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In brief

Pentimalli et al. extend imaging-based
spatial transcriptomics to 3D and
combine it with ECM profiling. The
multimodal analysis of cellular
neighborhoods in a clinical lung
adenocarcinoma sample revealed
potential molecular drivers of tumor
progression, ECM remodeling, and
immune escape, which could inform
microenvironment-directed therapies in
the future.
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SUMMARY

Tumors are complex ecosystems composed of malignant and non-malignant cells embedded in a dynamic
extracellular matrix (ECM). In the tumor microenvironment, molecular phenotypes are controlled by cell-cell
and ECM interactions in 3D cellular neighborhoods (CNs). While their inhibition can impede tumor progres-
sion, routine molecular tumor profiling fails to capture cellular interactions. Single-cell spatial transcriptomics
(ST) maps receptor-ligand interactions but usually remains limited to 2D tissue sections and lacks ECM read-
outs. Here, we integrate 3D ST with ECM imaging in serial sections from one clinical lung carcinoma to sys-
tematically quantify molecular states, cell-cell interactions, and ECM remodeling in CN. Our integrative anal-
ysis pinpointed known immune escape and tumor invasion mechanisms, revealing several druggable drivers
of tumor progression in the patient under study. This proof-of-principle study highlights the potential of in-
depth CN profiling in routine clinical samples to inform microenvironment-directed therapies. A record of
this paper’s transparent peer review process is included in the supplemental information.

INTRODUCTION of precision oncology, next-generation sequencing technologies

enable the high-throughput screening of druggable mutations,
In the past decades, the discovery of oncogenic mutations central to selecting the most effective therapeutic approach
altering tumor-promoting intracellular signaling pathways for individual patients. Nevertheless, tumors are complex eco-
sparked the development of an ever-growing arsenal of targeted  systems where tumor cells live in close contact with the sur-
agents that specifically inhibit mutant proteins. Today, inthe era  rounding extracellular matrix (ECM), as well as neighboring
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malignant and non-malignant stromal and immune cells. Besides
oncogenic mutations, cell-ECM and cell-cell interactions affect
tumor phenotypes and shape the tumor microenvironment
(TME) toward tumor promotion or eradication, thus representing
an attractive therapeutic approach.’ In fact, the ECM provides
both the physical substrate for tumor, stromal, and immune
cell migration and can affect virtually any hallmark of cancer
directly via ECM-receptor interactions and indirectly modulating
chemokine and growth factor availability.” At the same time, re-
ceptor-ligand interactions between malignant, stromal, and im-
mune cells also affect the balance between tumor growth and
suppression, immune recognition and escape, and therapy
response and resistance.’ As demonstrated by the efficacy of
immunotherapies, blocking specific cell-cell communication
axes can rewire the TME and lead to sustained therapeutic re-
sponses in selected patients.” Therefore, the in-depth integrative
study of ECM composition and cell-cell interactions in the TME is
particularly attractive to pinpoint the drivers of tumor progression
and identify therapeutic vulnerabilities in individual tumors
beyond genetic mutations.

In particular, non-small cell lung cancer (NSCLC), which ac-
counts for >80% of lung cancers, represents a prime example
of precision oncology.® Despite the personalized administra-
tion of targeted therapies,® therapeutic responses are often
short-lived, and NSCLC remains the main cause of cancer-
related death.” At the same time, 20% of advanced NSCLC
patients respond to immunotherapy, while up to 30% of
treated patients suffer from immune-related adverse events.®
Therefore, the identification of personalized biomarkers
beyond druggable mutations represents an urgent unmet clin-
ical need to maximize therapeutic efficacy and limit toxicity
in NSCLC.

Currently, tumor molecular profiling in the clinic relies on the
bulk analysis of tumor genomes and transcriptomes, which fails
to capture the heterogeneity and spatial organization of the TME.
While single-cell omics have been successfully applied to profile
the cellular and molecular composition of the TME,® tissue disso-
ciation invariably leads to the loss of position information and
fails to profile interactions among neighboring cells. At the
same time, the sequential alignment of individual sections
stained with hematoxylin and eosin (H&E) staining'® or profiled
with multiplex immunofluorescence’' and imaging mass cytom-
etry'? enabled the initial exploration of the TME even in 3D at
the morphological and cellular level, respectively. However,
measuring tens of proteins prevented the simultaneous
study of molecular phenotypes and receptor ligand in
cellular neighborhoods, central to understanding which cell-
cell interactions—among a plethora of well-known ones—drives
tumor progression in individual patients. Conversely, spatial
transcriptomics (ST) methods map the expression of hundreds
to thousands of gene targets in intact tissue sections and have
profoundly changed our ability to characterize gene expression
in space.'® In particular, imaging-based ST methods, such as
CosMx Spatial Molecular Imager (CosMx),"* use in situ hybridi-
zation probes for the sensitive detection of their targets at sin-
gle-molecule resolution and enable the high-plex profiling of
routinely collected, formalin-fixed paraffin-embedded (FFPE)
clinical samples. Nevertheless, high-resolution ST methods
have not yet been used for reconstructing FFPE specimens in

2 Cell Systems 16, 101261, May 21, 2025

Cell Systems

3D, and tissue molecular properties have thus far been isolated
from the contextual ECM composition.

Here, we present the 3D, multimodal map of a clinical tumor
sample measuring the expression of 960 genes with CosMx
together with ECM second harmonic generation (SHG) imaging
(data can be explored interactively at http://lung-3d-browser.
mdc-berlin.de/). The computational alignment of consecutive
sections using our tool STIM'® enabled the reconstruction of
3D cellular neighborhoods and captured the organization of
the TME in multicellular niches. At the same time, SHG quantified
elastin and collagen content in cellular neighborhoods and
captured a continuum of ECM remodeling in the TME.
Combining SHG with ST then revealed which ECM regulators
were expressed by fibroblasts and which fibroblast molecular
states were spatially restricted to sites of ECM remodeling.
Finally, the combination SHG and 3D ST enabled the in-depth
profiling of cellular interactions in the TME and identified which
interactions mediated tumor progression in situ, including tar-
gets of already approved agents. In this proof-of-principle study,
we highlight the power of in-depth spatial molecular tumor
profiling to pinpoint which among a plethora of well-known
mechanisms drives tumor progression in individual patients,
central to inform mechanism-based, personalized therapies.

RESULTS

Multimodal study of one aggressive, routinely collected
NSCLC tumor in 3D

We focused on an early-stage NSCLC patient, who demon-
strated rapid disease progression and aggressive tumor biology
(Figure S1A). To reconstruct 3D cellular neighborhoods, we cut
34 consecutive 5 pm-thick tissue sections from a routinely
collected, archival FFPE block (surgical resection specimen
from the primary tumor, Figure 1A). We leveraged deep-
learning-based classification of tumor, stromal, and normal
lung-resident compartments (STAR Methods) of a whole-slide
H&E image to select a 16 mm? wide region of interest (ROI)
featuring the copresence of both the primary tumor and can-
cer-associated stroma for ST investigation (Figure 1B). Further-
more, we reasoned that the presence of small-caliber airways
crossing the section planes would provide anchoring points for
section alignment in 3D. We then collected single-cell resolved
ST data from every 6" section (30 pm section-to-section interval)
and profiled intervening sections with complementary modal-
ities, enabling the integrative analysis of tissue morphology,
ECM composition, protein markers, and gene expression.

Molecular histology of the TME at single-cell resolution
To gain insights into the spatial organization and crosstalk
between tumor, stromal, and immune populations, we per-
formed 1000-plex RNA in situ hybridization (ISH) with CosMx
and leveraged deep-learning-based cell segmentation of nuclei
and plasma membranes to obtain single-cell gene expression
profiles (STAR Methods). We profiled 960 cancer-related genes,
allowing the simultaneous characterization of cellular identities,
transcriptomic states, and cell-to-cell communication in
the TME.™

To assess data quality, we first quantified counts from 20
negative probes (i.e., targeting sequences not present in
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Figure 1. Molecular histology of the TME at single-cell resolution

(A) Experimental design for the 3D reconstruction and multimodal profiling of cellular neighborhoods. 34 consecutive 5 um sections were cut from one non-small
celllung cancer (NSCLC) tumor block. Second harmonic imaging (SHG, quantifies collagen and elastin), hematoxylin and eosin (H&E, detects tissue morphology),
ST (1000-plex RNA in situ hybridization with CosMx), and immunofluorescence (IF) were combined for multimodal spatial profiling. Gray: sections collected on a
glass slide but not processed.

(B) Deep learning-based identification of a tumor and stroma-rich region of interest (ROI, black square). Semantic segmentation of the whole-slide H&E image in
carcinoma (red), stroma (orange), and normal lung (not colored) regions.

(C) 18 epithelial, stromal, and immune cell types compose the TME. UMAP of cellular gene expression colored by cell type identity (CosMx data generated in
this study).

(D) Molecular histology matches tissue morphology. Top left and bottom right: H&E staining (section 3). Top right and bottom left: CosMx cells colored by their
assigned cell types (section 4).

(E) Congruence of gene expression profiles in segmented cells with single-cell RNA sequencing references. UMAPs of cellular gene expression colored by label
transfer scores from healthy'® and tumor'” published atlases.

human tissues), which composed only 0.27% of detected mol- segmented cells (101 median genes and 198 median tran-
ecules, demonstrating highly specific detection of target genes.  scripts/cell). Near-perfect correlations of total transcript counts
We then verified the colocalization of pan-cytokeratin (panCK) confirmed robust gene expression profiling across sections
protein staining and KRT19 transcript ISH signal in the same  with hierarchical clustering recapitulating section spatial ar-
section (Figure S1B). Overall, we imaged 155,055,865 tran- rangements (Figure S1D).

scripts distributed in six sequential, non-consecutive ROls Unsupervised clustering of gene expression in segmented
(Figure S1C) and assigned 74.1% of transcripts to 340,644 cells (Figure S1E) identified 18 cell types (Figure 1C), annotated
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based on the expression of canonical marker genes (Figure S1F)
and IF positivity to panCK staining (Figure S1G). In line with pre-
vious reports,'® tumor cells were characterized by a larger cell
size and higher transcript counts. Transferring cell type annota-
tions back to their tissue positions, the spatial patterns of airway
epithelial cells (Figure 1D), tumor, stromal, and immune popula-
tions corresponded with those evident from routine histology
(Figures S1H and S1l). Finally, comparison of gene expression
in segmented cells with published single-cell RNA sequencing
atlases confirmed the agreement of our cell type annotations
with healthy lung'®'® and NSCLC atlases'” (Figure 1E).

In summary, we generated a high-quality, single-cell-resolved
molecular atlas of the TME, encompassing more than 340,000
cells from 18 epithelial, stromal, and immune cell types, and pro-
ceeded to explore their 3D neighborhoods.

3D neighborhoods enable the unbiased identification of
TMEs multicellular niches

To reconstruct 3D cellular neighborhoods, we leveraged STIM, '°
which employs state-of-the-art computer vision techniques, to
computationally align ST data and generate a 3D molecular
map of the TME at single-cell resolution. Owing to the precise
positioning of the ROIs during data collection, relatively minor
transformations were required for 3D image registration (median
cell displacement: ~42 pum) (Figure S2A), which would, however,
alter 3D cellular neighborhoods if uncorrected. Furthermore,
visualization of respiratory epithelium cells in 3D revealed the ex-
pected airway lumen continuity (Figure 2A).

As cellular activities and molecular profiles are shaped by the
surrounding tissue microenvironment,'® we defined 3D neigh-
borhoods for each cell as a spherical space encompassing all
cells located within a 50 um center-to-center distance (Figure 2B)
and grouped cells sharing the same tissue microenvironment—
regardless of their gene expression. Unbiased clustering of 3D
neighborhoods revealed 10 multicellular niches sharing a spe-
cific neighborhood composition (Figures 2C, S2B, and S2C).
These included both lung-resident epithelial (i.e., “airways”
and “alveoli”) and stromal (i.e., “smooth muscle”) niches and
TME-specific tumor, stromal, and immune niches (Figure 2D).
3D neighborhoods distinguished the “vascular stroma” —rich
in vascular endothelium and pericytes —from the “desmoplastic
stroma,” featuring the highest fibroblast and plasma cell density.
High numbers of tumor cells characterized the 3D neighbor-
hoods of two distinct niches, which we annotated as “tumor
core” and “tumor surface.” Therefore, the tumor bed was
composed of the tumor core, featuring a higher cellular density
but a lower cellular diversity (Figure S2D) (i.e., dominated by tu-
mor cells), and the tumor surface with higher fibroblasts, macro-
phages, and cytotoxic T cell (CTL) counts, compatible with its
position at the tumor-stromal boundary. Tumor cells were also
abundant in “dendritic cell niches” and “macrophage niches”
but not in “T cell niches.”

Mapping niche annotations back to their tissue positions al-
lowed the comparison with manual annotations of routine H&E
histology by an experienced pathologist. Multicellular niches
closely followed tissue architectures visible by routine histol-
ogy, including airways, alveoli, lymphocyte aggregates, tissue
fibrosis, and smooth muscle in the tunicae of larger blood ves-
sels (Figure 2E). Furthermore, multicellular niches distinguished
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smaller vessels from the surrounding stroma and provided a
more granular annotation of tumor, immune, and stromal
niches.

In summary, we leveraged our 3D tumor atlas to analyze over
200,000 cellular neighborhoods and identify 10 distinct,
repeating, and spatially organized multicellular niches in
the TME. Niches corresponded to and extended expert annota-
tions of morphological tissue structures, highlighting the ability
of 3D neighborhoods to capture the spatial organization of
the TME.

3D neighborhoods improve the identification and spatial
mapping of intratumoral immune niches

As cells live and interact in 3D tissues, we hypothesized that
analyzing 3D cellular neighborhoods would improve our ability
to study multicellular niches. Therefore, we systematically
compared 2D and 3D neighborhoods in the patient under study
(Figure 3A). By design, 3D neighborhoods included cells from the
sections immediately above and below the z plane (STAR
Methods), comprising a 2.28-fold larger area than their 2D coun-
terparts. As expected, 2D neighborhoods featured a lower num-
ber of neighbors and lower cell type diversity than their 3D coun-
terparts (median of 71 cells from 9 cell types/neighborhood in 3D
vs. 32 cells from 7 cell types in 2D, p < 0.005), confirmed by a
lower alpha diversity—a common measure of species richness
in ecology studies (median Chao index 3D: 10.5 vs. 2D: 8,
p < 0.005) (Figure 3B).

Comparing the ability of 2D neighborhoods to capture the
TME spatial organization with their 3D counterparts, we noted
that 2D niches largely corresponded to 3D ones and included
a “macrophage-rich stroma” (Figures 3C and S3A-S3C).
However, 2D niches failed to identify “dendritic cell niches,”
which were validated by IF staining (Figure S3D). In fact, cells
assigned to dendritic cell niches in 3D were mainly reassigned
to the tumor surface (51.2%) and T cell niches (23.6%) in 2D.
Extending such a comparison to all multicellular niches, we
observed that 64.1% of cells were assigned to the same niche
in 2D and 3D overall. However, rates varied across niches,
and T cell niches featured the lowest concordance (46.2%).
In 2D, 35.3% of cells assigned to T cell niches in 3D were re-
assigned to the desmoplastic stroma with a consequent
reduction in niche size (32,272 cells in 3D vs. 17,355 cells in
2D) (Figure 3D). Leveraging 3D rendering (STAR Methods),
we compared the spatial localization of T cell niches in 2D
and 3D and observed that 3D-specific cells surrounded and
formed bridges between seemingly disconnected patches of
T cell niches already identified in 2D, restoring their spatial
continuity (Figure 3E).

Finally, we sought to further investigate the 3D spatial relation-
ships between the tumor surface and immune niches in TME. We
confirmed how the “tumor surface” precisely interlocked and
covered the “tumor core” in 3D and demonstrated the spatial
continuity of the tumor surface with dendritic and macrophage
niches (Figure 3F). By contrast, T cell niches were not embedded
in the tumor surface but rather located further away in proximity
to larger airways or dispersed in the stroma.

Overall, the study of 3D cellular neighborhoods revealed the
complexity and richness of cellular microenvironments. In the
patient under study, 3D analyses improved the spatial mapping
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(A) Airways cross multiple sections in 3D. 3D plot of the 6 CosMx sections after registration with STIM. Green: respiratory epithelium cells, gray: other cell types.
Axes are scaled to the same length for visualization purposes.

(B) Design and analysis of 3D cellular neighborhoods. Left: exemplary 3D neighborhood. Red: center cell, dark green: tumor cells, orange: fibroblasts, gray: other
cell types. Right: quantification of cell types in 3D neighborhoods is used to build the 3D neighborhood matrix. Tumor cells, fibroblasts, and macrophages are
shown out of 18 cell types quantified.

(C) The TME is formed by lung-resident, tumor, stromal, and immune multicellular niches. UMAP of 3D cellular neighborhoods and colored by 3D niche as-
signments. Cells are grouped based on their 3D neighborhood composition, regardless of their gene expression.

(D) The composition of 3D neighborhoods guides multicellular niche annotation. Heatmap of niche-specific average cell type counts in 3D neighborhoods. Color
scale is clipped to 30 for visualization purposes.

(E) 3D multicellular niches capture the spatial organization of the TME. Comparison of 3D niche spatial localization (left, section 10) with pathologist manual

annotations of H&E tissue domains (right, section 3).

of T cell niches and distinguished dendritic cell niches from the
surrounding tumor surface.

3D neighborhoods enable the systematic study of
ligand-receptor interactions in TMEs multicellular
niches

The TME is a dynamic tissue shaped by the crosstalk between
tumor, stromal, and immune cells.® To systematically study
cell-cell communication between proximal cells, we leveraged
the sensitive detection (1-2 molecules/cell’®) of receptor and
ligand transcripts in 3D cellular neighborhoods and estimated
the spatial activity of 480 receptor-ligand pairs annotated in

the CellChat database”® (Figure 4A). To identify ligands that
could drive the spatial organization and function of
specific multicellular niches, we further grouped receptor-ligand
pairs into 165 ligand-based axes and quantified the signal
received by each individual cell from its 3D neighbors (max
50 um center-to-center distance, Methods). Comparing ligand
activities within and outside each niche, we identified 96 ligands
to be enriched (logoFC > 0.5) in at least one niche (Figure 4A).
These included well-known endothelial (ESAM and CDH5) and
pericyte (PECAM1) cell-cell adhesion molecules in both vascular
and alveolar niches (Figure 4B), as well as PDGFB interactions,
restricted to vascular niches (Figure 4C). At the same time,
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Figure 3. 3D neighborhoods improve the identification and spatial mapping of immune niches

(A) Design of 2D and 3D cellular neighborhoods. Cells in a 50 pm-radius circle around the center cell compose its 2D neighborhood (blue), while cells in a 40 um-
radius circle in the sections above and below are unique to its 3D neighborhood (orange).

(B) 3D neighborhoods are richer than their 2D counterparts. Distributions of the total number of neighbors (left), unique cell types (middle), and alpha diversity
(right) for each cellular neighborhood in 2D (blue) and 3D (orange). ****: t test p values < 0.005, n = 218,378.

(C) Dendritic cell niches are only identified in 3D. UMAP of 2D cellular neighborhoods colored by 2D multicellular niche assignments.

(D) T cell niches have the lowest 2D-3D concordance. Alluvial plot of multicellular niche assignments. Lines follow the same cell in 3D (left) and 2D (right). Color

legend in (C).

(E) 3D neighborhoods capture the spatial continuity of T cell niches. Blue: 3D surface rendering of “T cell niches,” red: cells assigned to “T cell niches” in 2D, gray:

“tumor core and surface.”

(F) 3D neighborhoods reveal the 3D spatial relationships between multicellular niches in the TME. 3D rendering reveals how the “tumor surface” (red) covers the
“tumor core” (yellow). “Dendritic cell niches” (purple) and “macrophage niches” (pink) are embedded in the tumor surface, while “T cell niches” (blue) are found

mainly outside of the tumor bed.

epithelial adhesion molecules (CDH1) and tumor-promoting
EFNA1 and AREG signaling were restricted to tumor bed (Fig-
ure 4D), while pro-fibrotic ligands (IGF1 and FGF7) and
collagen-receptor interactions were enriched in the desmoplas-
tic stroma. In line with their role in the recruitment (i.e., chemo-
taxis) of specific immune cell populations, the T cell chemoat-
tractant CCL5 (also known as RANTES)*' was enriched in
T cell niches, while CCL3 (also known as macrophage inflamma-
tory protein 1-alpha) was restricted to macrophage niches. On

6 Cell Systems 16, 101261, May 21, 2025

the other hand, CCL19, which regulates the homing and reten-
tion of CCR7+ dendritic and T cells in lymphoid tissues,?
marked the location of both dendritic and T cell niches in the
TME (Figure 4E).

Overall, 3D neighborhoods enabled the systematic study of re-
ceptor-ligand interactions between physically proximal cells and
revealed which ligand activities were spatially organized within
multicellular niches, including well-known drivers of niche-spe-
cific cellular composition and functions.



Please cite this article in press as: Pentimalli et al., Combining spatial transcriptomics and ECM imaging in 3D for mapping cellular interactions in the
tumor microenvironment, Cell Systems (2025), https://doi.org/10.1016/j.cels.2025.101261

Cell Systems

¢? CellPress

OPEN ACCESS

3D spatial activity score Top 5 niche-specific ligands
Vascular stroma — \ Mean ligand
— — spatial activity
Alveoli | B | (zscore)
- AR sl
Tumor surface ‘ !
Desmoplastic stroma o
T cell niches 4
Dendritic cell niches
'
Py Macrophage niches
Receiver cell 1
i N e R A
Activity(L1,, R1,) = y/T “ex;‘:, Riexpres R A EACNS @,),§‘> BRRE VG AQO(QQY(%Q%‘
Receiver aclivity(R1, Ca) = 3 Activity(L 1,0, R1.) N
Sender activty(L1, Cb) = fbAclivily(U o R
&
C PDGFB 3D interaction density D AREG 3D interaction density E CCL19 3D interaction density
0 050 1.00 050 1.00
F Cellular players in Dendritic cell niches signalling network G Tumor cells
o
Dendritic cell recruitment T cell recruitment and inhibition
MIF/CXCR4
Regulatory T c. . @  Spatial Interacting A
activity  cells L
Cytotoxic T c. [ ] ° {scaled) (%) Fibroblasts .
1.0 G -+ Dendritic cells
50 AL
Dendritic c. [ ) [ ) ° o SOEER N
os @40 - CCL19/CCR7
Macrophages [ ] @
Lymphatic end. ke @ 20
Fibroblasts 05 @10
Tumor cells 1
X D 2 A D QA \Sb > %0 L A 0\ "acb Qv
S -*.OQ OO\’ OOQ\ OO&OOQ\ -\-0 -\.OQN 00 (}\Y’ OO{L 00 » QOQ Cytotoxic T cells Regulatory T cells
S S 9) R \,O Q?’ (anti-tumor immunity)  (immune escape)

Figure 4. 3D neighborhoods identify niche-specific interactions and unravel immune inhibitory crosstalk in dendritic cell niches

(A) 3D neighborhoods enable the spatial analysis of cellular interactions. The sensitive co-detection of ligands and their receptors in 3D cellular neighborhoods is
leveraged to quantify ligand 3D spatial activity scores in each receiver cell (STAR Methods).

(B) 3D communication analysis identifies niche-specific ligands. Heatmap of spatial activity z-scores for the top 5 enriched ligand per niche.

(C-E) Ligand spatial activities mark the location of specific niches in the TME. 3D volumetric rendering of ligand spatial activity densities for PDGFB
(vascular niches), AREG (tumor core and surface), and CCL19 (T and dendritic cell niches). Gray: tumor core and surface, purple “dendritic cell niches,” pink:

“macrophage niches,” purple: “T cell niches.”

(F) Cellular and molecular players of the dendritic cell niche signaling network. Dotplot of receptor-ligand interactions enriched in dendritic cell niches. Dot size:
cell type-specific percentage of sender and recipient cells, dot color: cell type-specific scaled average interaction scores as ligand sender (orange) and receptor

receiver (blue).

(G) Immune checkpoint interactions suppress local anti-tumoral immune responses. Summary scheme of selected cellular and molecular interactions in dendritic
cell niches, revealing mechanism-based personalized targets for cancer interception. The pill symbol indicates druggable interactions.

Communication networks within dendritic cell niches
pinpoint active immunosuppressive interactions,
including druggable immune checkpoints

Under the selective pressure of the immune system, tumor
cells eventually develop strategies to suppress anti-tumoral
immune responses, including the reprogramming of antigen-
presenting cells (APCs, i.e., macrophages and dendritic cells).
In turn, APCs may promote the recruitment of regulatory

T cells (Tregs), further restricting the activation of tumor-spe-
cific CTLs.?® In the patient under study, dendritic cell and
macrophage niches were embedded in the tumor surface,
and Tregs were enriched in these niches (Figure S4B). Den-
dritic cells (DCs) are increasingly recognized as key players
in the regulation of local anti-tumoral immune responses, deliv-
ering either immunostimulatory or suppressive signals to tumor
antigen-specific not only in lymph nodes but also locally in the
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TME.?* To investigate immunomodulatory signals in the patient
under study, we focused on the 15 receptor-ligand pairs
spatially localized to dendritic cell niches (Figure S4C). In addi-
tion to chemokine-receptor pairs (e.g., CCL19-CCR7 and
CXCL9-CXCR3), we identified the specific enrichment of key
immune checkpoints.

We then leveraged the directionality of signaling in 3D neigh-
borhoods to map the cellular communication networks underly-
ing such interactions (Figure 4F). For example, fibroblasts
emerged as the main senders of CCL19-CCR?7 interactions
and lymphatic endothelial cells of CCL21, suggesting their cen-
tral role in the formation and/or maintenance of this niche. At the
same time, tumor cells were the only cell type that did not act as
a receiver of chemokine signals, compatible with their role in the
induction of—rather than their recruitment to—dendritic cell
niches. Tumor cells instead acted as the main senders of macro-
phage inhibitory factor (MIF), a potent chemoattractant known to
promote the recruitment and immunosuppressive reprogram-
ming of APCs in in NSCLC.?® Supporting its central role in
shaping anti-tumoral immunity, MIF inhibition decreased Tregs
and promoted CTL infiltration in a melanoma lung metastasis
model.®

In turn, DCs—and macrophages to a lesser extent—were
engaged in immunosuppressive interactions, both directly inhib-
iting CTL activity through the CD274-PDCD1 (PD-L1/PD-1) and
LGALS9-HAVCR2 (Galectin-9/Tim-3) axes and indirectly by pro-
moting Tregs activity through CD80-CTLA4 interactions. At the
same time, CTL accumulated in T cell (logoFC = 1.52) and den-
dritic cell niches (logoFC = 0.43) but failed to infiltrate the tumor
core (logoFC = —2.74) (Figure S4D). Such compartmentalized im-
mune infiltrate is often the result of highly effective immunosup-
pressive mechanisms able to prevent immune-mediated tumor
eradication®” but is predictive of immune checkpoint inhibitor ef-
ficacy, given the high numbers of infiltrating T cells ready to
attack tumor cells once the immunosuppressive signaling axes
have been silenced.***®

Taken together, 3D neighborhoods mapped receptor-ligand
interaction networks in dendritic cell niches, where anti-tumoral
immune responses are orchestrated (Figure 4G). As several
agents targeting these interactions are already approved for
the treatment of NSCLC (e.g., nivolumab and ipilimumab),® our
analysis may provide the molecular rationale for their therapeutic
targeting in the patient under study.

Second harmonic imaging enables the study of the ECM
in cellular neighborhoods

Cellular behaviors are controlled by mechanical and molecular
interactions with both their cellular neighbors and the surround-
ing ECM??; therefore, we integrated our 3D molecular atlas with
measurements of ECM composition in cellular neighborhoods.
In the lung, elastin and collagen are the major ECM compo-
nents.*° Thanks to their optical properties, elastin and collagen
fibers can be quantified with high specificity using second har-
monic imaging (SHG),®" a popular label-free method for the
spatial analysis of ECM composition. Aligning SHG with sin-
gle-cell-resolved ST data in two consecutive sections, we sys-
tematically investigated the relationship between ECM compo-
sition and molecular phenotypes within cellular neighborhoods
(STAR Methods).
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The TME was characterized by a heterogeneous ECM that
closely followed the spatial distribution of main tissue structures,
including airways, blood vessels, alveoli, and the desmoplastic
stroma (Figure 5A), which was validated using Verhoef's Van
Gieson staining of collagen and elastin fibers (Figure S5A). In
terms of ECM composition, cellular neighborhoods are distrib-
uted along a continuum, from elastin rich/collagen poor to an
elastin poor/collagen rich (Figure 5B). To group cells living in a
similar ECM, we unbiasedly clustered cells based on the compo-
sition of their surrounding ECM. We identified 3 ECM compart-
ments using k-means clustering (Figure S5B): one elastin-rich
“homeostatic,” one elastin and collagen poor “degraded,” and
one collagen rich “desmoplastic” ECM compartment. As a pos-
itive control, mapping ECM compartments back to their tissue
positions revealed a clear spatial separation (Figure 5C), which
closely resembled the original SHG images and followed the
spatial distribution of multicellular niches and pathologist anno-
tations (Figure 2E). Comparing the observed and expected
cell-type frequencies (based on a random distribution, see
STAR Methods), we quantified cell type enrichments in specific
ECM compartments (Figure S5C). Lung-resident epithelial (alve-
olar cells log,FC = 1.23, basal epithelial cells log,FC = 1.07, and
respiratory epithelium log,FC = 1.02) and vascular populations
(smooth muscle log,FC = 0.76, pericytes logoFC = 0.53, and
vascular endothelium logoFC = 0.60) were strongly enriched in
the homeostatic ECM, while tumor cells (log,FC = 1.20) were en-
riched in the degraded ECM and plasma cells (log,FC = 0.82) in
the desmoplastic ECM, in line with their abundance in the des-
moplastic stroma niche and their emerging role as promoters
of lung fibrosis.*

Overall, this highlights the ability of SHG to capture ECM dy-
namics in TME cellular neighborhoods, where ongoing remodel-
ing during tumor progression results in the degradation of the
elastic lung ECM and its progressive replacement by a stiff,
collagen-rich matrix.**

Multimodal spatial profiling links fibroblast phenotypes
and ECM compartments

Fibroblasts are the major ECM producers and organizers
throughout the body.** In the TME, cancer-associated fibro-
blasts (CAFs) are responsible for the increased matrix stiffness
and architectural remodeling typical of the malignant ECM.**
CAFs, however, display a remarkable heterogeneity,* also play-
ing critical roles in the shaping of local immune responses medi-
ating the recruitment and activation of immune populations in
the TME.*’

In the patient under study, fibroblasts were the most abundant
cell type and—despite being enriched in the desmoplastic ECM
(logoFC=0.38, 44.5% of fibroblasts)—were highly represented in
the degraded (32.8%) and homeostatic compartments (22.7 %)
as well. Therefore, we hypothesized that the observed changes
in ECM composition could be mediated by fibroblast functional
heterogeneity, rather than by their abundance. The unbiased
analysis of fibroblast molecular profiles (n = 62,604) identified
six transcriptomic states (Figure 5D), which we annotated
through literature-informed review of their marker genes (STAR
Methods, Figure S5D). Their spatial distribution was non-homo-
geneous across the TME (Figure 5E) but showed preferential en-
richments in both ECM compartments and multicellular niches
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Figure 5. Second harmonic imaging links ECM compartments with fibroblast phenotypes in situ
(A) Second harmonic generation (SHG) imaging captures extracellular matrix (ECM) remodeling in the TME. Collagen (green) and elastin (magenta) fibers were

quantified by SHG in section 3.

(B) SHG enables the unbiased assignment of cells to specific ECM compartments. Quantification of elastin (x axis) and collagen (y axis) fibers in cellular
neighborhoods (50 x 50 um area around each cell centroid) highlights the transition from an elastin-rich, collagen-poor homeostatic ECM to a collagen-rich,
elastin-poor desmoplastic ECM. Cells are colored by k-means cluster assignment (k = 3).

1) fibroblast expression density.

(Figures S5E and S5F). Quantification of the collagen and elastin
signals in fibroblast neighborhoods highlighted a close corre-
spondence between fibroblast phenotypes and ECM composi-
tion (Figure 5F): FN1+ COL11A1+ ACTA2+ “myofibroblasts”
were spatially restricted to the degraded ECM in the tumor bed
and surrounded by the lowest collagen signal, while JUN+
FOS+ IGF 1+ activated fibroblasts in the desmoplastic ECM sur-
rounded by the highest collagen levels. On the other hand, LUM+
MGP+ TIMP1+ “matrix fibroblasts,” CD74* HLA-DRB1+ “anti-

C) SHG spatially maps ECM compartments in the TME. Cells in section 4 are colored by their ECM cluster assignments. Color legend in (C).

D) Fibroblasts feature heterogeneous transcriptomic phenotypes in the TME. UMAP of fibroblast gene expression colored by transcriptomic clusters.

E) Fibroblast phenotypes are spatially organized in the TME. Spatial distribution of fibroblast transcriptomic clusters (section 4).

F) Fibroblast phenotypes are linked with ECM remodeling. Boxplot of collagen and elastin fiber abundance in fibroblast neighborhoods across fibroblast clusters.
G-l) Fibroblast expression of ECM regulators is spatially organized within ECM compartments. 3D volumetric rendering of TIMP1 (G), IGF1 (H), and INHBA

gen-presenting,” TIMP1+ CCL19+ and TIMP1+ CXCL10+ “retic-
ular” fibroblasts were surrounded by a homeostatic ECM. At the
same time, antigen-presenting fibroblasts preferentially homed
to macrophage niches, while reticular fibroblasts to dendritic
and T cell niches, compatible with their role in shaping immune
responses in the TME, rather than ECM metabolism.

Seeking to pinpoint which fibroblast factors were involved in
the active metabolism of the surrounding ECM, we focused
on “matrisome” genes: the ensemble of structural ECM
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components (i.e., collagens, proteoglycans, and glycoproteins),
ECM regulators (i.e., matrix metalloproteases), and ECM-affili-
ated proteins (i.e., ECM-bound secreted factors).>® 23 out of
241 measured matrisome genes were enriched in a specific
ECM compartment (Figure S5G). Basal lamina collagens
COL4A1, COL4A2, COL15A1, and COL18A71*° in the homeo-
static ECM, fibril-associated COL14A1°° were enriched in the
desmoplastic ECM, while FN1—a key ECM constituent during
embryonic development, wound healing, and tumorigen-
esis’®—and COL11A1—typically detected at the tumor invasive
front*' —in the degraded ECM. In addition to ECM constituents,
the integrative analysis of ECM composition and fibroblast gene
expression revealed which ECM regulators were restricted to
specific ECM compartments, such as TIMP1 (Figure 5G), a
broad-spectrum inhibitor of MMPs,* in the homeostatic ECM,
the pro-fibrotic ligands IGF1 (Figure 5H) and CXCL12 in the des-
moplastic ECM, and the ECM-associated signaling molecules
INHBA (Figure 5I), IGFBP5, and VEGFA in the degraded ECM.
Notably, the simultaneous upregulation of FN7, COL11A1,
INHBA (Inhibin A, a member of the TGFb superfamily), and
VEGFA was recently identified in a CAF subset restricted to hyp-
oxic TME regions of colorectal cancer patients and linked with
poor patient prognosis.**

Overall, the multimodal profiling of fibroblast neighborhoods
revealed the close association of their transcriptomic states
with specific ECM compartments and multicellular niches and
enabled the identification of key local ECM constituent and reg-
ulators. Given the multiple pro-invasive ECM factors detected in
the tumor bed, we further investigated the relationship between
ECM composition, fibroblast, and tumor phenotypes in
the TME.

Multimodal analysis of tumor infiltration reveals an EMT
niche at the tumor surface

The ability of cancer cells to detach from the epithelial sheet and
infiltrate the adjacent stroma (i.e., “invasiveness”) is a hallmark
of malignant tumors and essential for metastatic dissemina-
tion.** Quantifying the 3D niche assignments of 38,804 tumor
cells, we noted that, while most tumor cells were comprised
within the tumor bed, more than 9,000 tumor cells (24.0%) infil-
trated other multicellular niches (Figure S6A) and were especially
abundant in the desmoplastic stroma (Figure 6A).

To unbiasedly reconstruct the phenotypic transitions of tumor
cells in the TME, we leveraged pseudotime, a popular approach
in the single-cell transcriptomics field to reconstruct dynamic
molecular processes. We first ranked tumor cells from 0/early
to 1/late pseudotime based on gene expression similarity and
identified which genes were underlying these tumor phenotypes.
Compatible with epithelial-to-mesenchymal transition (EMT),*®
epithelial cell adhesion molecules CDH71 and EPCAM were ex-
pressed in early pseudotime cells and then downregulated in tu-
mor cells later in pseudotime (Figure 6B), while ITGB6® and
COL3A1*" and other mesenchymal markers were upregulated
in late pseudotime tumor cells (Figure 6B).*°

Combining pseudotime and 3D niche assignments, we inves-
tigated the spatial distribution of EMT in tumor cells across the
TME and noted how EMT was progressively activated when
transitioning from the tumor core to the tumor surface and
stroma-infiltrating tumor cells (median pseudotime scores:
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0.39, 0.50, and 0.85, p < 0.05) (Figure 6C). Therefore, “pseudo-
space” (intended as distance from the tumor bed) closely fol-
lowed pseudotime, as cells in the tumor bed (i.e., with early
pseudospace) featured an epithelial phenotype (i.e., early pseu-
dotime), and stroma-infiltrating tumor cells (i.e., extending
beyond the tumor bed) featured both a late pseudospace and
pseudotime. However, numerous cells in the tumor bed already
showed a mesenchymal phenotype (i.e., late pseudotime)
despite their localization in the tumor bed (i.e., early pseudo-
space). Notably, these mesenchymal tumor cells did not
distribute uniformly across the tumor core and surface but rather
concentrated in one specific region at the interface with the des-
moplastic stroma (Figure 6D). There, the 3D density of pseudo-
time scores peaked (Figures S6C and S6D), and IF validated
the presence of panCK+ CDH1"°% cells (Figure S6E). The
observed discrepancy between early pseudospace and late
pseudotime suggests that tumor cells acquire pro-invasive mo-
lecular phenotypes in the EMT niche before invading the sur-
rounding stroma.

Mechanotransduction pathways mediate cellular responses
to mechanical stimuli and are central to tumor progression,
from the initial malignant transformation*® to tissue invasion
and metastasis.*® ECM stiffening, which typically accompanies
solid tumors, is indeed a powerful inducer of both tumor EMT*®
and migration (i.e., “durotaxis”).>’ Therefore, we investigated
the relationship between EMT status and ECM composition in
tumor neighborhoods (Figure 6E). While tumor cells infiltrating
the stiff, desmoplastic stroma did feature a mesenchymal
phenotype, tumor cells in the EMT niche lived in a collagen-
poor ECM similar to the rest of the tumor bed (Figure 6F). There-
fore, while collagen deposition, which is the main determinant of
tissue tension, may sustain EMT in infiltrating tumor cells, it
cannot explain EMT induction in the EMT niche. We thus
searched for additional factors that were spatially restricted to
the EMT niche to understand which mechanisms could trigger
tumor invasion.

A wound healing-like communication network activates
tumor integrins in the EMT niche

Tumor invasion represents the first step in the metastatic
cascade—the major cause of cancer-related death—therefore,
mechanistic understanding of the initial steps of tumor invasion
is central to the accurate prediction and early interception of tu-
mor dissemination.®’ We investigated whether tumor cells in the
EMT niche upregulated specific genes that could serve as early
tumor invasion biomarkers. Comparing gene expression in tu-
mor cells inside and outside the EMT niche (Figure S7A), we
identified NDRG1 and LGALST1 as the genes with the strongest
differential expression (Figure 7A). N-myc downstream-regu-
lated gene 1 (NDRG1) promotes stem-like properties in NSCLC
cells®® and recently emerged as the most specific marker of early
brain metastasis (<10 months after diagnosis) in NSCLC pa-
tients.>® In the patient under study, who presented with brain
metastasis 11 months after diagnosis, we show that NDRG1
expression is not only enriched but almost spatially restricted
to tumor cells in the “EMT niche” (Figure 7B), supporting their
involvement in tumor dissemination. LGALS1 (Galectin-1) was
also spatially restricted to the “EMT niche” (Figure 7C). While
NDRG1 is a modulator of intracellular signaling pathways,
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Figure 6. Multimodal analysis of tumor neighborhoods identifies an EMT niche at the tumor surface
(A) 3D neighborhoods reveal numerous stroma-infiltrating tumor cells. 3D rendering of the tumor bed highlights tumor cells extending beyond the tumor surface

into the surrounding stroma.

(B) Pseudotime captures tumor epithelial-to-mesenchymal (EMT) dynamics. UMAPs of tumor cell transcriptomic profiles colored by pseudotime rank (left) and

the SCT-normalized expression of pseudotime-associated EMT marker genes.

(C) EMT is activated progressively from the tumor core to the desmoplastic stroma. Boxplot of the pseudotime rank of tumor cells in the tumor core, surface, and

desmoplastic stroma. ****: t test p values < 0.005, n = 38,804.

(D) Tumor EMT is upregulated not only in the desmoplastic stroma but already in one region of the tumor surface. Spatial distribution of pseudotime rank scores

numerous mesenchymal tumor cells in the EMT niche (black box).

(E) Infiltrating tumor cells are surrounded by a stiff ECM. Spatial plot of collagen fiber abundance in tumor cell neighborhoods.
(F) Matrix stiffness accompanies tumor EMT in the desmoplastic stroma but cannot explain its induction in the EMT niche. Boxplot of collagen fiber abundance in

tumor cell neighborhoods across the EMT niche and ECM compartments.

LGALS1 acts extracellularly and functions as a switch between
the inflammatory and tissue repair phases of wound healing.**
LGALS1 promotes both myofibroblast migration and activity®®
and M1-to-M2 macrophage conversion while inhibiting T cell
recruitment.®* Accordingly, the cell type composition of the
EMT niche differed from the rest of TME, showing enrichments
for tumor cells, fibroblasts, and macrophages (Figure S7B),
together forming 83.8% of cells in the EMT niche (Figure S7C).
Therefore, we focused on these cell types to identify tumor-
extrinsic molecular programs active in the EMT niche. Compat-
ible with the LGALS1 function, myofibroblasts were not only
the main enriched fibroblast state (Figure S7D), but their density
actually peaked within the EMT niche compared with the rest of
the tumor bed (Figure 7D). At the same time, macrophages in the
EMT niche upregulated the expression of SPP1 (secreted
phosphoprotein-1 or osteopontin), together with the M2 marker

glutamine synthase (GLUL)"® and the lipid-laden marker glyco-
protein-NMB (GPNMB)®’ (Figure S7E), typical of tissue-repair
and pro-tumoral macrophages.”®

Overall, the unbiased analysis of cell type-specific genes upre-
gulated in the EMT niche revealed several key secreted mole-
cules that have central roles in both wound healing and tumor in-
vasion: LGALST in tumor cells, VEGFA and IGFBP5 in
fibroblasts, and SPP17 in macrophages. Suggesting their func-
tional role in local tissue remodeling, their expression was not
only enriched but almost spatially restricted to the EMT niche
(Figures 7E-7G). For example, VEGFA promotes macrophage
recruitment and their reprogramming toward an anti-inflamma-
tory phenotype,”® while insulin growth-factor-binding protein-5
(IGFBP5), especially in the presence of FN1,°° promotes myofi-
broblast activation and ECM remodeling.®’ Furthermore,
SPP1+ macrophages have been recently identified as key

Cell Systems 16, 101261, May 21,2025 11




Please cite this article in press as: Pentimalli et al., Combining spatial transcriptomics and ECM imaging in 3D for mapping cellular interactions in the
tumor microenvironment, Cell Systems (2025), https://doi.org/10.1016/j.cels.2025.101261

¢ CellPress Cell Systems

OPEN ACCESS

A Tumor EMT niche markers B NDRG1 RNA density (tumor) C LGALS1 RNA density (tumor)
0 0375 075 0 025 05
3 H ! 3
g ;
S 2 !
& : LGALS1
S H H <
= AREG | H
§ -|-7' ; ; i mapNORST
& | g L :"-‘;;00455
S " | < SLG2ATDUSEI
S e Hae | i UNS ~ BT el L
RRTS(EENDV e 126 0, | e — s
EPCAM b H 1 F
' 8 . - Ao
| i > = R e o y > ol
0 i SR e
-20 0 20
Difference in expressing tumor cells (%)

IGFBP5 RNA density (fibroblasts)
0

VEGFA RNA density (fibroblasts)
0

Myofibroblast density

0.25 0.5 0.375 0.75

G SPP1 RNA density (macrophages) H  integrin 3D signalling density (tumor) | EMT niche
0 0.75 15 0 15 30
! — ! l—
IGFBPS
o LoALst I6F2 : Myofibroblasts
.y : - % aSMA® TAGLN®

(contractie) A y
. - g

s
NDRG1* CDH1**

(pre-invasive) Macrophages

GLUL* VIM*
(M2, pro-tumoral)

-

Figure 7. A wound healing-like, multicellular program activates integrin signaling in the EMT niche

(A) LGALS1 and NDRG1 expression characterizes tumor cells in the EMT niche. Scatter plot of differential gene expression in tumor cells inside vs. outside the
EMT niche. x axis: difference in the percentage of expressing tumor cells. y axis: log, fold changes of the average SCT-normalized tumor gene expression.
Labeled: EMT niche differential tumor genes.

(B and C) NDRG1 (marker of brain metastasis) and LGALS1 (secreted during wound healing) expression is restricted to the tumor cells in the EMT niche (black
box). 3D surface rendering of the gene expression density of EMT niche tumor marker genes.

(D) Myofibroblasts accumulate in the EMT niche. 3D spatial density plot of myofibroblasts.

(E and F) VEGFA (secreted in response to hypoxia and wound healing) and IGFBP5 (local regulator of IGF signaling) expression is restricted to fibroblasts in the
EMT niche (black box). 3D surface rendering of the gene expression density of EMT niche fibroblast marker genes.

(G) SPP1 (secreted during wound healing) expression is restricted to macrophages in the EMT niche (black box). 3D surface rendering of the gene expression
density of EMT niche macrophage marker gene.

(H) Tumor integrin signaling distinguishes the EMT from the rest of the tumor bed. 3D volumetric rendering of integrin signaling density, computed as the sum of all
EMT niche-enriched interactions received by all tumor cells.

(I) A wound healing-like multicellular program characterizes the EMT niche and converges on the activation of integrin signaling. Summary scheme of selected
cellular and molecular interactions in the EMT niche, revealing mechanism-based personalized targets for cancer interception. The pill symbol indicates
druggable interactions.

COL1A2, and COL6A3) converged on the activation of tumor in-
tegrin receptors, namely ITGB1, ITGB4, and ITGB6.

players in myofibroblast recruitment and activation during tissue
repair and fibrosis.®?

Finally, investigating which cell-cell interactions were received
by tumor cells in the EMT niche, we identified 10 enriched inter-
actions (Figure S7G) and mapped their multicellular communica-
tion networks (Figure S7H). Notably, all ligands (tumor: IGF2 and
THBS1; macrophage: SPP1; and fibroblasts: FN1, THBS2,
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Consistent with the hypothesis that tumors are “wounds that
never heal,” often co-opting wound healing programs to pro-
mote tumor progression,®® tumor cells in the EMT niche orches-
trated the local recruitment and remodeling of fibroblast and
macrophage phenotypes. In turn, given the central role of
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integrin signaling in promoting tumor survival, EMT, and migra-
tion,*® the convergence of myofibroblasts and SPP1+ macro-
phage-derived ligands on tumor integrin receptors provides a
likely mechanism behind the accumulation of mesenchymal-
like tumor cells in the EMT niche.

DISCUSSION

This study represents the proof-of-principle for the computa-
tional reconstruction and multimodal analysis of 3D cellular
neighborhoods combining high-plex, single-cell resolved ST
data with imaging readouts of the contextual ECM composition.

Overall, 3D neighborhoods captured how the TME is orga-
nized in multicellular niches and revealed niche-specific molec-
ular mechanisms linking local cellular ecosystems and molecular
states with receptor-ligand interactions. While 2D analysis of our
data already captured most cellular niches, 3D neighborhoods
improved the identification and characterization of immune
niches in the patient under study. In line with the 3D multiplex
IF study of one colorectal cancer sample,’’ 3D neighborhoods
restored the spatial continuity of seemingly disconnected T cell
niches in 2D. Furthermore, 3D analyses captured the spatial rela-
tionship between immune niches and the tumor surface and
enabled the study of immune inhibitory interactions in dendritic
cell niches.

At the same time, SHG highlighted the dynamic composition
of the ECM in the TME, where the elastic lung ECM is degraded
and progressively substituted by a stiff, desmoplastic ECM dur-
ing tumor progression. The integrative analysis of gene expres-
sion and ECM remodeling was then instrumental in identifying
which ECM constituents and regulators orchestrate local ECM
metabolism and enabled the multimodal analysis of fibroblast
molecular phenotypes in the TME. Notably, fibroblast pheno-
types were spatially linked either with specific ECM compart-
ments (e.g., activated fibroblasts in the desmoplastic ECM) or
multicellular niches (e.g., CCL19+ fibroblasts in dendritic and
T cell niches), supporting their functional specialization and
organizing role in key local phenomena ranging from tumor inva-
sion to anti-tumoral immune responses.

Finally, the spatial analysis of tumor pseudotime across multi-
cellular niches and ECM compartments revealed how EMT was
not restricted to tumor cells infiltrating a desmoplastic ECM but
already occurred in one EMT niche at the tumor surface where a
spatially restricted wound healing-like multicellular program
induced pro-invasive integrin signaling® in a degraded ECM.
In general, given the profound impact of tissue biomechanics
in shaping cellular molecular states (and vice versa), we envision
that the systematic integration of spatial mechanical and molec-
ular readouts will reveal novel insights into tissue functioning in
health and disease (e.g., shedding light on the intricate role of tu-
mor-stromal interplay).

Focusing on an early-stage, aggressive NSCLC tumor, we
showcase the power of our multimodal approach to pinpoint
which, among multiple possible cancer progression mecha-
nisms, are spatially linked with tumor invasion and immune
escape in the patient under study. While a recent IMC study
demonstrated how the TME spatial organization can accurately
predict survival in early-stage NSCLC patients,® limited gene
plex prevented the identification of personalized drug targets.
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Here, leveraging the probe-based detection of receptor and
ligand molecules (1-2 molecules/cell’®) across neighboring
cells, we boosted the sensitivity and specificity of our analysis
compared with spatially agnostic expression of receptors and li-
gands in dissociated single cells. Our communication analysis
identified which signaling axes could physically mediate key pro-
cesses in situ. For example, Tregs and CTLs were recruited in
hotspots of the tumor surface, where dendritic cells actively sup-
pressed anti-tumor immunity through multiple immune check-
points. Like the simultaneous identification of multiple druggable
mutations by NGS sequencing opened the door to combination
therapies,®® we envision that the high-plex quantification of
cell-cell interactions will pave the way to personalized therapies
targeting the TME. For example, the combination of immune
checkpoint inhibitors with small molecule inhibitors of intracel-
lular integrin signaling (e.g., via FAK inhibitors®’) could represent
a particularly attractive therapeutic strategy in the patient under
study, simultaneously unlashing anti-tumoral immune responses
and restraining tumor invasion.

Here we defined 3D neighborhoods using a 30 um section-to-
section gap as a cost-effective strategy to maximize 3D informa-
tion while minimizing repeated sampling of the same cells
(average cell radius 10-20 um) and a neighborhood radius of
50 um (~3 cellular distances) to capture repeating multicellular
niches in this dataset. Nevertheless, the formal definition of
cellular neighborhoods is still a matter of active research, and
best practices are still lacking in the field, as the “optimal radius”
is likely to be tissue, sample, cell, and analysis dependent. With
the growing availability of 3D datasets, we expect that novel tools
will facilitate the identification of the most appropriate neighbor-
hood radius and section-to-section gap (e.g., to capture short vs.
long-distance molecular dependencies). Moreover, rapid tech-
nological developments with increasing gene plex and/or resolu-
tion for unbiased spatial transcriptomic methods will enable the
simultaneous profiling of ligand-receptor pairs together with
intracellular response genes, further increasing the specificity
of cell-cell communication analysis. At the same time, the rise
of single-cell-resolved spatial proteomic methods®® will further
our understanding of local molecular mechanisms, enabling the
study of protein abundances and post-translational modifica-
tions undetectable at the transcriptomic level.

Ultimately, our study provides the proof-of-principle for the
integration of our high-plex assays compatible with routinely
collected FFPE samples in molecular tumor boards (e.g., to
inform N-of-One treatment of individual patients by treating phy-
sicians®®) and paves the way for large-scale clinical studies
aimed at assessing the clinical benefit of mechanism-based,
personalized therapeutic targets as those identified in this sin-
gle-patient, observational study.

RESOURCE AVAILABILITY
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Requests for further information should be directed and will be fulfilled by lead
contact, Nikolaus Rajewsky (rajewsky@mdc-berlin.de).

Materials availability
This manuscript contains no unique reagents or resources. All antibodies and
reagents are available commercially.
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Data and code availability

o Raw and processed image-based ST and second harmonic imaging
data generated in this study have been deposited at Zenodo (https://
doi.org/10.5281/zenodo.7899173) and are publicly available as of the
date of publication. Furthermore, it is possible to interactively explore
the data in 3D through an interactive browser: http://lung-3d-browser.
mdc-berlin.de/.

e This paper also analyzes existing, publicly available data. Accession
numbers for all datasets are listed in the key resources table.

e All original code has been deposited on Zenodo (https://doi.org/10.
5281/zen0do.7899173) and GitHub (https://github.com/rajewsky-lab/
3D_lung) and is publicly available as of the date of publication. Acces-
sion numbers are listed in the key resource table.

o Any additional information required to reanalyze the data reported in this
paper is available from the lead contact upon request.
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https://satijalab.org/seurat/
https://github.com/PreibischLab/STIM
https://github.com/kstreet13/slingshot
https://www.paraview.org/

Fiji v 1.53t Preibisch et al * https://imagej.net/software/fiji/

CellChat Jinetal ?° http://www.cellchat.org/

Others

Interactive 3D browser This study https://lung-3d-browser.mdc-berlin.de
Code to reproduce results and figures This study https://github.com/rajewsky-lab/3D_lung

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human participants

One non-small cell lung cancer tumor obtained through lobectomy was included in the study. The patient was a 63-year-old female,
who presented with a pulmonary tumor mass in the apex of the right upper lobe (RUL) in the positron emission tomography in March
2020. The patient was a 40 pack-year ex-smoker, fully active and without any physical restrictions (ECOG grade 0). A transbronchial
lung biopsy revealed a TTF1-positive lung adenocarcinoma (LUAD) with acinar morphology. Staging workup by abdominal and a
brain CT-scan showed no other potential lesions, additionally the bone scintigraphy was negative. Two months after initial diagnosis,
aresection of the RUL was performed. The pathological examination revealed a tumor with a maximum diameter of 23 mm, infiltration
of the visceral pleura, lymphovascular invasion, and three metastases into hilar lymph nodes with a maximum diameter of 7 mm. The
tumor was completely resected. The pathological tumor classification was as follows: pT2a pN1 (3/24) L1 VO Pn0 G2 RO. The patient
received three cycles of an adjuvant-combined chemotherapy (Cisplatin + Vinorelbine). In February 2021, the patient started having
neuronal symptoms and a magnetic resonance tomography of the head was performed revealing a 10 mm tumor in the frontal cortex.
The tumor was resected and a metastasis of the LUAD was histologically confirmed. Afterwards the patient received cranial
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radiotherapy in the form of a volumetric intensity modulated arc therapy (VMAT) at a dosage of 25,6 Gray (Gy). In August 2021 a sec-
ond metastasis was diagnosed in the left upper lobe (LUL) of the lung.

METHOD DETAILS

Study design

To study three-dimensional (3D) cellular neighborhoods in the tumor microenvironment (TME), we focused on a formalin-fixed,
paraffin-embedded (FFPE) tumor block from a NSCLC patient and collected 34 5 um-thick consecutive sections using a microtome.
We processed sections 4, 10, 16, 22, 28 and 34 with CosMx (section-to-section distance 30 um) to generate high-plex, single-cell
resolved spatial transcriptomics data, section 3 with both second harmonic imaging (SHG) to study extracellular matrix (ECM)
composition and hematoxylin and eosin (H&E) staining to capture tissue morphology and section 12 with immunofluorescence
(IF) to validate tumor epithelial-to-mesenchymal transition (EMT) at the protein level. We then employed computational methods
for the 3D alignment of the analyzed sections to generate a 3D multimodal atlas of NSCLC at single cell resolution.

Sample collection and histological examination

Resected specimens and core needle biopsies were fixed in 10% buffered formalin before gross processing. After overnight fixation,
the specimens were cut in 5-mm-thick slices. As a first step, the tumor was detected, described and the tumor diameter as well as the
minimum distances to the visceral pleura and the resection margins of lung parenchyma and bronchus were measured. Next, the
resection margins and the representative tumor parts showing the relation to the relevant anatomical structures, described above,
were embedded. Furthermore, we retrieved all macroscopic detectable lymph nodes. Subsequently the tissue or biopsies were
embedded in paraffin and were stored at room temperature at the archive of the Institute of Pathology at the Charité University Hos-
pital, Campus Mitte. Histological examination, including diagnosis, tumor grading, pTNM-classification, angioinvasion, lymphatic in-
vasion, and tumor stage was done according to the 8th edition of the TNM classification (AJCC). The study was performed according
to the ethical principles for medical research of the Declaration of Helsinki and approval was approved by the Ethics Committee of the
Charité University Medical Department in Berlin (EA4/243/21).

Quantification of RNA fragmentation

To quantify the extent of RNA fragmentation, we collected 3 10 um sections using a Microtome (Leica Byostems). We then extracted
RNA using Qiagen RNAse FFPE kit according to manufacturer instructions and evaluated the percentage of total RNA fragments
longer than 200 nucleotides (DV200) using the TapeStation (Agilent). Compatible with formalin fixation and prolonged storage at
room temperature, the DV200 score was 60%.

CosMx sample processing, staining and imaging for 1000-plex RNA profiling

CosMx sample processing, staining, imaging, and cell segmentation were performed as previously described.'* Briefly, tissue sec-
tions were placed to VWR Superfrost Plus Micro Slide (Cat# 48311-703) for optimal adherence. Slides were then dried at 37°C over-
night, followed by deparaffinization, antigen retrieval and proteinase mediated permeabilization (https://nanostring.com/products/
cosmx-spatial-molecular-imager/single-cell-imaging-overview/). 1 nM RNA-ISH probes were applied for hybridization at 37°C over-
night. After stringent wash, a flow cell was assembled on top of the slide and cyclic RNA readout on CosMx was performed (16-digit
encoding strategy). After all cycles were completed, additional visualization markers for morphology and cell segmentation were
added including pan-cytokeratin, CD45, CD3, CD298/B2M, and DAPI. Twenty-four 0.985mm x 0.657mm fields of view (FOVs)
were selected for data collection in each slice. The CosMx optical system has an epifluorescent configuration based on a customized
water objective (13%, NA 0.82), and uses widefield illumination, with a mix of lasers and light-emitting diodes (385 nm, 488 nm,
530 nm, 590 nm, 647 nm) that allow imaging of DAPI, Alexa Fluor-488, Atto-532, Dyomics Dy-605 and Alexa Fluor-647, as well as
removal of photocleavable dye components. The camera was a FLIR BFS-U3_200S6M-C based on the IMX183 Sony industrial
CMOS sensor (pixel size 180nm). A 3D multichannel image stack (9 frames) was obtained at each FOV location, with the step
size of 0.8 um.

Second Harmonic Imaging (SHG)

Label free imaging of collagen and elastin was performed on a Zeiss LSM 880 NLO equipped with a Plan-Apochromat 10x NA 0.45
objective (Carl Zeiss Microscopy GmbH, Jena, Germany) and a tunable femtosecond titanium-sapphire laser (Chameleon-Ultra Il,
Coherent, Santa Clara, California). Using an excitation wavelength of 800 nm, the second-harmonic generation signal from collagen
was collected through a 395 — 405 nm spectral window on to a GaAsP detector and autofluorescence emission from elastin was
collected through a 435 - 480 nm spectral window on to a PMT.

Immunofluorescence (IF) imaging

The IF workflow for FFPE tissues was performed as previously described.”® In detail, FFPE tissue was deparaffinized, rehydrated and
atwo-step antigen retrieval was performed at pH 6 and pH 9 sequentially with a rinsing step in PBS in between. Slides were blocked in
Odyssey blocking buffer (LI-COR BioScience, Cat # 927-70001) for 30 minutes. Prior to antibody incubation, a pre-bleaching step
was performed in 4.5% H,0, and 24 mM NaOH diluted in PBS for 30 minutes at room temperature in the presence of white light.
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The tissue was counterstained with Hoechst 33342 (Thermo Fisher Scientific, Cat #62249), mounted with ProLong™ Diamond
(Thermo Fisher Scientific, Cat #P36961) and imaged. After acquisition, slides were soaked in PBS for 5-10 minutes to remove the
coverslip and antibody incubation was performed in a humid chamber at 4 °C overnight. Slides were then washed, mounted, imaged
and bleached. Images were acquired on a Zeiss Axioscan? Slide scanner using an EC Plan-Neofluor 20x/0.5 M27 objective with 1x1
binning.

Verhoef’s Van Gieson staining

Paraffin was removed using xylene, and the slides were rehydrated through graded ethanol solutions to distilled water. Elastic fibers
were stained using freshly prepared Weigert’s Resorcin-Fuchsin solution. The staining solution was prepared by mixing Weigert's
Solution A (Carl Roth, Karlsruhe, Germany) with Weigert’s Solution B (Carl Roth GmbH, Karlsruhe, Germany) in appropriate propor-
tions according to the manufacturer’s instructions. The slides were incubated in this solution for 10-15 minutes at room temperature
to ensure clear staining of elastic fibers. Excess dye was removed by rinsing the slides in distilled water.

The tissue sections were then counterstained with Van Gieson’s solution (Carl Roth GmbH, Karlsruhe, Germany), which contains
picric acid and acid fuchsin, for 3-5 minutes. This step selectively stained collagen fibers red while background tissues appeared
yellow. After the Van Gieson staining, the slides were washed briefly in distilled water to remove excess stain.

Differentiation was performed by dipping the slides in 96% ethanol until a clear distinction between the elastic fibers, collagen, and
background tissue was visible under the microscope. Tissue sections were then dehydrated through ascending grades of ethanol,
cleared in xylene, and coverslipped with a permanent mounting medium. This protocol resulted in elastic fibers appearing dark purple
to black, collagen fibers stained red, and cytoplasmic structures yellow. Histological images were acquired with the digital slide scan-
ner PANNORAMIC 1000 (3DHISTECH).

QUANTIFICATION AND STATISTICAL ANALYSES

Deep learning segmentation of whole slide H&E images

For learning a tissue segmentation model, we collected around ~5,000 representative pathologist annotations for 4 morphological
sub-categories on H&E tissue morphology: “Carcinoma”, “Stroma”, “Necrosis”, and “Normal lung” (e.g. including “Alveoli”, “Cap-
illaries”, “Respiratory epithelium”, “Vessels”, etc.) for model training. For the segmentation model, we used a U-Net”® architecture
with a ResNet101 backbone.’” We trained models over various hyperparameters for 50 epochs using the Adam optimizer’® and
selected the top five models based on the global F1 performance on a validation set. We then combined these five models into a
mean ensemble, which achieved a global F1 performance of ~0.93 on a hold-out test set.

CosMx data processing

Registration, feature extraction, localization, decoding of the presence of individual transcripts, and deep learning-based cell seg-
mentation (developed upon Cellpose’®) were performed as previously described.'* The final segmentation mapped each transcript
in the registered images to the corresponding cell, as well as to subcellular compartments (nuclei, cytoplasm, membrane), where the
transcript is located.

Unbiased transcriptomic clustering of segmented cells
For downstream analyses we used the package Seurat”" (v4.0.4) in R (v4.1, https://www.R-project.org/). For each section, we im-
ported 3 matrices containing the gene expression, metadata and positions of segmented cells. We removed the negative probes
from the gene expression matrix, defined a unique cell name and created a merged Seurat object with data from all the sections.
To identify cell types present in the TME, we adopted a very conservative filtering strategy removing only cells with less than 10
detected genes and removing genes detected in less than 1 cell. We then computed SCT-normalized and scaled gene expression
counts’® and computed the 50 most variable principal components (PCs). We selected the first 30 PCs to create a shared nearest
neighbor graph and to compute a two-dimensional UMAP plot® used for data visualization in a low dimensional space. Finally, we
partitioned the shared nearest neighbor graph using a resolution of 0.8 and identified 24 transcriptomic clusters.

Cell type annotation of transcriptomic clusters

To annotate cell types present in the TME, we identified marker genes enriched in each cluster for knowledge-based cell type anno-
tation. Epithelial clusters, characterized by positivity to panCK immunofluorescent staining, comprised both tumor cells (EPCAM+
S100A10+) and non-malignant epithelial cells, including respiratory epithelium (SCGB3AT1+), basal epithelial cells (KRT5+) and alve-
olar cells (FGG+). We also detected numerous stromal populations, including fibroblasts (COL71A2+), vascular (PECAM1+) and
lymphatic (FABP5+) endothelial cells, pericytes (PDGFRB+) and smooth muscle cells (TAGLN+). We identified innate and adaptive
immune cell populations, including macrophages (CD68+), monocytes (LYZ+), dendritic cells (LAMP3+), mast cells (KIT+), cytotoxic
(CD8A+) and regulatory (FOXP3+) T cells, B cells ((IGHM+), plasma cells (CD79A+) and cycling immune cells (MKI67+). Finally, we
merged clusters with similar marker gene expression as probably related to different cellular states of the same cell type. Therefore,
we annotated clusters ‘0’ and ‘1’ as fibroblasts, clusters ‘2’ and ‘7’ as macrophages and clusters ‘4’, ‘5°, ‘20°, ‘22’ and ‘23’ as
tumor cells.
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Data integration with reference atlases

To compare gene expression profiles with published reference atlases, we performed label transfer using the standard Seurat pipe-
line. We integrated our data with the Human Lung Cell Atlas'® to annotate lung resident cell types and with a NSCLC single cell
cohort'” to annotate tumor-specific cell types. For each reference dataset, we identified a subset of 900 shared ‘features’ (i.e. genes)
using the SelectintegrationFeatures function (nfeatures = 900) and pairs of ‘anchors’ (i.e. cells) between the reference and our query
dataset using the FindTransferAnchors function (normalization.method = "SCT", reference.assay = ‘SCT’, query.assay = ‘SCT’,
reduction = ‘pcaproject’, dims = 1:20, features = features, nn.method= ‘rann’, eps = 0.5). Then, we leveraged the TransferData func-
tion (anchorset = anchors, prediction.assay = TRUE, weight.reduction = ‘pcaproject’, dims = 1:20, eps = 0.5) to score each cell in our
query dataset for similarity with annotated cell types in the reference dataset.

3D alignment of spatial transcriptomic data

To align high-plex, single-cell resolved spatial transcriptomic data from 6 sequential, non-consecutive sections, we leveraged the
Spatial Transcriptomics ImgLib2/Imaging Project (STIM)."> With STIM, we first converted our spatial transcriptomics data to the
n5 image format for efficient storage and processing using the ‘st-resave’ function. In doing so, we assigned a channel to each
gene and modeled gene expression values as pixel intensities at the center of the segmentation mask. Then, we applied the ‘st-
align-pairs’ function to align each section to the one above and below (r=1) using the Scale Invariant Feature Transform (SIFT)®' ac-
cording to the expression of the 15 genes with highest standard deviation (n=15). Finally, we applied the ‘st-align-global’ function to
identify a global optimum that minimizes the distances between all corresponding points across all pairs of slices (-absoluteThres-
hold 100 —sf 0.5 -lambda 0.5 —skipICP).

Identification of 2D and 3D cellular neighborhoods

Cellular neighborhoods in 2D and 3D were computed with a custom Python script as follows. First, for a given cell, the Euclidean
distances in 2 or 3D between that cell and all other cells in the dataset were computed. This set of distances was then filtered to re-
move distances greater than r= 50 um, resulting in a list of neighboring cells for that given cell. This list was finally used to construct
the 2D and 3D neighborhood matrices by counting the number of cells for each of the 18 cell types present in each cellular neighbor-
hood. By design, 2D neighborhoods included a 50um-radius circular area (7*r’=7853,98 um?) in the section where the center cell is
located, while their 3D counterparts also comprised two 40um-radius circular areas (each ©*r?=5026,55 um?) in the sections imme-
diately above and below in the z plane (30um distance).

Unbiased identification and annotation of 2D and 3D multicellular niches

To identify 2D/3D multicellular niches in the TME, we imported the 2D/3D neighborhood matrix as a new assay in Seurat. We
excluded cells with incomplete 3D neighborhoods, namely those located in sections 4 and 34 and those within 50um from the edges
of sections 6, 12, 18 and 24. We then performed UMAP dimensionality reduction and clustering (resolution = 0.3). 3D neighborhoods
analysis returned 13 clusters (Figure S1A). Furthermore, we merged clusters ‘3, ‘10’ and ‘12’ as ‘T cell niches’ and clusters ‘5’ and ‘9’
as ‘airways’ given their shared neighborhood composition and spatial patterns (Figures S1B and S1C). In this way, we identified a
total of 10 unique 3D niches, which we annotated based on the average cell type counts per 3D neighborhood: ‘tumor core’ (Tumor
cells"9", Fibroblasts'", Macrophages'¥), ‘tumor surface’ (Tumor cells™9", Fibroblasts™d, Macrophages™¢, Cytotoxic T cells'"),
‘airways’ (Respiratory epithelium™", Basal epithelial cells"®"), ‘alveoli’ (Alveolar cells"'e"), ‘desmoplastic stroma’ (Fibroblasts™9",
Plasma cells'"), ‘vascular stroma’ (Fibroblasts™¢, Vascular endothelium™<, Pericytes™), ‘smooth muscle’ (Smooth muscle
cells"9"), ‘Macrophage niche’ (Macrophages™®", Tumor cells™), ‘Dendritic cell niche’ (Dendritic cells™9", Tumor cells™¢,
Macrophages™, Cytotoxic T cells™?, Regulatory T cells'®") and ‘T cell niche’ (Cytotoxic T cells™9"). At the same time, 2D neighbor-
hoods analysis returned 15 clusters. Similarly, we merged clusters ‘8’, ‘10’ and ‘13’ as ‘tumor core’, clusters ‘2’ and ‘3’ as ‘tumor
surface’, clusters ‘5’ and ‘12’ as ‘airways’ and clusters ‘4’ and ‘14’ as ‘T cell niches’ and identified 10 multicellular niches,
which overlapped with 3D ones, with the exception of ‘dendritic cell niches’ identified only in 3D and ‘macrophage-rich stroma’
(Fibroblasts™, Macrophages™¢) identified only in 2D.

Ligand spatial activity scores in 2D and 3D cellular neighborhoods

To estimate the spatial activity of a specific ligand, we first downloaded manually-curated, literature-supported receptor ligand pairs
from the CellChat Human database®® and selected those in which both the receptor and the ligand were present in our 960-gene
panel. For each center cell, we quantified the spatial activity of 164 ligands in its 2D and 3D cellular neighborhoods. To quantify
the activity of each ligand in a given cellular neighborhood, we first evaluated single pairs of interacting cells comprising the center
cell and one of its neighbors. For each pair, we computed the geometric mean of receptor expression in the center cell and ligand
expression in the neighbor cell. In this way, we required the non-zero expression of both receptor and ligand to have positive pair
scores. We then compute the overall ligand activity score for a specific cellular neighborhood summing all the pair scores having
the center cell as receiver. In the case of ligands paired with multiple receptors, we summarized the ligand activity as the sum of
the interactions with each of the associated receptors.
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ECM composition analysis

To quantify ECM levels of collagen and elastin in section 4 cellular neighborhoods, we first imported cropped and aligned section 3
SHG TIFF images in R using the grDevices package (v. 4.1.3). We then normalized the collagen and elastin channels by dividing the
pixel intensities by the maximum value in the respective channel. Finally, we quantified the mean collagen and elastin pixel intensities
in the square with side 2x50um centered on the segmentation center of each cell in section 4.

Unbiased identification of ECM compartments
To identify ECM compartments, we used k-means clustering of the scaled collagen and elastin intensities per cell as implemented in
kmeans function of the R package stats v4.1.3. We selected k=3 based on the screeplot.

Fibroblast transcriptomic clustering and annotation

To identify transcriptomic states of the fibroblast in the TME, we selected cells annotated as fibroblasts with more than 100 detected
transcripts for unsupervised clustering as described above, this time selecting the first 5 PCs and identifying 6 clusters and a reso-
lution= 0.15. We then identified marker genes enriched in each cluster for literature-based cluster annotation®?%; ‘matrix fibroblasts’
(LUM+ MGP+ TIMP1+), ‘myofibroblasts’ (FN1+ COL11A1+ ACTA2+), ‘activated fibroblasts’ (JUN+ FOS+ IGF1+), ‘antigen-present-

ing’ (CD74+ HLA-DRB1+), ‘CCL19+ reticular’ and ‘CXCL10+ reticular’ fibroblasts.

Tumor pseudotime analysis

To reconstruct their molecular dynamics, we ordered tumor cells according to their pseudotime. We first generated a Seurat object
including only tumor cells using the subset function and then re-normalized gene expression counts using SCTransform. We then
selected the top 400 variable genes and grouped them in 5 PCs using the RunPCA function for downstream analyses. These included
UMAP embedding using the RunUMAP function and pseudotime analysis. For the latter, we converted the Seurat object
into SingleCellExperiment format using the R package SingleCellExperiment (v1.16.07 and then used the slingshot function of
the R package slingshot (v2.2.1)*” to compute tumor cell pseudotime. Finally, we converted pseudotime scores to ranks
(between 0 and 1) and added them as metadata in the Seurat object for plotting.

Preprocessing of imaging data

To stitch and register the .czi image files, acquired on the Zeiss Axioscan7 widefield microscope, the ASHLAR algorithm (v 1.17.0)%®
was used. To correct the tissue autofluorescent background signal, we performed background subtraction. Images were acquired
before the first round of antibody staining; using the same settings for each channel (only exposure time was modified). The software
package from github.com/SchapiroLabor/Background_subtraction was used (v 0.3.3) based on the following formula:

Background « Markerexposuretime
Backgroundexposuretime

Markercarrected = Markerraw -

Registration of IF and CosMx images

The IF multi-channel image stack from Section 12 was registered to the CosMx images of Section 10. To do this, the IF data stored as
pyramidal OME-TIFF images were cropped into a rectangular region of interest (ROI) using bftools from Bio-Formats (v6.11.1).%° This
was done to exclude parts of the tissue outside CosMx ROI, reducing the overall size of the images and simplifying the registration
process. The 24 contiguous fields of view of CosMx raw imaging data for Section 10 were then stitched into a single image using the
Grid/Collection stitching v1.2 plugin in Fiji v1.53t.”* The average z-stack projection of the stitched stack was exported as a pyramidal
OME-TIFF image. Rigid and affine registration was performed using wsireg 0.3.7 with default parameters, with the full IF stack of Sec-
tion 12 as the moving image, and the stitched CosMx stack of Section 10 as the fixed (target) image.

Niche enrichments

To identify the preferential localization of a group of cells g in a specific niche n, we compared the observed and expected counts of g
cells in niche n. The expected counts are computed under the assumption of random, independent distribution of cells belonging to
group g and niche n. To compute expected counts, we simply multiplied the total abundance of g cells in the TME and the fraction of
niche n in the TME. We then compute the log, fold changes as the log, of the ratio between observed and expected counts. In this
way, we quantified the enrichment of infiltrating tumor cells, fibroblast states and cell types across all 3D niches and ECM
compartments.

Quantification and visualization of 3D cellular density

We quantified the 3D spatial density of a group of cells g and visualized its 2D projection using the geom_density_2d_filled function
from the ggplot2 package (v 3.5.0) using alpha=0.5 and h=5.6*700. In this way, we quantified and visualized the 3D density of cyto-
toxic T cells, mesenchymal-like tumor cells (defined as pseudotime rank > 0.75), and myofibroblasts.
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3D rendering of tissue niches, gene expression and ligand activity scores

Three-dimensional visualizations were generated by downscaling and mapping the spatial coordinates of segmented cell centroids
onto 300x300 images along the xy-axes, using data from sections 10, 16, 22 and 28 along the z-axis. From these, 300x300x100 voxel
data was constructed by interpolating 25 intermediate sections between each of the four sections using weighted Convolutional
Wasserstein barycenters [93]. Voxel data were exported as TIFF files and visualized using ParaView v5.107° as surface or volumetric
representations.

Statistical methods

Cluster-specific marker genes used for cell type and fibroblast state annotation, niche-specific differentially expressed genes in a
specific cell type (including tumor cells, fibroblasts and macrophages) were identified using a Wilcoxon Rank Sum Test comparing
the expression of all genes in the group of interest versus all the remaining cells as implemented in the FindAlIMarkers function in the
Seurat R package (v. 4.0.4). To identify differential genes and receptor-ligand interactions, we first computed the average SCT-
normalized expression or spatial activity score across all cells inside a group and then computed the log, fold change against the
mean of all cells outside the group. We also computed the percentage of expressing/receiving cells inside and outside the group
of interest. Only genes/ligands surpassing both a log, fold change and percentage difference thresolds are considered differentially
expressed/active. p-values added to violin and boxplots were computed through an unpaired t-test using the stat_compare_means
function of the ggpubr R package (v 0.6.0). Computed p-values were adjusted using Bonferroni correction for multiple testing.
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Supplementary figure 1, related to Figure 1. a) Schematics of characteristics, staging and



clinical history of the NSCLC patient under study. We investigated the lobectomy sample. b)
Keratin 19 (KRT19) mRNA localization matches pan-cytokeratin immunostaining. Left:
KRT19 mRNA captured by CosMx (green: KRT'19 transcripts, gray: DAPI (nuclei), blue: cell
segmentation masks). Right: pan-cytokeratin IF (epithelial cells, green; DAPI: blue). ¢)
Whole slide images of the sections profiled with CosMx. Yellow: 24 fields of view in each
ROI. d) Near-perfect correlation of gene expression across sections. Section-to-section
Pearson correlation of aggregate gene expression profiles. €) UMAP of transcriptomic
clusters. f) Cluster expression of canonical markers used for cell type annotations. g) Cell
type distributions of pancytokeratin (panCK) immunofluorescence signal (top), segmentation
mask area (middle) and transcript counts (bottom) per cell. h) Spatial plot of cell types in

section 4. i) Tissue morphology by conventional hematoxylin and eosin staining in section 3.



a Cc
b Niches: 000000000000

Clusters: 4 1 5 8 6 0 2 7 9 11 3 1012
|
0] =——

Tumor cells
Respiratory epithelium
4 10 16 22 28 34
Section

[+
=]

Basal epithelial cells Average

Alveolar cells
Fibroblasts

Plasma cells
Vascular endothelium
Pericytes

Smooth muscle cells
Macrophages
Monocytes

Cycling immune cells
Cytotoxic T cells
Lymphatic endothelium
Regulatory T cells
Dendritic cells

B cells

Cell displacmeent
following alignment (um)
»H
o

n
=]

d
Cells in 3D neighborhoods
150
” ’ “‘
204
0
Cell types in 3D neighborhoods
15
10
1
‘(p & @o'f‘ v‘“ﬁa“o® & @0@(}\@9&&@9&@#
PR & F O
< S ,,e S §°
s ’bé &
Na A

Supplementary figure 2, related to Figure 2. a) Impact of 3D alignment on cellular
positions. Boxplot of cellular shifts of cells in each section following 3D alignment. Section 4
was used as the anchoring section. b) UMAP of 3D cellular neighborhoods clusters. ¢) Cell
type composition of neighborhood clusters. Heatmap showing the average 3D neighborhood
count of each cell type across neighborhood clusters. Heatmap legend is clipped to 30 for
visualization purposes. Clusters with similar composition are merged in a single multicellular
niche: Clusters 5 and 8 as ‘Airways’, cluster 3, 10 and 12 as ‘T cell niches’. Niche color
legend in Fig 2c. d) Violin plots of the number of neighbors (top) and different cell types
(bottom) per 3D neighborhood across 3D niches.
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Supplementary figure 3, related to Figure 3. a) UMAP of 2D cellular neighborhoods
clusters. b) Cell type composition of neighborhood clusters. Heatmap showing the average
2D neighborhood count of each cell type across neighborhood clusters. Heatmap legend is
clipped to 30 for visualization purposes. Clusters with similar composition are merged in a
single multicellular niche: Clusters 8, 10 and 13 as ‘“Tumor core’, clusters 2 and 3 as ‘Tumor
surface’, clusters 5 and 12 as ‘Airways’ and clusters 4 and 14 as ‘T cell niches’. ¢) Spatial
map of 2D multicellular niches (section 10), gray: cells within 50 pm of the section edge. d)
Immunofluorescence validation of dendritic and macrophage niches. Left: Immunostaining
(section 29) for nuclei (DAPI: blue) and tumor and normal epithelial cells (panCK: magenta),
macrophages (CD68: cyan) and dendritic cells (IDO1: yellow). Right: Spatial plot of celltypes
(tumor and normal epithelial cells: magenta, macrophages: cyan, dendritic cells: yellow,

others: blue) identified by CosMx in the adjacent section (section 28).
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Supplementary figure 4, related to Figure 4. a) 3D communication analyses identify niche-

specific ligands. Scatter plot of ligand spatial activities in each niche. X axis: difference in the

percentage of cells featuring a specific interaction inside vs outside each niche. Y axis: log2

fold changes of the average ligand spatial activity inside vs outside each niche. Labelled:

enriched ligands. b) Cytotoxic T cells colocalize with regulatory T cells in T and dendritic

cell niches. Heatmap showing enrichment of cell types in 3D niches. log2 fold changes are

computed from the ratio between the observed and randomly expected number of cells per

cell type in each 3D niche. ¢) Chemotactic and immune inhibitory interactions dominate the

signaling network in dendritic cell niches. X axis: difference in the percentage of cells

featuring a specific interaction inside vs outside dendritic cell niches. Y axis: log2 fold

changes of the average interaction spatial activity inside vs outside dendritic cell niches.

Labelled: enriched interactions. d) Compartmentalized immune infiltration. 3D density plot

of cytotoxic T cells, demonstrating their accumulation in immune niches and exclusion from

the tumor bed.
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Supplementary figure 5, related to Figure 5. a) Verhoef’s Van Gieson stain (section 18)
validation of SHG imaging. Elastin (dark brown) and loose collagen fibers (red) characterize
the homeostatic stroma (1), while the absence of elastin and thicker collagen bundles are
found in the degraded (2) and desmoplastic (3) stroma, respectively. b) Heuristic
identification of the optimal number of clusters for ECM compartments. Screeplot of k-
means clustering of cellular neighborhood ECM composition. ¢) Cell types in the tumor
microenvironment live in specific ECM compartments. Heatmap showing enrichment of cell
types in ECM compartments. log2 fold changes are computed from the ratio between the
observed and randomly expected number of cells per cell type in each 3D niche. d) Marker
gene expression guides the annotation of fibroblast transcriptomic clusters. Dotplot of
selected marker genes per fibroblast transcriptomic cluster. Dot size: percentage of cells
expressing the gene. Dot color: scaled average expression. e-f) Fibroblast phenotypes are

spatially linked with specific ECM compartments and multicellular niches. Heatmaps



showing enrichment of fibroblast phenotypes in ECM compartments (e¢) and multicellular
niches (f). log2 fold changes are computed from the ratio between the observed and randomly
expected number of cells per fibroblast phenotype. g) The integrative analysis of ECM
composition and fibroblast gene expression identifies matrisome genes enriched in ECM
compartments. Scatter plot of matrisome gene expression in each niche. X axis: difference in
the percentage of fibroblasts expressing a specific matrisome gene inside vs outside each
ECM compartment. Y axis: log2 fold changes of the average SCT-normalized fibroblast gene

expression inside vs outside each ECM compartment. Labelled: enriched matrisome genes.
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Supplementary figure 6, related to Figure 6. a) 3D neighborhoods enable the study of
infiltrating tumor cells. Tumor cells assignment to multicellular niches identifies infiltrating
tumor cells. Stacked barplots of all tumor cells (left) and infiltrating tumor cells (right)
assignments to multicellular niches (yellow: tumor core, red: tumor surface, gray: outside the
tumor bed, further color legend in Fig2c). b) Epithelial-to-mesenchymal transition (EMT)
genes drive tumor pseudotime. Scatter plot of differential gene expression in tumor cells with
late (rank > 0.5, right) vs early (rank <= 0.5, left) pseudotime. X axis: difference in the
percentage of expressing tumor cells with late vs early pseudotime. Y axis: log2 fold changes
of the average SCT-normalized tumor gene expression. Red: genes with more > 5%
expression difference labelled: pseudotime enriched genes. ¢) Tumor EMT is induced in the
EMT niche and desmoplastic stroma. Boxplot of pseudotime rank in tumor cell
neighborhoods across the EMT niche and the rest of the tumor bed and desmoplastic stroma.
d) Mesenchymal tumor cells density peaks in the EMT niche (black box). 3D spatial density
of tumor cells with late pseudotime (rank >0.75). €) Immunofluorescence validation of CDH1
downregulation in the EMT niche (section 12). Left: Immunostaining for nuclei (DAPI:
white) and tumor and normal epithelial cells (panCK: green). Right: Immunostaining for

nuclei (DAPI: white) and epithelial phenotype (CDH1: magenta), white square: EMT niche.
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Supplementary figure 7, related to Figure 7. a) The EMT niche is locate at the interface
between tumor surface and the surrounding stroma. 3D rendering of EMT niche (yellow), the
tumor bed and infiltrating tumor cells (gray). b) Tumor cells, fibroblasts and macrophages are
the only cell types enriched in the EMT niche. log2 fold changes are computed from the ratio
between the observed and expected number of cells per cell type in the EMT niche. ¢)
Evidence of EMT niche cellular remodeling. Stacked barplot of cell type assignment in the
EMT niche (left) and the rest of the tumor microenvironment (right). Gray: cell types with
<4% abundance in both regions. d) Myofibroblasts are enriched in the EMT niche. log2 fold



changes are computed from the ratio between the observed and expected number of cells per
fibroblast phenotype in the EMT niche. e) SPP1, M2 and lipid-laden markers identify
macrophages in the EMT niche. Scatter plot of differential gene expression in macrophages
inside vs outside the EMT niche. X axis: difference in the percentage of expressing
macrophages. Y axis: log2 fold changes of the average SCT-normalized macrophage gene
expression. Labelled: EMT niche differential macrophage genes. f) VEGFA and IGFBP5
expression marks fibroblasts in the EMT niche. Scatter plot of differential gene expression in
fibroblasts inside vs outside the EMT niche. X axis: difference in the percentage of
expressing fibroblasts. Y axis: log2 fold changes of the average SCT-normalized fibroblasts
gene expression. Labelled: EMT niche differential fibroblast genes. g) Integrin interactions
dominate the signaling network in the EMT niche. X axis: difference in the percentage of
tumor cells receiving a specific interaction inside vs outside the EMT niche. Y axis: log2 fold
changes of the average interaction spatial activity inside vs outside the EMT niche. Labelled:
differential interactions. h) Fibroblasts and macrophages stimulate tumor integrin signaling in
the EMT niche. Dotplot of receptor-ligand interactions enriched in the EMT niche. Dot size:
cell type-specific percentage of sender and recipient cells, dot color: cell type-specific scaled

average interaction score as ligand sender (orange) and receptor receiver (blue).
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