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Accuratemedical decision-making is critical for both patients and clinicians. Patients often struggle to
interpret their symptoms, determine their severity, and select the right specialist. Simultaneously,
clinicians face challenges in integrating complex patient data to make timely, accurate diagnoses.
Recent advances in large languagemodels (LLMs) offer the potential to bridge this gap by supporting
decision-making for both patients and healthcare providers. In this study, we benchmarkmultiple LLM
versions and an LLM-based workflow incorporating retrieval-augmented generation (RAG) on a
curated dataset of 2000 medical cases derived from the Medical Information Mart for Intensive Care
database. Our findings show that these LLMs are capable of providing personalized insights into likely
diagnoses, suggesting appropriate specialists, and assessing urgent care needs. These models may
also support clinicians in refining diagnoses and decision-making, offering a promising approach to
improving patient outcomes and streamlining healthcare delivery.

Clinical decision-making is a fundamentally complex process that relies on
clinicians applying their knowledge and experience1 while considering
numerous factors and integrating vast amounts of data to assess patient
symptoms, determine the severity of their condition, and choose the most
appropriate next steps. This process typically involves combining infor-
mation from various sources, such as symptoms, vital signs, patientmedical
history, and various examinations, to arrive at an accurate and timely
diagnosis. The ability to correctly interpret this information andmake well-
founded decisions is crucial for improving patient outcomes. In a saturated
healthcare system with increasing amounts and complexity of patient data,
fewer healthcare professionals face the challenge of meeting increasing
patient demands for fast, accurate, andpersonalized care. Especially in high-
pressure environments like emergency departments, the fast pace and
complexity of decision-making can contribute to delays or errors in triaging,
diagnosis and treatment, ultimately leading to suboptimal care.

Recent advancements in large language models (LLMs) have demon-
strated significant potential to transform various fields, including clinical
decision-support2,3. While LLMs have shown promise in structured envir-
onments, such as medical licensing exams and clinical vignettes4,5, their
application in real-world, open-ended clinical scenarios remains an

emerging area of research. Powerful models could increase diagnostic
accuracy, optimize triage processes and improve patient management. For
example, LLMs could assist in prioritizing patients based on symptoms and
vital signs, distinguishing between urgent and non-urgent cases, thereby
reducing waiting times and improving care delivery. This capability is
especially crucial in emergency departments (EDs), where accurate triage
(level of severity of a patient’s condition) assessment is vital for patient
prioritization. Errors in this process—whether under-triage (assigning
lower urgency than needed) or over-triage (assigning higher urgency)—
significantly impact patient outcomes and resource allocation.

Trauma systems have set the goal to minimize under triage and accept
a higher rate of over triage to reduce mortality rate caused by under triage,
with goals set at ≤5% and ≤35%6, respectively. A review of field triage
performance showed 14% to 34%under triaged cases across all ages7, which
can result in delayed treatment for patients requiring immediate care,
potentially worsening their outcomes. On the other hand, over-triage rates
were shown to be between 12% and 31%7, leading to the waste of critical
resources and increased waiting times for other patients. In this context,
LLMsmightmitigate both under-triage and over-triage, thereby improving
resource allocation and overall patient outcomes.
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Beyond assisting clinicians, LLMs could help patients manage their
own healthcare decisions. Thesemodels have the potential to guide patients
in interpreting their symptoms, recommend appropriate specialists and
determine the best course of action.However, while the capabilities of LLMs
are promising, their real-world application in dynamic and unstructured
clinical environments remains an area of active research and development.

While the scope of current LLM research in healthcare focuses on
diagnosing specific diseases or targeting particular medical specialties,
which are necessary and hold significant promise8–14, it misses the broader
task of predicting diagnoses to support comprehensive clinical decision-
making in more general, fast-paced environments. Other studies employ
models that are required to choose a diagnosis froma simplified set of binary
or multiple-choice options testing human competencies within particular
domains15–18 which reduces the complexity of real-world clinical decision-
making. In practice, clinicians are frequently faced with vague or unclear
symptoms, incomplete information, and unlike in controlled studies, they
do not have the convenience of selecting from multiple-choice options.
Instead, theymust rely on their clinical judgment and experience tonavigate
uncertainty and arrive at a diagnosis.

In this study, we aimed to benchmark multiple LLM workflows on
their ability to predict key aspects of clinical care: triage level in the form of
the Emergency Severity Index (ESI)19, patient to medical specialty referral,
and diagnosis based on symptoms (also referred to as history of present
illness), patient information and initial vitals. The workflow is illustrated in
Fig. 1. Using a dataset of 2000 real-world cases from the Medical Infor-
mation Mart for Intensive Care (MIMIC-IV) database20–22, we evaluate the
performance of several LLMs, specifically multiple versions of the Claude
family23,24, as well as a retrieval-augmented generation (RAG) agentic
workflow designed to mimic the clinical decision-making process.

This paper systematically evaluates the potential and limitations of
these models in supporting clinicians with complex decision-making,
showing promising results in their ability to assist effectively. With the
increasing digitization of healthcare, the integration of AI-powered tools
presents a promising opportunity to enhance clinical workflows and
streamline patient-centered care. Such advancements will benefit both
clinicians and patients.

Results
Curated MIMIC-ED dataset and model evaluation approach
We created a curated dataset using the fully de-identified MIMIC-IV ED
dataset22,25, consisting of electronic health records, together with the
MIMIC-IV Notes22,26 to simulate clinical decision-making in an emergency

department setting. Both datasets are modules fromMIMIC-IV20,22. Details
about the dataset and the preprocessing can be found in theMethods: Data
Preprocessing. From the processed data, we extracted 2000 medical cases
covering a wide range of medical conditions. Figure 2a displays the dis-
tribution of triage levels in the emergency department (ED), while Fig. 2b
shows the specialties managing these cases, occurring more than 30 times.
As expected in theED, therewere few triage level 4 andno triage level 5 cases
(less severe), with most classified as triage level 3, followed by triage level 2,
and a smaller number as triage level 1. This dataset has the advantage of not
being directly publicly available, which makes it ideal for evaluating LLMs
that otherwise tend to use publicly available test sets as part of their train-
ing data.

Model selection and RAG-assisted LLM
We tested threemodels from the Claude family - Claude 3.5 Sonnet, Claude
3 Sonnet, and Claude 3 Haiku - due to their superior performance across
multiple benchmarks, excelling in contextual understanding, efficiency, and
handling specialized queries23,24 (see Methods: Model Selection for details).

Additionally to the stand-alone LLMs, we developed a retrieval-
augmented generation (RAG) assisted LLM. Generally, a RAG method
combines two components: a retriever system that extracts information
from an external domain-specific knowledge source for the given query and
anLLMthatmerges the retrieved contextwith the input query. The addition
of extra information reduces hallucinations in the output and to allow for
more precise and informed domain specific outputs27. In this study, the
RAG-assisted LLM is used to enhance the performance of Claude 3.5
Sonnet, and utilizes a knowledge base of 30 million PubMed abstracts to
improve its output with domain-specific context. A more in-depth expla-
nation of the RAG workflow used in this paper can be found in the
“Methods” section.

Due to privacy regulations surrounding theMIMIC-IV dataset, which
prohibit its use with external application programming interfaces (APIs)
like those providedbyOpenAI (e.g.,GPT-4), we utilizedAWSPrivatelink to
privately connect to the Claude models supported by AWS services. More
details are provided in the Methods: Model Selection. For each model we
differentiated between two user types: general users, typically patients who
provide onlypersonal informationand symptoms (referred to as the ‘history
of present illness’ in the dataset), and clinicians in the ED, who can addi-
tionally retrieve initial clinical data, such as temperature, heart rate,
respiratory rate, oxygen saturation, and blood pressure.While we recognize
that making a definitive diagnosis requires further input, such as physical
exams or laboratory tests, our approach seeks to replicate the decision-

Fig. 1 | Workflow for clinical decision support using LLM. This workflow shows
using LLMs in clinical decision support for referral, triage and diagnosis. The
workflow begins with the input - general user input and clinical user input - followed
by prompts engineered to predict triage, specialty and diagnosis. The predictions are

generated using the Claude family models and a RAG-assisted Claude 3.5 Sonnet
model. These predictions are then evaluated and compared with the ground truth to
assess the performance of the LLMs.
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making process both for patients feeling ill at home and those arriving at the
ED. This distinction allowed us to explore the capabilities of LLMs in both
home settings, where users report symptoms, and ED settings, where pre-
liminary clinical data is available.

LLM performance in triage
In the context of emergency care, triage or acuity as it is mentioned in the
MIMIC-IV-ED dataset refers to the severity of a patient’s condition and is
commonly assessed using the Emergency Severity Index (ESI)19. This
standardized triage tool classifies patients into five levels based on the
urgency of their treatment needs, allowing healthcare providers to prioritize
care more effectively. The levels range from ESI 1, which indicates patients
requiring immediate life-saving interventions, to ESI 5, which represents
cases where treatment can be safely delayed. The description for each level
can be found in the Supplementary Table 1. This classification system plays
a crucial role in emergency department operations, helping clinicians to
allocate resources efficiently and address critical cases with minimal delay.

In our study, we assess themodel’s capabilities to predict patient triage
level for two user scenarios: a general user providing only symptom-based
information and a clinician with additional access to initial clinical data.
This evaluation aims to determine whether the models can be effectively
integrated into the decision-making process as a first-pass aid to assist and
help prioritize in triaging patients in the ED in real-time. The specific
prompting details used for these cases can be found in the Methods:
Prompts.

The results were assessed based once on exact match accuracy, where
the predicted triage level matched the actual value, and a triage range
accuracy, where predictions were considered correct if they were exactly or
only one triage level higher than the actual level, except for the triage level 1,
which has to be predicted as 1. The latter method compensates for the
variability between different clinical judgements, arising from personal
experience and knowledge, while only accepting triage level assignment if
the LLM assigns a one level higher triage level than the ground truth. This
approach reduces the risks of undertriaging while avoiding to overwhelm
the system with exaggerated cautious overtriaged patients.

Models incorporating vital signs generally performed better in pre-
dicting the triage level than those using symptoms alone. RAG-Assisted
LLM showed the highest exact match accuracy in both conditions. The
addition of clinical data had a modest but positive effect on performance
across all models and more recent models outperformed simpler ones.

Under the triage range accuracy metric, Claude 3.5 Sonnet out-
performed all other models. All the results are presented in Fig. 3 and

Table 1. Figure 4 presents the confusion matrices for the two models that
performed best in each accuracy evaluation. These matrices provide addi-
tional insight into themodels’ behavior. It is important to note that while no
model achieved high accuracy in predicting the most severe triage levels,
none of the models confused the most critical cases with the least serious
ones, and vice versa. This is a crucial finding, as it indicates that the models
had difficulty accurately predicting cases at the extreme ends of triage
severity, but they consistently recognized the difference between life-
threatening cases and those of lower urgency.

The improvement between the general user and clinical user models
can be observed in Table 2, which shows a performance increase in triage
level prediction across allmodels. This highlights how theLLM’s predictions
improve when provided with more detailed information, similar to how a
clinician makes more accurate decisions when given initial vitals. However,
this improvement is not as apparent in the triage range evaluation. When
the model misclassified the triage level, it is usually within the range of one
level more severe. A slight decline in triage range accuracy was noted across
most cases, except for Claude 3 Haiku, which struggled strongly to process
the additional information from the initial vitals effectively.

Predicting appropriate medical specialty referrals from
patient data
We aimed to evaluate whether LLMs can assist in the specialty referral
process. Accurate identification of the appropriate specialty for a patient is
critical in ensuring they receive the most effective and timely treatment,
which also reduces healthcare costs by minimizing unnecessary referrals.
Since the MIMIC-IV-ED and MIMIC-IV-Notes datasets don’t contain
exact information on the medical specialist the primary care doctors can
consult or refer the patient to, we used Claude 3.5 Sonnet to create a ground
truth by predicting themost likely specialist for eachof the diagnoses of each
patient. More details on this process and the used prompt can be found in
Methods: Prompts. To validate this approach, we asked four clinicians to
review a subset of the created ground truth to determine whether the
assigned ground truth specialties appropriately matched the corresponding
diagnoses. Additional information on the results and the acceptability of the
LLM-generated ground truth among clinicians is provided in the subsection
“Clinician Validation of LLM-Generated Specialties.” Further details about
the clinician evaluation process can be found in the subsection “Reader
Study” in the “Methods” section.

We evaluated the ability of LLMs to predict specialties in our two
scenarios, the general user and clinical user models. For each scenario, we
asked the model to predict the top three specialties that would handle the

Fig. 2 | Triage levels and specialty distributions. a Shows the distribution of the triage level with the quantities assigned to each level and b distribution ofmedical specialties
predicted from the diagnosis list, reflecting the specialties to which patient cases would be referred and consulted.
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patient’s case based on the symptoms and the patient info, for the general
user and adding the initial vitals for the clinical user. More insights on the
two evaluation frameworks and the two user scenarios can be read upon in
the Methods: Specialty evaluation Framework.

In the first evaluation, which checked each of the top three predicted
specialties individually if it matches the specialties in the ground truth,
Claude 3.5 Sonnet slightly outperformed the other models. However, the
performance differences among all models were minimal, with all models
showing similar accuracy across both general and clinical user scenarios.

For the evaluation that focused on checking if at least one of the top
three predicted specialties is predicted correctly, Claude 3.5 Sonnet had the
highest performance, while overall performance differences remained small
across all models. The results are illustrated in Fig. 5 and Table 1.

The improvement shown in Table 2 between the general user and
clinicianusermodelswasmost evident in theClaude 3.5 Sonnetmodel,with
only minimal improvements seen in the RAG-assisted LLM and Claude 3
Haiku. In contrast, Claude 3 Sonnet experienced a negative impact when
provided with additional information about the initial vitals. Predicting the
appropriate specialty relies on several factors. Symptoms need to be clear
and accurate, but it’s common for symptoms to fall under the expertise of
multiple specialists, and often additional tests are required to narrow down
the appropriate referral. In this study, the specialty was defined by the

patient’s dischargeprimarydiagnosis,meaning thediagnosiswasmadeafter
several tests and possibly after days of observation. As a result, the addition
of initial vitals may not significantly influence specialty prediction, as more
detailed information becomes available only later in the patient’s care.

The evaluation of specialty frequencies, which can be found in the
Supplementary Fig. 7 shows that in the best model, clinical user Claude 3.5
Sonnet, general surgery, emergency medicine, infectious diseases, and
internal medicine are overrepresented, while the underrepresentation of
orthopedics is nearly balanced by the higher occurrence of orthopedic
surgery. The same tendencies can be seen in the other models.

The performance of LLMs in predicting the specialties shows that
LLMs are generally well-suited to assist in medical referrals by offering a
variety of relevant specialty options.

Evaluating LLM workflows for diagnostic accuracy
In the process of clinical decision-making, we evaluated whether LLMs can
assist in predicting the diagnosis or diagnoses a patient might have. We
conducted this evaluation in our two settings like described before, the
general user and clinical user setting.More on the evaluation framework can
be found in theMethods:Diagnosis EvaluationFramework.To compare the
predicted diagnoses to the ground truth diagnoses, we used Claude 3.5
Sonnet as a judge.Additionally, to validate this approachof using anLLMas

Fig. 3 | Triage level accuracy: exact match vs. range evaluation. This figure
compares the model performance in predicting triage levels. The graph shows the
accuracy [%] for two evaluation methods: exact match (left) and range evaluation

(right). Results are displayed for both evaluation types, illustrating the differences in
model accuracy across the different LLMs for triage level prediction.

Table 1 | Model performance comparison across tasks and evaluation methods

User setting Model Triage level Specialty Diagnosis Average

Exact match Range Matched At least one Matched At least one

General User RAG-Assisted LLM 64.10 78.20 77.12 86.35 69.43 80.85 76.01

Claude 3.5 Sonnet 62.20 82.80 78.26 88.05 70.22 82.00 77.26

Claude 3 Sonnet 58.35 74.40 78.10 87.70 70.17 81.55 75.05

Claude 3 Haiku 57.70 71.80 77.86 87.10 67.39 79.60 73.58

Clinical User RAG-Assisted LLM 65.75 77.15 77.28 86.45 69.77 81.70 76.35

Claude 3.5 Sonnet 64.40 82.40 78.86 88.55 70.26 82.10 77.76

Claude 3 Sonnet 61.65 74.55 77.72 87.15 70.51 82.05 75.61

Claude 3 Haiku 59.00 66.15 78.02 87.05 67.46 79.30 72.83

Performance is presented as accuracy [%] on all tasks and with all evaluation methods. A bold value indicates the best-performing model and an underlined value indicates the second-best-performing
model, determinedseparatelywithin eachuser setting (general or clinical user) andwithin eachevaluationmethod (exactmatch/matchedor range/at least one) for eachprediction task (triage level, specialty
or diagnosis).
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an evaluator, we asked four clinicians to review a subset of the data and
compare the predicted diagnoses to the ground truth diagnoses. A detailed
explanation of this process can be found in the subsection “Reader Study” in
the “Methods” section, and the results are presented in the subsection
“Inter-Rater Agreement on Diagnosis Evaluation” in the “Results” section.

In our evaluation of LLMs’ ability to assist in predicting patient diag-
noses, we found small differences in performance between models. In the
first evaluation, in which each diagnosis was compared to the ground truth,
Claude 3.5 Sonnet and Claude 3 Sonnet performed equally well for the
general andclinical user setting. In the secondevaluation,where the goalwas
to predict at least one correct diagnosis for each patient, all models

demonstrated stronger performance. All results are presented in Fig. 6 and
in Table 1.

Improvements in the clinical usermodel over the general usermodel is
particularly notable for the RAG-assisted LLM, as shown in Table 2. This
suggests that the knowledge provided to the LLMduring theRAGworkflow
has enhanced its diagnostic skills, particularly in interpreting and utilizing
current initial vitals. Predictingor defining adiagnosis, like specialty referral,
requires a significant amount of information, much of which is difficult to
gather upon a patient’s arrival to the ED. This complexity underscores the
challenges of early diagnosis in such fast-paced settings, wheremany crucial
details are still emerging.

Fig. 4 | Confusion matrices for triage level prediction. This figure presents con-
fusion matrices for the two best-performing models (RAG-Assisted Claude 3.5
Sonnet and Claude 3.5 Sonnet) in different user settings (General User and Clinical
User) and evaluationmethods (exact match and range evaluation). a and b show the

confusion matrices for the general user setting and c and d show the confusion
matrices for the clinical user setting. Diagonal values represent correct predictions in
the exact match evaluation, while marked predictions indicate correct values for the
triage range evaluation.

Table 2 | Clinical vs. general user settings

Model Triage Level Specialty Diagnosis Average

Exact Match Range Matched At Least One Matched At Least One

RAG-Assisted LLM 1.65 –1.05 0.16 0.10 0.34 0.85 0.34

Claude 3.5 Sonnet 2.20 –0.40 0.60 0.50 0.04 0.10 0.51

Claude 3 Sonnet 3.30 0.15 -0.38 –0.55 0.34 0.50 0.56

Claude 3 Haiku 1.30 –5.65 0.16 –0.05 0.07 –0.30 –0.75

Performance improvement for each model from general user to clinical user setting.
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Intra-model agreement
The agreement between the models can be seen as a measure of quality, as
high agreement indicates that similar patterns and trends are captured in the
responses, indicating robustness and reliability of the predictions. The ana-
lysis of inter-model agreement for the diagnosis data was omitted as this data
has thehighest variability and therefore requires assessmentbyanLLMjudge.

Comparisons of inter-model agreement across the triage and specialty
datasets are shown in Table 3, with full results available in Supplementary
Table 2. The intra-model agreement analysis showed the highest con-
sistency between the general user model and the clinical model for all
models. This suggests that the different inputs to the same model do not
significantly alter or improve responses, but also that the models - parti-
cularly Claude 3.5 Sonnet and RAG-assisted LLM - show consistent per-
formance across different user settings.

RAG-Assisted LLM demonstrated the highest average agreement
across all models, closely followed by Claude 3.5 Sonnet, while the highest

single inter-model agreement was between Claude 3.5 Sonnet and RAG-
assisted LLM.

The high agreement between the models underlines their consistency
inmany cases, but the variation in agreement suggests that differentmodels
correctly classify different cases. This indicates that if we could determine
whichmodel excels at specific classifications,we couldpotentially reduce the
overall error rate by a significant margin.

Clinician validation of LLM-generated specialties
To evaluate the accuracy and reliability of the LLM-generated specialties, we
asked four clinicians to independently review a subset of the dataset. Each
clinician assessed the LLM-generated specialty and its appropriateness for a
given diagnosis. They categorized each specialty as either Correct, Partially
Correct, Reasonable but Suboptimal or Incorrect. Two clinicians reviewed
the same subset to provide an independent evaluation and objectivity. A
more detailed description can be read upon in theMethods “Reader Study”.

Fig. 5 | Specialty prediction accuracy: matched vs. at least one specialty match
evaluation. This figure compares the model performance in predicting medical
specialties. The graph shows the accuracy [%] for two evaluation methods: matched

specialty (left) and atleast one specialty match (right). Results are displayed for both
evaluation types, illustrating the differences in model accuracy across the different
LLMs for specialty prediction tasks.

Fig. 6 | Diagnosis prediction accuracy: matched vs. at least one diagnosis match
evaluation. This figure compares the model performance in predicting medical
diagnoses. The graph shows the accuracy [%] for two evaluation methods: matched

diagnosis (left) and atleast one diagnosismatch (right). Results are displayed for both
evaluation types, illustrating the differences in model accuracy across the different
LLMs for diagnosis prediction tasks.
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The results presented in Table 4 show the clinicians’ positive assessment
of the LLM’s performance in creating the specialty ground truth. On average
across all clinicians, a significant 81.5% of the predictions were rated as
Correct,which shows theLLM’spromisingability to aligncloselywith clinical
expectations. Partially Correct and Reasonable but Suboptimal predictions
are considered as acceptable choices. When the accurate and acceptable
categories are combined, the acceptability rises to 97.03%, showing that
almost all recommendations are clinically relevant. Notably, the overall error
rate was exceptionally low at just 2.63%. However, a closer look reveals that
Clinician 2, with a higher error rate of 9.15% compared to the average error
rate of 0.68% for the other clinicians, rated predictionsmore stringently. This
highlights the variations in human evaluations, which is likely influenced by
differences in experience and individual judgment. These differences can also
be observedwhen comparing the two confusionmatrices of the two clinician
pairs, provided in the Supplementary Fig. 8 and 9.

These results suggest that LLMs perform well in generating a ground
truth specialty, aligning closely with clinical expectations with high
acceptability. The low error rate highlights their reliability, though the
variations in clinician evaluations reflect differences in judgment among
clinicians. LLMs have strong potentials for specialty recommendations,
while human oversight remains important for complex cases.

Inter-rater-agreement on diagnosis evaluation
To trust the LLMs predictions in clinical decision-making, it is essential to
evaluate howwell their outputs align with human evaluation. Therefore, we
aimed to assess the inter-rater agreement between the two LLMs, Claude 3.5
Sonnet and the RAG-assisted LLM, and clinicians in comparing predicted
diagnoses to ground truth diagnoses. Four clinicians participated in the
evaluation, where each pair of clinicians assessed the same subset to ensure
independent evaluations and to compare their assessments. They categor-
ized the LLM-predicted diagnoses into four levels: Exact Match, Clinically
Equivalent, Clinically Related, or Incorrect. The LLMs provided a binary
evaluation, deciding whether the predicted diagnosis exactly matched the
real diagnosis or fell within a broader category related to the real diagnosis.
More details about the reader study and the LLM as a judge can be found in
“Methods”.

To measure alignment, we mapped the LLMs’ binary outputs to the
clinician ratings. True was matched with Exact Match or Clinically
Equivalent, while False was aligned with Clinically Related or Incorrect.
Each subset was reviewed by two clinicians, allowing us to evaluate agree-
ment under two conditions: Union and Intersection. The results are pre-
sented in Table 5.

The evaluation of LLM evaluating predicted diagnoses shows a strong
alignment with human evaluation, particularly in collaborative clinical
scenarios, referred here as the union scenario. The union scenariomeans an
LLM evaluation was considered correct if at least one of the two clinicians
agreed with its evaluation (e.g., marking a “True” as Exact Match or
Clinically Equivalent). This approach highlights the collaborative nature of
clinical practice, where different perspectives are required to enhance
decision-making and arrive at a more comprehensive understanding.
Under this scenario, Claude 3.5 Sonnet achieved a high accuracy of 95.62%,
while the RAG-assisted LLM followed closely with 94.91%. These results
emphasize the models’ ability to align with the reasoning of at least one
human expert in most cases.

The Intersection scenario represents stricter conditions, where
an agreement among clinicians is required, such as during critical
multidisciplinary team discussions. In this scenario, an LLM eva-
luation was considered correct only if both clinicians agreed with its
evaluation (e.g., both rated a “True” as Exact Match or Clinically
Equivalent). The results here show lower but still significant accuracy,
with Claude 3.5 Sonnet achieving 70.74% and the RAG-assisted LLM
reaching 69.86%. This outcome shows the challenges of getting full
agreement among human experts.

These results demonstrate that LLMs perform well in collaborative and
flexible clinical scenarios, as shown by the high accuracy in the union con-
dition. However, the stricter Intersection results reveal the challenges of
achieving full agreement, even among human experts, due to differences in
perspectives and levels of experience. This variation can also be seen in the
individual inter-rater accuracy between clinicians and the LLMs, which
ranged from 76% to 90% for both Claude 3.5 Sonnet and the RAG-assisted
LLM.Thesedifferenceshighlight the variability inhowclinicians assess LLM-
evaluated answers and interpret predictions. These differences can also be
observed in the evaluation results between the two clinicianpairs, as shown in
the confusionmatrices provided in the Supplementary Fig. 10 and 11.While
one pair showed higher agreement in the “Exact Match” category, the other
pair demonstrated a more distributed matching across different criteria.
These findings suggest that while LLMs align well with human evaluation,
especially in collaborative settings, there is still room for improvement in
achieving full consensus.The results alsohighlight thepotential valueofusing
LLMsas complementary tools inmultidisciplinarydiscussions,where diverse
perspectives can enhance decision-making processes.

Discussion
Advances in large language models (LLMs) are beginning to reshape how
clinicians approach medical decision-making. These models have already
proven useful in more structured tasks, like medical licensing exams, but
how they can be used in real-world patient care is still being studied. We

Table 3 | Average inter-model agreement of the triage level and specialty predictions

Category RAG-Assisted LLM Claude 3.5 Sonnet Claude 3 Sonnet Claude 3 Haiku Average

Between General and Clinical User 85.94 89.74 84.95 83.54 86.04

To RAG-Assisted LLM - 83.88 76.64 74.34 78.29

To Claude 3.5 Sonnet 83.88 - 77.19 73.35 78.14

To Claude 3 Sonnet 76.64 77.19 - 75.65 76.49

To Claude 3 Haiku 74.34 73.35 75.65 - 74.44

Average inter-model agreement [%] for different categories over triage level and specialty. The “Betweengeneral user and clinical user” category shows the average agreement between the corresponding
general user model and clinical user model, while the other categories show the average agreement to a certain model of the same type (general user to general user and clinical user to clinical user).
Agreement to the same model is omitted to avoid distorting the average.

Table 4 | Clinician validation of LLM-generated specialties:
accuracy, acceptability, and error rates

Clinician Accurate
[%]

Acceptable
[%]

Accurate &
Acceptable [%]

Error
Rate [%]

Clinician 1 93.77 6.23 100 0

Clinician 2 82.05 8.79 90.84 9.15

Clinician 3 81.91 17.06 98.98 1.02

Clinician 4 68.94 30.34 98.98 1.02

Average 81.5 15.53 97.03 2.63

AverageAccuracy [%], Acceptability [%], CombinedAccuracy andAcceptability [%], andError Rate
[%] for the ground truth specialties generated by the LLM, as evaluated by clinicians. The results are
shown for each clinician and the overall average across all clinicians.
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explored the potential of LLMswith andwithoutRAGassistance, to support
clinical decision-making by benchmarking their performance on 2000 real-
world medical cases from the MIMIC-IV-ED dataset. We wanted to assess
their ability to predict diagnoses, recommend specialists, and determine the
urgency of care. Our results highlight both the promise and limitations of
LLMs in the clinical decision process, offering insights into their potential
role in healthcare.

Our results suggest that LLMs and the RAG-assisted LLM can support
clinical decision-making, but their effectiveness varies depending on the
task. Claude 3.5 Sonnet generally performed slightly better across most
tasks, but theRAG-assisted LLMoffered an important advantage: the ability
to use external, trusted references. This feature helps reduce the risk of
hallucinations28–31 and adds a layer of fact-checking32,33, which is crucial in
clinical settings where accuracy is crucial. The RAG-assisted LLM, com-
pared to its base model Claude 3.5 Sonnet, showed a different pattern of
improvement when using the clinical user setting (with additional patient
vitals data), as demonstrated in Table 2. The RAG-assisted LLM benefited
significantly from the extra vital information in the triage level anddiagnosis
tasks, though less so in the specialty task. In contrast, Claude 3.5 Sonnet
showed improvements in the triage level and specialty tasks but gained less
from the vital signs in the diagnosis task.

The RAG workflow allows the model to incorporate external sources
from a research context, helping to provide amore informed perspective on
the input. We hypothesize that the available external information likely
emphasizes the relationship between vital signs and triage level or diagnosis,
but not asmuchbetween vital signs and the corresponding referral specialty.
Therefore, with the background knowledge provided by theRAGworkflow,
it makes sense that this model benefits more from additional vital signs in
the domains of triage level and diagnosis. This also suggests that the RAG
workflow improves the model’s performance in cases where current
research findings are particularly relevant.

This is further highlighted by the RAG-assisted LLM’s strong perfor-
mance in terms of exact accuracy on the triage level data with vital signs
information, which is likely to be well-represented in available research
resources. However, this does not necessarily help the model with range
accuracy, as research sources are unlikely to guide the model in predicting
more severe over less severe.

However, the benefit of incorporating more clinical information was
not seen in simpler models like Claude 3 Haiku, and only minimal gains
were observed forClaude3Sonnetwhenpredicting specialties. This is in line
with previous findings that LLMs struggle with nuanced clinical data, like
interpreting abnormal lab results or subtle symptoms8. It also explains why
none of the models achieved high accuracy in predicting the most severe
triage patients, as these models are not equipped to follow numeric-based
guidelines effectively. More advanced models, like Claude 3.5, showed they
are better at handling these complexities.

Accuracy in the medical domain remains a significant challenge for
LLMs, particularly in predicting triage levels, as all models showed both
over-triaging and under-triaging. Assigning a triage level in a real-world
setting demands a high degree of clinical judgement and careful

consideration of the patient’s conditions and resources needed. For the
triage prediction, we acknowledge that using clinical notes may introduce
bias since triage determination is typically made prior to the patient being
fully assessed by a physician.

To limit the bias, we extracted the HPI, through our data processing,
attempting to include only the reason for a patient’s admission and first
impression by a clinician as the earliest recording of the patient’s symptoms
documented in the physician’s notes. Ideally, onewould use real-time audio
or video recordings of the initial patient contact with medical personnel—
such data is unfortunately not available. While this study is purely an aca-
demic evaluation of various LLMs’ performance, the difficulty LLMs
demonstrate in assigning accurate severity levels - in particular at the
extreme ends - highlights their current limitations in independently
handling these tasks. Nonetheless, the performance on this task remains a
meaningful indicator of the overall quality of LLMs, their potential as an
assisting tool and their promise for future clinical applications.

Future work could focus on improving LLMs’ numerical handling of
laboratory values to enhance their ability to interpret clinical data accurately.
Additionally, a deeper examination of how clinicians make decisions when
definingESI levels is essential.This couldprovidevaluable insights to improve
LLMs to better replicate clinician performance in real-world scenarios.

A critical aspect of utilizing LLMs in clinical decision-making is the
importance of prompt design. In our study, we experimented with various
prompts to guide the models effectively, and it became evident that how a
task is framed significantly impacts the quality of the results34,35. While we
observed promising outcomes, it is clear that a more focused approach to
prompt engineering would be highly beneficial36–40, particularly when
combined with the context of external sources provided by the RAG
workflow. One interesting observation was the differences in performance
between the LLM models. The models did not always agree on their pre-
dictions, which points to both a limitation and an opportunity. The results
on intra-model agreement reveal that themodels do not completely overlap
in their predictions, suggesting that they might function as a “mixture of
experts”when combined. Leveraging this diversity in predictions could lead
to improved outcomes by utilizing the strengths of each model in different
contexts. Additionally, higher agreement between models can be seen as a
measure of quality, as it indicates that similar patterns and trends are being
captured, contributing to the robustness and reliability of the predictions.

A similar pattern of variability and complementarity observed in the
intra-model agreement was also reflected in our evaluations involving
clinician reviews. It highlights how differences in perspectives and expertise
can influence decision-making. In the review of LLM-generated specialties,
clinicians showed variation in their assessments, shaped by individual
judgment and experience. Similarly, in the evaluation of LLM-predicted
diagnoses, the union condition demonstrated strong alignment with the
LLM-judge, emphasizing the collaborative nature of clinical environments
where different viewpoints can complement each other. However, the
stricter intersection condition revealed the challenges of achieving full
agreement among clinicians. This shows the complexity of consensus in
medical decision-making.

Table 5 | Clinician validation of llm-generated diagnoses: inter-rater agreement

Clinician Inter-Rater Accuracy [%] Inter-Rater Union Accuracy [%] Inter-rater intersection accuracy [%]

Claude 3.5 sonnet RAG-assisted LLM Claude 3.5 sonnet RAG-assisted LLM Claude 3.5 Sonnet RAG-assisted LLM

Clinician 1 90.43 90.11 95.22 95.37 75.44 73.84

Clinician 2 80.22 79.11

Clinician 3 76.51 77.78 96.03 94.44 66.03 65.87

Clinician 4 85.56 82.52

Average 83.18 82.38 95.62 94.91 70.74 69.86

Average Inter-Rater-Agreement Accuracy [%] for Claude 3.5 Sonnet and RAG-assisted LLM compared to clinician evaluations. Inter-Rater Accuracy is reported for each clinician, along with combined
values for theUnion and Intersection evaluations. For the Inter-Rater Union and Intersection, a single value is reported for each pair of clinicians: one value for theUnion and one value for the Intersection of
Clinicians 1 and 2, and similarly for Clinicians 3 and 4.
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Finally, while our study establishes benchmark tasks and resources for
clinical decision-making, the next step will involve refining the RAG-based
model and similar approaches, and focusing on integrating them more
effectively into clinician workflows. Beyond helping healthcare providers,
these models can also benefit patients directly. For those experiencing
symptoms at home, LLMs can provide an initial assessment, giving patients
an indication for the severity of their condition and recommending which
specialist to visit. This empowers patients tomakemore informed decisions
about their care.

We donot propose a direct clinical deployment, but it is still relevant to
mention that any clinical deployment would need to address significant
regulatory concerns regardingAI in clinical tasks, especially those involving
LLMs for referral, triage, and diagnosis. These specific tasks fall under
“determining eligibility for healthcare” (5a) and “emergency healthcare
patient triage systems” (5 d) and are consequently classified as high-risk in
Annex III of the EU Artificial Intelligence Act (AIA)41. As such, clinical
implementation must comply with the AIA’s requirements for robust
validation (Art. 57), potentially including multiple external validation sets
and assessments of performance on edge cases.Moreover, theActmandates
continuous post-market monitoring (Art. 72) and reporting of serious
incidents (Art. 73), highlighting the ongoing nature of AI system validation
beyond initial approval.

Nevertheless, it is impossible to rule out “leaky deployment” of LLM
models, where physicians would start using openly available models as
helper systems in their clinical routine. Therefore, open and strict bench-
marking of LLM performance on various sets of clinical tasks is of utmost
importance for both the medical community and general populace.

While our study focused on Claude models, it is relevant to consider
how other advanced LLMs might perform in similar clinical decision-
making contexts. Newer reasoning-focused models, such as the OpenAI
models with their “Deep Research” function or Claude 3.7 Sonnet42 with its
“extended thinking mode”, could offer substantial advantages in handling
complex medical cases. The rapid development of these models highlights
the need for objective benchmarks and continuous evaluation to ensure
their reliability, and usefulness in clinical applications.

The results presented here are primarily of academic interest, pro-
viding a first highly needed benchmarking of LLMs in the AI-assisted
clinical-decision-makingprocess, aswebelieve these systems require further
refinement and validation before any potential clinical deployment. Our
study shows that LLMs cannot replace clinicians in independently per-
forming complex medical decision-making. However, they demonstrate
potential as supportive tools, assisting clinicians by providing relevant
insights and information.

This highlights how LLMs are more suitable for alternative use cases,
such as educational resources for inexperienced clinicians, supplementary
resources for patients, or background safety screenings. Ultimately, their
effective integration into healthcare will rely on thorough testing, ongoing
improvements, and well-defined roles within clinical workflows.

Methods
Data preprocessing
Our goal was to develop a model capable of predicting the specialty, triage
level, anddiagnosis for patients in an emergency department (ED) setting or
those experiencing symptoms at home. Since we aimed to evaluate the
difference in model performance based on whether the information was
entered by the patient themselves or a clinician, we designed our dataset
accordingly. For the general user,we required twomain inputs: adescription
of the patient’s symptoms and some basic patient information. For the
clinical user we added the initial vitals signs, such as temperature, heart rate,
respiratory rate, oxygen saturation, and blood pressure, which can be
measured upon arrival at the ED.

Weprocessed andcreatedour curateddataset using theMIMIC-IVED
dataset22,25 in conjunction with the MIMIC-IV Notes22,26 dataset, both
modules from MIMIC-IV20–22, to support clinical decision-making in an
emergency department setting. The MIMIC-IV ED dataset contains

extensive information from patients admitted to the emergency depart-
ment, while the Notesmodule provides valuable unstructured clinical notes
of these patients.

The data processing pipeline is presented in Fig. 7. First, wemerged the
necessary data tables from each source. Triage information was obtained
from the MIMIC-IV-ED “triage” file, while the patient demographics such
as race, and gender were extracted from the “edstays” file. The age specifi-
cally was extracted from theMIMIC-IV “patients” file. The initial vital signs
were extracted from the MIMIC-IV-ED “triage” file, and the unstructured
clinical notes were extracted from the MIMIC-IV-Note “discharge” file.

Initially, we extracted relevant discharge notes fromMIMIC-IV-Note
dataset and linked them with the patient records from the MIMIC-IV-ED
2.2 “edstays” file using the stay_id. We then merged the triage information
and the patient demographics - gender, race and age) from the respective
files, and integrated the initial vital signs. During this merging process, we
dropped duplicate subject entries, removed cases with missing triage
information, and filtered the records to retain only those with sequence
number (seq_num) equal to 1. This ensures the uniqueness of the ED stays.
We also excluded patients that had died.

A separate preprocessing step was applied for the unstructured clinical
notes. Specifically, we selected only the patients that had a history of present
illness in the unstructured notes. We extracted the history of present illness
paragraph from the discharge notes - discarding any other information
included in the notes. We further selected only cases with HPIs that had a
string length between 50 and 2000 characters, to avoid getting too short or
too longHPIs.Weadditionally removedany entries thatmentioned “ED”or
“ER”, as these references did not include any necessary information
regarding the patient’s symptoms or how the patient was feeling.

Additionally to extracting the HPI, we extracted the diagnoses list for
each patient from the clinical notes. These lists were typically divided into
primary and secondary diagnoses. For our evaluation, we used only the
primary diagnoses and discarded cases that had more than 15 primary
diagnoses, as most cases had up to 3 diagnoses. This approach ensures that
the dataset accurately reflects patient information and vital signs at the time
of emergency department triage, offering a comprehensive view of early-
stage clinical decision-making.

Prompts
We created a series of prompts to guide the LLM in performing specific
clinical tasks. These included predicting the triage level, predicting the spe-
cialty and diagnosis both together as they are both related and complement
eachother.Additionally,weused theprompt creating a ground truth referral
specialist, andusing the LLMas a judge to compare predicteddiagnoseswith
the true diagnoses. To decide on these prompts, we experimented with
several variations of the prompts on a subset of data that was not included in
our evaluation to refine the prompts to our tasks. To ensure consistent and
reliable outputs, we set the temperature parameter to zero during these
experiments.Weobserved that the resultswere identical across runs,withno
variations. Based on this observation, and given the cost constraints of
running theLLMmultiple times,wedecided to run thepredictionsonlyonce
for the final evaluation. Additionally, our goal is to evaluate the LLM’s
performance in a scenario that mimics a clinical environment, where a
clinicianwould typically rely on the LLM’sfirst output rather than running it
multiple times. By focusing on the first output, we aimed to test the reliability
and practical usability of the LLM in such a setting.

Each prompt begins by setting the system’s role, such as, “You are an
experienced healthcare professional with expertise in medical and clinical
domains”, followed by clear task instructions. We also provided the data
necessary for each task and specified how the LLM should format its
responses, ensuring concise answers within predefined tags. The different
prompts can be seen in the Supplementary Fig. 1-6.

Model selection
To comply with privacy regulations restricting the use of the MIMIC-IV
dataset with external APIs like OpenAI’s GPT-4o and the Claude family
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models, we employed AWS Privatelink to securely connect to the Claude
models hosted on AWS. This kind of evaluation reduces the likelihood that
the data has been previously seen by the LLM models, which cannot be
guaranteed when using publicly available datasets.

Claude 3.5 Sonnet, Claude 3 Sonnet, andClaude 3Haiku are advanced
LLMs developed to enhance natural language understanding, with
improvements in performance and efficiency across multiple benchmarks
over their predecessors, including GPT-4o, GPT-4T, Gemini 1.5 Pro and
Llama 3 400B23. They excel in contextual understanding, efficiency, and
their ability to handle specialized queries. This makes them well-suited for
applications in clinical decision-making, where precision and adaptability
are essential.

Claude 3 Haiku is the fastest and most compact model in Anthropic’s
Claude 3 family. It excels in tasks where it requires quick analysis and
response times24, making this feature suitable for the clinical-decision
process.

Claude 3 Sonnet is a balanced combination of speed and intelligence,
offering significant improvement in reasoning and accuracy. This model is
versatile, handling complex text generation, analysis and reasoning24.

Claude 3.5 Sonnet is built on the foundations of Claude 3 Sonnet with
further enhancement in speed and intelligence. It excels in different tasks
like reasoning and question answering, while being faster and cost-efficient
relative to the previous models. It has shown competitive or superior per-
formance in a variety of language-based tasks23.

RAG-assisted LLM
A RAG-assisted LLM approach involves two components: a retrieval
mechanism that gathers the relevant information corresponding to the

query from a specific external knowledge base, and a language model that
integrates the retrieved information with the query to produce a response
that is both grounded in the external knowledge base and tailored to the
specifics of the given query. This method has shown improvements in both
accuracy and reliability, which significantly reduces false or misleading
information, referred to as hallucination, and produces more factual,
context-aware outputs28–31. In this study, the framework is implemented
using Claude 3.5 Sonnet as the LLM component and incorporates a multi-
step processwhere the LLMplays a key role in refining and enhancing query
processing and answer generation. The workflow is represented in Fig. 8.

The workflow starts with a query decomposition, breaking down the
patient’s query into smaller queries. This process allows RAG systems to
break down the input into its smaller key components and retrieve themost
relevant information for each component. This idea is supposed to mimic
the natural way humans approach understanding by breaking down com-
plex information into smaller parts to focus on each element individually.

The knowledge base supporting this workflow consists of 30 million
PubMed abstracts, which have been converted into embedding vectors and
stored as a knowledge high-dimensional vector database. This allows the
system to measure semantic similarity by comparing these vectors to those
in the knowledge vector database. By identifying the closest matches, the
system retrieves the most relevant information for the given query.

The LLM uses the retrieved information alongside the query to gen-
erate a response that is supported by the retrieved data, while also providing
the source PubMed references for further review. An additional layer in the
workflow tries to enhance the performance through iterative loops of cri-
tique, refinement, and retrieval. In these loops, the LLM evaluates the
generated responses, identifies gaps or inaccuracies, and refines the output

Fig. 7 | Flow diagram for the data preprocessing.
This figure illustrates our data preprocessing pipe-
line. From Physionet we utilized MIMIC-IV-ED 2.2
and MIMIC-IV-Note. The necessary data tables
from each data source were merged. Next, the
merged data undergoes processing and cleaning.
Finally, we process the clinical notes to extract the
relevant information - history of present illness and
primary diagnoses.
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as needed.WeusedanLLMto evaluate the output anddeterminewhether it
was sufficient for the given query. This iterative process intends to achieve
higher accuracy alignment with the query, to create more precise and reli-
able outputs.

Triage level evaluation framework
The triage level is based on the Emergency Severity Index (ESI)19, which
consists of five levels, as outlined in the Supplementary Table 1.We evaluate
the model’s triage level predictions using two different assessment frame-
works. The first is a straightforward comparison between the predicted
triage level and the ground truth, with accuracy as the metric. The second
evaluation framework uses a triage range approach, accounting for the
variability in clinical judgment when assigning triage levels. The ESI is
typically determined by a clinician assigning a score based on their assess-
ment of a patient’s condition. Although there are defined levels within the
ESI system, ranging from 1 to 5, the assignment of these levels can vary due
to the clinician’s intuition and experience. In some cases, cliniciansmay lean
on the side of caution, assigning a more severe level to avoid the risk of
patient deterioration or the possibility of misclassifying a patient as less
critical than they actually are. To account for this variability, our evaluation
allows some flexibility inmodel predictions. If the real triage level value is 1,
the model must predict 1, as immediate life-saving intervention is required.
For a real value of 2, the model can predict either 1 or 2, ensuring patients
needing urgent care aren’t harmed by overclassification. Similarly, if the real
value is 3, the model can predict 2 or 3, and so on—up to a real value of 5,
where the model can predict either 4 or 5.

Specialty evaluation framework
To assess the performance of LLMs in recommending appropriate medical
specialties, we developed two distinct evaluation scenarios: one tailored for
the general users and another for clinical users. In each scenario, themodels
generated the top three specialty recommendations based on the available

patient information. For the general user case, this input consisted of a
description of the symptoms and basic patient information, while for the
clinical user case, the input was augmented with the patient’s initial vital
signs. For the general user setting, we implemented this evaluation with the
Germanhealthcare system inmind,wherepatients can choose any specialist
without prior consultation with primary care or emergency care specialists.
For the clinical user, we designed the evaluation to assist primary care
doctors in referring patients to a specialist or seeking consultation asneeded.

Since the MIMIC-IV-ED and MIMIC-IV-Notes do not include
information on whether a consultation is necessary - and we could not
compensate for this missing detail - we put our focus on evaluating the
question “which specialist would be most helpful given the symptoms at
hand.”As the datasets lack exact information on themedical specialist each
patient visited, we used Claude 3.5 Sonnet to predict the most likely spe-
cialist for each diagnosis for each case, given that patients often present with
multiple diagnoses rather than just one, thereby establishing the ground
truth for this study.

Predicting a single specialist would be insufficient and unfair to the
model when comparing its performance to the ground truth consisting of
several specialties. In fact, it’s not uncommon for a patient to suffer from
several medical conditions simultaneously, each requiring attention. To
address this complexity, we chose to predict the top three specialists for each
case. An Example is provided in Table 6.

This approach provides a more realistic comparison and offers clin-
icians andpatientsmultiple possibilities to consider, reducing the risk of bias
toward a single diagnosis. Ultimately, the LLM serves as a support tool,
providing valuable insights, while the clinician makes the final, informed
decision based on both the LLM’s recommendations and their own
expertise.

Diagnosis evaluation framework
Asmentioned in the specialty evaluation previously, patients often come in
withmore than one diagnosis. To reflect this, we predicted a top three list of
diagnoses for each case. We then compared each of these predictions to the
actual diagnoses. Notably, we examined the time from admission to release
and confirmed that all cases used inour evaluationhada staydurationof less
than one day. Thisminimizes the possibility to include diagnoses thatmight
arise from later during hospitalization.

To make the comparison more accurate, we used an LLM judge to
decide if thepredicteddiagnosis eithermatched the ground truth orfit into a
broader category of one of the actual diagnoses. This way, we accounted for
differences inwordingwhile still ensuring a fair evaluation. Additionally, on
a subset of the dataset, we involved four clinicians who compared the pre-
dicted diagnoses to the ground truth diagnoses and reviewed them. More
details about this process can be found in the subsection “Reader Study”.

Table 6 | Example diagnoses, ground truth and predicted
specialty

Primary Diagnoses Ground Truth Specialties
(Claude 3.5 Sonnet)

Predicted Specialties
(Claude 3.5 Sonnet)

• Alcohol withdrawal
• Pancreatitis
• Thrombocytopenia
• Schizoaffective
• HIV

• Addiction Medicine
• Gastroenterology
• Hematology
• Psychiatry
• Infectious Disease

• Gastroenterology
• Hepatology
• Addiction Medicine

Example of a case with primary diagnoses, their corresponding created ground truth, and the
predicted specialties for the case

Fig. 8 | Workflow of the RAG-assisted LLM. The
workflow starts with query decomposition, breaking
down patient queries into smaller chunks. These
chunks are embedded and undergo a semantic
similarity comparison with the embeddings of 30
million PubMed abstracts to extract the most rele-
vant information. The retrieved information is then
combined with the query, and the LLM generates
responses supported by the source references. An
iterative critique-refinement loop further enhances
the outputs by identifying gaps, refining responses,
and ensuring alignment with the query.
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We employed two evaluation methods for assessing the model’s per-
formance in predicting the correct specialty. The first method evaluated
whether each predicted specialty appeared in the ground truth list. For each
patient, we counted howmany specialties were correctly predicted and then
divided that number by the length of the shorter list, either the ground truth
or the prediction list.

For example, if the ground truth for a patient includedonly one entry, a
cardiologist, and the model predicted three specialists—one cardiologist,
one general medicine, and one electrophysiologist—only the cardiologist
would be considered correct. Although general medicine and electro-
physiology could also be relevant in some cases, our evaluation was speci-
fically set to match the ground truth. This ties into a point discussed in the
paper, where we explore how a single diagnosis might be managed by
multiple specialists, a factor we plan to address in future work.

In this example, since only the cardiologist was correctly predicted, the
patient would receive one point, which is then divided by the length of the
shorter list (in this case, one, as the ground truth had only one entry). So, the
score for this patient would be 1. If the ground truth had included two
specialties, and themodel only correctly predicted one out of three, the score
would be 0.5. The total points across all patients were then summed and
divided by the total number of patients to calculate the overall accuracy.

The second evaluation frameworkwas simpler, focusing onwhether at
least one of the predicted specialties appeared in the ground truth list. If any
one of the model’s predicted specialties matched one of the ground truth
specialties, the prediction for that patient was considered successful.

LLM judge
For our study, we utilized LLMs to evaluate and compare the accuracy of
predicted diagnoses for a given set of patient cases. This evaluation aimed to
assess the model’s diagnostic capabilities by comparing the predicted
diagnoses with those listed in the patient’s medical records. The prompt for
the evaluation can be found in the Methods: Prompts.

The model was given the true list of diagnoses for each patient, along
with three predicted diagnoses.

It was then asked to determine if the predicted diagnosismatched any of
the primary diagnoses by focusing on semantic equivalence andmeaning, or
if it fell under abroader category related to the real diagnosis. SinceLLMsmay
use different phrasing for the same concept, which string-matching algo-
rithms could miss, the model was asked to evaluate whether the predicted
diagnosismatched the real one orwas related to it in a broader sense. If it did,
the model returned “True”, ensuring that only diagnoses with the same or
related meanings were marked as such. Otherwise, it returned “False”.

Similar methodologies have been explored successfully in recent
research, showing that LLMs can effectively perform human-like evalua-
tions in various tasks, including text summarization, quality assessments,
and chat assistant evaluations, with results aligning closely to human
judgments43–45. These findings support the use of LLMs as reliable tools for
tasks like our diagnostic comparison evaluation.

Moreover, insights from the paper “Self-Recognition in Language
Models”46 further argue that LLMs do not specifically prefer their own
responses over those from other models. When asked to choose among
several answers, the study showed that weakermodels tend to select the one
they consider as best, rather than their own, demonstrating that LLMs
prioritize answer quality over origin. As a result, high-quality models are
more likely to recognize their own outputs as good—not out of bias, but
because of their focus on quality. This reinforces the idea that LLMs can
perform evaluations without self-preference. Importantly, we did not use
the LLM to compare outputs across models, which could risk introducing
bias. Instead, the LLM evaluator compared each of the top three predicted
diagnoses directly to the ground truth, determining whether they aligned in
meaning or category. By focusing only on direct comparisons between
predictions and theground truth,weaimed tominimize self-bias andensure
an objective evaluation process.

While promising, the reliability and interpretability of LLMs as eva-
luation tools in real-world clinical environments still need further validation

and refinement to ensure their safe and effective use. To address this, a
subset of the dataset was validated by four clinicians, which is described in
the subsection “Reader Study” in the “Methods” section. The results of this
validation are detailed in the subsection “Inter-Rater Agreement on Diag-
nosis Evaluation” in the “Results” section.

Reader study
In this study, we asked four clinicians from different institutions to review
the performance of an LLM in generating and predicting clinical specialties
and diagnoses. The clinicians come from diverse medical backgrounds,
ensuring a broad perspective in the evaluation process with several years of
experience. We included one clinician affiliated with Policlinico Gemelli in
Rome, Italy, anotherwith the RadiologyDepartment at Klinikum rechts der
Isar in Munich, Germany, and two clinicians are based at the University of
Chicago in the United States.

The revision aimed to assess how well the LLM performed the fol-
lowing two tasks: first, creating a ground truth specialty based on the given
diagnosis, and second, predicting diagnoses for each patient. We selected a
subset of 400 out of the 2000 cases from the dataset. Each clinician was
assigned 200 cases, with Clinicians 1 and 2 reviewing the same subset, and
Clinicians 3 and 4 reviewing a different subset. This setup allowed for
independent evaluations of the same cases by each pair, improving objec-
tivity as much as possible.

For the first task, the clinicians evaluated the LLM generated ground
truth specialty for each diagnosis. The clinicians assessed the accuracy of
these predictions by categorizing them into the following four levels: Cor-
rect, where the prediction matched the specialty a clinician would select for
the diagnosis; Partially Correct, where the prediction was relevant but not
ideal, such as suggesting a generalist or related specialty; Reasonable but
Suboptimal, where the prediction was valid but less optimal, demonstrating
a plausible but less precise understanding of the diagnosis; and Incorrect,
where the prediction had no logical connection to the diagnosis.

For the second task, we used a subset from the outputs of the clinical
user setting of Claude 3.5 Sonnet and the RAG-assisted LLM. For each
model the clinicians compared the LLM predicted diagnoses with the
ground truth diagnoses and categorized them as follows: Exact Match,
where the predictionmatched the ground truth diagnosis exactly; Clinically
Equivalent,where theprediction conveyed the same clinical condition as the
ground truth but used slightly different terminology or scope; Clinically
Related, where the prediction referred to a related condition relevant to
clinical reasoning but diverged from the ground truth; and Incorrect, where
the prediction was clinically unrelated to the ground truth.

The goal of this evaluation is to demonstrate that the LLM performs
well in predicting both the specialty and the diagnosis, with a high level of
acceptance among clinicians. In addition to predicting diagnoses, the LLM
was also used to compare and evaluate these predicted diagnoses against the
ground truth. Eventually add here that also here the clinicians review
showed a well performance fo the llms.

This dual role highlights the LLM’s ability not only to generate outputs
but also to assess its own performance. These findings show the potential of
LLMs to assist in clinical decision-making and evaluation processes. By
providing a cost-effective and time-efficient solution, LLMs could serve as a
valuable tool to support clinicians and offer a reliable second opinion in
medical practice.

Intra-model agreement
We evaluated the agreement betweenmodels by comparing the predictions
of different variants of the eight models, consisting of the RAG-assisted
model and the three Claude language models with general user and clinical
user settings each. Agreement was calculated separately for triage level
predictions and specialty predictions and is symmetrical. Therefore, the
results for both datasets are shown in the Supplementary Table 2, where the
upper triangularmatrix shows the intra-model agreement for triage and the
lower triangular matrix for specialty, excluding self-comparisons (i.e., per-
fect agreement with the same model).
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We evaluated and highlighted the two highest agreement values
between model pairs for each dataset (specialty and triage) and for each of
the threemodel user setting subgroups (general user to general user, general
user to clinical user, clinical user to clinical user).

Data availability
Core data is available at https://physionet.org/content/mimic-iv-note/2.2/.
Data processing scripts and processed data are available at https://github.
com/BIMSBbioinfo/medLLMbenchmark.

Code availability
The code to process data is available at https://github.com/BIMSBbioinfo/
medLLMbenchmark.
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