Supplement

Worse recovery from acute attacks and faster disability accumulation highlights the unmet need for improved treatment in patients with late-onset Neuromyelitis Optica spectrum disorder (NMOSD)

Julian Reza Kretschmer, Daria Tkachenko, Tania Kümpfel, Joachim Havla, Daniel Engels, Friedemann Paul, Patrick Schindler, Judith Bellmann-Strobl, Achim Berthele, Katrin Giglhuber, Clarissa Zappe, Luisa Klotz, Lisa Revie, Eva Dawin, Makbule Senel, Hayrettin Tumani, Florian Then Berg, Clemens Warnke, Markus Kraemer, Annette Walter, Antonios Bayas, Uwe K. Zettl, Ann-Sophie Lauenstein, Yavor Yalachkov, Thorleif Etgen, Matthias Kaste, Felix Luessi, Stefan Gingele, Sarah Passoke, Martin S. Weber, Jörn Peter Sieb, Axel Haarmann, Patrick Oschmann, Veit Rothhammer, Christian Geis, Markus C. Kowarik, Peter Kern, Matthias Grothe, Heike Stephanik, Klemens Angstwurm, Frank Hoffmann, Ulrike Wallwitz, Brigitte Wildemann, Sven Jarius, Jan-Patrick Stellmann, Thivya Pakeerathan, Carolin Schwake, Ilya Ayzenberg, Ingo Kleiter, Katinka Fischer, Orhan Aktas, Marius Ringelstein, Vivien Häußler, Corinna Trebst, Martin W. Hümmert; on behalf of the Neuromyelitis optica Study Group (NEMOS)

Supplementary	Table 1. Overview	of previous st	tudies about patient	s with late-onset NMOSD
---------------	-------------------	----------------	----------------------	-------------------------

Author	Year	Country	Ν	Late-onset / early-onset NMOSD)	Serostatus	Clinical outcome of LO-NMOSD	Attack and/ or long- term therapy
Collongues et.al	2014	France, Germany, Turkey and United Kingdom	430	108 LO- NMO/NMOSD	82 AQP4- IgG positive LO- NMOSD	LO-NMO/ LO-NMOSD patients suffered motor impairment and death	89% received IST
Contentti et.al	2020	LATAM (Argentina, Brazil and Venezuela)	140	24 LO- NMOSD / 116 EO- NMOSD	16 AQP4- IgG positive LO- NMOSD / 73 AQP4- IgG positive EO- NMOSD	Severe disability at early disease stage, and higher EDSS at last follow up, shorter time to reach EDSS 4	No differences long-term IST and acute treatment
Hu et al.	2020	China	298	134 LO- NMOSD / 164 EO-NMOSD	113 AQP4-IgG positive LO- NMOSD / 134 AQP4-IgG positive EO- NMOSD	Higher EDSS score at last follow- up	EO- NMOSD used more long-term IST, no differences in acute attack therapy
Mao et al.	2015	China	60	30 LO- NMOSD /30 EO-NMOSD	AQP4-IgG positive patients only	Higher nadir EDSS, shorter time to EDSS 4 and higher EDSS at last follow up	No differences in IST
Min et.al	2022	China	50	22 LO- NMOSD / 28 EO-NMOSD	AQP4-IgG positive patients only	LO-NMOSD patients had a worse prognosis	Not analyzed
Papathanasiou et.al	2021	United Kingdom	52	26 LO- NMOSD / 26 EO- NMOSD	AQP4-IgG positive patients only	Higher EDSS at last follow up	No differences in acute and long-term IST
Santos et.al	2022	Portuguese	180	35 LO - NMOSD / 145 EO-NMOSD	32 AQP4- IgG positive LO- NMOSD and 81AQP4- IgG positive EO- NMOSD	Higher EDSS at last follow up	No differences long-term IST and acute treatment

Seok et.al	2017	Korea	147	45 LO- NMOSD / 102 EO- NMOSD	AQP4-IgG positive patients only	Positive correlation between age at onset and EDSS at last follow up	No differences in IST use, EO- NMOSD used more oral prednisolone and previous beta- interferon treatment,
Sepulveda et.al	2019	Spain	238	69 LO- NMOSD / 169 EO- NMOSD	60 AQP4- IgG positive LO- NMOSD / 133 AQP4-IgG positive EO- NMOSD	Higher EDSS at last follow up	EO used more long- term IST
Wang et.al	2022	China	490	122 LO- NMOSD / 368- NMOSD EO	101 AQP4-IgG LO- NMOSD	Higher EDSS score, and worse prognosis, age at onset predicts blindness and motor dysfunction	No differences long-term IST and acute treatment
Zhang et.al	2017	China	142	83 EO- NMOSD and 59 LO- NMOSD	52 AQP4- IgG positive LO- NMOSD LO and 70 AQP4-IgG positive EO- NMOSD	LO-NMOSD patients suffered more motor disability, EO- NMOSD patients more visual disability	Not analyzed

Abbreviations: NMOSD= Neuromyelitis optica spectrum disorders, LO= late-onset, EO= early-onset, EDSS= Expanded Disability Status Scale.; IST= immunosuppressant treatment

¹The table lists key points of the largest and most relevant studies for the reported investigation.

²Aspects relate exclusively for LO-NMOSD patients

Supplementary Table 2.1. Demographic characteristics, attack type at disease onset and comorbidities categorized by age at disease onset for AQP4-IgG positive NMOSD

	Available n	NMOSD (N=381)	LO- NMOSD (n=144)	EO-NMOSD (n=237)	<i>p</i> -value
Demography			. ,		
Female, n (%)	380	336 (88.4%)	117 (81.3%)	219 (92.8%)	<0.001
Age at onset, median (range), y	381	43 (6-84)	59 (50-84)	35 (6-49)	<0.001
Age at diagnosis, median (range), y	381	49 (6-85)	61 (50-84)	41 (6-68)	<0.001
Age at database entry, median (range), y	277	53 (18-85)	65 (51-85)	45 (18-77)	<0.001
Time to diagnosis, median (range) ² , y	378	1 (0-41)	0 (0-18)	1 (0-41)	<0.001
Follow-up time, median (range), y	294	1 (0-14)	1 (0-7)	2 (0-14)	0.021
Disease duration, median $(range)$, y ³	295	8 (0-52)	5.5 (0-27)	9 (0-52)	<0.001
Ethnicity, n (%)	363				0.279
Whites		333 (91.7%)	128 (94.8)	205 (89.9%)	
Asian		7 (1.9%)	2 (1.5%)	5 (2.2%)	
Arabic		8 (2.2%)	1 (0.7%)	7 (3%)	
Latin		3 (0.8%)	2 (1.5%)	1 (0.4%)	
African		9 (0%)	2 (1.5%)	7 (3.1%)	
Other		3 (1.3%)	0 (0%)	3 (0.8%)	
Attack type at disease					
onset, n (%)					
Optic neuritis	365	135	39 (28.5%)	96 (42.1%)	0.007
Myelitis	365	(36.9%) 169 (46.3%)	79 (57.7%)	90 (39.5%)	0.001
Optic neuritis and myelitis	365	15 (4.1%)	5 (3.6%)	10 (4.4%)	0.866
Brainstem encephalitis	365	7 (1.9%)	1 (0.7%)	6 (2.6%)	0.097
Area postrema syndrome	365	9 (2.5%)	2 (1.5%)	7 (3.1%)	0.459
Diencephalic syndrome	365	0	0	0	NA
Cerebral syndrome	365	2 (0.5%)	1 (0.7%)	1 (0.4%)	0.715
Multiple symptoms	365	15 (4.1%)	5 (3.6%)	10 (4.4%)	0.946
Other	365	13 (3.6%)	5 (3.6%)	8 (3.5%)	0.944
Comorbidities, n (%)					
Autoimmune comorbidities ⁴	347	129 (37.2%)	42 (32.8%)	87 (39.1%)	0.209
Hashimoto thyroiditis		37 (28.7%)	12 (28.6%)	25 (28.7%)	
SLE		33 (25.6%)	7 (16.7%)	26 29.9	
Sjögren`s syndrome		20 (15.5%)	5 (11.9%)	15 (17.2%)	
Myasthenia gravis		12 (9.3%)	4 (9.5%)	8 (9.2%)	
Rheumatoid arthritis		8 (6.2%)	7 (16.7%)	1 (1.1%)	

Other ⁵		63 (48.8%)	31 (73.8%)	32 (36.8%)	
Non autoimmune	343	200	97 (73.5%)	103 (48.8%)	<0.001
comorbidities		(58.3%)			
Cardiovascular diseases	343	78 (22.7%)	54 (40.9%)	24 (11.4%)	<0.001
Oncological diseases	343	34 (9.9%)	24 (18.2%)	10 (4.8%)	<0.001

Abbreviations.: AQP4-IgG= aquaporin-4 immunoglobulin G; MOG-IgG= myelin oligodendrocyte glycoprotein immunoglobulin G; NMOSD= Neuromyelitis optica spectrum disorders, LO= late-onset, EO= early-onset; y= years; n/a= not available, SLE= Systemic Lupus Erythematosus . NA= not available

Supplementary Table 2.2. Demographic characteristics, attack type at disease onset

and comorbidities categorized by age at disease onset for AQP4-IgG negative NMOSD

patients

	Available n	NMOSD (N=65)	LO- NMOSD (n=9)	EO-NMOSD (n=56)	<i>p</i> -value
Demography					
Female, n (%)	65	35 (53.8%)	6 (66.7%)	29 (51.8%)	0.406
Age at onset, median	65	34 (5-70)	56 (51-70)	32 (5-49)	0.002
(range), y					
Age at diagnosis, median	65	39 (12-71)	56 (51-70)	36 (12-50)	<0.001
(range), y					
Age at database entry,	40	45.5 (23-	60 (56-72)	42 (23-56)	0.006
median (range), y Time to diagnosis, median	65	72) 2 (0-22)	1 (0-2)	2.5 (0-22)	0.014
(range) ² , y	03	2 (0-22)	1 (0-2)	2.3 (0-22)	0.014
Follow-up time, median	51	1 (0-13)	0.5 (0-2)	1 (0-13)	0.701
(range), y		× /	~ /	× ,	
Disease duration, median	51	8 (1-28)	4 (0-10)	9 (0-28)	0.701
(range), y ³					
Ethnicity, n (%)	64				0.773
Whites		61 (95.3%)	9 (100%)	52 (94.5%)	
Asian		0 (0%)	0(0%)	0 (0%)	
Arabic		2 (3.1%)	0 (0%)	2 (3.6%)	
Latin		1 (1.6%)	0(0%)	1 (1.8%)	
African		0 (0%)	0 (0%)	0 (0%)	
Other		0 (0%)	0 (0%)	0 (0%)	
Attack type at disease					
onset, n (%)					
Optic neuritis	63	25 (39.7%)	1 (11.1%)	24 (44.4)	0.072
Myelitis	63	23 (36.5%)	6 (66.7%)	17 (31.5%)	0.042
Optic neuritis and myelitis	63	3 (4.8%)	0 (0%)	3 (5.6%)	0.496
Brainstem encephalitis	63	3 (4.8%)	0 (0%)	3 (5.6%)	0.496
Area postrema syndrome	63	0	0	0	NA
Diencephalic syndrome	63	0	0	0	NA
Cerebral syndrome	63	0	0	0	NA
Multiple symptoms	63	3 (4.8%)	1 (11.1%)	2 (3.7%)	0.527
Other	63	6 (9.5%)	1 (11.1%)	5 (9.3%)	0.861

Comorbidities, n (%)

Autoimmune comorbidities ⁴	65	5 (8.2%)	0 (0%)	5 (9.6%)	0.332
Hashimoto thyroiditis		3(60%)	0 (0%)	3 (60%)	
SLE		1 (20%)	0 (0%)	1 (20%)	
Other ⁵		1 (20%)	0 (0%)	1 (20%)	
Non autoimmune comorbidities	61	33 (54.1%)	4 (50%)	29 (54.7%)	0.803
Cardiovascular diseases	61	9 (14.8%)	2 (25.0%)	7 (13.2%)	0.391
Oncological diseases	61	3 (4.9%)	1 (12.5%)	2 (3.8%)	0.287

Abbreviations.: AQP4-IgG= aquaporin-4 immunoglobulin G; MOG-IgG= myelin oligodendrocyte glycoprotein immunoglobulin G; NMOSD= Neuromyelitis optica spectrum disorders, LO= late-onset, EO= early-onset; y= years; n/a= not available, SLE= Systemic Lupus Erythematosus . NA= not available

¹Percentages may not add exactly to 100% because of rounding. ²Time between onset and NMOSD diagnosis in years. ³Time between onset and last follow up. ⁴Each autoimmune comorbidity was considered individually.⁵Other: Type 1 diabetes mellitus, psoriasis, autoimmune hepatitis, vitiligo, ankylosing spondylitis, Crohn's disease, Grave's disease, celiac disease, idiopathic thrombocytopenic purpura, uveitis, iritis, primary biliary cirrhosis, scleroderma.

Supplementary Table 3.1. Detailed attack data of AQP4-IgG positive NMOSD patients,

categorized by age at disease onset

	Available	NMOSD	LO-	EO-	<i>p</i> -value
AAR, mean (SD) ¹	<u>n</u> 184		NMOSD	NMOSD	
Total attacks	101	0.53 (0.43)	0.51 (0.52)	0.54 (0.39)	0.292
Myelitis attacks		0.37 (0.31)	0.38 (0.28)	0.37 (0.33)	0.425
Optic neuritis attacks		0.27 (0.36)	0.37 (0.65)	0.24 (0.25)	0.553
Optic neuritis and myelitis attacks		0.10 (0.06)	0.10 (0.01)	0.20 (0.07)	0.583
Monophasic course, n (%)	291	24 (8.2%)	13 (13.1%)	11 (5.7%)	0.030
Time to second attack, months (median, range)	266	11.5 (1-491)	8 (1-220)	13 (1-491)	0.086
RAW ² , median (IQR)					
RAW at all clinical attacks	161	1.5 (-4-9)	3 (0-9)	0.5 (-4-8)	<0.001
RAW ³ at onset	86	3 (0-9)	4 (0-9)	2 (0-8)	<0.001
IVMP therapy, n (%)	11023				
IVMP alone		874 (79.3%)	199 (72.4%)	675 (81.6%)	0.011
IVMP with PE/IA		228 (20.7%)	76 (27.6%)	152 (18.4%)	0.001
Total dose of IVMP mg/attack, mean (SD)	687	5184 (3159)	6170 (3630)	4919 (2962)	0.265
Apheresis therapy, n (%)	319		s <i>c</i>	· · ·	
Plasma exchange		242 (75.9%)	64 (73.6%)	178 (76.4%)	0.621
Immunoadsorption		50 (15.6%)	15 (17.2%)	35 (15.0%)	0.621
Plasma exchange + immunoadsorption		27 (8.5%)	8 (9.2%)	19 (8.2%)	
Apheresis therapy cycles, mean (SD)	273	6.82 (2.5)	6.80 (2.52)	6.83 (2.53)	0.901

Abbreviations.: NMOSD= Neuromyelitis optica spectrum disorder; LO= late-onset; EO= early-onset; EDSS= Expanded Disability Status Scale; ARR= Annualized Attack Rate; PE= Plasmaexchange; IA=Immunoabsorption; IVMP= Intravenous methylprednisolone pulse; IQR= interquartile range; SD= standard deviation; mg= milligram; RAW= relapse associated worsening

¹Annualized attack rate (Number of total attacks divided by disease duration), symptom specific stratification. Only patients with at least 12 month of follow-up time were included. ²RAW: EDSS difference between basal EDSS before attack and EDSS \geq 90 days after attack, if no further attack occurred. ³RAW after disease onset.⁴ Intravenous methylprednisolone and apheresis therapy (plasma exchange and/or immunoadsorption), subgroup specific for late- and early-onset.

Supplementary Table 3.2. Detailed attack data of AQP4-IgG negative NMOSD patients,

categorized by age at disease onset

	Available n	NMOSD	LO- NMOSD	EO- NMOSD	<i>p</i> -value
AAR, mean (SD) ¹	27			- *-	
Total attacks		0.53 (0.43)	0.46 (0.19)	0.54 (0.45)	0.799
Myelitis attacks		0.25 (0.18)	0.22 (0.16)	0.25 (0.19)	0.952
Optic neuritis attacks		0.27 (0.33)	0.15 (0.07)	0.28 (0.34)	0.947
Optic neuritis and myelitis attacks		0.13 (0.08)	0.3 (NA)	0.11 (0.05)	0.200
Monophasic course, n (%)	49	3 (6.1%)	0 (0%)	3 (7.1%)	0.466
Time to second attack, months (median, range)	44	11.5 (1-262)	12 (1-88)	11.5 (1- 262)	0.660
RAW ² , median (IQR)				,	
RAW at all clinical attacks	23	1.5 (-0.5-6)	2 (2-2)	1.25 (-0.5- 6)	0.391
RAW ³ at onset	8	3.75 (1.5-6)	NA (NA)	3.75 (1.5- 6)	NA
IVMP therapy, n (%)	152 ³			- /	
IVMP alone		140 (92.1%)	9 (69.2%)	131 (94.2%)	0.011
IVMP with PE/IA		12 (7.9%)	4 (30.8%)	8 (5.8%)	0.011
Total dose of IVMP mg/attack, mean (SD)	88	5214 (2886)	5470 (2931)	5177 (2931)	0.265
Apheresis therapy, n (%)	19				
Plasma exchange		16 (84.2%)	6 (66.7%)	10 (100%)	0.087
Immunoadsorption		3 (15.6%)	3 (33.3%)	0 (0%)	0.087
Apheresis therapy cycles, mean (SD)	14	5.3 (1.4)	5 (0.63)	5.50 (1.85)	0.391

Abbreviations.: NMOSD= Neuromyelitis optica spectrum disorder; LO= late-onset; EO= early-onset; EDSS= Expanded Disability Status Scale; ARR= Annualized Attack Rate; PE= Plasmaexchange; IA=Immunoabsorption; IVMP= Intravenous methylprednisolone pulse; IQR= interquartile range; SD= standard deviation; mg= milligram; RAW= relapse associated worsening

¹Annualized attack rate (Number of total attacks divided by disease duration), symptom specific stratification. Only patients with at least 12 month of follow-up time were included. ²RAW: EDSS difference between basal EDSS before attack and EDSS \geq 90 days after attack, if no further attack occurred. ³RAW after disease onset.⁴ Intravenous methylprednisolone and apheresis therapy (plasma exchange and/or immunoadsorption), subgroup specific for late- and early-onset. Supplementary Table 4.1. Odds ratios for full recovery based on different attack types and treatment modalities between AQP4-IgG positive LO- and EO-NMOSD patients in generalized estimating equations (GEE) analysis.

	OR (95% CI) ²	<i>p</i> -value ¹	
Recovery			
All attacks	0.465 (0.298 - 0.728)	<0.001	

Supplementary Table 4.2. Odds ratios for full recovery based on different attack types and treatment modalities between AQP4-IgG negative LO- and EO-NMOSD patients in generalized estimating equations (GEE) analysis.

	OR (95% CI) ²	<i>p</i> -value ¹	
Recovery			
All attacks	0.241 (0.065 - 0.899)	0.034	

Supplementary Table 5.1. Detailed data on long-term immunotherapies, categorized

by age at disease onset for AQP4-IgG positive NMOSD patients

	Available n	NMOSD	LO- NMOSD	EO- NMOSD	p- value
Immunotherapy					
Immunotherapy (yes vs. no/unknown)	381	344 (90.3%)	126 (87.5%)	218 (92.0%)	0.214
Switch in immunotherapy (yes vs. no/unknown)	325	159 (48.9%)	49 (41.2%)	110 (53.5)	0.038
Time from onset to immunotherapy, months (median, range) ¹	313	11 (0-562)	6 (0- 210)	16 (0- 562)	0.012
First line immunotherapy ¹	337				
B-cell depletion		146 (43.3%)	56 (45.5%)	90 (42.1%)	0.536
Classical immunosuppressants		113 (33.5%)	42 (34.1%)	71 (33.2%)	0.856
IL-6-receptor inhibition		2 (0.6%)	0 (%)	2 (0.9%)	0.282
Complement inhibition		14 (4.1%)	9 (7.3%)	5 (2.3%)	0.044
Other		53 (15.4%)	11 (8.9%)	42 (19.6%)	0.012
Immunotherapy used at the	335				
last follow-up B-cell depletion		205	77	128	0.795
Classical immunosuppressants		(61.2%) 67 (20.0%)	(62.1%) 25 (20.2%)	(60.7%) 42 (19.9%)	0.955
IL-6-receptor inhibition		33 (9.9%)	9 (7.3%)	(17.576) 24 (11.4%)	0.222
Complement inhibition		24 (7.2%)	13 (10.5%)	11 (5.2%)	0.081
Other		6 (1.8%)	0 (0%)	6 (2.8%)	0.058
Post-treatment ARR ² (mean, SD)	180	0.31 (0.53)	0.23 (0.45)	0.35 (0.26)	0.013
Attack-free under RTX					
first-line ³ Attack-free after 6 mo. n, (%)	113	88 (77.9%)	33 (78.6%)	55 (77.5%)	0.891
Attack free after 12 mo. n, (%)	112	(77.9%) 83 (74.1%)	(78.6%) 33 (78.6%)	(77.5%) 50 (71.4%)	0.403
Attack free after 36 mo. n, (%)	74	42 (56.8%)	16 (57.1%)	26 (56.5%)	0.958
Attack free after 60 mo. n, (%)	54	22 (40.7%)	9 (45.0%)	13 (38.1%)	0.625
Attack-free under RTX any line ⁴					
Attack free after 6 mo. n, (%)	169	138 (81.7%)	52 (85.2%)	86 (79.6%)	0.365
Attack free after 12 mo. n, (%)	162	125 (77.2%)	51 (85.0%)	74 (72.5%)	0.068
Attack free after 36 mo. n, (%)	115	71 (61.7%)	28 (65.1%)	43 (59.7%)	0.565

Attack free after 60 mo. n, (%)	88	40	14	26	0.870
		(45.5%)	(46.7%)	(44.8%)	

Abbreviations.: NMOSD= Neuromyelitis optica spectrum disorder; LO= late-onset; EO= early-onset; RTX= rituximab, AZA= azathioprine, MTX=metothrexate, MMF= mycophenolate mofetil, IL-6= interleukin-6, ARR= annualized attack rate

¹Immunotherapy: B-cell depletion (RTX/inebilizumab), classical immunosuppressants (AZA, MMF, MTX, oral steroids), IL6-receptor inhibition (tocilizumab/satralizumab), Complement inhibition (eculizumab), Other (glatiramer acetate, interferon beta, mitoxantrone, fingolimod, alemtuzumab, natalizumab, dimethyl fumarate, intravenous immunoglobulins, cyclophosphamide).

²Post treatment ARR = Number of attacks after initiation of NMOSD therapy divided by the time between initiation and last follow-up.

³Frequency of clinical stable course after 6, 12, 36, and 60 month after first line therapy with RTX.

⁴Frequency of clinical stable course after 6, 12, 36, and 60 month after treatment during the course of the disease with RTX.

Supplementary Table 5.2. Detailed data on long-term immunotherapies, categorized by age at disease

onset for AQP4-IgG negative NMOSD patients

	Available	NMOSD	LO-	EO-	p-
Immunotherapy	n		NMOSD	NMOSD	value
Immunotherapy (yes vs. no/unknown)	65	59 (90.8%)	8 (88.9%)	51 (91.1%)	0.843
Switch in immunotherapy (yes vs. no/unknown)	55	17 (30.9%)	4 (50.0%)	13 (27.7%)	0.206
Time from onset to immunotherapy, months (median, range) ²	45	15 (0-190)	12 (1- 83)	16.5 (0- 190)	0.949
First line immunotherapy ¹	57				
B-cell depletion		26 (45.6%)	7 (87.5%)	19 (38.8%)	0.018
Classical immunosuppressants		19 (33.3%)	1 (12.5%)	18 (36.7%)	0.178
IL-6-receptor inhibition		0 (0%)	ò (0%)	0 (0%)	NA
Complement inhibition		0 (0%)	0 (0%)	0 (0%)	NA
Other		12 (21.1%)	0 (0%)	12 (24.5%)	0.178
Immunotherapy used at the last follow-up	55				
B-cell depletion		36 (65.5%)	7 (87.5%)	29 (61.7%)	0.156
Classical immunosuppressants		16 (29.1%)	1 (12.5%)	15 (31.9%)	0.264
IL-6-receptor inhibition		1 (1.8%)	0 (0%)	1 (2.1%)	0.677

Complement inhibition		0 (0%)	0 (0%)	0 (0%)	NA
Other		2 (3.6%)	0 (0%)	2 (4.3%)	0.552
Post-treatment ARR ² (mean, SD)	27	0.35 (0.23)	0.43 (0.25)	0.35 (0.22)	0.914
Attack-free under RTX					
first-line ³					
Attack-free after 6 mo. n, (%)	15	12 (80.0%)	2 (66.7%)	10 (83.3%)	0.519
Attack free after 12 mo. n, (%)	14	9 (64.3%)	1 (33.3%)	8 (72.7%)	0.207
Attack free after 36 mo. n, (%)	12	7 (58.3%)	1 (50.0%)	6 (60.0%)	0.958
Attack free after 60 mo. n, (%)	7	3 (42.9%)	0 (0%)	(50.0%) 3 (50.0%)	0.250
Attack-free under RTX any line ⁴				(30.070)	
Attack free after 6 mo. n, (%)	25	20 (80.0%)	2 (66.7%)	18 (81.8%)	0.538
Attack free after 12 mo. n, (%)	23	18 (78.3%)	2 (66.7%)	16 (80.0%)	0.602
Attack free after 36 mo. n, (%)	20	12 (60.0%)	1 (50.0%)	11 (61.1%)	0.761
Attack free after 60 mo. n, (%)	11	6 (54.5%)	0 (0%)	6 (60.0%)	0.251

Abbreviations.: NMOSD= Neuromyelitis optica spectrum disorder; LO= late-onset; EO= early-onset; RTX= rituximab, AZA= azathioprine, MTX=metothrexate, MMF= mycophenolate mofetil, IL-6= interleukin-6, ARR= annualized attack rate

¹Immunotherapy: B-cell depletion (RTX/inebilizumab), classical immunosuppressants (AZA, MMF, MTX, oral steroids), IL6-receptor inhibition (tocilizumab/satralizumab), Complement inhibition (eculizumab), Other (glatiramer acetate, interferon beta, mitoxantrone, fingolimod, alemtuzumab, natalizumab, dimethyl fumarate, intravenous immunoglobulins, cyclophosphamide).

²Post treatment ARR = Number of attacks after initiation of NMOSD therapy divided by the time between initiation and last follow-up.

³Frequency of clinical stable course after 6, 12, 36, and 60 month after first line therapy with RTX.

⁴Frequency of clinical stable course after 6, 12, 36, and 60 month after treatment during the course of the disease with RTX.

	<i>p</i> -value	OR	95% CI
Age at attack			
All attacks ²	<0.001	0.968	0.956 - 0.979
Isolated myelitis ³	0.005	0.975	0.957 - 0.992
Isolated optic neuritis ⁴	0.015	0.972	0.950 - 0.995

Supplementary Table 6. Generalized linear mixed model (GLMM) analysis of full recovery¹

¹ OR were adjusted for age at attack, sex (female vs. male), treatment type (IVMP vs. IVMP + apheresis) and diagnosis (AQP4-IgG positive NMOSD vs AQP4-IgG and MOG-IgG negative NMOSD)- Values are shown for age at attac. Other independent values are listed below.

 2 Sex (female vs. male): OR = 2.368, 95% CI: 1.272–4.407, p = 0.007; Treatment type (IVMP vs. IVMP + PLEX): OR = 4.891, 95% CI: 2.686–8.908, p < 0.001; Diagnosis (AQP4-IgG positive vs. negative): OR = 0.618, 95% CI: 0.378–1.009, p = 0.054

³ Sex (female vs. male): OR = 2.930, 95% CI: 1.035–8.294, p = 0.043; Treatment type (IVMP vs. IVMP + PLEX): OR = 4.149, 95% CI: 1.816–9.481, p < 0.001; Diagnosis (AQP4-IgG positive vs. negative): OR = 0.511, 95% CI: 0.215–1.214, p = 0.128

⁴ Sex (female vs. male): OR = 2.097, 95% CI: 0.663–6.631, p = 0.207; Treatment type (IVMP vs. IVMP + PLEX): OR = 5.146, 95% CI: 1.989–13.316, p = 0.001; Diagnosis (AQP4-IgG positive vs. negative): OR = 0.681, 95% CI: 0.259–1.794, p = 0.436

Appendix 1	Coinvestigators
------------	-----------------

Name	Location	Role	Contribution
Simone Tauber, MD	University Hospital Aachen	Site Investigator	Organizational support
Verena Steuerwald, MD	University Hospital Augsburg	Site Investigator	Organizational support
Iulia Gutbrod, MD	University Hospital Augsburg	Site Investigator	Organizational support
Mathias Buttmann, MD	Caritas-Krankenhaus, Bad Mergentheim	Site Investigator	Organizational support
Peter Luedemann, MD	Agaplesion EV. Bathildiskrankenhaus, Bad Pyrmont	Site Investigator	Organizational support
Ingo Kleiter, MD	Marianne-Strauss- Klinik, Berg	Site Investigator	Organizational support
Ankelien Duchow, MD	Charité University, Berlin	Site Investigator	Organizational support
Susanna Asseyer, MD	Charité University, Berlin	Site Investigator	Organizational support
Maria Hastermann, MD	Charité University, Berlin	Site Investigator	Organizational support
Florence Pache, MD	Charité University, Berlin	Site Investigator	Organizational support
Carsten Finke, MD	Charité University, Berlin	Site Investigator	Organizational support
Anna Gahlen, MD	St. Josef-Hospital, Ruhr University Bochum	Site Investigator	Organizational support
Theodoros Ladopoulus, MD	St. Josef-Hospital, Ruhr University Bochum	Site Investigator	Organizational support
Mathias von Mering, MD	Klinikum Bremen Nord	Site Investigator	Organizational support
Kevin Rostasy, MD	Vestische Kinder und Jugendklinik Datteln	Site Investigator	Organizational support

			Outrainstinual
Ulrich Hofstadt-van	Klinikum Westfalen,	Site Investigator	Organizational
Oy, MD	Dortmund		support
Andreas	Helios Klinikum, Erfurt	Site Investigator	Organizational
Steinbrecher, MD			support
Christoph	University Hospital,	Site Investigator	Organizational
Kleinschnitz, MD	Essen, Germany		support
Thanos Tsaktanis,	University Hospital	Site Investigator	Organizational
MD	Erlangen		support
Sebastian Rauer,	University Hospital	Site Investigator	Organizational
MD	Freiburg	C C	support
Christoph Mayer,	Neurologische	Site Investigator	Organizational
MD	Gemeinschaftspraxis		support
	am Kaiserplatz		
Steffen Pfeuffer, MD	University Hospital	Site Investigator	Organizational
otenen realier, rib	Giessen	One investigator	support
Kersten Guthke, MD	Städtisches Klinikum,	Site Investigator	Organizational
Keisten Gutlike, MD		Sile investigator	-
Kanatan Outblue MD	Goerlitz	O'the law of the term	support
Kersten Guthke, MD	Städtisches Klinikum,	Site Investigator	Organizational
	Goerlitz		support
Imke Metz, MD	University Hospital	Site Investigator	Organizational
	Göttingen		support
Leila Husseini, MD	University Hospital	Site Investigator	Organizational
	Göttingen		support
Achim Gass, MD	University Hospital	Site Investigator	Organizational
	Mannheim		support
Annette Walter, MD	Klinikum Herford	Site Investigator	Organizational
,		0	support
Mathias Fousse, MD	University Hospital	Site Investigator	Organizational
	Saarland	0.10	support
Matthias Schwab,	University Hospital	Site Investigator	Organizational
MD	Jena	One investigator	support
		Site Investigator	
Frank Leypoldt, MD	University Hospital	Site Investigator	Organizational
	Schleswig Holstein,		support
1/1 1 0	Campus Kiel		
Klarissa Stuerner,	University Hospital	Site Investigator	Organizational
MD	Schleswig Holstein,		support
	Campus Kiel		
Mariella Herfurth,	University Hospital	Site Investigator	Organizational
MD	Leipzig		support
Wolfgang Köhler,	University Hospital	Site Investigator	Organizational
MD	Leipzig		support
Muriel Stoppe, MD	University Hospital	Site Investigator	Organizational
•••	Leipzig	C C	support
Klaus-Peter	University Hospital	Site Investigator	Organizational
Wandinger, MD	Schleswig Holstein,		support
	Campus Lübeck		Support
Sergiu Groppa, MD	University Hospital	Site Investigator	Organizational
oorgiu oroppa, MD		one investigator	Organizational
Otafan Ditta MD	Mainz	Olta have at a t	support
Stefan Bittner, MD	University Hospital	Site Investigator	Organizational
	Mainz		support
Frauke Zipp, MD	University Hospital	Site Investigator	Organizational
	Mainz		support

Moritz Förster, MD	Maria-Hilf Hospital,	Site Investigator	Organizational
	Mönchengladbach		support
Philipp Albrecht, MD	Maria-Hilf Hospital,	Site Investigator	Organizational
	Mönchengladbach		support
Bernhard Hemmer,	Technical University of	Site Investigator	Organizational
MD	Munich		support
Martin Marziniak,	kbo - Isar - Amper-	Site Investigator	Organizational
MD	Klinikum München Ost		support
Heinz Wiendl, MD	University Hospital	Site Investigator	Organizational
	Münster		support
Markus Krumbholz,	Medizinische	Site Investigator	Organizational
MD	Hochschule		support
	Brandenburg,		
	Rüdersdorf		
Pawel Kermer, MD	Nordwest	Site Investigator	Organizational
	Krankenhaus,	C	support
	Sanderbusch		
Oliver Neuhaus, MD	SRH Klinik Landkreis,	Site Investigator	Organizational
,	Sigmaringen	0	support
Alexander Stefanou,	Klinikum der	Site Investigator	Organizational
MD	Landeshauptstadt,		support
	Katharinenhospital,		
	Stuttgart		
Arthur Melms, MD	Facharztpraxis für	Site Investigator	Organizational
/	Neurologie und	0.10	support
	Psychiatrie		
Jasmin Naumann,	Knappschaftsklinikum	Site Investigator	Organizational
MD	Saar, Sulzbach	-	support
Stefanie Behnke,	Knappschaftsklinikum	Site Investigator	Organizational
MD	Saar, Sulzbach	-	support
Karsten Kern, MD	Knappschaftsklinikum	Site Investigator	Organizational
	Saar, Sulzbach		support
Arne Riedlinger, MD	Asklepios	Site Investigator	Organizational
	Fachklinikum, Teupitz	C	support
Patricia Schwarz,	University Hospital	Site Investigator	Organizational
MD	Tübingen	0	support
Christoph Ruschil,	University Hospital	Site Investigator	Organizational
MD	Tübingen	0	support
Ulf Ziemann, MD	University Hospital	Site Investigator	Organizational
,	Tübingen		support
Martin Liebetrau,	St. Josef Hospital,	Site Investigator	Organizational
MD	Wiesbaden		support
Axel Haarman, MD	University Hospital	Site Investigator	Organizational
	Würzburg	2.10 111 00115010	support
Claudia Sommer,	University Hospital	Site Investigator	Organizational
MD	Würzburg		support
Marina Herwerth,	University Hospital	Site Investigator	Organizational
MD	Zurich		support
Anne-Katrin	University Hospital	Site Investigator	Organizational
Proebstel, MD	Basel		support
Tradite Neziraj, MD	University Hospital	Site Investigator	Organizational
Haulte Neziraj, MD	Basel	one investigator	support
	Dasol		Support

Roxanne Pretzsch,	University Hospital	Site Investigator	Organizational
MD	Basel		support