September 2024; Accepted: 24 April 2025;

References
1. Padma, V. V. An overview of targeted cancer therapy. Biomedicine 5,

1–6 (2015).
2. Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of

incidence andmortalityworldwide for 36 cancers in 185 countries.CA
Cancer J. Clin. 74, 229–263 (2024).

3. Xing, K. & Shen, L.Molecular targeted therapy of cancer: the progress
and future prospect. Front. Lab. Med. 1, 69–75 (2017).

4. Zhong, L. et al. Smallmolecules in targetedcancer therapy: advances,
challenges, and future perspectives.Signal Transduc. Target. Ther. 6,
201 (2021).

5. Kaur, R., Bhardwaj, A. & Gupta, S. Cancer treatment therapies:
traditional to modern approaches to combat cancers.Mol. Biol. Rep.
50, 9663–9676 (2023).

6. Pirovano, G. et al. TOPK modulates tumour-specific radiosensitivity
and correlates with recurrence after prostate radiotherapy. Br. J.
Cancer 117, 503–512 (2017).

7. Manzari, M. T. et al. Targeted drug delivery strategies for precision
medicines. Nat. Rev. Mater. 6, 351–370 (2021).

8. Ginsburg, G. S. & Phillips, K. A. Precision medicine: from science to
value. Health Aff. 37, 694–701 (2018).

9. Choi, H. Y. &Chang, J.-E. Targeted therapy for cancers: fromongoing
clinical trials toFDA-Approveddrugs. Int. J.Mol. Sci.24, 13618 (2023).

10. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody
against HER2 for metastatic breast cancer that overexpresses HER2.
N. Engl. J. Med. 344, 783–792 (2001).

11. Wong, C. H., Siah, K.W. & Lo, A.W. Estimation of clinical trial success
rates and related parameters. Biostatistics 20, 273–286 (2018).

12. Suehnholz, S. P. et al. Quantifying the expanding landscape of clinical
actionability for patientswithcancer.CancerDiscov.14, 49–65 (2023).

13. Unger, J. M., Cook, E., Tai, E. & Bleyer, A. The role of clinical trial
participation in cancer research: barriers, evidence, and strategies.
Am. Soc. Clin. Oncol. Educ. Book 185–198 https://doi.org/10.1200/
edbk_156686 (2016).

14. Stensland, K. D. et al. Adult cancer clinical trials that fail to complete:
an Epidemic? JNCI J. Natl Cancer Inst. 106, dju229 (2014).

15. Unger, J.M. et al. The scientific impact of positive and negative phase
3 cancer clinical trials. JAMA Oncol. 2, 875 (2016).

16. Cheng, S. K., Dietrich, M. S. & Dilts, D. M. A sense of urgency:
evaluating the link between clinical trial development time and
the accrual performance of cancer therapy evaluation program
(NCI-CTEP) sponsored studies. Clin. Cancer Res. 16, 5557–5563
(2010).

17. Unger, J. M., Vaidya, R., Hershman, D. L., Minasian, L. M. & Fleury, M.
E. Systematic review and meta-analysis of the magnitude of
structural, clinical, andphysician andpatient barriers to cancer clinical
trial participation. J. Natl Cancer Inst. 111, 245–255 (2019).

18. Somkin, C. P. et al. Effect of medical oncologists’ attitudes on accrual
to clinical trials in a community setting. J. Oncol. Pract. 9, e275–e283
(2013).

19. Organizational barriers to physician participation in cancer clinical
trials. PubMed https://pubmed.ncbi.nlm.nih.gov/16044978/ (2005).

20. Benson, A. B. et al. Oncologists’ reluctance to accrue patients onto
clinical trials: an Illinois Cancer Center study. J. Clin. Oncol. 9,
2067–2075 (1991).

21. Siminoff, L. A., Zhang, A., Colabianchi, N., Sturm, C. M. S. & Shen, Q.
Factors that predict the referral of breast cancer patients onto clinical
trials by their surgeons and medical oncologists. J. Clin. Oncol. 18,
1203–1211 (2000).

22. Karystianis, G., Florez-Vargas, O., Butler, T. & Nenadic, G. A rule-
based approach to identify patient eligibility criteria for clinical trials
from narrative longitudinal records. JAMIA Open 2, 521–527 (2019).

23. Tu, S. W. et al. A practical method for transforming free-text eligibility
criteria into computable criteria. J. Biomed. Inform. 44, 239–250
(2010).

24. Wong, C. et al. Scaling clinical trial matching using large language
models: a case study in oncology. arXiv.org https://arxiv.org/abs/
2308.02180 (2023).

25. Haddad, T. et al. Accuracy of an artificial intelligence system for
cancer clinical trial eligibility screening: Retrospective pilot study.
JMIR Med. Inform. 9, e27767 (2021).

26. Brown, T. B. et al. LanguageModels are Few-Shot Learners. arXiv.org
https://arxiv.org/abs/2005.14165 (2020).

27. Lee, J. et al. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining. Bioinformatics 36,
1234–1240 (2019).

28. Hamer, D. M. D., Schoor, P., Polak, T. B. & Kapitan, D. Improving
patient pre-screening for clinical trials: assisting physicians with
large language models. arXiv.org https://arxiv.org/abs/2304.07396
(2023).

29. Jin, Q. et al. Matching patients to clinical trials with large language
models. Nat. Commun. 15, 9074 (2024).

30. Nievas, M., Basu, A., Wang, Y. & Singh, H. Distilling large language
models for matching patients to clinical trials. J. American Med.
Inform. Assoc. 31, 1953–1963 (2024).

31. Datta, S. et al. AutoCriteria: a generalizable clinical trial eligibility
criteria extraction system powered by large language models. J. Am.
Med. Inform. Assoc. 31, 375–385 (2023).

32. Jiang, A. Q. et al. Mistral 7B. arXiv.org https://arxiv.org/abs/2310.
06825 (2023).

33. Minaee, S. et al. Large Language Models: a survey. arXiv.org https://
arxiv.org/abs/2402.06196 (2024).

34. Touvron, H. et al. LLAMA: Open and efficient foundation language
models. arXiv.org https://arxiv.org/abs/2302.13971 (2023).

35. Ouyang, L. et al. Training language models to follow instructions with
human feedback. arXiv.org https://arxiv.org/abs/2203.02155 (2022).

36. OpenAI et al. GPT-4 Technical Report. arXiv.org https://arxiv.org/abs/
2303.08774 (2023).

37. Ye, J. et al. A comprehensive capability analysis of GPT-3 and GPT-
3.5 series models. arXiv.org https://arxiv.org/abs/2303.10420 (2023).

38. Wu, T. et al. PromptChainer: Chaining Large Language Model
Prompts through Visual Programming. arXiv.org https://arxiv.org/
abs/2203.06566 (2022).

https://doi.org/10.1038/s41746-025-01673-4 Article

npj Digital Medicine |           (2025) 8:250 9

https://github.com/BIMSBbioinfo/oncotrialLLM
https://github.com/BIMSBbioinfo/oncotrialLLM
https://huggingface.co/nalkhou
https://onconaut.ai
https://doi.org/10.1200/edbk_156686
https://doi.org/10.1200/edbk_156686
https://doi.org/10.1200/edbk_156686
https://pubmed.ncbi.nlm.nih.gov/16044978/
https://pubmed.ncbi.nlm.nih.gov/16044978/
https://arxiv.org/abs/2308.02180
https://arxiv.org/abs/2308.02180
https://arxiv.org/abs/2308.02180
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2304.07396
https://arxiv.org/abs/2304.07396
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2203.06566
https://arxiv.org/abs/2203.06566
https://arxiv.org/abs/2203.06566
www.nature.com/npjdigitalmed


39. Kang, K., Wallace, E., Tomlin, C., Kumar, A. & Levine, S. Unfamiliar
finetuning examples control how language models hallucinate.
arXiv.org https://arxiv.org/abs/2403.05612 (2024).

40. An OCR Post-Correction approach using deep learning for
processing medical reports. IEEE Journals & Magazine | IEEE Xplore
https://ieeexplore.ieee.org/document/9448197 (2022).

41. Kaufmann,B. et al. Validationof aZero-Shot learningnatural language
processing tool for data abstraction from unstructured healthcare
data. arXiv.org https://arxiv.org/abs/2308.00107 (2023).

42. Zhou, S., Wang, N., Wang, L., Liu, H. & Zhang, R. CancerBERT: a
cancer domain-specific language model for extracting breast cancer
phenotypes from electronic health records. J. Am. Med. Inform.
Assoc. 29, 1208–1216 (2022).

43. Lewis, P. et al. Retrieval-Augmented Generation for Knowledge-
Intensive NLP tasks. arXiv.org https://arxiv.org/abs/2005.11401
(2020).

44. Rafailov, R. et al. Direct preference optimization: your languagemodel
is secretly a reward model. arXiv.org https://arxiv.org/abs/2305.
18290 (2023).

45. Radford, A. et al. Language models are unsupervised multitask
learners. OpenAI Blog 1, 8–9 (2019).

46. Liu, P. et al. Pre-train, Prompt, and Predict: A systematic survey of
promptingmethods in natural language processing. arXiv.org https://
arxiv.org/abs/2107.13586 (2021).

47. Wu, T., Terry, M. & Cai, C. J. AI chains: Transparent and controllable
Human-AI interaction by chaining large language model prompts.
arXiv.org https://arxiv.org/abs/2110.01691 (2021).

48. Dettmers, T., Pagnoni, A., Holtzman, A. & Zettlemoyer, L. QLORA:
efficientfinetuningof quantizedLLMS.arXiv.orghttps://arxiv.org/abs/
2305.14314 (2023).

49. Hu, E. J. et al. LORA: Low-Rank adaptation of Large Language
Models. arXiv.org https://arxiv.org/abs/2106.09685 (2021).

Acknowledgements
A.A. and M.S. received funding from Helmholtz to carry out this study.

Author contributions
A.A. conceptualized, supervised anddesigned the study.N.A. did the formal
analysis and built the models. M.S. helped design prompts and LLM

workflows. M.S. and R.W. provided software expertise on LLMs and user
interface.M.S. andR.W.provided the cloud infrastructure tocarry out part of
the analysis. N.A. prepared the initial draft with input from A.A. All authors
edited the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41746-025-01673-4.

Correspondence and requests for materials should be addressed to
Altuna Akalin.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41746-025-01673-4 Article

npj Digital Medicine |           (2025) 8:250 10

https://arxiv.org/abs/2403.05612
https://arxiv.org/abs/2403.05612
https://ieeexplore.ieee.org/document/9448197
https://ieeexplore.ieee.org/document/9448197
https://arxiv.org/abs/2308.00107
https://arxiv.org/abs/2308.00107
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2110.01691
https://arxiv.org/abs/2110.01691
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.1038/s41746-025-01673-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjdigitalmed

	Enhancing biomarker based oncology trial matching using large language models
	Results
	Data curation and trial data characteristics
	Zero-shot, few-shot and prompt chaining performance
	Fine-tuned model performance

	Discussion
	Methods
	Dataset curation and annotation
	Manual annotation

	Generation of synthetic dataset
	DPO dataset preparation
	Language models
	Prompting Techniques
	Direct Preference Optimization (DPO) fine-tuning

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




