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In brief

Preibisch et al. present STIM, a robust,

scalable, and interactive computational

framework for aligning, visualizing, and

working with spatial transcriptomics data

that bridges the worlds of sequencing

and image analysis. STIM builds on tried-

and-tested computer vision algorithms to

automatically create 3D volumes from

serial sections with human-level

accuracy.
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SUMMARY
We present the ‘‘spatial transcriptomics imaging framework’’ (STIM), an imaging-based computational
framework focused on visualizing and aligning high-throughput spatial sequencing datasets. STIM is built
on the powerful, scalable ImgLib2 and BigDataViewer (BDV) image data frameworks and thus enables novel
development or transfer of existing computer vision techniques to the sequencing domain characterized by
datasets with irregular measurement-spacing and arbitrary spatial resolution, such as spatial transcriptom-
ics data generated by multiplexed targeted hybridization or spatial sequencing technologies. We illustrate
STIM’s capabilities by representing, interactively visualizing, 3D rendering, automatically registering, and
segmenting publicly available spatial sequencing data from 13 serial sections of mouse brain tissue and
from 19 sections of a human metastatic lymph node. We demonstrate that the simplest alignment mode of
STIM achieves human-level accuracy.
INTRODUCTION

Several recent technological breakthroughs have triggered the

rapid development of numerous high-throughput spatial tran-

scriptomics methods over the last few years. These fluorescent

RNAhybridization-based1–5 or array-basedRNAcapture, barcod-

ing, and subsequent sequencing6–13 techniques provide (typically

at single-cell or subcellular resolution) molecular readouts within

the native spatial context of a tissue, which is critical for under-

standing cellular interactions in healthy and diseased states.14

Therefore, the production of spatial transcriptomics datasets,

already abundant and continuously expanding, is crucial for

both basic life science research and clinical/medical applications.

Handling and analysis of these datasets pose several complex

challenges: (1) size—spatial sequencing generates several giga-

bytes of data for a single tissue section and we anticipate that

to increase; (2) heterogeneity—datasets greatly differ in the num-

ber of genes and transcripts captured, their spatial resolution, and

tissue architecture; (3) spatial transcriptomics data are, in contrast

to image data, usually irregularly spaced; (4) three-dimensional

(3D) integration—data from tissue sections need to be integrated

into a 3D molecular map; (5) access and analyses—the need to

easily share and interactively interrogate spatial transcriptomics

data; and (6) flexibility and long-term availability—the need for

open-source, community-based approaches.
Cell Systems 16, 101264,
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Several methods have been developed to visualize, process,

and align spatial transcriptomics data15–31—each, however,

having their own drawbacks. Here, we show that established

methods from the computer vision field, which have been devel-

oped by a large scientific community for decades, can be adapt-

ed tomeet challenges that the spatial transcriptomics field faces.

Specifically, we present the ‘‘spatial transcriptomics imaging

framework’’ (STIM), a computational, scalable, and extendable

toolkit based on ImgLib232 and BigDataViewer33 that allows effi-

cient handling, alignment and processing (including integration

of 2D data into 3D molecular maps), visualization, and analysis

of high-throughput spatial-omics datasets. We demonstrate

the power of our approach by applying STIM to two distinct

spatial sequencing datasets, integrating adjacent slices into 3D

molecular maps for (1) 13 sections of an adult mouse brain and

(2) 19 sections of a human metastatic lymph node. We addition-

ally show how to use STIM to visualize the data and perform a

simple, machine-learning-based segmentation task.

RESULTS

ImgLib232 defines an image as a function f that maps coordi-

nates C in n-dimensional space Rn to a value T

f : C /T ;C3Rn:
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Figure 1. STIM applies state-of-the-art imaging techniques to store, align, visualize, and analyzemassive amounts of spatial transcriptomics

datasets

(A) Spatial transcriptomics datasets can be represented as images, with the number of genes per spatial unit corresponding to a number of different channels.

(B) Expression and spatial data are stored in N5/ZARR containers for efficiency and scalability and are accessible within the provided Java and Python

frameworks.

(C) STIM provides classical value access operations such as filtering irregularly spaced data, resulting in smoothed gene expression or interactive rendering in 2D

and 3D.

(D) Schematic of how STIM aligns consecutive sections of spatial transcriptomics datasets.

(E) Visualization of the spatial gene expression of three genes in four different sections of a published dataset. Top (bottom) row: spatial gene expression profiles in

the original (aligned) puck orientations.
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This definition illustrates that ImgLib2 natively supports both

regularly and irregularly spaced datasets (Figure S1). Further-

more, its generic, interface-driven design imposes no con-

straints on dataset size (biggest currently available implementa-

tion supports 4,096 petabyte), dimensionality, or data type,

which is highlighted by the fact thatmany of the largest biological

image datasets ever acquired34,35 were reconstructed using

ImgLib2, the ImgLib2-backed BDV,33 and the N5 (ZARR-

compatible) file format (an open standard for storing large multi-

dimensional data).36 STIM builds on these frameworks to pro-

vide random, fast, and optionally distributed read&write access,

interactive visualization, and efficient processing of spatial tran-

scriptomics data.

STIM directly supports AnnData or re-saving of input datasets

from the standardized text- or comma-separated formats into an

N5/ZARR container (Figures 1A and 1B), while optionally log-

normalizing the data. Coordinate- and gene-expression data

can be loaded fast and memory-efficiently in blocks using the

Imglib2-cache framework, which can be accessed as values or

as rendered images (Figures 1B and 1C). ImgLib2 provides near-

est-neighbor and linear interpolation for mapping irregularly
2 Cell Systems 16, 101264, May 21, 2025
spaced samples onto pixel grids necessary for visualization.

For a more realistic rendering at arbitrary resolutions, we imple-

mented a rendering method based on Gaussian distributions

(Figure 1, STAR Methods). Spatial image filtering, also referred

to as digital filtering, is an established, powerful technique to

enhance certain aspects of a signal that is represented as

discrete samples (e.g., an image) using mathematical opera-

tions.37 Although such filtering is mathematically directly appli-

cable to irregularly spaced data, it is not widely available as effi-

cient implementations require fast k-nearest neighbor search. To

ease this barrier, we added a generic framework based on

ImgLib2 using kd-trees for applying filters (e.g., mean, median,

or Gaussian) to irregularly spaced data that can easily be

extended (Figure 1C). All operations are implemented virtually,

allowing interactive access to and rendering of the data us-

ing BDV.

We demonstrate STIM’s capabilities as follows. First, STIM

can be used to filter the data and smoothen them, for instance,

by applying a Median filter or others (Figure 1C; Videos S2 and

S3). Second, tried-and-tested image registration techniques

can be used to align datasets stemming from consecutive



Figure 2. 3D rendering of the aligned Slide-seq dataset

The video shows gene Calm2 in white, gene Ptdgs in green, and gene Mbp in

red and highlights the 3D nature of the dataset after alignment when repre-

sented as a 3D image.
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sections of the same tissue, as described below (Figures 1D and

1E; Video S2). Of note, we also developed a user-friendly, inter-

active BDV-based graphical user interface (GUI) for aligning

pairs of tissue sections automatically or, optionally, manually us-

ing BDV transformation controls (Figure S7). Third, STIM offers

an interactive visualization and exploration of the data through

BDV in 2D and 3D, including the visualization of metadata—

such as cell-type annotation—together with gene expression in

every spatial unit (Figure S2, Video S3). Additionally, we show

that existing machine-learning segmentation can be applied to

spatial transcriptomics data and we highlight the applicability

of existing 3D rendering methods (Figure 2/Video S1, STAR

Methods).

Alignment
To illustrate the potential of applying computer vision techniques

to sequencing datasets, we first aligned a series of consecutive

brain hippocampus sections, which were published in Rodriques

et al.,7, using STIM (Figure 2/Video S1). Each of these 2D sec-

tions contains between 12,000 and 33,000 cells and a median

of �50 quantified molecules at near-cellular resolution. To align

the 13 sections in three dimensions, we adapt an alignment strat-

egy originally developed for the registration of large electron and

light microscopy datasets.38–40 We first apply scale invariant

feature transform (SIFT)41 in combination with robust sample

consensus (RANSAC)42 on rendered image pairs of sections

(+-2 in the z direction, Figure 1D). For each pair, we identify a

set of corresponding points on a rigid 2D transformation across

an automatically selected set of genes that show high entropy in

both sections. To correctly identify as many corresponding

points as possible, we run SIFT independently for each gene,

with a low threshold for the minimal number of required points.

RANSAC is then applied to all points of all genes again to identify

those that agree on a common transformation across genes.
Next, we globally minimize the distance between all correspond-

ing image points across all sections, yielding a single 2D trans-

formation for each section (STARMethods). In an optional refine-

ment step, we use the iterative closest point (ICP) algorithm43 on

locations of sequenced spots rather than rendered images,

where neighboring points within a predefined radius showing

most similar expression values are assigned to be correspon-

dences. Finally, using all ICP correspondences, we globally

solve again and identify a regularized affine transformation

model for each section that is stored in the N5/ZARR container.

The resulting tissue dataset can be rendered in 3D using STIM

(Figure 2/Video S1), and the STIM-explorer can be used to high-

light the spatial expression of interactively selected genes on the

whole tissue (Videos S2 and S3).

Due to the robustness of SIFT, our alignment pipeline can

readily be employed across different technologies. Importantly,

STIM was vital in constructing a 3D molecular map of a recently

published human metastatic lymph node.13 This dataset con-

sists of 19 non-consecutive sections and a total of >1.5 million

cells. The pairwise and global alignment performed by STIM

enabled the generation of the 3D virtual tissue block and the deri-

vation of 3D-specific insights from the data.13 In another applica-

tion, we used STIM to align six sections of human lung cancer tis-

sue, each containing �50,000 cells and being 30 mm apart.44

Among other insights, the 3D molecular map in that case

enabled the more precise identification of immune niches.44

We further used STIM to align serial adult mouse brain sec-

tions produced with the Visium platform (Figure S3, Video S2).

More generally, we anticipate STIM to process and stitch

together consecutive tissue sections from the same tissue,

regardless of the underlying spatial sequencingmethod. This en-

hances the information flow between the different sections and

naturally enriches the molecular readouts.

The alignment pipeline we developed is based on linear trans-

formations, typically affine transformation models regularized

with rigid models. This allows the use of robust model estimation

using RANSAC, which is also able to realize whether no proper

alignment could be achieved. These potential gaps can be

bridged using the interactive, manual alignment feature (Video

S2). If the alignment quality needs to be further improved, exist-

ing non-rigid registration algorithms such as bUnwarpJ39,45 can

be employed. However, it is important to realize that although

deformations introduced by non-rigid transformations typically

do improve the alignment quality (Figure S4), it is likely to deform

the sample in an unnatural way. A simple example to visualize the

problem is a cone in 3D, which would be represented as circles

with increasing radius along the sections (in z). Non-rigid align-

ment would effectively transform these circles so that they

show the same radius as it maximizes similarity, thus transform-

ing the cone into a pipe. Therefore, meaningful and well-de-

signed regularization is a necessity for employing non-rigid align-

ment, which has been well studied in image analysis39,45 but is,

to the best of our knowledge, currently in its infancy for ST data.

Interoperability and accessibility
STIM is open source and leverages the large Java community

built around ImgLib2. To enhance interoperability and enable

the use of STIM by users who employ Python interfaces, we

have added support for the popular AnnData format.46 With
Cell Systems 16, 101264, May 21, 2025 3
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this support, it is possible to seamlessly access the data be-

tween the AnnData and the N5/ZARR formats, transferring the

underlying sample metadata and facilitating downstream ana-

lyses. Moreover, STIM can be installed on Linux, MacOS, and

Windows through the popular Conda packaging environment.

Benchmarking
Recently, several software packages for the alignment of spatial

sequencing data have been developed specifically within the

field of spatial transcriptomics (Table S1). Probabilistic alignment

of spatial transcriptomics experiments (PASTE)47 first solves an

optimal transport problem to derive a probabilistic assignment of

points for pairs of consecutive slices. Based on these, a rigid

transformation model is sequentially estimated for each slice.

Importantly, no optimization across slices is performed, which

might prove problematic once dataset sizes increase (similar to

the image-stitching problem), and partial alignment (i.e., sections

only partially overlap in 2D) is not supported. More recently,

PASTE231 introduced support for partial alignment, but the

optimal transport framework is not scalable (in time or memory

usage) to datasets with millions of cells. Furthermore, the

computational complexity depends quadratically on the number

of sequenced locations. Andersson et al.23 rely on manual land-

marks for alignment and also support only rigid transformation

models. Jones et al.24 and Qiu et al.25 require an approximate

initial alignment, using, for example, PASTE or STIM, and apply

Gaussian process spatial alignment to extract warp functions

for non-rigid alignment of consecutive slices, also at quadratic

complexity with respect to the number of sequenced locations.

Clifton et al.26 require initialization via manual selection of corre-

sponding points and do not offer global optimization across sli-

ces. Other methods rely on alignment of high-level features

such as cell types or spatial regions, thus requiring extensive

analysis of individual sections prior to alignment.27–29 Our

proposed alternative approaches have been tried and tested in

image analysis for decades and work reliably and fast on multi-

terabyte images, while their complexity depends on the size of

the rendered images, which can even be small for ST data.

The complexity for transferring sequenced locations into images

is equivalent to that of a kd-tree lookup, which is O(log n). The

use of RANSAC for pairwise matching, global optimization with

outlier removal across all pairwise results, and implementation

in scalable frameworks ImgLib2 and BigDataViewer ensure

that the identified alignment can be trusted and that the

approach will scale to significantly larger datasets in the future.

To quantitatively assess STIM’s performance, we used the

metastatic lymph node dataset comprising 19 sections. We per-

formed five alignments using STIM’s framework: one automatic,

SIFT-based alignment of all sections and four manual alignments

of all sections by four different individuals. Subsequently, we

computed the pairwise distances between the transformed sec-

tion pairs and across individuals and STIM (Figure S8A). The

quality of STIM’s automated alignment was found to be equiva-

lent to human performance. By performing a grid search over

STIM’s parameters, we further validated that their effect on the

quality of the alignment is only minimal (Figure S8B). The perfor-

mance of publicly available methods was found to be lower

(Figures S8C and S8D). Although SPACEL achieved similar

average pairwise alignment quality to STIM, Morpho exhibited
4 Cell Systems 16, 101264, May 21, 2025
higher alignment errors. However, both SPACEL and Morpho

failed to produce accurate final 3D reconstructions due to error

accumulation at partially overlapping sections, resulting in

significant rotational misalignment between section groups (Fig-

ure S8E). Additionally, SPACEL requires cell-type annotations as

input, and, hence, a pre-processing step, whereas STIM oper-

ates directly on raw data.

DISCUSSION

STIM enables efficient, distributed access, processing, and visu-

alization of large-scale spatial transcriptomics datasets. Irregu-

larly spaced data can be spatially filtered and accessed directly

as values or rendered as images. STIM thereby acts as a bridge

between the fields of computer vision and genomics, which we

highlight by developing an automatic workflow for the alignment

of sliced spatial transcriptomics datasets. Another application of

STIM is to perform object segmentation on subcellular, high-res-

olution spatial transcriptomics datasets using existing image-

basedmachine-learning solutions such as Random Forests (Fig-

ure S5)48 or, for larger future datasets, StarDist49 or CellPose.50

We provide STIM as an extensible, open-source framework

available on GitHub with interfaces in Java, Python, and on the

command line. We believe that these properties of STIM have

the potential to enable the community to further unite the worlds

of image analysis and genomics.

RESOURCE AVAILABILITY

Lead contact

Requests for further information should be directed to the lead contact,

Stephan Preibisch preibischs@janelia.hhmi.org.

Materials availability

Not applicable.

Data and code availability

All data analyzed within this work are publicly available. The datasets that were

used for the alignment of mouse hippocampus sections were published in

Slide-seq.7 The 10X Visium datasets were downloaded from the 10x Geno-

mics website. The Open-ST data were downloaded from GEO (GEO:

GSE251926).

All original code has been deposited at https://github.com/PreibischLab/

STIM and https://github.com/rajewsky-lab/stimwrap and is publicly available.

DOIs are listed in the key resources table (https://doi.org/10.5281/zenodo.

14911427 and https://doi.org/10.5281/zenodo.14930579).

Any additional information required to reanalyze the data reported in this pa-

per is available from the lead contact upon request.

ACKNOWLEDGMENTS

S.P. was supported by the HFSP grant RGP0021/2018-102, MDC Berlin, and

HHMI Janelia. M.I. was supported by HHMI Janelia. D.L.-P. was supported by

the Helmholtz Einstein International Berlin Research School in Data Science

(HEIBRiDS) program of the Helmholtz Association. N.K. was supported by

the DFG grants KA 5006/1-1 and RA 838/5-1. N.R. was supported by MDC

Berlin and Charite. We thank the HHMI Janelia Open Science Software Initia-

tive (OSSI, https://ossi.janelia.org/) for supporting this project.

DECLARATION OF INTERESTS

This work is part of a larger patent application in which N.K., S.P., and N.R. are

among the inventors. The patent application (US20240257914A1) was

mailto:preibischs@janelia.hhmi.org
https://github.com/PreibischLab/%20STIM
https://github.com/PreibischLab/%20STIM
https://github.com/rajewsky-lab/stimwrap
https://doi.org/10.5281/zenodo.14911427
https://doi.org/10.5281/zenodo.14911427
https://doi.org/10.5281/zenodo.14930579
https://ossi.janelia.org/


ll
OPEN ACCESSMethods in Brief

Please cite this article in press as: Preibisch et al., Scalable image-based visualization and alignment of spatial transcriptomics datasets, Cell Systems
(2025), https://doi.org/10.1016/j.cels.2025.101264
submitted through the Technology Transfer Office of theMax-Delbr€uck Center

(MDC), with the MDC being the patent applicant.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include

the following:

d KEY RESOURCES TABLE

d METHOD DETAILS
B Related software

B N5 storage and normalization

B Rendering of irregularly-spaced data

B Filtering of irregularly-spaced data

B Pairwise SIFT registration

B Global Optimization

B ICP refinement

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Benchmarking

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

cels.2025.101264.

Received: July 12, 2024

Revised: January 24, 2025

Accepted: March 27, 2025

Published: April 22, 2025

REFERENCES

1. Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M., and Cai, L. (2014).

Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods

11, 360–361. https://doi.org/10.1038/nmeth.2892.

2. Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S., and Zhuang, X. (2015).

RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single

cells. Science 348, aaa6090. https://doi.org/10.1126/science.aaa6090.

3. He, S., Bhatt, R., Brown, C., Brown, E.A., Buhr, D.L., Chantranuvatana, K.,

Danaher, P., Dunaway, D., Garrison, R.G., Geiss, G., et al. (2022). High-

plex imaging of RNA and proteins at subcellular resolution in fixed tissue

by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806. https://

doi.org/10.1038/s41587-022-01483-z.

4. Janesick, A., Shelansky, R., Gottscho, A.D., Wagner, F., Williams, S.R.,

Rouault, M., Beliakoff, G., Morrison, C.A., Oliveira, M.F., Sicherman,

J.T., et al. (2023). High resolution mapping of the tumor microenvironment

using integrated single-cell, spatial and in situ analysis. Nat. Commun. 14,

8353. https://doi.org/10.1038/s41467-023-43458-x.

5. Groiss, S., Pabst, D., Faber, C., Meier, A., Bogdoll, A., Unger, C., Nilges,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

STIM GitHub https://doi.org/10.5281/zenodo.14911427

STIMwrap GitHub https://doi.org/10.5281/zenodo.14930579
METHOD DETAILS

Related software
Spacemake30 is used for processing and basic visualization only; VT3D,51 Spateo Viewer,25 and Vitessce15 are designed for visual-

ization purposes only; Seurat16 and squidpy17 offer both analyzing and viewing, but 3D visualization and sections alignment are un-

available; ST Viewer18 is tailored to datasets generated with Spatial Transcriptomics6; histoCAT19 and Giotto Viewer20 do not offer

sections alignment. Semla52 (formerly STUtility21) offers a basic alignment, but requires manual registration for high-quality results.

N5 storage and normalization
STIM ingests spatial sequencing data that is stored in the AnnData standard, or as (compressed) text files containing locations and

barcodes of sequenced spots, expression levels, and optionally cell type predictions per dataset. The current framework supports 2D

and 3D coordinates, and can be readily extended. Initially, STIM re-saves or links the set of AnnData or text-file based datasets into a

common N5 container that can be accessed as one common project, e.g. the image registration pipeline can be applied to an entire

or parts of a project. By default, locations and expressions are stored with double precision and Gzip compression using a block

length of 16,384 for locations and a block size of 512x512 for expression values (Figure 1B). Genes and the barcode list of each data-

set together with their transformations are currently stored as metadata in the N5 container. The N5 data can be accessed in STIM/

stimwrap or directly through Java and python N5 packages.

Optionally, the data can be normalized upon re-saving to N5 or at a later time. We have adopted here the standard library size

normalization in log-space commonly used for scRNA-seq datasets, with the drawbacks discussed for imaging-based spatial tran-

scriptomics datasets.53 More specifically, if dij represents the raw count for gene i in spatial unit j, we normalize values as

dij /d0
ij = log2

0
@105 3

dijP
k

dkj

+ 1

1
A

where the dummy index k is used for summing over all genes within a spatial unit.

Rendering of irregularly-spaced data
Image data is typically stored in n-dimensional, integer-based Cartesian coordinate systems that are natively supported by most

camera chips and display devices. In contrast, spatial sequencing data consist of measurements at arbitrary, floating-point precise

locations, which stem from accurately localizing sequenced locations. To render such data, they need to be mapped to an integer-

based cartesian coordinate system supported by standard display devices (e.g. to a 2048x1536 pixel grid), a problem that also oc-

curs in other dataset types such as localization-based superresolution microscopy54 and other disciplines such as astronomy.55

Straight-forward, fast mapping can be achieved through nearest-neighbor interpolation using kd-trees. Resulting images are effec-

tively Voronoi-tessellations with sharp, unnatural boundaries and artificial appearance where point densities are low towards the

edges (Figures S6A and S6B). Distance-weighted interpolation creates more natural-looking images, which, however, still contain

unnatural edges as either a number of points or maximal distance for interpolation needs to be defined (Figure S6C). Large values

are able to create reasonable representations in areas of high point densities, but can still produce artificial structures, especially

towards the edges of the dataset (Figure S6D). To overcome these issues we represent each location as a Gaussian distribution,

and each pixel is rendered as the sum of all overlapping distributions, normalized by their respective weights. In order not to create

hard boundaries in areas with few locations, normalization is only performed if the sum of weights is bigger than one. This mapping is

fast and produces representations of the data resembling naturally-looking images that can therefore easily be processed with com-

puter vision tools and are additionally visually pleasing (Figures 1 and S6E; Video S2).

Filtering of irregularly-spaced data
Within STIM, we implemented a framework for spatial filtering of irregularly-spaced datasets based on kd-trees. We added mean

filtering, median filtering, Gaussian filtering, as well as practical filters to hide single, isolated locations and to visualize the density
Cell Systems 16, 101264, May 21, 2025 e1
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of locations. Adding new filters is straight-forward, and typically requires the implementation filter.RadiusSearchFilter class, which

already provides the kd-tree search and the location to be filtered.

Such basic filtering operations can for example help to smoothen noisy spatial sequencing data, to emphasize larger structures, or

to identify edges (Figure 1C; Video S2).

Pairwise SIFT registration
In order to robustly identify corresponding points between pairs of two-dimensional serial sections of spatial sequencing datasets we

first employ the Scale Invariant Feature Transform (SIFT) on images of renderings of individual genes.

First, we identify a set of genes (by default 100) that are expressed in both serial sections and show the highest combined stan-

dard deviations of their expression values, thus automatically selecting genes that are likely to show patterns that are helpful to

perform an alignment. The user can additionally add genes that are known to create well-structured expression renderings. Sec-

ond, we compute SIFT on all pairs of genes individually, using a low minimal number of corresponding points (inliers, by default 5)

on a rigid model. Finally, we perform another RANSAC consensus across the points of all genes, requiring by default at least 30

inliers. This combination of parameters was very robust in our tests and worked out of the box for SlideSeq, Visium, and Open-ST

datasets.

Global Optimization
In order to alignmore than two serial sectionswe first compute pairwise SIFT registrations between close-by sections (by default +-2).

We then solve an optimization problem by finding a set of transformations TV that minimize the distance between all corresponding

points CA;BðgÞ of all serial sections V across all genes G by identifying.38

arg minTV

X
AeV

0
@X

BeV\A

0
@X

geG

0
@ X

ða;bÞeCA;BðgÞ
jjRAa � RBbjj

1
A
1
A
1
A

Finally, wrong pairs of correspondences CA;BðgÞ can be identified and removed by iteratively analyzing inconsistencies

between pairwise results and the current state of the global optimization as defined by the current set of transformations TV .
40

By default we employ rigidly regularized (a = 0:1) affine transformation models TV for each serial section in the optimization pro-

cess. All transformations are stored within the N5 metadata, thus all visualization tools of STIM will directly use these

transformations.

ICP refinement
After global optimization based on the corresponding interest points identified by SIFT we optionally employ Iterative Closest Point

(ICP) for refinement of the transformations. In contrast to the SIFT alignment step, ICP is performed on the actual coordinates of the

sequenced locations. We first compute pairwise ICP’s between close-by serial sections (+-2 sections) using only the expression

values of genes that yielded SIFT correspondences. The basic idea of ICP is to assign nearest neighboring points as corresponding

points, update the transformation based on this assignment, and iterate this procedure until convergence or a maximum number of

iterations is achieved. Here, we do not simply assign nearest points to each other, but those who show the most similar expression

vector in the local vicinity (by default the median distance between all sequenced locations). We optionally support RANSAC filtering

on the sets of corresponding points during each ICP iteration in order to identify a consensus update vector across all neighboring

points. After all pairwise ICP matchings are performed, we re-solve the global optimization problem using the corresponding points

identified in the last iteration of every respective ICP run.

QUANTIFICATION AND STATISTICAL ANALYSIS

Benchmarking
To benchmark the alignment accuracy, we compare how different human experts and methods transform the same tissue sections.

For any twomethods A andB, we compute their pairwise transformation differences. Given a section s with points {p₁,...,pₙ}, wemea-

sure the average distance between transformed positions:

errorðA;BÞ =
1

n

X
i

jTAðpiÞ � TBðpiÞj

where TA and TB are the affine transformations from methods A and B computed relative to the previous section, and

distances are in microns. Manual alignment was performed using interactive BDV tools, which is accessible in STIM as Manual

Alignment under the ‘‘st-align-interactive’’ command. For both STIM and manual alignment a Similarity Model (rigid+scaling)

was used.

We further performed a grid search over STIM’s scale and render factor parameters, measuring each configuration’s error against

expert annotations.
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We ran Morpho on CPU with default parameters from spateo-release version 1.1.0, with SVI_mode=True and mode=’SN-S’. For

computational performance reasons, data was subset to 1:5 cells, and the top-10 highly variable genes computed with scanpy 1.9.1.

We ran Spacel with default parameters as of version 1.1.7, n_neighbors=15, n_threads=10, p=2, using the original cell type annota-

tion provided for the metastatic lymph node dataset.

The other methods based on gene expression (GPSA, PASTE2) either did not run for the metastatic lymph node, or did not finish

after a running time of two weeks.
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