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Summary 

Alternative splicing and proteolytic processing expand the functional diversity of the human 

proteome by generating distinct protein isoforms from a single gene. However, the extent to 

which transcript isoforms give rise to distinct protein products remains unclear, in part due to 

technical limitations in proteomic workflows. Here, we combine full-length mRNA sequencing 

with SDS-PAGE-based protein fractionation and quantitative mass spectrometry to construct an 

integrated landscape of mRNA and protein isoforms in human RPE-1 cells. To overcome the 

inherent ambiguity of bottom-up proteomics in isoform detection, we developed IsoFrac, a 

computational pipeline that resolves protein isoforms based on their migration profiles across 

gel fractions. This approach enabled the identification of ~45,000 full-length transcripts, ~32,000 

ORFs, and ~16,000 distinct protein isoforms. Comparative analyses revealed widespread 

translation of alternative transcripts and uncovered proteolytic processing as a major, 

underappreciated source of proteome complexity. Our results establish a scalable framework for 

isoform-resolved proteogenomics and provide a reference resource for studying the molecular 

diversity encoded by the human genome.  
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Introduction 

Gene expression is a complex and tightly regulated process that transforms the genetic 

information into functional proteins 1,2. This process begins with the transcription of genes into 

mRNAs and their subsequent translation into proteins and is further diversified by the 

generation of multiple mRNA and protein isoforms from individual genes. Posttranscriptional 

processes, such as alternative splicing and alternative polyadenylation, give rise to diverse 

mRNA species 3–5. On the protein level, additional layers of complexity emerge through 

mechanisms like alternative translation initiation and posttranslational modifications 6–8. It is 

estimated that an average cell line may contain over one million distinct proteoforms, though 

this number varies by cell type and tissue. 

 

While long-read sequencing has provided a detailed view of transcriptome diversity, the 

global characterization of protein isoforms remains incomplete. A persistent challenge in the 

field is the consistent discrepancy between the number of mRNA isoforms detected by RNA 

sequencing and the number of protein isoforms identified by proteomics. This raises two key 

questions: (1) To what extent do alternative transcripts yield functional protein products, and (2) 

how many additional protein isoforms arise through mechanisms independent of mRNA 

variation, such as alternative translation initiation or proteolytic processing? Two competing 

hypotheses have been proposed to explain the first question: One suggests that many 

alternative transcripts are not translated and may represent non-functional or regulatory RNA 

species 9,10, while the other posits that most splice variants are translated and actively contribute 

to proteome diversity 3,5. However, an alternative explanation is that technical limitations in 

proteomic methodologies prevent the reliable detection of many protein isoforms. To resolve this 

issue, it is essential to bridge the gap between transcript-level predictions and protein isoform 

identification, addressing both biological and technical constraints 6. Here, we refer to 'protein 
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isoforms' as distinct polypeptides arising from different transcript isoforms, alternative translation 

or proteolytic cleavage events. This contrasts with 'proteoforms', a broader term that includes all 

molecular forms of a protein, including those generated by post-translational modifications 7.​

 

Current mass spectrometry (MS)-based approaches are typically divided into Top-Down 

and Bottom-Up methods, each facing distinct technical challenges in protein isoform 

identification. The Top-Down approach directly analyzes intact proteins, making it well-suited for 

isoform identification 11. However, the extreme physicochemical diversity of proteins complicates 

comprehensive proteome coverage, and despite recent advances, Top-Down proteomics still 

lags behind the depth achieved by Bottom-Up techniques 12,13. In contrast, the Bottom-Up 

approach analyzes peptides derived from digested proteins, achieving greater proteomic 

depth—often exceeding 10,000 protein groups in a single experiment 14. However, its ability to 

distinguish individual protein isoforms is limited, as many peptides are shared among multiple 

isoforms, making precise assignments challenging 15.​

 

Most efforts to overcome the limitations of protein isoform identification have focused on 

deeper proteome sequencing and advanced data processing algorithms to extract isoform 

information from existing datasets 16–20. For example, a recent study employing six different 

proteases and three tandem mass spectrometry fragmentation methods in a deep Bottom-Up 

proteomics approach identified approximately one-third of observed alternative splice variants at 

the protein level and up to 64% among high abundant transcripts 21. Recent work has also 

demonstrated that thermal proteome profiling combined with deep peptide coverage can be 

used to cluster peptides into functional proteoform groups based on their melting behavior, 

thereby enabling annotation-independent isoform detection 22. However, a systematic integration 

of long-read transcriptomics and global proteomics to directly match full-length transcript 
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isoforms to experimentally detected protein isoforms in the same cell type has not yet been 

achieved. 

 

Here, we present an integrated proteogenomic approach that combines 

SDS-PAGE-based protein separation with long-read transcriptome sequencing to systematically 

map mRNA and protein isoforms in the same cell type. By resolving proteins based on their 

intact molecular weight prior to mass spectrometry, we enhance the detection of distinct protein 

isoforms, including those generated by alternative splicing and proteolytic processing. While 

SDS-PAGE has historically been used to reduce sample complexity, its potential for protein 

isoform-level resolution is gaining renewed attention 23,24. Using this strategy in human RPE-1 

cells, together with full-length transcriptome profiling, we establish a comprehensive and 

matched landscape of transcript and protein isoforms, revealing the molecular diversity encoded 

by the human genome. Our integrated proteogenomic isoform landscape indicates that a large 

fraction of alternative transcripts are translated, and highlights proteolytic processing as a major, 

underappreciated contributor to proteome complexity. 
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Materials and Methods 

Cell Culture 

hTERT RPE-1 cells were purchased from ATCC (CRL-4000) and maintained in DMEM/F-12 
(1:1) + GlutaMAXTM medium (GIBCO 31331-093) containing 10% fetal calf serum (FCS) 
(PAN-Biotech). Cells were cultured at 37˚C in a humidified incubator of 5% CO2. Throughout the 
experiments the cells were kept under 15 passages. 

Sample Preparation 

Lysis. hTERT RPE-1 cells were seeded on 15cm plates until ~80% confluency, then washed 
and scraped with ice-cold PBS, collected into 15ml falcons, washed again and centrifuged 
(500g, 3min, 4˚C). Cell pellets were lysed at room temperature (20mM Tris-HCl pH 7.5, 100mM 
NaCl, 1% SDS, 1mM MgCl2, Protease inhibitors) and immediately boiled (95˚C, 5min). 1µl of 
Benzonase was added to digest DNA (37˚C, 20min). Lysates were then centrifuged (14,000 
rpm, 22˚C, 15min) and the protein concentration in the supernatant was measured via BCA 
assay (Pierce BCA Protein Assay Kit). The proteins were then reduced (15mM DTT, RT, 30min), 
alkylated (20mM iodoacetamide, RT, 30min) and quenched (30mM DTT, RT, 30min). To desalt 
the protein lysate Acetone/Methanol precipitation was done. Namely, 6 volumes of -20˚C 
Acetone/Methanol (8:1) was added to 1 volume of lysate, vortexed 20s and placed at -80˚C 
overnight. Next, the samples were centrifuged (14,000rpm, 4˚C, 30min), the supernatant was 
discarded and pellet was washed again with Acetone/Methanol and centrifuged (14,000rpm, 
4˚C, 10min). The pellet was dried and then solubilized in 2% SDS. 
Protein Fractionation using GELFrEE® 8100 Fractionation system (Expedeon). The 
proteins were fractionated according to their electrophoretic mobility employing the GELFrEE 
(Gel-Eluted Liquid Fraction Entrapment Electrophoresis) fractionation system with liquid phase 
recovery. We used the 5%- (mass range: 75-500kDa), 8%- (mass range: 35-150kDa) and 10%- 
(mass range: 15-100kDa) cartridges to generate 28 protein fractions (in total, 84 fractions per 
sample) according to the manufacturer instructions. Briefly, 150µl of protein sample 
(112µl-desalted protein, 8µl 1M DTT, 30µl Acetate Sample Buffer X5) was heated (95˚C, 5min) 
and loaded onto the correspondent cartridge. The protein fractions were collected into 96 
well-plates. 
  
SP3-Digestion by BRAVO Automated Liquid Handling Platform (Agilent). 130µl of each 
protein fraction was transferred into a BRAVO-designated 96-well plate (28 fractions of each 
cartridge combined in one plate) along with two correspondent 96-well plates, one with 
magnetic beads (SeraMag beads A and B), and one with Trypsin-LysC (in 50mM Hepes pH 8). 
The digestion took place on the beads (1:25-50 protein:enzyme ratio). 
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TMT-labeling and HpH fractionation. We estimated the amount of peptides in the fractions to 
be 4µg to 8µg. The digested fractions were then labeled with TMTpro reagent set (Thermo 
Fisher Scientific, Cat #: A44520, Lot #: UL296296) according to the manufacturer's instructions. 
Samples assignments: every 28 fraction set was divided into two separate plexes, where the 
“odd” fractions (fraction 1, fraction 3, .., fraction 27) were randomly assigned to one plex and the 
“even” fractions (fraction 2, fraction 4, .., fraction 28) where randomly assigned to a second plex. 
Assignments, plex #1: fraction 1 – 131N, fraction 3 – 127N, fraction 5 – 129N, fraction 7 – 132N, 
fraction 9 – 128C, fraction 11 – 127C, fraction 13 – 129C, fraction 15 – 131C, fraction 17 – 
130C, fraction 19 - 126, fraction 21 – 130N, fraction 23 – 133C, fraction 25 – 132C, fraction 27 – 
128N, Std1 - 133N, std2 - 134N. plex #2: fraction 2 – 129C, fraction 4 – 133C, fraction 6 – 
127C, fraction 8 – 129N, fraction 10 – 132N, fraction 12 – 128N, fraction 14 – 126, fraction 16 – 
130N, fraction 18 – 132C, fraction 20 – 130C, fraction 22 – 131C, fraction 24 – 128C, fraction 26 
– 131N, fraction 28 – 127N, Std1 - 133N, std2 - 134N. Std1 and Std2 were whole cell lysates of 
hTERT-RPE1 cells that were not fractionated but went through the SP3-digestion (as described 
above). Std1 and Std2 contained 6µg and 60µg, respectively. The peptides from each plex were 
pooled, desalted with SepPak columns (manufacturer) and dried (speed-vac). We used the 
Dionex 3000 system (Thermo Fisher) to offline fractionate the desalted peptide mixture with high 
pH reverse phase fractionation (2p1mm C18 Xbridge Waters). Pooled peptides were 
resuspended in buffer A (0.0175% vol/vol NH4OH; 0.01125% vol/vol FA + 2% MeCN), loaded, 
and fractionated (96 min gradient from 0% B to 40% B in 70 min, 44% B in 4 min, 60% B in 5 
min and kept at 60% B for the remaining 17 min; Buffer B: 0.0175% vol/vol NH4OH; 0.01125% 
vol/vol FA + 90% MeCN). Each 1 min a fraction was collected (in total 96 fractions). The 
automated collection procedure resulted in a total of 24 fractions, after recombination of 
selected fractions: (fraction i) + (fraction i + 24) + (fraction i + 48) + (fraction i + 72), i = 1 → 24. 
The fractions were dried and kept in -80˚C.​  
 
MS Measurements. Samples were resuspended in Buffer A (3% acetonitrile, 0.1 formic acid). 
Peptides were separated with an easy-nLC System (Thermo Scientific) on a selfpacked column 
(20cm, 75µm ID, DrMaisch 1.9µm AQ) with a reverse phase gradient of increasing buffer B 
concentrations (90 % acetonitrile, 0.1 formic acid; 0 min 2 % B, 1min 4% B, 67 min 20% B; 20 
min 30% B; 10 min 60% B; 1 min 90% B). Peptides were subsequently measured over ESI 
spray on an Q-Exactive HFx MS System (Thermo Scientific) for the 8er and 10er gels or on an 
Exploris480 MS System (Thermo Scientific) for the 5er gel. Settings on the HFx were: MS1 Res. 
60k; AGC target 3e6; MaxIT 10ms; scan range 350-1500 m/z; MS2 Res 45k; AGC target 1e5; 
MaxIT 86ms; TopN 20; IW 0.7 m/z; Scan Range 350-1500 m/z; NCE 30, Dynamic Exclusion 
30s.  
 
Settings on the Exploris were: MS1 Res. 60k; normalised AGC target 300%; MaxIT 50ms; scan 
range 375-1500 m/z; MS2 Res 45k; normalised AGC target 100%; MaxIT 86ms; Cycle Time 1s; 
IW 0.4 m/z; Scan Range 350-1500 m/z; HCD Collision Energy 31%, Dynamic Exclusion 20s. 
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Generation of FLAG-tagged genes. TEAD3, NELFA, RRP1B and CTTNBP2NL genes were 
ordered in a pTwist_ENTR Kozak vector (Twist Bioscience). Using the Gateway Clonase II 
system (Thermo Fisher Scientific) the genes were cloned into the 
vectorspDEST_pcDNA5_BirA_FLAG_Nterm and pDEST_pcDNA5_BirA_FLAG_Cterm 
(Couzens et al, 2013). Sequencing validated the resulting products. Gene sequences were 
optimized, don’t contain introns and are therefore different from the human sequences. 
  
Transfections. hTERT-RPE1 cells were seeded on 6-well plates and following the 
manufacturer’s instructions transfected with 5µg of the DNA constructs using Lipofectamine 
3000 (Thermo Fisher). The cell lysates were prepared following the same procedure described 
in Sample preparation. The samples were run on 4-12% Bis-Tris gradient gels (NuPAGE, 
Invitrogen) and then blotted on PVDF membrane (Immobilon-P). Ectopic expression was 
detected using anti-DYKDDDDK Tag Antibody HRP Conjugate (2044, Cell Signaling). 

 
Next-generation sequencing (NGS) for total RNA 
 
Total RNA from human retinal pigment epithelial-1(RPE-1) cells was extracted following the 
manufacturer’s protocol. Total RNA was extracted by TRIzol® Reagent (Life Technologies). 1 μg 
total RNA was used to prepare the VAHTS Stranded mRNA-seq Library Prep Kit (Vazyme). 
After quality control, the libraries were sequenced in paired-end 2×150 nt manner on Illumina 
NovaSeq 6000 platform. 

PacBio library preparation and sequencing 
PacBio library preparation and sequencing were performed as  described before 25. Briefly, Total 
RNA from RPE-1 cells was extracted using TRIzol reagent (Life Technologies) following the 
manufacturer's protocol, and then was converted to cDNA using the Clontech SMARTer PCR 
cDNA Synthesis kit. Then we proceed to PCR cycle optimization, and use the cycle number to 
generate a sufficient amount of double stranded cDNA products. After purification of PCR 
products by using AMPure purification methods, SMRTbellTM template preparation was 
performed. The libraries were sequenced on PacBio RSII SMRT platform according to the 
manufacturer’s instruction (Magbead mode for fragments >3 kb and Diffusion mode for all other 
fragment sizes; SMRT Cell v3 with 1200 min movie time). After sequencing, the raw reads were 
processed through the SMRT-Portal analysis suite (PacBio) to generate subread sequences for 
further analysis. 

Full-length transcriptome construction 
Pre-processing. 
The primer of raw PacBio sequencing reads was removed using lima (version 2.0.0, --isoseq 
--peek-guess). Then, the concatemer and poly(A) were removed by IsoSeq3 refine (version 
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3.4.0, --require-polya). For NGS sequencing, the clean reads were generated by fastp (version 
0.21.0) with default parameters. 
  
NGS-based error correction of PacBio sequencing reads. 
Proovread (verision 2.14.1, with default parameters) and LoRDEC (verision 0.9, with -k 17, -k 19 
and -k 21, separately) were used to correct the sequencing errors in PacBio sequencing reads 
by taking advantage of the more accurate NGS reads. PacBio reads were corrected by 
Proovread and LoRDEC in parallel. After correction, GMAP (version 2021-02-22, Genome 
GRCh38, --sampling 1 -B 2 -n 0 -k 15 --min-intronlength 20) was used to align the corrected 
reads and reads with the best alignments (the longest alignment with the minimum number of 
mismatches) were kept for further analyses. 
  
Clustering and collapsing. 
IsoSeq3 cluster (version 3.4.0) was applied to cluster and get the consensus sequences from 
the corrected PacBio sequencing reads. Pbmm2 align (version 1.9.0, with --preset ISOSEQ) 
was used to align the consensus sequences to genome GRCh38 and cDNA_Cupcake 
(collapse_isoforms_by_sam.py) was applied to collapse any identical isoforms based on the 
aligned exonic structure. 
  
Annotating, quantification and filtering of full-length transcripts. 
SQANTI3 (version 3.6.1, with default parameters) was used to annotate the full-length 
transcripts with known GENCODE transcripts (gencode.v40.comprehensive.annotation.gtf 
downloaded from GENCODE) as well as discover novel transcripts. First, sqanti3_qc.py was 
used to annotate full-length transcripts by inputting transcript abundance information (parameter 
-e)  and splicing junction information (parameter -c). The transcript abundances and splicing 
junction information was obtained from two NGS replicates, computed by kallisto quant (version 
0.46.0, with default parameters) and  STAR (version 2.7.8a, with --outFilterMultimapNmax 1). 
Second, sqanti3_RulesFilter.py (-a 0.9) was used to remove potential artifacts caused by 
RT-template switching, intra-priming, etc. ORFs of the full-length transcripts were annotated by 
SQANTI at the same time. 
  
Integration of full-length transcripts and ORFs with GENCODE annotation. 
Before integration, we first removed full-length transcripts (FLTs) with potentially degraded 
5’end. For each FLT, we used SQANTI to compare its relationship with the annotated 
transcripts in GENCODE. For FLTs that were not annotated as "Full-splice match" by 
SQANTI, we checked if they were artifacts resulting from degradation at the 5' end of 
the transcript due to technical limitations. Specifically, we compared the splice junction 
positions between FLTs in pairs; for all FLTs with the same "splice-junction-structure," 
we retained only the longest transcript for further analysis. Also, for transcripts annotated 
in GENCODE, we used kallisto quant (version 0.46.0, with default parameters) to quantify each 
transcript and only kept transcript with mean TPM>1. Next, we integrated filtered FLTs from 
PacBio with filtered transcripts from GENCODE by splice-junction structure, and obtained the 
union set. For each transcript in the union set, we tried to set a label for its source (Fig. 4A). If 
the transcripts contain common splice-junction structure in both PacBio and GENCODE, they 
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were labelled as “PB_&_GENCODE”, indicating the PacBio FLTs are totally "full-splice-match" 
compared to GENCODE transcripts; If the transcripts contain unique splice-junction structure in 
PacBio or GENCODE, they were labelled as “PB_only” or “GENCODE_only”. It should be 
mentioned that some FLTs are incomplete at 5’- or 3’- end likely due to technology limitation and 
they are partially "full-splice-match" compared to GENCODE transcripts. In this scenario, we 
hypothesized they are supported by both PacBio and GENCODE, and the PacBio FLTs should 
be elongated based on splice-junction structure of GENCODE transcripts. We set the label 
“GENCODE_from_PBcorrected” for this group of transcripts. 
  
After the integrated transcript annotation was obtained, the ORF for each transcript can be 
inferred and the source of ORFs can be defined. Similarly, we classified all ORFs into four 
categories with the following priority: 'PB_&_GENCODE' > 'GENCODE_from_PBcorrected' > 
'PB_only' > 'GENCODE_only'. We also checked whether the ORF is from the canonical 
transcripts defined by Ensembl dataset and estimated the expression of ORF using the average 
TPM of all corresponding transcripts. 
 

Basic Data analysis  
Raw Files from each Gel preparation were analysed separately with MaxQuant v2.0.3.0 26 using 
the TMT module and search against the Uniprot database (UP000005640, 20220603) including 
listed chain variants of each protein sequence. Further data analysis was performed on the 
resulting peptides.txt table. The obtained 28 fractions from one gel separation were divided into 
two TMT experiments using 14 from the available 16 channels. Thus batch correction had to be 
applied by normalising each peptide's intensities against the reference channel intensity if this 
peptide was quantified. In rare cases, when a peptide was not identified in the reference 
channel, peptide intensities were normalised against the average observed intensities in the 
reference channel in each TMT experiment. Next, peptides were z-scored and all sequences 
were remapped to Ensembl Gene IDs using Uniprot.ws and biomaRt R-packages. 
Consequently, the subseeding analyses were performed in a gene centric manner. 

Peakfinder Analysis 
Peptide traces from each gene were clustered using hdbscan from the dbscan R-package 
(1.1-10) using hdbscan function with the option minPts set to 2 and 3. For each clustering round 
noise was added to the data using the R function jitter on an  initial value of -1 for each fraction 
and setting amount to -0.5. Resulting Clusters with more than 30 peptides were subjected to an 
additional clustering round using hdbscan. For each cluster the silhouette (cluster R-package 
2.1.2) was calculated and the clustering event with the highest silhouette was picked for further 
analysis. After clustering with hdbscan, these noise traces were removed again from the data. 
Hdbscan itself reports noisy traces as cluster number zero. Peptide traces assigned to 0 were 
further considered to be noise and excluded from the subsequent peak detection. Next, the 
median profile of each cluster was calculated and peaks were determined using the findpeaks 
function (pracma 2.3.3 R-package) with the settings nups = 1, ndowns = 1 and threshold = 0.1. 
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Peak position was refined by determining the cross section of two linear models from both sides 
of the peak. Intensity and fraction confidence was determined in addition by running 20 
bootstrap rounds with all peptides in a cluster.  
Since different peaks of HDBSCAN clusters can represent the same protein isoform, we merged 
peaks with sufficiently similar molecular weights. In this way, peaks were either merged within 
each gel separately (gel centric analysis) or merged across all gels (gel combined analysis) 
using the following procedure: Briefly, we selected the peak with the highest z-score as the 
“seed” of an isofrac isoform. We then tested the overlap of  adjacent peaks to the same isofrac 
isoform if they fall within the peak boundaries +/- 5000 Da. We therefore generated random 
distributions based on the Peak Apex and “start” and “end” of a peak. Then we sampled 20 data 
points for each peak and tested against the null hypothesis that the compared peaks are equal 
using the Wilcoxon Rank Sum test, as implemented in R. We did this in a bootstrap fashion, 
going for 50 rounds. Finally, we considered peaks to be similar if at least one resulting p-value is 
higher than 0.1. 
To assess our ability to detect known protein isoforms, we compared isofrac isoforms with the 
Uniprot database, which includes information of splice variants and proteolytic cleavage 
variants. Specifically, we compared each isofrac isoform to all annotated Uniprot isoforms of the 
same gene. For each pair of isoforms, we computed the fraction of IsoFrac peptides shared with 
Uniprot (IsoFrac coverage), the fraction of Uniprot peptides shared with IsoFrac (Uniprot 
coverage) and the statistical significance of the peptide overlap (hypergeometric test p-value). 
Since the ability to obtain significant p-values depends on the fraction of all peptides matching to 
a given uniprot isoform, we also calculated this fraction (total uniprot fraction). This results in a 
feature table for each IsoFrac Uniprot pair (with: IsoFrac coverage, UniProt coverage, 
hypergeometric test p-value, total uniprot fraction, all peptides identified per gene). The entire 
procedure was then repeated after randomly assigning peptides to IsoFrac isoforms. We then 
built a regression model using random forest (h2o package) using 10 fold cross validation 
(nfolds = 10). The obtained AUC from the ROC indicated that the prediction substantially 
improved with these scores in comparison of using each feature alone. Finally we used these 
scores to filter for the highest scoring isoform uniprot associations and calculated Δmass 
(Uniprot MW - Isoforac MW) and Quotient Mass (Uniprot MW/Isoforac MW) values to 
independently evaluate the filtering efficiency on the resulting mass difference between Uniprot 
and IsoFrac isoforms.  
 

Data availability 
 
The raw and processed RNA-seq data generated in this study are deposited in the Gene 
Expression Omnibus under the accession number GSE261771 (It will be publicly available once 
the manuscript is accepted. Reviewers can access data through 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE261771 with token 
sdwzsayyjrathwb). The mass spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium via the pride partner repository27,28 with the dataset identifier 
PXD062269 (Username: reviewer_pxd062269@ebi.ac.uk Password: NkdkLWFiKCgB). 
R-functions for processing the MaxQuant output tables are available under 
https://github.com/SelbachLab/IsoFrac.  
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The dataset can be interactively explored on the website proteinisoforms.mdc-berlin.de 
(username: “isofrac-review”, pw: “Ng0%rCK3jo%6@Wbs63”). Proteinisoform candidates as 
identified by IsoFrac are provided as a supplemental tab separated table (SupplementalTable 
1). 
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Results 

Peptide Correlation Profiling (PepCP) Resolves Protein-Level 

Information from Peptide Data 

​ Correlating the abundance of proteins across biochemical fractions under 

non-denaturing conditions, so-called protein correlation profiling (PCP), is a well established 

method to map cellular proteins to organelles or protein complexes 29. For example, 

fractionating proteins via sucrose density gradient centrifugation, gel filtration or non-denaturing 

gel electrophoresis yields protein abundance profiles across fractions. The distribution of 

correlated proteins across these fractions then provides information about their subcellular 

localisation and/or multiprotein complexes they are members of 30–37.  

Building on the principles of PCP, we developed peptide correlation profiling (PepCP) as 

a strategy to extract protein-level information from peptide-centric (bottom-up proteomic) data  

(Fig. 1A). PepCP follows four key steps: (1) Proteins are separated by SDS-PAGE based on 

their molecular weight into fractions 38. (2) Each fraction is enzymatically digested into peptides. 

(3) Peptides are identified and quantified across all fractions using quantitative mass 

spectrometry-based proteomics. (4) Peptide abundance profiles across fractions are analyzed 

to infer protein-level information. 

We extracted proteins from the diploid human retinal pigmented epithelial cell line RPE-1 

and fractionated them by SDS-PAGE using the GELFREE system, which improves protein 

recovery 39. To cover isoforms across molecular weight ranges we used gels with 10%, 8% and 

5% acrylamide. A total of 28 fractions per gel were collected, and proteins were digested using 

an automated SP3 workflow 40. Peptides were labeled with tandem mass tags (TMT) to enable 

quantification across fractions 41. To achieve this, the 28 fractions were combined into two 
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TMT-16 plexes, each containing 14 fractions, along with an unfractionated whole-cell lysate 

(WCL) reference channel. This design allowed peptide abundance profiles across SDS-PAGE 

fractions to be quantified as ratios relative to the reference channel. Combined peptide mixtures 

were separated offline by high-pH reverse-phase HPLC and subsequently analyzed by 

LC-MS/MS.  

We processed the data using MaxQuant with a protein database that integrated UniProt 

sequences and isoforms arising from proteolytic cleavage events reported in UniProt (see 

Methods). In total, we identified ~150,000 peptides (FDR 1%) in ~13,000 protein groups that we 

mapped to ~12,000 genes (Fig. 1C). For downstream analysis, we only considered peptides 

that uniquely mapped to a single gene. After remapping all sequences to human Ensembl gene 

annotations and filtering for genotypic peptides, we retained 136,752 peptides in 12,176 protein 

groups, corresponding to 9,288 genes.  

To assess the resolving power of our SDS-PAGE gels, we extracted the annotated 

molecular weights of all unique peptides in each fraction and visualized their distribution as a 

density plot (Fig. 1B). As expected, protein molecular weight increased with fraction number, 

spanning a range of 15 to 250 kDa across all three gel types. Consistent with their increasing 

pore sizes, the mass ranges captured by the 10%, 8%, and 5% gels also increased accordingly. 

The premise of Peptide Correlation Profiling (PepCP) is that peptides derived from the 

same protein isoform should exhibit correlated abundance profiles across fractions. If each gene 

encoded only a single protein isoform, all corresponding peptides would be expected to follow 

similar abundance profiles. To assess this globally, we mapped peptides to the genome (see 

Methods) and computed pairwise correlations for all peptides mapping to the same gene. The 

vast majority of peptide pairs showed positive correlations (r > 0), with a major peak observed 

around r = 0.9 (Fig. 1D). This confirms that peptides mapping to the same gene tend to have 

correlated abundance profiles across protein fractions. As expected, correlations between 

randomly sampled peptide pairs were distributed around r = 0. To further evaluate the 
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performance of PepCP, we computed receiver operating characteristic (ROC) curves (Fig. 1E). 

Both specificity and sensitivity were high, particularly for the 8% and 10% gels, which achieved 

area under the ROC curve (AUC) values of 0.93 and 0.94, respectively. Notably, these 

estimates are conservative, as many genes encode multiple protein isoforms, which is expected 

to lower peptide-peptide correlations.  

 

 

 

 

 

14 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2025. ; https://doi.org/10.1101/2025.04.16.648713doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.16.648713
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 1: PepCP enables protein identifications from peptide data. A) PepCP 
sample preparation pipeline. B) Separation performance of different gels. Molecular 
weight projection among all collected fractions for the three gels used (10%, 8% and 
5%). Protein MW are inferred from the major protein in each protein group for each 
identified peptide based on the highest z-score across all fractions per gel. The loess 
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regression trendline is depicted for each gel. C) Venn diagram of all identified 
GenCode ID Groups among the different gels. D) Distribution of median average 
Pearson's coefficients of correlation between all peptide pairs within a gene (Real) or 
random pairs between peptides of a gene and peptide from other genes (Random). E) 
Receiver operating characteristics from the corresponding distributions in D). AUC is 
depicted in the figure. 

 

Having demonstrated that PepCP can reliably assign peptides to proteins, we next 

investigated whether it could provide insights into protein isoforms. As a first test, we analyzed 

intronless genes, which are expected to encode a single protein isoform 42. Consistent with this 

expectation, we observed a single peak for this gene category (Fig. 2A).  

In principle, protein isoforms can arise through three major mechanisms: (i) alternative 

splicing 5, (ii) alternative translation initiation or termination 43,44 and (iii) posttranslational 

processing, such as proteolytic cleavage 45. Importantly, we found that PepCP can provide 

information on all of these processes: 

(i) Alternative splicing: We identified both splice isoforms of CRK, where peptides unique 

to the larger isoform exhibited a single peak, whereas peptides shared by both isoforms showed 

two distinct peaks (Fig. 2B). 

(ii) Alternative translation: We observed isoforms of CEBPB that arise from alternative 

translation initiation (Fig. 2C). 

(iii) Proteolytic processing: We identified the processed isoform of NFKB1, formed by 

protein cleavage (Fig. 2D). 

These findings illustrate that PepCP enables the detection of distinct protein isoforms, 

providing a more comprehensive view of proteome complexity. 

 

16 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2025. ; https://doi.org/10.1101/2025.04.16.648713doi: bioRxiv preprint 

https://paperpile.com/c/iIyEnR/5WraT
https://paperpile.com/c/iIyEnR/yaUf
https://paperpile.com/c/iIyEnR/12b5+AIwX
https://paperpile.com/c/iIyEnR/8Kj87
https://doi.org/10.1101/2025.04.16.648713
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Example peptide separation profiles Peptide zscore traces across SDS 
gel fractions for selected intronless genes (A). B-D show observed protein isoform 
traces generated by different processes: Alternative splicing (B), alternative initiation 
(C) and protein processing (D). For all traces fraction numbers have been converted 
to MW values based on average MW observed among identified proteins in each 
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fraction. Identified peptides were mapped to known protein sequences for each 
corresponding gene. The position of identified peptides across each canonical protein 
sequence is depicted on the right side (B-D). Peptide-groups were assigned manually.  

 

Mapping the Protein Isoform Landscape 

The examples highlighted above demonstrate PepCP’s ability to provide detailed 

information about protein isoforms.  To globally analyze these data, we developed IsoFrac, a 

computational pipeline that automatically assigns peptides from PepCP data to protein isoforms 

(see Methods). Briefly, the IsoFrac algorithm consists of three steps (Fig. 3A):​

 

1.​ Peptide clustering: Peptide abundance profiles are clustered to identify groups of 

peptides with similar fractionation patterns. We used hierarchical density-based spatial 

clustering of applications with noise (HDBSCAN), an advanced algorithm that optimizes 

cluster stability while excluding noisy data  46. 

2.​ Peak detection: For each peptide cluster, an average abundance profile is computed, 

and peaks are identified. 

3.​ Isoform definition: Isoforms are assigned based on peak positions. Peptides with peaks 

in close proximity are merged into the same isoform. 

 

Initially, IsoFrac defines isoforms separately for each gel (10%, 8% and 5%). These are 

then merged across gels if they exhibited similar molecular weights. Using this procedure, we 

identified a total of 16,983 isoforms derived from 8,168 genes (Fig. 3B). For roughly half of 

these genes we detected more than one protein isoform.  
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Figure 3: IsoFrac identifies protein isoforms on a global scale.  A) Diagram 
illustrating  IsoFrac Peak detection. (i) All peptide traces are clustered using hdbscan. 
(ii) Average trace for each cluster is calculated. (iii) Peaks are identified based on 
each average cluster trace and combined across clusters and gels. B) Number of 
identified isoforms per gene. C) ROC curves for single metrics and combined 
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regression score to assess the quality of isofrac uniprot pairs. D) Δmass density 
curves for the different subsets ‘Score filtered’ (selection for highest Score) and 
‘Random’ (random assignment). E) Fractions of assigned protein variant categories 
for a high confidence set (Score > 0.8). F) Comparison of protein fractions from 
subfigure E for proteins with >=2 isoforms in Uniprot (purple) against proteins with a 
single entry (yellow) in Uniprot. G) Enrichment analysis of proteins from different bins 
among the Δmass distribution of IsoFrac vs Uniprot protein molecular weights from 
proteins with high confidence assignments (score > 0.8). -log10 pvalues are projected 
as a heatmap for cellular component gene ontologies with the different bins from 
Δmass distribution shown in separate columns. H) LDLR (95 kD) peptide traces in the 
5% gel with two peaks at ~105 kD (unmodified) and ~138 kD (left). The western blot 
result is depicted on the right side. I) Screenshot of ISOFRACviewer, an online tool to 
assess isoform information from this study.  

 

We next assessed whether IsoFrac reflects known protein isoform annotations. To this 

end, we compared each IsoFrac isoform to all annotated UniProt isoforms for the same gene 

using three features: (i) IsoFrac coverage – the percentage of IsoFrac peptides that match a 

given UniProt isoform, (ii) UniProt coverage – the fraction of UniProt peptides covered by 

IsoFrac peptides, (iii) Overlap – a hypergeometric test to assess the significance of the overlap 

between UniProt and IsoFrac peptides. As a negative control, we randomly assigned peptides 

from the same gene to IsoFrac isoforms and computed receiver operating characteristic (ROC) 

curves (Fig. 3C). As expected, all three features contributed useful information but with limited 

predictive power. We therefore trained a gradient-boosted classification tree model to integrate 

the three features into a single score (see Methods). This markedly enhanced predictive 

accuracy, achieving an area under the ROC curve (AUC) of 0.81 (Fig. 3C). Notably, since 

UniProt annotations do not fully capture the true diversity of protein isoforms, we do not expect 

an AUC of 1 even if our data were perfectly accurate.  

To further validate our data, we tentatively assigned each IsoFrac isoform to the 

best-matching UniProt isoform. We then calculated the molecular weight difference (Δ mass) 

between the assigned IsoFrac and UniProt isoforms. We observed that these Δ masses were 

significantly smaller than Δ masses for randomly assigned UniProt isoforms (Fig. 3D). 
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Importantly, this provides independent validation of our data, as molecular weight information 

was not used during the isoform assignment process.  

To assess global trends in our dataset, we assigned each IsoFrac isoform to its 

best-matching UniProt candidate and categorized it by its known isoform-generating 

mechanism. In addition, we only included isoforms with a good sequence identification score 

(ML_Score > 0.8, 5486 proteins). Based on these assignments, the majority of protein isoforms 

arise from alternative splicing, while approximately 10% are generated by posttranslational 

processing events (Fig. 3E). 

Next, we grouped genes into two categories: those with a single protein isoform detected 

in IsoFrac and those with multiple isoforms (Fig. 3F). As expected, genes with more than one 

annotated isoform in UniProt were more likely to be identified with more than one isoforms in 

IsoFrac, whereas proteins with a single UniProt entry ("No Variants") were more often detected 

as a single isoform. Surprisingly, however, we detected multiple protein isoforms for 1,023 

genes annotated with only a single UniProt isoform, suggesting the presence of previously 

unrecognized protein isoforms. 

 

To explore functional trends, we performed gene ontology (GO) enrichment analysis 

across different bins of the Δ mass distribution. The resulting heatmap of enrichment p-values 

revealed a Δ mass-dependent distribution of cellular protein localization (Fig. 3G). Since 

posttranslational modifications (PTMs) influence protein molecular weight, we expected larger 

modifications — such as glycosylation — to lead to an upward shift in observed molecular 

weight. Consistently, we found endoplasmic reticulum and plasma membrane proteins – both 

known to be frequently glycosylated – to be enriched in higher Δ mass bins. For example, LDLR 

(the low-density lipoprotein receptor), a glycoprotein, displayed two peaks in IsoFrac with an 

identical set of identified peptides (Fig. 3H, left). Western blot analysis confirmed this 
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observation, showing two distinct bands in the corresponding molecular weight range (Fig. 3H, 

right). 

Our IsoFrac dataset offers a comprehensive resource for global and gene-specific 

isoform analysis. To facilitate exploration, we developed an interactive online tool (Fig. 3I) that 

enables users to efficiently browse isoform profiles. The dataset is accessible at 

https://proteinisoforms.mdc-berlin.de (username: “isofrac-review”, pw: 

“Ng0%rCK3jo%6@Wbs63”). 

 

Long-Read Sequencing Connects Transcriptome Complexity to 

Protein Isoform Diversity 

To complement our proteomic isoform detection and to consider potential RPE-1-specific 

alternative splicing, we systematically characterized the RPE-1 transcriptome using long-read 

sequencing. To achieve this, we combined full length transcriptome (PacBio) and short-read 

(NGS) RNA sequencing into a unified RNA isoform identification pipeline (Supplemental Figure 

1). After integrating our data with transcript annotation in GENCODE (Fig. 4A), we identified 

45,223 protein-coding transcripts with 32,612 open reading frames (ORFs) across 11,605 genes 

(Fig. 4B). Among these, 20,420 (45%) transcripts were detected in both our PacBio data and 

GENCODE, highlighting a strong concordance between full-length transcripts and 

GENCODE-annotated expressed transcripts. Additionally, 15,453 GENCODE-only transcripts 

lacked evidence in the PacBio dataset but were retained for further analysis due to their 

detection in our NGS data. Interestingly, 7,652 transcripts (17%) were detected exclusively by 

PacBio but not in GENCODE, potentially representing novel alternative splicing events. As an 

example, we examined the TMPO gene and found that our integrated annotation provides a 

comprehensive and non-redundant representation of RPE-1 transcripts and ORFs. Specifically, 
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we identified seven transcripts and four ORFs. These correspond to the four major TMPO 

isoforms (Fig. 4C) and have also been identified on protein level by our IsoFrac pipeline (Fig. 

4D). 

Next, we integrated protein isoform data with transcript isoforms by repeating our isoform 

mapping approach, this time using a custom protein sequence database derived from 

RPE-1-specific ORFs (PacBio database). To ensure compatibility with our previous analysis, we 

applied the same regression model used for UniProt-based isoform assignments. Using the 

PacBio database, we achieved a prediction performance of 0.83 (AUC), slightly surpassing the 

0.81 AUC obtained with UniProt (Fig. 4E). 

Having an integrated transcriptome and proteome isoform dataset allows us to directly 

assess the ongoing question of how much alternative splicing contributes to proteome 

complexity, a topic of active discussion and differing perspectives 5,9. To address this, we 

assigned each protein isoform to its best-matching ORF in an exclusive manner, meaning that 

once an ORF was assigned to a protein isoform, it was not reused for another assignment. 

Using this approach, we mapped protein isoforms to approximately 50% of the 24,376 ORFs 

identified from genes detected in both the transcriptomic and proteomic datasets (Fig. 4F, left). 

At first glance, this might suggest that only a fraction of alternatively spliced transcripts are 

translated into stable protein products. However, a direct comparison between transcriptomic 

and proteomic datasets must account for technical differences between the two methods. 

Specifically, our SDS-PAGE-based protein separation cannot distinguish protein isoforms with 

similar molecular weights, which may lead to an underestimation of protein diversity. To correct 

for this, we collapsed ORFs encoding proteins that differed by less than 10 kDa into a single 

entry, which increased the coverage to over 60% (Fig. 4F, Supplemental Fig. 2). Another factor 

is protein abundance, as low-abundant protein isoforms may escape detection. Indeed, when 

restricting the analysis to transcripts with TPM >3, coverage increased to over 70% (Fig. 4F, 

Supplemental Fig. 2). Combining both adjustments — collapsing ORFs by molecular weight and 
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applying an abundance filter — further increased the protein detection rate to 78%. In summary, 

these findings indicate that most alternatively spliced transcripts that are detectable with our 

technology are indeed translated into stable proteins, supporting previous observations using 

different proteomic approaches 21.  
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Figure 4: Integration of RNA PACBIO Sequencing data A) Label assignment strategy 
of obtained transcripts. The upper block: transcripts from GENCODE annotation; The 
middle block: transcripts from PacBio; The bottom block: integrated annotation. See 
Method for details. B) Number of transcripts and ORFs per gene across different 
annotation categories (left) and across identified variants per gene (right). C) 
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Visualization of RNA-seq coverage and isoforms for TMPO gene. Tracks in red: 
RNA-seq coverages from NGS, with two replicates; Blocks in black: transcripts in 
integrated annotation for TMPO genes, categories of each transcript are labelled with 
different colours. Names of ORFs are labelled on the left. D) Isofrac peptide traces 
across fractions for TMPO. Identified protein isoforms are depicted by a red star and 
the corresponding estimated MW in kD. E) ROC of different metrics for predicting the 
best matching PACBIO entry for each IsoFrac isoform. F) Percentage of isoforms 
detected at the RNA (green) or RNA and protein level (red). Different technical biases 
were considered in addition to have a more realistic estimate: 1. MW resolution of 
Isofrac: Proteins in the RNA database from the same gene were merged, if their MW 
difference is below 5 kD. 2. RNA abundance, proteins were excluded from the 
analysis, if the transcript abundance was below 3 TPM.   

 

Most database specific protein assignments are protein cleavage 
products 
 

Our dataset provides evidence for previously unannotated protein isoforms, as several 

genes exhibit multiple protein isoforms despite being annotated with only a single one (Fig. 3F). 

These isoforms could result from RPE-1-specific alternative splicing. To investigate this, we 

mapped each protein isoform to both UniProt and the PacBio database. More than 75% of 

isoforms showed identical assignment scores, indicating they mapped equally well to both 

references (Fig. 5A). Only a few hundred isoforms aligned more strongly with PacBio, 

suggesting that RPE-1-specific alternative splicing contributes to a relatively small fraction of the 

observed protein isoforms. This implies that most alternatively spliced mRNAs are already 

annotated in UniProt. 

 

In contrast, many protein isoforms mapped better to UniProt than to the PacBio-derived 

database. To understand this discrepancy, we examined UniProt annotations and found that 

isoforms aligning more closely with UniProt were significantly enriched in the "processing" 

category. This aligns with expectations, as the PacBio database does not capture protein 

isoforms generated by posttranslational modifications. 
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To explore this further, we compared the observed molecular weights of protein isoforms 

to their best-matching entries in UniProt and PacBio. For over 3,000 isoforms, the observed 

molecular weight closely matched (within 10 kDa) annotations in both databases, supporting the 

accuracy of our approach. However, we identified cases where the molecular weight was 

consistent with UniProt but lower than the corresponding PacBio entry ("UniProt correct minus"). 

These isoforms were enriched in the "processing" category, further supporting the role of 

proteolytic processing in generating protein isoforms. For most isoforms with mass deviations, 

the shift relative to both UniProt and PacBio was similar, reinforcing the idea that alternative 

splicing alone does not explain most unannotated isoforms and highlighting the role of 

translational and posttranslational processing in proteome diversity. 

 

While alternative splicing accounts for only a minor fraction of newly identified protein 

isoforms, we examined whether our proteomic data provide peptide-level evidence for novel 

splice variants detected in the PacBio dataset. We identified seven peptides that uniquely 

mapped to the PacBio transcriptome but were absent from UniProt at the time of analysis. 

These peptides were confidently identified with scores comparable to annotated peptides 

(Supplemental Figure 3) and correspond to novel splice junctions (Fig. 5D and Supplemental 

Figures 4). One of the identified variants is generated by an alternative translation start site that 

was not annotated in the UniProt release used in our search (see Methods). Notably, this variant 

is now included in a more recent UniProt release, supporting the validity of our finding and 

demonstrating that our integrated long-read transcriptome and proteome analysis can anticipate 

updates to genome annotations (Supplemental Figure 4.5). Altogether, while alternative splicing 

is not the primary driver of novel protein isoforms, our approach successfully uncovers a subset 

of previously unannotated, alternatively spliced protein variants. 
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Given that many novel isoforms exhibit lower molecular weights than their best-matching 

UniProt entries, we hypothesized that they arise from posttranslational processing. For instance, 

we detected three isoforms of TEAD3, a transcription factor and key Hippo pathway effector 47. 

The full-length TEAD3 (48.7 kDa) contains an N-terminal DNA-binding domain and a C-terminal 

YAP-binding region. While SwissProt lists only this isoform, TrEMBL predicts a shorter 

N-terminal fragment (20.2 kDa). Our IsoFrac analysis detected both isoforms and revealed an 

additional C-terminal isoform (~30 kDa) that lacks the DNA-binding domain (Fig. 5E, F). Since 

this isoform is absent from the PacBio data, we hypothesized that it arises from posttranslational 

processing. To test this, we generated N- and C-terminally tagged TEAD3 constructs and 

transiently expressed them in RPE-1 cells. To rule out alternative splicing as a source of 

different isoforms, we used codon-optimized cDNA lacking introns and differing in nucleotide 

sequence from the endogenous TEAD3 mRNA. Western blotting of the C-terminally tagged 

construct detected prominent bands for both the full-length and the additional C-terminal 

isoform, validating our findings (Fig. 5G). We also created N- and C-terminal tags for three 

additional proteins and observed bands consistent with PepCP-based isoforms (Supplemental 

Figure 5). In summary, our integrated proteomic and transcriptomic analysis suggests that while 

alternative splicing contributes to proteome complexity, posttranslational processing plays a 

more prominent role than previously appreciated. 
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Figure 5: Validation of new protein isoforms A) Number of identified Isoforms 
based on the best scoring candidate from PACBIO or UniProt (left barplot) and 
corresponding fractions of protein isoform generating processes (right barplot). 
P-values < 0.01 from an hypergeometric enrichment test are depicted in the figure. B) 
Pairwise Δmass  
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comparison (IsoFrac Mass - Database Mass) of PACBIO against Uniprot matches for 
a selected subset (any score of an isofrac database pair > 0.8). Seven different 
groups have been defined, based on the position with this plot: “Correct Mass” 
(PACBIO and UniProt masses are similar to identified IsoFrac mass); “Same Offset 
Mass” (PACBIO and UniProt masses are similar but different from the corresponding 
IsoFrac mass); “PACBIO Zero +/-” (PACBIO mass is correctly assigned, but UniProt is 
+/- off); “UniProt Zero +/-” (UniProt mass is correctly assigned, but PACBIO is +/- off) 
and “Other”. The corresponding barplot depicts the numbers of isoforms belonging to 
these groups. Only Peaks with a Score > 0.8 in UniProt or PACBIO have been 
selected for the analysis. C) Enrichment analysis of Uniprot related Isoform categories 
within different Δmass categories from (B). The p-value from hypergeometric testing is 
depicted in the figure for significantly enriched fractions. D) The Sashimi Plot 
demonstrates that short-read NGS, PacBio sequencing, and peptide alignments 
support the newly identified transcript of FMNL2 (ENSG00000157827). The left panel 
shows read coverage and splice junctions from NGS, while the right panel highlights 
peptide alignment to the transcriptome, including the novel transcript from PacBio and 
known GENCODE annotations. Arc labels indicate splice junction read counts. E) 
Peptide zscore traces from the Isofrac analysis. The three identified isoform 
candidates and their estimated MWs are marked with a red star in the figure. The 
western blot of TEAD3 is depicted on the right side. F) Meta Gene Position analysis of 
the peptides identifying the three different isoform candidates of TEAD3. G) Western 
Blot analysis of a TEAD3 pull down using a construct with either n-terminal or 
c-terminal Tag.  
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Discussion 

Despite extensive efforts to characterize transcript diversity, a systematic mapping of 

protein isoforms has remained elusive. Here, we demonstrate that peptide correlation profiling 

(PepCP) enables the global identification of over 16,000 protein isoforms, providing a 

comprehensive view of proteome diversity in RPE-1 cells. By integrating these data with 

long-read transcriptomics, we provide an integrated landscape of mRNA and protein isoforms 

(https://www.proteinisoforms.mdc-berlin.de). Our data reveals that the majority of alternatively 

spliced isoforms that are technically detectable at the protein level are captured in the proteomic 

data. Notably, we also identify numerous protein isoforms that have not yet been annotated, with 

the majority likely arising from proteolytic processing rather than alternative splicing. Collectively, 

these findings highlight posttranslational processing as an important contributor to proteome 

complexity and underscore the importance of integrating transcriptomic and proteomic 

approaches for a more complete understanding of isoform diversity. 

The systematic identification of protein isoforms remains a major challenge. In 

conventional bottom-up workflows, proteins are enzymatically digested into peptides, thereby 

severing the link between peptides and their protein isoform of origin—a limitation commonly 

referred to as the protein inference problem 15. One strategy to mitigate this issue is ultradeep 

bottom-up proteomics, which combines multiple proteases, extensive peptide fractionation, and 

diverse fragmentation methods to maximize sequence coverage 21. While this approach 

increases the likelihood of detecting isoform-specific peptides, it does not fundamentally resolve 

the ambiguity introduced by shared peptide sequences. Top-down proteomics, in contrast, 

analyzes intact proteins and can directly resolve protein isoforms 11. Recent advances have 

substantially improved its sensitivity and resolution, with applications now extending to 

single-cell analysis 6,12,13,48. However, top-down approaches still fall short of the proteome-wide 

coverage achieved by transcriptomics or deep bottom-up workflows. Our peptide correlation 
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profiling (PepCP) approach circumvents these limitations by leveraging protein-level separation 

through SDS-PAGE prior to bottom-up mass spectrometry. This strategy directly resolves intact 

proteins by molecular weight and retains this information at the peptide level, allowing protein 

isoforms to be distinguished based on their migration profiles. Prior methods infer proteoform 

identity from co-variation of peptide abundance across biological perturbations or protein 

complexes 18,19, or from peptide melting behavior across cell lines 22. While such approaches 

offer valuable functional insights, they do not provide direct information on intact protein size or 

enable integration with full-length transcript isoforms from the same sample. Our 

SDS-PAGE-based approach enables the detection of protein isoforms even in the absence of 

unique peptides and provides orthogonal information on their apparent molecular mass. By 

integrating the resolving power of SDS-PAGE with the depth of shotgun proteomics, PepCP 

offers a scalable and broadly accessible strategy for proteome-wide identification of protein 

isoforms, helping to close the gap between transcriptome complexity and protein-level evidence. 

While PepCP enables proteome-wide isoform detection, several limitations should be 

noted. First, the resolving power of SDS-PAGE is inherently restricted, making it difficult to 

distinguish isoforms with similar molecular weight. Second, for proteins with complex peptide 

migration profiles — due to broad peaks, overlapping species, or low signal-to-noise ratios — 

automated isoform assignment can be ambiguous. Finally, although SDS-PAGE primarily 

separates proteins by size, migration behavior can also be affected by charge, hydrophobicity, 

or residual secondary structure, potentially leading to inaccuracies in apparent molecular weight 

estimates 49,50. These factors highlight the need for cautious interpretation and suggest that 

integrating orthogonal separation strategies may further enhance isoform resolution in future 

studies. 

The limited detection of isoforms in standard proteomic datasets has led to the view that 

many alternatively spliced transcripts may not yield stable protein products, and that most genes 

predominantly express a single protein isoform 9,10. However, by accounting for the technical 
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constraints of our approach — particularly molecular weight resolution and protein abundance 

— we find that the majority of alternatively spliced transcripts do give rise to detectable protein 

isoforms. This finding is consistent with recent ultradeep shotgun proteomic studies and 

reinforces the notion that alternative splicing is a major contributor to proteome complexity 21. 

Because our approach provides a global and annotation-independent view of protein 

isoforms, it enables an unbiased comparison between observed and annotated isoform 

diversity. According to existing annotations, most protein isoforms detected arise from 

alternative splicing. However, we also observe multiple isoforms for many genes that are 

annotated to produce only a single protein isoform, indicating that current reference annotations 

remain incomplete. Interestingly, alternative splicing appears to account for only a small fraction 

of this unexplained diversity: while our combined long-read transcriptome and proteome data 

identify several RPE-1–specific isoforms, these represent only a minor subset of the newly 

observed protein isoforms. 

Multiple lines of evidence from our data suggest that proteolytic processing contributes 

more substantially to proteome diversity than previously appreciated. We detect a large number 

of protein isoforms that cannot be explained by alternatively spliced transcripts present in RPE-1 

cells, and notably, most of these novel isoforms are shorter than their annotated counterparts. 

Given our ability to efficiently detect proteolytic cleavage products—including many known 

processing events—these observations strongly suggest that a significant fraction of the newly 

observed isoforms arise through posttranslational proteolysis. While we cannot globally exclude 

alternative translation initiation or termination as potential sources of N- or C-terminal isoforms, 

this mechanism is unlikely to account for the isoforms we selected for validation. In these cases, 

including TEAD3, isoforms were detected following transfection of codon-optimized cDNAs with 

heterologous 5′ and 3′ UTRs, which are not expected to support alternative translation in the 

same way as endogenous transcripts. Importantly, it is also unlikely that these additional 

isoforms result from nonspecific degradation: protease inhibitors were included throughout the 
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workflow, and the observed isoforms display well-defined molecular weights rather than the 

diffuse profiles expected from random cleavage products. More broadly, current isoform 

annotations may be inherently biased toward transcript-derived variants, as splicing isoforms 

can be readily inferred from RNA sequencing, whereas proteolytic isoforms require direct 

protein-level evidence for detection. As a result, a large fraction of the protein isoform landscape 

— particularly those shaped by posttranslational mechanisms — may remain uncharted. 

Together, our findings provide a comprehensive and experimentally grounded view of 

isoform diversity at both the transcript and protein levels. By combining deep full-length 

transcriptome sequencing with peptide correlation profiling, we show that a substantial fraction 

of transcript isoforms are translated, and reveal that posttranslational processing contributes 

significantly to the generation of protein diversity—often beyond what is captured by current 

annotations. These insights not only highlight the importance of integrated proteogenomic 

approaches for isoform discovery, but also underscore the need to revise existing models of 

proteome complexity that focus predominantly on alternative splicing. As methods for intact 

protein analysis continue to advance, and as more cell types and conditions are explored, we 

anticipate that similar strategies will enable increasingly detailed and dynamic maps of the 

human protein isoform landscape. 
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	Summary 
	Alternative splicing and proteolytic processing expand the functional diversity of the human proteome by generating distinct protein isoforms from a single gene. However, the extent to which transcript isoforms give rise to distinct protein products remains unclear, in part due to technical limitations in proteomic workflows. Here, we combine full-length mRNA sequencing with SDS-PAGE-based protein fractionation and quantitative mass spectrometry to construct an integrated landscape of mRNA and protein isoforms in human RPE-1 cells. To overcome the inherent ambiguity of bottom-up proteomics in isoform detection, we developed IsoFrac, a computational pipeline that resolves protein isoforms based on their migration profiles across gel fractions. This approach enabled the identification of ~45,000 full-length transcripts, ~32,000 ORFs, and ~16,000 distinct protein isoforms. Comparative analyses revealed widespread translation of alternative transcripts and uncovered proteolytic processing as a major, underappreciated
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	Sample Preparation 
	Lysis. hTERT RPE-1 cells were seeded on 15cm plates until ~80% confluency, then washed and scraped with ice-cold PBS, collected into 15ml falcons, washed again and centrifuged (500g, 3min, 4˚C). Cell pellets were lysed at room temperature (20mM Tris-HCl pH 7.5, 100mM NaCl, 1% SDS, 1mM MgCl2, Protease inhibitors) and immediately boiled (95˚C, 5min). 1µl of Benzonase was added to digest DNA (37˚C, 20min). Lysates were then centrifuged (14,000 rpm, 22˚C, 15min) and the protein concentration in the supernatant was measured via BCA assay (Pierce BCA Protein Assay Kit). The proteins were then reduced (15mM DTT, RT, 30min), alkylated (20mM iodoacetamide, RT, 30min) and quenched (30mM DTT, RT, 30min). To desalt the protein lysate Acetone/Methanol precipitation was done. Namely, 6 volumes of -20˚C Acetone/Methanol (8:1) was added to 1 volume of lysate, vortexed 20s and placed at -80˚C overnight. Next, the samples were centrifuged (14,000rpm, 4˚C, 30min), the supernatant was discarded and pellet was washed again
	Protein Fractionation using GELFrEE® 8100 Fractionation system (Expedeon). The proteins were fractionated according to their electrophoretic mobility employing the GELFrEE (Gel-Eluted Liquid Fraction Entrapment Electrophoresis) fractionation system with liquid phase recovery. We used the 5%- (mass range: 75-500kDa), 8%- (mass range: 35-150kDa) and 10%- (mass range: 15-100kDa) cartridges to generate 28 protein fractions (in total, 84 fractions per sample) according to the manufacturer instructions. Briefly, 150µl of protein sample (112µl-desalted protein, 8µl 1M DTT, 30µl Acetate Sample Buffer X5) was heated (95˚C, 5min) and loaded onto the correspondent cartridge. The protein fractions were collected into 96 well-plates. 
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	Next-generation sequencing (NGS) for total RNA 
	PacBio library preparation and sequencing 
	Full-length transcriptome construction 
	Basic Data analysis  
	Peakfinder Analysis 

	Results 
	Peptide Correlation Profiling (PepCP) Resolves Protein-Level Information from Peptide Data 
	 
	Mapping the Protein Isoform Landscape 
	Long-Read Sequencing Connects Transcriptome Complexity to Protein Isoform Diversity 
	Most database specific protein assignments are protein cleavage products 

	 
	Discussion 
	Acknowledgements 
	Author contributions 
	MS and WC initiated the project and acquired funding. AK, HZ, and MS designed the proteomic experiments. AK performed all proteomic experiments. HZ carried out the proteomic data analysis, developed the IsoFrac pipeline, and created the online protein isoform Shiny tool. QZ, MW and WC designed the transcriptomic experiments.QZ and MW conducted all transcriptomic experiments and data analysis, respectively. LF designed and performed the Western blot analysis of LDLR. MS and HZ wrote the manuscript with input from all authors. 
	Competing financial interest statement 
	The authors declare no competing financial interest.  


