
Article
Combining spatial transcri
ptomics and ECM imaging
in 3D for mapping cellular interactions in the tumor
microenvironment
Graphical abstract
Highlights
d Spatial transcriptomics maps cell types and molecular states

to 3D multicellular niches

d 3D receptor-ligand interaction analysis reveals niche-specific

communication networks

d ECM imaging links ECM remodeling with gene expression in

cellular neighborhoods

d Multimodal analysis reveals druggable mechanisms of tumor

progression in a patient sample
Pentimalli et al., 2025, Cell Systems 16, 101261
May 21, 2025 ª 2025 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.cels.2025.101261
Authors

Tancredi Massimo Pentimalli,

Simon Schallenberg,

Daniel León-Periñán, ...,
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SUMMARY
Tumors are complex ecosystems composed of malignant and non-malignant cells embedded in a dynamic
extracellular matrix (ECM). In the tumor microenvironment, molecular phenotypes are controlled by cell-cell
and ECM interactions in 3D cellular neighborhoods (CNs). While their inhibition can impede tumor progres-
sion, routinemolecular tumor profiling fails to capture cellular interactions. Single-cell spatial transcriptomics
(ST) maps receptor-ligand interactions but usually remains limited to 2D tissue sections and lacks ECM read-
outs. Here, we integrate 3D ST with ECM imaging in serial sections from one clinical lung carcinoma to sys-
tematically quantify molecular states, cell-cell interactions, and ECM remodeling in CN. Our integrative anal-
ysis pinpointed known immune escape and tumor invasion mechanisms, revealing several druggable drivers
of tumor progression in the patient under study. This proof-of-principle study highlights the potential of in-
depth CN profiling in routine clinical samples to inform microenvironment-directed therapies. A record of
this paper’s transparent peer review process is included in the supplemental information.
INTRODUCTION

In the past decades, the discovery of oncogenic mutations

altering tumor-promoting intracellular signaling pathways

sparked the development of an ever-growing arsenal of targeted

agents that specifically inhibit mutant proteins. Today, in the era
Cell Systems 16, 101261, M
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of precision oncology, next-generation sequencing technologies

enable the high-throughput screening of druggable mutations,

central to selecting the most effective therapeutic approach

for individual patients. Nevertheless, tumors are complex eco-

systems where tumor cells live in close contact with the sur-

rounding extracellular matrix (ECM), as well as neighboring
ay 21, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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malignant and non-malignant stromal and immune cells. Besides

oncogenic mutations, cell-ECM and cell-cell interactions affect

tumor phenotypes and shape the tumor microenvironment

(TME) toward tumor promotion or eradication, thus representing

an attractive therapeutic approach.1 In fact, the ECM provides

both the physical substrate for tumor, stromal, and immune

cell migration and can affect virtually any hallmark of cancer

directly via ECM-receptor interactions and indirectly modulating

chemokine and growth factor availability.2 At the same time, re-

ceptor-ligand interactions between malignant, stromal, and im-

mune cells also affect the balance between tumor growth and

suppression, immune recognition and escape, and therapy

response and resistance.3 As demonstrated by the efficacy of

immunotherapies, blocking specific cell-cell communication

axes can rewire the TME and lead to sustained therapeutic re-

sponses in selected patients.4 Therefore, the in-depth integrative

study of ECM composition and cell-cell interactions in the TME is

particularly attractive to pinpoint the drivers of tumor progression

and identify therapeutic vulnerabilities in individual tumors

beyond genetic mutations.

In particular, non-small cell lung cancer (NSCLC), which ac-

counts for >80% of lung cancers, represents a prime example

of precision oncology.5 Despite the personalized administra-

tion of targeted therapies,6 therapeutic responses are often

short-lived, and NSCLC remains the main cause of cancer-

related death.7 At the same time, 20% of advanced NSCLC

patients respond to immunotherapy, while up to 30% of

treated patients suffer from immune-related adverse events.8

Therefore, the identification of personalized biomarkers

beyond druggable mutations represents an urgent unmet clin-

ical need to maximize therapeutic efficacy and limit toxicity

in NSCLC.

Currently, tumor molecular profiling in the clinic relies on the

bulk analysis of tumor genomes and transcriptomes, which fails

to capture the heterogeneity and spatial organization of the TME.

While single-cell omics have been successfully applied to profile

the cellular andmolecular composition of the TME,9 tissue disso-

ciation invariably leads to the loss of position information and

fails to profile interactions among neighboring cells. At the

same time, the sequential alignment of individual sections

stained with hematoxylin and eosin (H&E) staining10 or profiled

with multiplex immunofluorescence11 and imaging mass cytom-

etry12 enabled the initial exploration of the TME even in 3D at

the morphological and cellular level, respectively. However,

measuring tens of proteins prevented the simultaneous

study of molecular phenotypes and receptor ligand in

cellular neighborhoods, central to understanding which cell-

cell interactions—among a plethora of well-known ones—drives

tumor progression in individual patients. Conversely, spatial

transcriptomics (ST) methods map the expression of hundreds

to thousands of gene targets in intact tissue sections and have

profoundly changed our ability to characterize gene expression

in space.13 In particular, imaging-based ST methods, such as

CosMx Spatial Molecular Imager (CosMx),14 use in situ hybridi-

zation probes for the sensitive detection of their targets at sin-

gle-molecule resolution and enable the high-plex profiling of

routinely collected, formalin-fixed paraffin-embedded (FFPE)

clinical samples. Nevertheless, high-resolution ST methods

have not yet been used for reconstructing FFPE specimens in
2 Cell Systems 16, 101261, May 21, 2025
3D, and tissue molecular properties have thus far been isolated

from the contextual ECM composition.

Here, we present the 3D, multimodal map of a clinical tumor

sample measuring the expression of 960 genes with CosMx

together with ECM second harmonic generation (SHG) imaging

(data can be explored interactively at http://lung-3d-browser.

mdc-berlin.de/). The computational alignment of consecutive

sections using our tool STIM15 enabled the reconstruction of

3D cellular neighborhoods and captured the organization of

the TME inmulticellular niches. At the same time, SHG quantified

elastin and collagen content in cellular neighborhoods and

captured a continuum of ECM remodeling in the TME.

Combining SHG with ST then revealed which ECM regulators

were expressed by fibroblasts and which fibroblast molecular

states were spatially restricted to sites of ECM remodeling.

Finally, the combination SHG and 3D ST enabled the in-depth

profiling of cellular interactions in the TME and identified which

interactions mediated tumor progression in situ, including tar-

gets of already approved agents. In this proof-of-principle study,

we highlight the power of in-depth spatial molecular tumor

profiling to pinpoint which among a plethora of well-known

mechanisms drives tumor progression in individual patients,

central to inform mechanism-based, personalized therapies.

RESULTS

Multimodal study of one aggressive, routinely collected
NSCLC tumor in 3D
We focused on an early-stage NSCLC patient, who demon-

strated rapid disease progression and aggressive tumor biology

(Figure S1A). To reconstruct 3D cellular neighborhoods, we cut

34 consecutive 5 mm-thick tissue sections from a routinely

collected, archival FFPE block (surgical resection specimen

from the primary tumor, Figure 1A). We leveraged deep-

learning-based classification of tumor, stromal, and normal

lung-resident compartments (STAR Methods) of a whole-slide

H&E image to select a 16 mm2 wide region of interest (ROI)

featuring the copresence of both the primary tumor and can-

cer-associated stroma for ST investigation (Figure 1B). Further-

more, we reasoned that the presence of small-caliber airways

crossing the section planes would provide anchoring points for

section alignment in 3D. We then collected single-cell resolved

ST data from every 6th section (30 mmsection-to-section interval)

and profiled intervening sections with complementary modal-

ities, enabling the integrative analysis of tissue morphology,

ECM composition, protein markers, and gene expression.

Molecular histology of the TME at single-cell resolution
To gain insights into the spatial organization and crosstalk

between tumor, stromal, and immune populations, we per-

formed 1000-plex RNA in situ hybridization (ISH) with CosMx

and leveraged deep-learning-based cell segmentation of nuclei

and plasma membranes to obtain single-cell gene expression

profiles (STAR Methods). We profiled 960 cancer-related genes,

allowing the simultaneous characterization of cellular identities,

transcriptomic states, and cell-to-cell communication in

the TME.14

To assess data quality, we first quantified counts from 20

negative probes (i.e., targeting sequences not present in

http://lung-3d-browser.mdc-berlin.de/
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Figure 1. Molecular histology of the TME at single-cell resolution

(A) Experimental design for the 3D reconstruction and multimodal profiling of cellular neighborhoods. 34 consecutive 5 mm sections were cut from one non-small

cell lung cancer (NSCLC) tumor block. Second harmonic imaging (SHG, quantifies collagen and elastin), hematoxylin and eosin (H&E, detects tissuemorphology),

ST (1000-plex RNA in situ hybridization with CosMx), and immunofluorescence (IF) were combined for multimodal spatial profiling. Gray: sections collected on a

glass slide but not processed.

(B) Deep learning-based identification of a tumor and stroma-rich region of interest (ROI, black square). Semantic segmentation of the whole-slide H&E image in

carcinoma (red), stroma (orange), and normal lung (not colored) regions.

(C) 18 epithelial, stromal, and immune cell types compose the TME. UMAP of cellular gene expression colored by cell type identity (CosMx data generated in

this study).

(D) Molecular histology matches tissue morphology. Top left and bottom right: H&E staining (section 3). Top right and bottom left: CosMx cells colored by their

assigned cell types (section 4).

(E) Congruence of gene expression profiles in segmented cells with single-cell RNA sequencing references. UMAPs of cellular gene expression colored by label

transfer scores from healthy16 and tumor17 published atlases.
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human tissues), which composed only 0.27% of detected mol-

ecules, demonstrating highly specific detection of target genes.

We then verified the colocalization of pan-cytokeratin (panCK)

protein staining and KRT19 transcript ISH signal in the same

section (Figure S1B). Overall, we imaged 155,055,865 tran-

scripts distributed in six sequential, non-consecutive ROIs

(Figure S1C) and assigned 74.1% of transcripts to 340,644
segmented cells (101 median genes and 198 median tran-

scripts/cell). Near-perfect correlations of total transcript counts

confirmed robust gene expression profiling across sections

with hierarchical clustering recapitulating section spatial ar-

rangements (Figure S1D).

Unsupervised clustering of gene expression in segmented

cells (Figure S1E) identified 18 cell types (Figure 1C), annotated
Cell Systems 16, 101261, May 21, 2025 3
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based on the expression of canonical marker genes (Figure S1F)

and IF positivity to panCK staining (Figure S1G). In line with pre-

vious reports,18 tumor cells were characterized by a larger cell

size and higher transcript counts. Transferring cell type annota-

tions back to their tissue positions, the spatial patterns of airway

epithelial cells (Figure 1D), tumor, stromal, and immune popula-

tions corresponded with those evident from routine histology

(Figures S1H and S1I). Finally, comparison of gene expression

in segmented cells with published single-cell RNA sequencing

atlases confirmed the agreement of our cell type annotations

with healthy lung16,19 and NSCLC atlases17 (Figure 1E).

In summary, we generated a high-quality, single-cell-resolved

molecular atlas of the TME, encompassing more than 340,000

cells from 18 epithelial, stromal, and immune cell types, and pro-

ceeded to explore their 3D neighborhoods.

3D neighborhoods enable the unbiased identification of
TMEs multicellular niches
To reconstruct 3D cellular neighborhoods, we leveraged STIM,15

which employs state-of-the-art computer vision techniques, to

computationally align ST data and generate a 3D molecular

map of the TME at single-cell resolution. Owing to the precise

positioning of the ROIs during data collection, relatively minor

transformations were required for 3D image registration (median

cell displacement:�42 mm) (Figure S2A), which would, however,

alter 3D cellular neighborhoods if uncorrected. Furthermore,

visualization of respiratory epithelium cells in 3D revealed the ex-

pected airway lumen continuity (Figure 2A).

As cellular activities and molecular profiles are shaped by the

surrounding tissue microenvironment,13 we defined 3D neigh-

borhoods for each cell as a spherical space encompassing all

cells locatedwithin a 50 mmcenter-to-center distance (Figure 2B)

and grouped cells sharing the same tissue microenvironment—

regardless of their gene expression. Unbiased clustering of 3D

neighborhoods revealed 10 multicellular niches sharing a spe-

cific neighborhood composition (Figures 2C, S2B, and S2C).

These included both lung-resident epithelial (i.e., ‘‘airways’’

and ‘‘alveoli’’) and stromal (i.e., ‘‘smooth muscle’’) niches and

TME-specific tumor, stromal, and immune niches (Figure 2D).

3D neighborhoods distinguished the ‘‘vascular stroma’’—rich

in vascular endothelium and pericytes—from the ‘‘desmoplastic

stroma,’’ featuring the highest fibroblast and plasma cell density.

High numbers of tumor cells characterized the 3D neighbor-

hoods of two distinct niches, which we annotated as ‘‘tumor

core’’ and ‘‘tumor surface.’’ Therefore, the tumor bed was

composed of the tumor core, featuring a higher cellular density

but a lower cellular diversity (Figure S2D) (i.e., dominated by tu-

mor cells), and the tumor surface with higher fibroblasts, macro-

phages, and cytotoxic T cell (CTL) counts, compatible with its

position at the tumor-stromal boundary. Tumor cells were also

abundant in ‘‘dendritic cell niches’’ and ‘‘macrophage niches’’

but not in ‘‘T cell niches.’’

Mapping niche annotations back to their tissue positions al-

lowed the comparison with manual annotations of routine H&E

histology by an experienced pathologist. Multicellular niches

closely followed tissue architectures visible by routine histol-

ogy, including airways, alveoli, lymphocyte aggregates, tissue

fibrosis, and smooth muscle in the tunicae of larger blood ves-

sels (Figure 2E). Furthermore, multicellular niches distinguished
4 Cell Systems 16, 101261, May 21, 2025
smaller vessels from the surrounding stroma and provided a

more granular annotation of tumor, immune, and stromal

niches.

In summary, we leveraged our 3D tumor atlas to analyze over

200,000 cellular neighborhoods and identify 10 distinct,

repeating, and spatially organized multicellular niches in

the TME. Niches corresponded to and extended expert annota-

tions of morphological tissue structures, highlighting the ability

of 3D neighborhoods to capture the spatial organization of

the TME.

3D neighborhoods improve the identification and spatial
mapping of intratumoral immune niches
As cells live and interact in 3D tissues, we hypothesized that

analyzing 3D cellular neighborhoods would improve our ability

to study multicellular niches. Therefore, we systematically

compared 2D and 3D neighborhoods in the patient under study

(Figure 3A). By design, 3D neighborhoods included cells from the

sections immediately above and below the z plane (STAR

Methods), comprising a 2.28-fold larger area than their 2D coun-

terparts. As expected, 2D neighborhoods featured a lower num-

ber of neighbors and lower cell type diversity than their 3D coun-

terparts (median of 71 cells from 9 cell types/neighborhood in 3D

vs. 32 cells from 7 cell types in 2D, p < 0.005), confirmed by a

lower alpha diversity—a common measure of species richness

in ecology studies (median Chao index 3D: 10.5 vs. 2D: 8,

p < 0.005) (Figure 3B).

Comparing the ability of 2D neighborhoods to capture the

TME spatial organization with their 3D counterparts, we noted

that 2D niches largely corresponded to 3D ones and included

a ‘‘macrophage-rich stroma’’ (Figures 3C and S3A–S3C).

However, 2D niches failed to identify ‘‘dendritic cell niches,’’

which were validated by IF staining (Figure S3D). In fact, cells

assigned to dendritic cell niches in 3D were mainly reassigned

to the tumor surface (51.2%) and T cell niches (23.6%) in 2D.

Extending such a comparison to all multicellular niches, we

observed that 64.1% of cells were assigned to the same niche

in 2D and 3D overall. However, rates varied across niches,

and T cell niches featured the lowest concordance (46.2%).

In 2D, 35.3% of cells assigned to T cell niches in 3D were re-

assigned to the desmoplastic stroma with a consequent

reduction in niche size (32,272 cells in 3D vs. 17,355 cells in

2D) (Figure 3D). Leveraging 3D rendering (STAR Methods),

we compared the spatial localization of T cell niches in 2D

and 3D and observed that 3D-specific cells surrounded and

formed bridges between seemingly disconnected patches of

T cell niches already identified in 2D, restoring their spatial

continuity (Figure 3E).

Finally, we sought to further investigate the 3D spatial relation-

ships between the tumor surface and immune niches in TME.We

confirmed how the ‘‘tumor surface’’ precisely interlocked and

covered the ‘‘tumor core’’ in 3D and demonstrated the spatial

continuity of the tumor surface with dendritic and macrophage

niches (Figure 3F). By contrast, T cell niches were not embedded

in the tumor surface but rather located further away in proximity

to larger airways or dispersed in the stroma.

Overall, the study of 3D cellular neighborhoods revealed the

complexity and richness of cellular microenvironments. In the

patient under study, 3D analyses improved the spatial mapping



Figure 2. 3D neighborhoods identify multicellular niches in the TME
(A) Airways cross multiple sections in 3D. 3D plot of the 6 CosMx sections after registration with STIM. Green: respiratory epithelium cells, gray: other cell types.

Axes are scaled to the same length for visualization purposes.

(B) Design and analysis of 3D cellular neighborhoods. Left: exemplary 3D neighborhood. Red: center cell, dark green: tumor cells, orange: fibroblasts, gray: other

cell types. Right: quantification of cell types in 3D neighborhoods is used to build the 3D neighborhood matrix. Tumor cells, fibroblasts, and macrophages are

shown out of 18 cell types quantified.

(C) The TME is formed by lung-resident, tumor, stromal, and immune multicellular niches. UMAP of 3D cellular neighborhoods and colored by 3D niche as-

signments. Cells are grouped based on their 3D neighborhood composition, regardless of their gene expression.

(D) The composition of 3D neighborhoods guides multicellular niche annotation. Heatmap of niche-specific average cell type counts in 3D neighborhoods. Color

scale is clipped to 30 for visualization purposes.

(E) 3D multicellular niches capture the spatial organization of the TME. Comparison of 3D niche spatial localization (left, section 10) with pathologist manual

annotations of H&E tissue domains (right, section 3).
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of T cell niches and distinguished dendritic cell niches from the

surrounding tumor surface.

3D neighborhoods enable the systematic study of
ligand-receptor interactions in TMEs multicellular
niches
The TME is a dynamic tissue shaped by the crosstalk between

tumor, stromal, and immune cells.3 To systematically study

cell-cell communication between proximal cells, we leveraged

the sensitive detection (1–2 molecules/cell14) of receptor and

ligand transcripts in 3D cellular neighborhoods and estimated

the spatial activity of 480 receptor-ligand pairs annotated in
the CellChat database20 (Figure 4A). To identify ligands that

could drive the spatial organization and function of

specific multicellular niches, we further grouped receptor-ligand

pairs into 165 ligand-based axes and quantified the signal

received by each individual cell from its 3D neighbors (max

50 mm center-to-center distance, Methods). Comparing ligand

activities within and outside each niche, we identified 96 ligands

to be enriched (log2FC > 0.5) in at least one niche (Figure 4A).

These included well-known endothelial (ESAM and CDH5) and

pericyte (PECAM1) cell-cell adhesion molecules in both vascular

and alveolar niches (Figure 4B), as well as PDGFB interactions,

restricted to vascular niches (Figure 4C). At the same time,
Cell Systems 16, 101261, May 21, 2025 5



Figure 3. 3D neighborhoods improve the identification and spatial mapping of immune niches

(A) Design of 2D and 3D cellular neighborhoods. Cells in a 50 mm-radius circle around the center cell compose its 2D neighborhood (blue), while cells in a 40 mm-

radius circle in the sections above and below are unique to its 3D neighborhood (orange).

(B) 3D neighborhoods are richer than their 2D counterparts. Distributions of the total number of neighbors (left), unique cell types (middle), and alpha diversity

(right) for each cellular neighborhood in 2D (blue) and 3D (orange). ****: t test p values < 0.005, n = 218,378.

(C) Dendritic cell niches are only identified in 3D. UMAP of 2D cellular neighborhoods colored by 2D multicellular niche assignments.

(D) T cell niches have the lowest 2D-3D concordance. Alluvial plot of multicellular niche assignments. Lines follow the same cell in 3D (left) and 2D (right). Color

legend in (C).

(E) 3D neighborhoods capture the spatial continuity of T cell niches. Blue: 3D surface rendering of ‘‘T cell niches,’’ red: cells assigned to ‘‘T cell niches’’ in 2D, gray:

‘‘tumor core and surface.’’

(F) 3D neighborhoods reveal the 3D spatial relationships between multicellular niches in the TME. 3D rendering reveals how the ‘‘tumor surface’’ (red) covers the

‘‘tumor core’’ (yellow). ‘‘Dendritic cell niches’’ (purple) and ‘‘macrophage niches’’ (pink) are embedded in the tumor surface, while ‘‘T cell niches’’ (blue) are found

mainly outside of the tumor bed.
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epithelial adhesion molecules (CDH1) and tumor-promoting

EFNA1 and AREG signaling were restricted to tumor bed (Fig-

ure 4D), while pro-fibrotic ligands (IGF1 and FGF7) and

collagen-receptor interactions were enriched in the desmoplas-

tic stroma. In line with their role in the recruitment (i.e., chemo-

taxis) of specific immune cell populations, the T cell chemoat-

tractant CCL5 (also known as RANTES)21 was enriched in

T cell niches, while CCL3 (also known as macrophage inflamma-

tory protein 1-alpha) was restricted to macrophage niches. On
6 Cell Systems 16, 101261, May 21, 2025
the other hand, CCL19, which regulates the homing and reten-

tion of CCR7+ dendritic and T cells in lymphoid tissues,22

marked the location of both dendritic and T cell niches in the

TME (Figure 4E).

Overall, 3D neighborhoods enabled the systematic study of re-

ceptor-ligand interactions between physically proximal cells and

revealed which ligand activities were spatially organized within

multicellular niches, including well-known drivers of niche-spe-

cific cellular composition and functions.



Figure 4. 3D neighborhoods identify niche-specific interactions and unravel immune inhibitory crosstalk in dendritic cell niches

(A) 3D neighborhoods enable the spatial analysis of cellular interactions. The sensitive co-detection of ligands and their receptors in 3D cellular neighborhoods is

leveraged to quantify ligand 3D spatial activity scores in each receiver cell (STAR Methods).

(B) 3D communication analysis identifies niche-specific ligands. Heatmap of spatial activity z-scores for the top 5 enriched ligand per niche.

(C–E) Ligand spatial activities mark the location of specific niches in the TME. 3D volumetric rendering of ligand spatial activity densities for PDGFB

(vascular niches), AREG (tumor core and surface), and CCL19 (T and dendritic cell niches). Gray: tumor core and surface, purple ‘‘dendritic cell niches,’’ pink:

‘‘macrophage niches,’’ purple: ‘‘T cell niches.’’

(F) Cellular and molecular players of the dendritic cell niche signaling network. Dotplot of receptor-ligand interactions enriched in dendritic cell niches. Dot size:

cell type-specific percentage of sender and recipient cells, dot color: cell type-specific scaled average interaction scores as ligand sender (orange) and receptor

receiver (blue).

(G) Immune checkpoint interactions suppress local anti-tumoral immune responses. Summary scheme of selected cellular andmolecular interactions in dendritic

cell niches, revealing mechanism-based personalized targets for cancer interception. The pill symbol indicates druggable interactions.
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Communication networks within dendritic cell niches
pinpoint active immunosuppressive interactions,
including druggable immune checkpoints
Under the selective pressure of the immune system, tumor

cells eventually develop strategies to suppress anti-tumoral

immune responses, including the reprogramming of antigen-

presenting cells (APCs, i.e., macrophages and dendritic cells).

In turn, APCs may promote the recruitment of regulatory
T cells (Tregs), further restricting the activation of tumor-spe-

cific CTLs.23 In the patient under study, dendritic cell and

macrophage niches were embedded in the tumor surface,

and Tregs were enriched in these niches (Figure S4B). Den-

dritic cells (DCs) are increasingly recognized as key players

in the regulation of local anti-tumoral immune responses, deliv-

ering either immunostimulatory or suppressive signals to tumor

antigen-specific not only in lymph nodes but also locally in the
Cell Systems 16, 101261, May 21, 2025 7
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TME.24 To investigate immunomodulatory signals in the patient

under study, we focused on the 15 receptor-ligand pairs

spatially localized to dendritic cell niches (Figure S4C). In addi-

tion to chemokine-receptor pairs (e.g., CCL19-CCR7 and

CXCL9-CXCR3), we identified the specific enrichment of key

immune checkpoints.

We then leveraged the directionality of signaling in 3D neigh-

borhoods to map the cellular communication networks underly-

ing such interactions (Figure 4F). For example, fibroblasts

emerged as the main senders of CCL19-CCR7 interactions

and lymphatic endothelial cells of CCL21, suggesting their cen-

tral role in the formation and/or maintenance of this niche. At the

same time, tumor cells were the only cell type that did not act as

a receiver of chemokine signals, compatible with their role in the

induction of—rather than their recruitment to—dendritic cell

niches. Tumor cells instead acted as the main senders of macro-

phage inhibitory factor (MIF), a potent chemoattractant known to

promote the recruitment and immunosuppressive reprogram-

ming of APCs in in NSCLC.25 Supporting its central role in

shaping anti-tumoral immunity, MIF inhibition decreased Tregs

and promoted CTL infiltration in a melanoma lung metastasis

model.26

In turn, DCs—and macrophages to a lesser extent—were

engaged in immunosuppressive interactions, both directly inhib-

iting CTL activity through the CD274-PDCD1 (PD-L1/PD-1) and

LGALS9-HAVCR2 (Galectin-9/Tim-3) axes and indirectly by pro-

moting Tregs activity through CD80-CTLA4 interactions. At the

same time, CTL accumulated in T cell (log2FC = 1.52) and den-

dritic cell niches (log2FC = 0.43) but failed to infiltrate the tumor

core (log2FC =�2.74) (Figure S4D). Such compartmentalized im-

mune infiltrate is often the result of highly effective immunosup-

pressive mechanisms able to prevent immune-mediated tumor

eradication27 but is predictive of immune checkpoint inhibitor ef-

ficacy, given the high numbers of infiltrating T cells ready to

attack tumor cells once the immunosuppressive signaling axes

have been silenced.24,28

Taken together, 3D neighborhoods mapped receptor-ligand

interaction networks in dendritic cell niches, where anti-tumoral

immune responses are orchestrated (Figure 4G). As several

agents targeting these interactions are already approved for

the treatment of NSCLC (e.g., nivolumab and ipilimumab),6 our

analysis may provide themolecular rationale for their therapeutic

targeting in the patient under study.

Second harmonic imaging enables the study of the ECM
in cellular neighborhoods
Cellular behaviors are controlled by mechanical and molecular

interactions with both their cellular neighbors and the surround-

ing ECM29; therefore, we integrated our 3D molecular atlas with

measurements of ECM composition in cellular neighborhoods.

In the lung, elastin and collagen are the major ECM compo-

nents.30 Thanks to their optical properties, elastin and collagen

fibers can be quantified with high specificity using second har-

monic imaging (SHG),31 a popular label-free method for the

spatial analysis of ECM composition. Aligning SHG with sin-

gle-cell-resolved ST data in two consecutive sections, we sys-

tematically investigated the relationship between ECM compo-

sition and molecular phenotypes within cellular neighborhoods

(STAR Methods).
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The TME was characterized by a heterogeneous ECM that

closely followed the spatial distribution of main tissue structures,

including airways, blood vessels, alveoli, and the desmoplastic

stroma (Figure 5A), which was validated using Verhoef’s Van

Gieson staining of collagen and elastin fibers (Figure S5A). In

terms of ECM composition, cellular neighborhoods are distrib-

uted along a continuum, from elastin rich/collagen poor to an

elastin poor/collagen rich (Figure 5B). To group cells living in a

similar ECM, we unbiasedly clustered cells based on the compo-

sition of their surrounding ECM. We identified 3 ECM compart-

ments using k-means clustering (Figure S5B): one elastin-rich

‘‘homeostatic,’’ one elastin and collagen poor ‘‘degraded,’’ and

one collagen rich ‘‘desmoplastic’’ ECM compartment. As a pos-

itive control, mapping ECM compartments back to their tissue

positions revealed a clear spatial separation (Figure 5C), which

closely resembled the original SHG images and followed the

spatial distribution of multicellular niches and pathologist anno-

tations (Figure 2E). Comparing the observed and expected

cell-type frequencies (based on a random distribution, see

STAR Methods), we quantified cell type enrichments in specific

ECM compartments (Figure S5C). Lung-resident epithelial (alve-

olar cells log2FC = 1.23, basal epithelial cells log2FC = 1.07, and

respiratory epithelium log2FC = 1.02) and vascular populations

(smooth muscle log2FC = 0.76, pericytes log2FC = 0.53, and

vascular endothelium log2FC = 0.60) were strongly enriched in

the homeostatic ECM, while tumor cells (log2FC = 1.20) were en-

riched in the degraded ECM and plasma cells (log2FC = 0.82) in

the desmoplastic ECM, in line with their abundance in the des-

moplastic stroma niche and their emerging role as promoters

of lung fibrosis.32

Overall, this highlights the ability of SHG to capture ECM dy-

namics in TME cellular neighborhoods, where ongoing remodel-

ing during tumor progression results in the degradation of the

elastic lung ECM and its progressive replacement by a stiff,

collagen-rich matrix.33

Multimodal spatial profiling links fibroblast phenotypes
and ECM compartments
Fibroblasts are the major ECM producers and organizers

throughout the body.34 In the TME, cancer-associated fibro-

blasts (CAFs) are responsible for the increased matrix stiffness

and architectural remodeling typical of the malignant ECM.35

CAFs, however, display a remarkable heterogeneity,36 also play-

ing critical roles in the shaping of local immune responses medi-

ating the recruitment and activation of immune populations in

the TME.37

In the patient under study, fibroblasts were the most abundant

cell type and—despite being enriched in the desmoplastic ECM

(log2FC=0.38, 44.5% of fibroblasts)—were highly represented in

the degraded (32.8%) and homeostatic compartments (22.7%)

as well. Therefore, we hypothesized that the observed changes

in ECM composition could be mediated by fibroblast functional

heterogeneity, rather than by their abundance. The unbiased

analysis of fibroblast molecular profiles (n = 62,604) identified

six transcriptomic states (Figure 5D), which we annotated

through literature-informed review of their marker genes (STAR

Methods, Figure S5D). Their spatial distribution was non-homo-

geneous across the TME (Figure 5E) but showed preferential en-

richments in both ECM compartments and multicellular niches



Figure 5. Second harmonic imaging links ECM compartments with fibroblast phenotypes in situ

(A) Second harmonic generation (SHG) imaging captures extracellular matrix (ECM) remodeling in the TME. Collagen (green) and elastin (magenta) fibers were

quantified by SHG in section 3.

(B) SHG enables the unbiased assignment of cells to specific ECM compartments. Quantification of elastin (x axis) and collagen (y axis) fibers in cellular

neighborhoods (50 x 50 mm area around each cell centroid) highlights the transition from an elastin-rich, collagen-poor homeostatic ECM to a collagen-rich,

elastin-poor desmoplastic ECM. Cells are colored by k-means cluster assignment (k = 3).

(C) SHG spatially maps ECM compartments in the TME. Cells in section 4 are colored by their ECM cluster assignments. Color legend in (C).

(D) Fibroblasts feature heterogeneous transcriptomic phenotypes in the TME. UMAP of fibroblast gene expression colored by transcriptomic clusters.

(E) Fibroblast phenotypes are spatially organized in the TME. Spatial distribution of fibroblast transcriptomic clusters (section 4).

(F) Fibroblast phenotypes are linkedwith ECM remodeling. Boxplot of collagen and elastin fiber abundance in fibroblast neighborhoods across fibroblast clusters.

(G–I) Fibroblast expression of ECM regulators is spatially organized within ECM compartments. 3D volumetric rendering of TIMP1 (G), IGF1 (H), and INHBA

(I) fibroblast expression density.
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(Figures S5E and S5F). Quantification of the collagen and elastin

signals in fibroblast neighborhoods highlighted a close corre-

spondence between fibroblast phenotypes and ECM composi-

tion (Figure 5F): FN1+ COL11A1+ ACTA2+ ‘‘myofibroblasts’’

were spatially restricted to the degraded ECM in the tumor bed

and surrounded by the lowest collagen signal, while JUN+

FOS+ IGF1+ activated fibroblasts in the desmoplastic ECM sur-

rounded by the highest collagen levels. On the other hand, LUM+

MGP+ TIMP1+ ‘‘matrix fibroblasts,’’ CD74+ HLA-DRB1+ ‘‘anti-
gen-presenting,’’ TIMP1+CCL19+ and TIMP1+CXCL10+ ‘‘retic-

ular’’ fibroblasts were surrounded by a homeostatic ECM. At the

same time, antigen-presenting fibroblasts preferentially homed

to macrophage niches, while reticular fibroblasts to dendritic

and T cell niches, compatible with their role in shaping immune

responses in the TME, rather than ECM metabolism.

Seeking to pinpoint which fibroblast factors were involved in

the active metabolism of the surrounding ECM, we focused

on ‘‘matrisome’’ genes: the ensemble of structural ECM
Cell Systems 16, 101261, May 21, 2025 9
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components (i.e., collagens, proteoglycans, and glycoproteins),

ECM regulators (i.e., matrix metalloproteases), and ECM-affili-

ated proteins (i.e., ECM-bound secreted factors).38 23 out of

241 measured matrisome genes were enriched in a specific

ECM compartment (Figure S5G). Basal lamina collagens

COL4A1, COL4A2, COL15A1, and COL18A130 in the homeo-

static ECM, fibril-associated COL14A139 were enriched in the

desmoplastic ECM, while FN1—a key ECM constituent during

embryonic development, wound healing, and tumorigen-

esis40—and COL11A1—typically detected at the tumor invasive

front41—in the degraded ECM. In addition to ECM constituents,

the integrative analysis of ECM composition and fibroblast gene

expression revealed which ECM regulators were restricted to

specific ECM compartments, such as TIMP1 (Figure 5G), a

broad-spectrum inhibitor of MMPs,42 in the homeostatic ECM,

the pro-fibrotic ligands IGF1 (Figure 5H) and CXCL12 in the des-

moplastic ECM, and the ECM-associated signaling molecules

INHBA (Figure 5I), IGFBP5, and VEGFA in the degraded ECM.

Notably, the simultaneous upregulation of FN1, COL11A1,

INHBA (Inhibin A, a member of the TGFb superfamily), and

VEGFAwas recently identified in a CAF subset restricted to hyp-

oxic TME regions of colorectal cancer patients and linked with

poor patient prognosis.43

Overall, the multimodal profiling of fibroblast neighborhoods

revealed the close association of their transcriptomic states

with specific ECM compartments and multicellular niches and

enabled the identification of key local ECM constituent and reg-

ulators. Given themultiple pro-invasive ECM factors detected in

the tumor bed, we further investigated the relationship between

ECM composition, fibroblast, and tumor phenotypes in

the TME.

Multimodal analysis of tumor infiltration reveals an EMT
niche at the tumor surface
The ability of cancer cells to detach from the epithelial sheet and

infiltrate the adjacent stroma (i.e., ‘‘invasiveness’’) is a hallmark

of malignant tumors and essential for metastatic dissemina-

tion.44 Quantifying the 3D niche assignments of 38,804 tumor

cells, we noted that, while most tumor cells were comprised

within the tumor bed, more than 9,000 tumor cells (24.0%) infil-

trated other multicellular niches (Figure S6A) and were especially

abundant in the desmoplastic stroma (Figure 6A).

To unbiasedly reconstruct the phenotypic transitions of tumor

cells in the TME, we leveraged pseudotime, a popular approach

in the single-cell transcriptomics field to reconstruct dynamic

molecular processes. We first ranked tumor cells from 0/early

to 1/late pseudotime based on gene expression similarity and

identified which genes were underlying these tumor phenotypes.

Compatible with epithelial-to-mesenchymal transition (EMT),45

epithelial cell adhesion molecules CDH1 and EPCAM were ex-

pressed in early pseudotime cells and then downregulated in tu-

mor cells later in pseudotime (Figure 6B), while ITGB646 and

COL3A147 and other mesenchymal markers were upregulated

in late pseudotime tumor cells (Figure 6B).45

Combining pseudotime and 3D niche assignments, we inves-

tigated the spatial distribution of EMT in tumor cells across the

TME and noted how EMT was progressively activated when

transitioning from the tumor core to the tumor surface and

stroma-infiltrating tumor cells (median pseudotime scores:
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0.39, 0.50, and 0.85, p < 0.05) (Figure 6C). Therefore, ‘‘pseudo-

space’’ (intended as distance from the tumor bed) closely fol-

lowed pseudotime, as cells in the tumor bed (i.e., with early

pseudospace) featured an epithelial phenotype (i.e., early pseu-

dotime), and stroma-infiltrating tumor cells (i.e., extending

beyond the tumor bed) featured both a late pseudospace and

pseudotime. However, numerous cells in the tumor bed already

showed a mesenchymal phenotype (i.e., late pseudotime)

despite their localization in the tumor bed (i.e., early pseudo-

space). Notably, these mesenchymal tumor cells did not

distribute uniformly across the tumor core and surface but rather

concentrated in one specific region at the interface with the des-

moplastic stroma (Figure 6D). There, the 3D density of pseudo-

time scores peaked (Figures S6C and S6D), and IF validated

the presence of panCK+ CDH1low cells (Figure S6E). The

observed discrepancy between early pseudospace and late

pseudotime suggests that tumor cells acquire pro-invasive mo-

lecular phenotypes in the EMT niche before invading the sur-

rounding stroma.

Mechanotransduction pathways mediate cellular responses

to mechanical stimuli and are central to tumor progression,

from the initial malignant transformation48 to tissue invasion

and metastasis.49 ECM stiffening, which typically accompanies

solid tumors, is indeed a powerful inducer of both tumor EMT46

and migration (i.e., ‘‘durotaxis’’).50 Therefore, we investigated

the relationship between EMT status and ECM composition in

tumor neighborhoods (Figure 6E). While tumor cells infiltrating

the stiff, desmoplastic stroma did feature a mesenchymal

phenotype, tumor cells in the EMT niche lived in a collagen-

poor ECM similar to the rest of the tumor bed (Figure 6F). There-

fore, while collagen deposition, which is the main determinant of

tissue tension, may sustain EMT in infiltrating tumor cells, it

cannot explain EMT induction in the EMT niche. We thus

searched for additional factors that were spatially restricted to

the EMT niche to understand which mechanisms could trigger

tumor invasion.

A wound healing-like communication network activates
tumor integrins in the EMT niche
Tumor invasion represents the first step in the metastatic

cascade—the major cause of cancer-related death—therefore,

mechanistic understanding of the initial steps of tumor invasion

is central to the accurate prediction and early interception of tu-

mor dissemination.51 We investigated whether tumor cells in the

EMT niche upregulated specific genes that could serve as early

tumor invasion biomarkers. Comparing gene expression in tu-

mor cells inside and outside the EMT niche (Figure S7A), we

identified NDRG1 and LGALS1 as the genes with the strongest

differential expression (Figure 7A). N-myc downstream-regu-

lated gene 1 (NDRG1) promotes stem-like properties in NSCLC

cells52 and recently emerged as themost specificmarker of early

brain metastasis (<10 months after diagnosis) in NSCLC pa-

tients.53 In the patient under study, who presented with brain

metastasis 11 months after diagnosis, we show that NDRG1

expression is not only enriched but almost spatially restricted

to tumor cells in the ‘‘EMT niche’’ (Figure 7B), supporting their

involvement in tumor dissemination. LGALS1 (Galectin-1) was

also spatially restricted to the ‘‘EMT niche’’ (Figure 7C). While

NDRG1 is a modulator of intracellular signaling pathways,



Figure 6. Multimodal analysis of tumor neighborhoods identifies an EMT niche at the tumor surface

(A) 3D neighborhoods reveal numerous stroma-infiltrating tumor cells. 3D rendering of the tumor bed highlights tumor cells extending beyond the tumor surface

into the surrounding stroma.

(B) Pseudotime captures tumor epithelial-to-mesenchymal (EMT) dynamics. UMAPs of tumor cell transcriptomic profiles colored by pseudotime rank (left) and

the SCT-normalized expression of pseudotime-associated EMT marker genes.

(C) EMT is activated progressively from the tumor core to the desmoplastic stroma. Boxplot of the pseudotime rank of tumor cells in the tumor core, surface, and

desmoplastic stroma. ****: t test p values < 0.005, n = 38,804.

(D) Tumor EMT is upregulated not only in the desmoplastic stroma but already in one region of the tumor surface. Spatial distribution of pseudotime rank scores

numerous mesenchymal tumor cells in the EMT niche (black box).

(E) Infiltrating tumor cells are surrounded by a stiff ECM. Spatial plot of collagen fiber abundance in tumor cell neighborhoods.

(F) Matrix stiffness accompanies tumor EMT in the desmoplastic stroma but cannot explain its induction in the EMT niche. Boxplot of collagen fiber abundance in

tumor cell neighborhoods across the EMT niche and ECM compartments.
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LGALS1 acts extracellularly and functions as a switch between

the inflammatory and tissue repair phases of wound healing.54

LGALS1 promotes both myofibroblast migration and activity55

and M1-to-M2 macrophage conversion while inhibiting T cell

recruitment.54 Accordingly, the cell type composition of the

EMT niche differed from the rest of TME, showing enrichments

for tumor cells, fibroblasts, and macrophages (Figure S7B),

together forming 83.8% of cells in the EMT niche (Figure S7C).

Therefore, we focused on these cell types to identify tumor-

extrinsic molecular programs active in the EMT niche. Compat-

ible with the LGALS1 function, myofibroblasts were not only

the main enriched fibroblast state (Figure S7D), but their density

actually peaked within the EMT niche compared with the rest of

the tumor bed (Figure 7D). At the same time, macrophages in the

EMT niche upregulated the expression of SPP1 (secreted

phosphoprotein-1 or osteopontin), together with the M2 marker
glutamine synthase (GLUL)56 and the lipid-laden marker glyco-

protein-NMB (GPNMB)57 (Figure S7E), typical of tissue-repair

and pro-tumoral macrophages.58

Overall, the unbiased analysis of cell type-specific genes upre-

gulated in the EMT niche revealed several key secreted mole-

cules that have central roles in both wound healing and tumor in-

vasion: LGALS1 in tumor cells, VEGFA and IGFBP5 in

fibroblasts, and SPP1 in macrophages. Suggesting their func-

tional role in local tissue remodeling, their expression was not

only enriched but almost spatially restricted to the EMT niche

(Figures 7E–7G). For example, VEGFA promotes macrophage

recruitment and their reprogramming toward an anti-inflamma-

tory phenotype,59 while insulin growth-factor-binding protein-5

(IGFBP5), especially in the presence of FN1,60 promotes myofi-

broblast activation and ECM remodeling.61 Furthermore,

SPP1+ macrophages have been recently identified as key
Cell Systems 16, 101261, May 21, 2025 11



Figure 7. A wound healing-like, multicellular program activates integrin signaling in the EMT niche

(A) LGALS1 and NDRG1 expression characterizes tumor cells in the EMT niche. Scatter plot of differential gene expression in tumor cells inside vs. outside the

EMT niche. x axis: difference in the percentage of expressing tumor cells. y axis: log2 fold changes of the average SCT-normalized tumor gene expression.

Labeled: EMT niche differential tumor genes.

(B and C) NDRG1 (marker of brain metastasis) and LGALS1 (secreted during wound healing) expression is restricted to the tumor cells in the EMT niche (black

box). 3D surface rendering of the gene expression density of EMT niche tumor marker genes.

(D) Myofibroblasts accumulate in the EMT niche. 3D spatial density plot of myofibroblasts.

(E and F) VEGFA (secreted in response to hypoxia and wound healing) and IGFBP5 (local regulator of IGF signaling) expression is restricted to fibroblasts in the

EMT niche (black box). 3D surface rendering of the gene expression density of EMT niche fibroblast marker genes.

(G) SPP1 (secreted during wound healing) expression is restricted to macrophages in the EMT niche (black box). 3D surface rendering of the gene expression

density of EMT niche macrophage marker gene.

(H) Tumor integrin signaling distinguishes the EMT from the rest of the tumor bed. 3D volumetric rendering of integrin signaling density, computed as the sum of all

EMT niche-enriched interactions received by all tumor cells.

(I) A wound healing-like multicellular program characterizes the EMT niche and converges on the activation of integrin signaling. Summary scheme of selected

cellular and molecular interactions in the EMT niche, revealing mechanism-based personalized targets for cancer interception. The pill symbol indicates

druggable interactions.
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players in myofibroblast recruitment and activation during tissue

repair and fibrosis.62

Finally, investigating which cell-cell interactions were received

by tumor cells in the EMT niche, we identified 10 enriched inter-

actions (Figure S7G) andmapped their multicellular communica-

tion networks (Figure S7H). Notably, all ligands (tumor: IGF2 and

THBS1; macrophage: SPP1; and fibroblasts: FN1, THBS2,
12 Cell Systems 16, 101261, May 21, 2025
COL1A2, and COL6A3) converged on the activation of tumor in-

tegrin receptors, namely ITGB1, ITGB4, and ITGB6.

Consistent with the hypothesis that tumors are ‘‘wounds that

never heal,’’ often co-opting wound healing programs to pro-

mote tumor progression,63 tumor cells in the EMT niche orches-

trated the local recruitment and remodeling of fibroblast and

macrophage phenotypes. In turn, given the central role of
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integrin signaling in promoting tumor survival, EMT, and migra-

tion,49 the convergence of myofibroblasts and SPP1+ macro-

phage-derived ligands on tumor integrin receptors provides a

likely mechanism behind the accumulation of mesenchymal-

like tumor cells in the EMT niche.

DISCUSSION

This study represents the proof-of-principle for the computa-

tional reconstruction and multimodal analysis of 3D cellular

neighborhoods combining high-plex, single-cell resolved ST

data with imaging readouts of the contextual ECM composition.

Overall, 3D neighborhoods captured how the TME is orga-

nized in multicellular niches and revealed niche-specific molec-

ular mechanisms linking local cellular ecosystems andmolecular

states with receptor-ligand interactions. While 2D analysis of our

data already captured most cellular niches, 3D neighborhoods

improved the identification and characterization of immune

niches in the patient under study. In line with the 3D multiplex

IF study of one colorectal cancer sample,11 3D neighborhoods

restored the spatial continuity of seemingly disconnected T cell

niches in 2D. Furthermore, 3D analyses captured the spatial rela-

tionship between immune niches and the tumor surface and

enabled the study of immune inhibitory interactions in dendritic

cell niches.

At the same time, SHG highlighted the dynamic composition

of the ECM in the TME, where the elastic lung ECM is degraded

and progressively substituted by a stiff, desmoplastic ECM dur-

ing tumor progression. The integrative analysis of gene expres-

sion and ECM remodeling was then instrumental in identifying

which ECM constituents and regulators orchestrate local ECM

metabolism and enabled the multimodal analysis of fibroblast

molecular phenotypes in the TME. Notably, fibroblast pheno-

types were spatially linked either with specific ECM compart-

ments (e.g., activated fibroblasts in the desmoplastic ECM) or

multicellular niches (e.g., CCL19+ fibroblasts in dendritic and

T cell niches), supporting their functional specialization and

organizing role in key local phenomena ranging from tumor inva-

sion to anti-tumoral immune responses.

Finally, the spatial analysis of tumor pseudotime across multi-

cellular niches and ECM compartments revealed how EMT was

not restricted to tumor cells infiltrating a desmoplastic ECM but

already occurred in one EMT niche at the tumor surface where a

spatially restricted wound healing-like multicellular program

induced pro-invasive integrin signaling64 in a degraded ECM.

In general, given the profound impact of tissue biomechanics

in shaping cellular molecular states (and vice versa), we envision

that the systematic integration of spatial mechanical and molec-

ular readouts will reveal novel insights into tissue functioning in

health and disease (e.g., shedding light on the intricate role of tu-

mor-stromal interplay).

Focusing on an early-stage, aggressive NSCLC tumor, we

showcase the power of our multimodal approach to pinpoint

which, among multiple possible cancer progression mecha-

nisms, are spatially linked with tumor invasion and immune

escape in the patient under study. While a recent IMC study

demonstrated how the TME spatial organization can accurately

predict survival in early-stage NSCLC patients,65 limited gene

plex prevented the identification of personalized drug targets.
Here, leveraging the probe-based detection of receptor and

ligand molecules (1–2 molecules/cell14) across neighboring

cells, we boosted the sensitivity and specificity of our analysis

compared with spatially agnostic expression of receptors and li-

gands in dissociated single cells. Our communication analysis

identified which signaling axes could physically mediate key pro-

cesses in situ. For example, Tregs and CTLs were recruited in

hotspots of the tumor surface, where dendritic cells actively sup-

pressed anti-tumor immunity through multiple immune check-

points. Like the simultaneous identification of multiple druggable

mutations by NGS sequencing opened the door to combination

therapies,66 we envision that the high-plex quantification of

cell-cell interactions will pave the way to personalized therapies

targeting the TME. For example, the combination of immune

checkpoint inhibitors with small molecule inhibitors of intracel-

lular integrin signaling (e.g., via FAK inhibitors67) could represent

a particularly attractive therapeutic strategy in the patient under

study, simultaneously unlashing anti-tumoral immune responses

and restraining tumor invasion.

Here we defined 3D neighborhoods using a 30 mm section-to-

section gap as a cost-effective strategy to maximize 3D informa-

tion while minimizing repeated sampling of the same cells

(average cell radius 10–20 mm) and a neighborhood radius of

50 mm (�3 cellular distances) to capture repeating multicellular

niches in this dataset. Nevertheless, the formal definition of

cellular neighborhoods is still a matter of active research, and

best practices are still lacking in the field, as the ‘‘optimal radius’’

is likely to be tissue, sample, cell, and analysis dependent. With

the growing availability of 3Ddatasets, we expect that novel tools

will facilitate the identification of the most appropriate neighbor-

hood radius and section-to-section gap (e.g., to capture short vs.

long-distance molecular dependencies). Moreover, rapid tech-

nological developments with increasing gene plex and/or resolu-

tion for unbiased spatial transcriptomic methods will enable the

simultaneous profiling of ligand-receptor pairs together with

intracellular response genes, further increasing the specificity

of cell-cell communication analysis. At the same time, the rise

of single-cell-resolved spatial proteomic methods68 will further

our understanding of local molecular mechanisms, enabling the

study of protein abundances and post-translational modifica-

tions undetectable at the transcriptomic level.

Ultimately, our study provides the proof-of-principle for the

integration of our high-plex assays compatible with routinely

collected FFPE samples in molecular tumor boards (e.g., to

inform N-of-One treatment of individual patients by treating phy-

sicians69) and paves the way for large-scale clinical studies

aimed at assessing the clinical benefit of mechanism-based,

personalized therapeutic targets as those identified in this sin-

gle-patient, observational study.
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19. Sikkema, L., Ramı́rez-Suástegui, C., Strobl, D.C., Gillett, T.E., Zappia, L.,

Madissoon, E., Markov, N.S., Zaragosi, L.E., Ji, Y., Ansari, M., et al. (2023).

An integrated cell atlas of the lung in health and disease. Nat. Med. 29,

1563–1577. https://doi.org/10.1038/S41591-023-02327-2.

20. Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C.H.,

Myung, P., Plikus, M.V., and Nie, Q. (2021). Inference and analysis of cell-

cell communication using CellChat. Nat. Commun. 12, 1088. https://doi.

org/10.1038/s41467-021-21246-9.

21. Schall, T.J., Bacon, K., Toy, K.J., and Goeddel, D.V. (1990). Selective

attraction of monocytes and T lymphocytes of the memory phenotype

by cytokine RANTES. Nature 347, 669–671. https://doi.org/10.1038/

347669A0.

22. Förster, R., Davalos-Misslitz, A.C., and Rot, A. (2008). CCR7 and its li-

gands: balancing immunity and tolerance. Nat. Rev. Immunol. 8,

362–371. https://doi.org/10.1038/NRI2297.
23. Wculek, S.K., Cueto, F.J., Mujal, A.M., Melero, I., Krummel, M.F., and

Sancho, D. (2020). Dendritic cells in cancer immunology and immuno-

therapy. Nat. Rev. Immunol. 20, 7–24. https://doi.org/10.1038/S41577-

019-0210-Z.

24. Chen, J.H., Nieman, L.T., Spurrell, M., Jorgji, V., Richieri, P., Xu, K.H.,

Madhu, R., Parikh, M., Zamora, I., Mehta, A., et al. (2023). Spatial analysis

of human lung cancer reveals organized immune hubs enriched for stem-

like CD8 T cells and associated with immunotherapy response. Preprint at

bioRxiv. https://doi.org/10.1101/2023.04.04.535379.

25. Mora Barthelmess, R., Stijlemans, B., and Van Ginderachter, J.A. (2023).

Hallmarks of Cancer Affected by the MIF Cytokine Family. Cancers

(Basel) 15, 395. https://doi.org/10.3390/CANCERS15020395.

26. Figueiredo, C.R., Azevedo, R.A., Mousdell, S., Resende-Lara, P.T.,

Ireland, L., Santos, A., Girola, N., Cunha, R.L.O.R., Schmid, M.C.,

Polonelli, L., et al. (2018). Blockade of MIF-CD74 signalling on macro-

phages and dendritic cells restores the antitumour immune response

against metastatic melanoma. Front. Immunol. 9, 1132. https://doi.org/

10.3389/fimmu.2018.01132.

27. Keren, L., Bosse, M., Marquez, D., Angoshtari, R., Jain, S., Varma, S.,

Yang, S.R., Kurian, A., Van Valen, D., West, R., et al. (2018). A

Structured Tumor-Immune Microenvironment in Triple Negative Breast

Cancer Revealed by Multiplexed Ion Beam Imaging. Cell 174, 1373–

1387.e19. https://doi.org/10.1016/j.cell.2018.08.039.

28. Herbst, R.S., Soria, J.C., Kowanetz, M., Fine, G.D., Hamid, O., Gordon,

M.S., Sosman, J.A., McDermott, D.F., Powderly, J.D., Gettinger, S.N.,

et al. (2014). Predictive correlates of response to the anti-PD-L1 antibody

MPDL3280A in cancer patients. Nature 515, 563–567. https://doi.org/10.

1038/nature14011.

29. Hynes, R.O. (2009). The Extracellular Matrix: Not Just Pretty Fibrils.

Science 326, 1216–1219. https://doi.org/10.1126/SCIENCE.1176009.

30. Dunsmore, S.E., and Rannels, D.E. (1996). Extracellular matrix biology in

the lung. Am. J. Physiol. 270. L3-27. https://doi.org/10.1152/ajplung.

1996.270.1.L3.

31. Chen, X., Nadiarynkh, O., Plotnikov, S., and Campagnola, P.J. (2012).

Second harmonic generation microscopy for quantitative analysis of

collagen fibrillar structure. Nat. Protoc. 7, 654–669. https://doi.org/10.

1038/nprot.2012.009.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-E-Cadherin [24E10] (Alexa Fluor(R) 488) Cell Signaling Technology RRID: AB_10691457

Anti-Pan-Cytokeratin [AE1/AE3] (eFluor 570) Thermo Fisher Scientific RRID: AB_11218704

Anti-CD68 (D4B9C) XP� (PE Conjugate) Cell Signaling Technology RRID: AB_2799935

Anti-Indoleamine 2, 3-dioxygenase

[EPR20374] (Alexa Fluor� 647)

Abcam RRID: AB_2943198

Biological samples

Human non-small cell lung cancer tissue (FFPE) Institute of Pathology, Charité

Universit€atsmedizin Berlin

N/A

Chemicals, peptides, and recombinant proteins

Hematoxylin solution A acc. to Weigert Carl Roth Art. No. X906.1

Hematoxylin solution B acc. to Weigert Carl Roth Art. No. X907.1

Van Gieson’s Solution Carl Roth Art. No. 3925.1

Critical commercial assays

CosMx Spatial Molecular Imager (1000-plex) NanoString Technologies https://nanostring.com/products/

cosmx-spatial-molecular-imager/

Deposited data

CosMx data This study https://doi.org/10.5281/zenodo.7899173

SHG data This study https://doi.org/10.5281/zenodo.7899173

Healthy lung cell atlas from Travaglini et al 17 Synapse syn21041850

NSCLC single cell data from Kim et al 19 GEO GSE131907

Software and algorithms

Cellpose Stringer et al 70 https://github.com/MouseLand/cellpose

Seurat v4.0.4 Stuart et al 71 https://satijalab.org/seurat/

STIM v 0.2.0 Preibisch et al 15 https://github.com/PreibischLab/STIM

Slingshot v2.2.1 Street et al 72 https://github.com/kstreet13/slingshot

ParaView v 5.10 Ahrens et al.73 https://www.paraview.org/

Fiji v 1.53t Preibisch et al 74 https://imagej.net/software/fiji/

CellChat Jin et al 20 http://www.cellchat.org/

Others

Interactive 3D browser This study https://lung-3d-browser.mdc-berlin.de
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human participants
One non-small cell lung cancer tumor obtained through lobectomy was included in the study. The patient was a 63-year-old female,

who presented with a pulmonary tumor mass in the apex of the right upper lobe (RUL) in the positron emission tomography in March

2020. The patient was a 40 pack-year ex-smoker, fully active and without any physical restrictions (ECOG grade 0). A transbronchial

lung biopsy revealed a TTF1-positive lung adenocarcinoma (LUAD) with acinar morphology. Staging workup by abdominal and a

brain CT-scan showed no other potential lesions, additionally the bone scintigraphy was negative. Twomonths after initial diagnosis,

a resection of the RULwas performed. The pathological examination revealed a tumorwith amaximumdiameter of 23mm, infiltration

of the visceral pleura, lymphovascular invasion, and three metastases into hilar lymph nodes with a maximum diameter of 7 mm. The

tumor was completely resected. The pathological tumor classification was as follows: pT2a pN1 (3/24) L1 V0 Pn0 G2 R0. The patient

received three cycles of an adjuvant-combined chemotherapy (Cisplatin + Vinorelbine). In February 2021, the patient started having

neuronal symptoms and amagnetic resonance tomography of the headwas performed revealing a 10mm tumor in the frontal cortex.

The tumor was resected and a metastasis of the LUAD was histologically confirmed. Afterwards the patient received cranial

Code to reproduce results and figures This study https://github.com/rajewsky-lab/3D_lung
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radiotherapy in the form of a volumetric intensity modulated arc therapy (VMAT) at a dosage of 25,6 Gray (Gy). In August 2021 a sec-

ond metastasis was diagnosed in the left upper lobe (LUL) of the lung.

METHOD DETAILS

Study design
To study three-dimensional (3D) cellular neighborhoods in the tumor microenvironment (TME), we focused on a formalin-fixed,

paraffin-embedded (FFPE) tumor block from a NSCLC patient and collected 34 5 mm-thick consecutive sections using a microtome.

We processed sections 4, 10, 16, 22, 28 and 34 with CosMx (section-to-section distance 30 mm) to generate high-plex, single-cell

resolved spatial transcriptomics data, section 3 with both second harmonic imaging (SHG) to study extracellular matrix (ECM)

composition and hematoxylin and eosin (H&E) staining to capture tissue morphology and section 12 with immunofluorescence

(IF) to validate tumor epithelial-to-mesenchymal transition (EMT) at the protein level. We then employed computational methods

for the 3D alignment of the analyzed sections to generate a 3D multimodal atlas of NSCLC at single cell resolution.

Sample collection and histological examination
Resected specimens and core needle biopsies were fixed in 10%buffered formalin before gross processing. After overnight fixation,

the specimens were cut in 5-mm-thick slices. As a first step, the tumor was detected, described and the tumor diameter as well as the

minimum distances to the visceral pleura and the resection margins of lung parenchyma and bronchus were measured. Next, the

resection margins and the representative tumor parts showing the relation to the relevant anatomical structures, described above,

were embedded. Furthermore, we retrieved all macroscopic detectable lymph nodes. Subsequently the tissue or biopsies were

embedded in paraffin and were stored at room temperature at the archive of the Institute of Pathology at the Charité University Hos-

pital, CampusMitte. Histological examination, including diagnosis, tumor grading, pTNM-classification, angioinvasion, lymphatic in-

vasion, and tumor stage was done according to the 8th edition of the TNM classification (AJCC). The study was performed according

to the ethical principles for medical research of the Declaration of Helsinki and approval was approved by the Ethics Committee of the

Charité University Medical Department in Berlin (EA4/243/21).

Quantification of RNA fragmentation
To quantify the extent of RNA fragmentation, we collected 3 10 mm sections using a Microtome (Leica Byostems). We then extracted

RNA using Qiagen RNAse FFPE kit according to manufacturer instructions and evaluated the percentage of total RNA fragments

longer than 200 nucleotides (DV200) using the TapeStation (Agilent). Compatible with formalin fixation and prolonged storage at

room temperature, the DV200 score was 60%.

CosMx sample processing, staining and imaging for 1000-plex RNA profiling
CosMx sample processing, staining, imaging, and cell segmentation were performed as previously described.14 Briefly, tissue sec-

tions were placed to VWR Superfrost Plus Micro Slide (Cat# 48311-703) for optimal adherence. Slides were then dried at 37�C over-

night, followed by deparaffinization, antigen retrieval and proteinase mediated permeabilization (https://nanostring.com/products/

cosmx-spatial-molecular-imager/single-cell-imaging-overview/). 1 nM RNA-ISH probes were applied for hybridization at 37�C over-

night. After stringent wash, a flow cell was assembled on top of the slide and cyclic RNA readout on CosMx was performed (16-digit

encoding strategy). After all cycles were completed, additional visualization markers for morphology and cell segmentation were

added including pan-cytokeratin, CD45, CD3, CD298/B2M, and DAPI. Twenty-four 0.985mm 3 0.657mm fields of view (FOVs)

were selected for data collection in each slice. The CosMx optical system has an epifluorescent configuration based on a customized

water objective (133, NA 0.82), and uses widefield illumination, with a mix of lasers and light-emitting diodes (385 nm, 488 nm,

530 nm, 590 nm, 647 nm) that allow imaging of DAPI, Alexa Fluor-488, Atto-532, Dyomics Dy-605 and Alexa Fluor-647, as well as

removal of photocleavable dye components. The camera was a FLIR BFS-U3_200S6M-C based on the IMX183 Sony industrial

CMOS sensor (pixel size 180nm). A 3D multichannel image stack (9 frames) was obtained at each FOV location, with the step

size of 0.8 mm.

Second Harmonic Imaging (SHG)
Label free imaging of collagen and elastin was performed on a Zeiss LSM 880 NLO equipped with a Plan-Apochromat 10x NA 0.45

objective (Carl Zeiss Microscopy GmbH, Jena, Germany) and a tunable femtosecond titanium-sapphire laser (Chameleon-Ultra II,

Coherent, Santa Clara, California). Using an excitation wavelength of 800 nm, the second-harmonic generation signal from collagen

was collected through a 395 – 405 nm spectral window on to a GaAsP detector and autofluorescence emission from elastin was

collected through a 435 - 480 nm spectral window on to a PMT.

Immunofluorescence (IF) imaging
The IF workflow for FFPE tissues was performed as previously described.75 In detail, FFPE tissue was deparaffinized, rehydrated and

a two-step antigen retrieval was performed at pH 6 and pH 9 sequentially with a rinsing step in PBS in between. Slideswere blocked in

Odyssey blocking buffer (LI-COR BioScience, Cat # 927-70001) for 30 minutes. Prior to antibody incubation, a pre-bleaching step

was performed in 4.5% H2O2 and 24 mM NaOH diluted in PBS for 30 minutes at room temperature in the presence of white light.
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The tissue was counterstained with Hoechst 33342 (Thermo Fisher Scientific, Cat #62249), mounted with ProLong� Diamond

(Thermo Fisher Scientific, Cat #P36961) and imaged. After acquisition, slides were soaked in PBS for 5-10 minutes to remove the

coverslip and antibody incubation was performed in a humid chamber at 4 �C overnight. Slides were then washed, mounted, imaged

and bleached. Images were acquired on a Zeiss Axioscan7 Slide scanner using an EC Plan-Neofluor 20x/0.5 M27 objective with 1x1

binning.

Verhoef’s Van Gieson staining
Paraffin was removed using xylene, and the slides were rehydrated through graded ethanol solutions to distilled water. Elastic fibers

were stained using freshly prepared Weigert’s Resorcin-Fuchsin solution. The staining solution was prepared by mixing Weigert’s

Solution A (Carl Roth, Karlsruhe, Germany) with Weigert’s Solution B (Carl Roth GmbH, Karlsruhe, Germany) in appropriate propor-

tions according to the manufacturer’s instructions. The slides were incubated in this solution for 10-15 minutes at room temperature

to ensure clear staining of elastic fibers. Excess dye was removed by rinsing the slides in distilled water.

The tissue sections were then counterstained with Van Gieson’s solution (Carl Roth GmbH, Karlsruhe, Germany), which contains

picric acid and acid fuchsin, for 3-5 minutes. This step selectively stained collagen fibers red while background tissues appeared

yellow. After the Van Gieson staining, the slides were washed briefly in distilled water to remove excess stain.

Differentiation was performed by dipping the slides in 96% ethanol until a clear distinction between the elastic fibers, collagen, and

background tissue was visible under the microscope. Tissue sections were then dehydrated through ascending grades of ethanol,

cleared in xylene, and coverslippedwith a permanentmountingmedium. This protocol resulted in elastic fibers appearing dark purple

to black, collagen fibers stained red, and cytoplasmic structures yellow. Histological imageswere acquiredwith the digital slide scan-

ner PANNORAMIC 1000 (3DHISTECH).

QUANTIFICATION AND STATISTICAL ANALYSES

Deep learning segmentation of whole slide H&E images
For learning a tissue segmentation model, we collected around �5,000 representative pathologist annotations for 4 morphological

sub-categories on H&E tissue morphology: ‘‘Carcinoma’’, ‘‘Stroma’’, ‘‘Necrosis’’, and ‘‘Normal lung’’ (e.g. including ‘‘Alveoli’’, ‘‘Cap-

illaries’’, ‘‘Respiratory epithelium’’, ‘‘Vessels’’, etc.) for model training. For the segmentation model, we used a U-Net76 architecture

with a ResNet101 backbone.77 We trained models over various hyperparameters for 50 epochs using the Adam optimizer78 and

selected the top five models based on the global F1 performance on a validation set. We then combined these five models into a

mean ensemble, which achieved a global F1 performance of �0.93 on a hold-out test set.

CosMx data processing
Registration, feature extraction, localization, decoding of the presence of individual transcripts, and deep learning-based cell seg-

mentation (developed upon Cellpose70) were performed as previously described.14 The final segmentation mapped each transcript

in the registered images to the corresponding cell, as well as to subcellular compartments (nuclei, cytoplasm, membrane), where the

transcript is located.

Unbiased transcriptomic clustering of segmented cells
For downstream analyses we used the package Seurat71 (v4.0.4) in R (v4.1, https://www.R-project.org/). For each section, we im-

ported 3 matrices containing the gene expression, metadata and positions of segmented cells. We removed the negative probes

from the gene expression matrix, defined a unique cell name and created a merged Seurat object with data from all the sections.

To identify cell types present in the TME, we adopted a very conservative filtering strategy removing only cells with less than 10

detected genes and removing genes detected in less than 1 cell. We then computed SCT-normalized and scaled gene expression

counts79 and computed the 50 most variable principal components (PCs). We selected the first 30 PCs to create a shared nearest

neighbor graph and to compute a two-dimensional UMAP plot80 used for data visualization in a low dimensional space. Finally, we

partitioned the shared nearest neighbor graph using a resolution of 0.8 and identified 24 transcriptomic clusters.

Cell type annotation of transcriptomic clusters
To annotate cell types present in the TME, we identified marker genes enriched in each cluster for knowledge-based cell type anno-

tation. Epithelial clusters, characterized by positivity to panCK immunofluorescent staining, comprised both tumor cells (EPCAM+

S100A10+) and non-malignant epithelial cells, including respiratory epithelium (SCGB3A1+), basal epithelial cells (KRT5+) and alve-

olar cells (FGG+). We also detected numerous stromal populations, including fibroblasts (COL1A2+), vascular (PECAM1+) and

lymphatic (FABP5+) endothelial cells, pericytes (PDGFRB+) and smooth muscle cells (TAGLN+). We identified innate and adaptive

immune cell populations, including macrophages (CD68+), monocytes (LYZ+), dendritic cells (LAMP3+), mast cells (KIT+), cytotoxic

(CD8A+) and regulatory (FOXP3+) T cells, B cells (IGHM+), plasma cells (CD79A+) and cycling immune cells (MKI67+). Finally, we

merged clusters with similar marker gene expression as probably related to different cellular states of the same cell type. Therefore,

we annotated clusters ‘0’ and ‘1’ as fibroblasts, clusters ‘2’ and ‘7’ as macrophages and clusters ‘4’, ‘5’, ‘20’, ‘22’ and ‘23’ as

tumor cells.
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Data integration with reference atlases
To compare gene expression profiles with published reference atlases, we performed label transfer using the standard Seurat pipe-

line. We integrated our data with the Human Lung Cell Atlas16 to annotate lung resident cell types and with a NSCLC single cell

cohort17 to annotate tumor-specific cell types. For each reference dataset, we identified a subset of 900 shared ‘features’ (i.e. genes)

using the SelectIntegrationFeatures function (nfeatures = 900) and pairs of ‘anchors’ (i.e. cells) between the reference and our query

dataset using the FindTransferAnchors function (normalization.method = "SCT", reference.assay = ‘SCT’, query.assay = ‘SCT’,

reduction = ‘pcaproject’, dims = 1:20, features = features, nn.method= ‘rann’, eps = 0.5). Then, we leveraged the TransferData func-

tion (anchorset = anchors, prediction.assay = TRUE, weight.reduction = ‘pcaproject’, dims = 1:20, eps = 0.5) to score each cell in our

query dataset for similarity with annotated cell types in the reference dataset.

3D alignment of spatial transcriptomic data
To align high-plex, single-cell resolved spatial transcriptomic data from 6 sequential, non-consecutive sections, we leveraged the

Spatial Transcriptomics ImgLib2/Imaging Project (STIM).15 With STIM, we first converted our spatial transcriptomics data to the

n5 image format for efficient storage and processing using the ‘st-resave’ function. In doing so, we assigned a channel to each

gene and modeled gene expression values as pixel intensities at the center of the segmentation mask. Then, we applied the ‘st-

align-pairs’ function to align each section to the one above and below (r=1) using the Scale Invariant Feature Transform (SIFT)81 ac-

cording to the expression of the 15 genes with highest standard deviation (n=15). Finally, we applied the ‘st-align-global’ function to

identify a global optimum that minimizes the distances between all corresponding points across all pairs of slices (–absoluteThres-

hold 100 –sf 0.5 –lambda 0.5 –skipICP).

Identification of 2D and 3D cellular neighborhoods
Cellular neighborhoods in 2D and 3D were computed with a custom Python script as follows. First, for a given cell, the Euclidean

distances in 2 or 3D between that cell and all other cells in the dataset were computed. This set of distances was then filtered to re-

move distances greater than r= 50 mm, resulting in a list of neighboring cells for that given cell. This list was finally used to construct

the 2D and 3D neighborhood matrices by counting the number of cells for each of the 18 cell types present in each cellular neighbor-

hood. By design, 2D neighborhoods included a 50mm-radius circular area (p*r2=7853,98 mm2) in the section where the center cell is

located, while their 3D counterparts also comprised two 40mm-radius circular areas (each p*r2=5026,55 mm2) in the sections imme-

diately above and below in the z plane (30mm distance).

Unbiased identification and annotation of 2D and 3D multicellular niches
To identify 2D/3D multicellular niches in the TME, we imported the 2D/3D neighborhood matrix as a new assay in Seurat. We

excluded cells with incomplete 3D neighborhoods, namely those located in sections 4 and 34 and those within 50mm from the edges

of sections 6, 12, 18 and 24. We then performed UMAP dimensionality reduction and clustering (resolution = 0.3). 3D neighborhoods

analysis returned 13 clusters (Figure S1A). Furthermore, wemerged clusters ‘3’, ‘10’ and ‘12’ as ‘T cell niches’ and clusters ‘5’ and ‘9’

as ‘airways’ given their shared neighborhood composition and spatial patterns (Figures S1B and S1C). In this way, we identified a

total of 10 unique 3D niches, which we annotated based on the average cell type counts per 3D neighborhood: ‘tumor core’ (Tumor

cellshigh, Fibroblastslow, Macrophageslow), ‘tumor surface’ (Tumor cellshigh, Fibroblastsmid, Macrophagesmid, Cytotoxic T cellslow),

‘airways’ (Respiratory epitheliumhigh, Basal epithelial cellshigh), ‘alveoli’ (Alveolar cellshigh), ‘desmoplastic stroma’ (Fibroblastshigh,

Plasma cellslow), ‘vascular stroma’ (Fibroblastsmid, Vascular endotheliummid, Pericytesmid), ‘smooth muscle’ (Smooth muscle

cellshigh), ‘Macrophage niche’ (Macrophageshigh, Tumor cellsmid), ‘Dendritic cell niche’ (Dendritic cellshigh, Tumor cellsmid,

Macrophagesmid, Cytotoxic T cellsmid, Regulatory T cellslow) and ‘T cell niche’ (Cytotoxic T cellshigh). At the same time, 2D neighbor-

hoods analysis returned 15 clusters. Similarly, we merged clusters ‘8’, ‘10’ and ‘13’ as ‘tumor core’, clusters ‘2’ and ‘3’ as ‘tumor

surface’, clusters ‘5’ and ‘12’ as ‘airways’ and clusters ‘4’ and ‘14’ as ‘T cell niches’ and identified 10 multicellular niches,

which overlapped with 3D ones, with the exception of ‘dendritic cell niches’ identified only in 3D and ‘macrophage-rich stroma’

(Fibroblastsmid, Macrophagesmid) identified only in 2D.

Ligand spatial activity scores in 2D and 3D cellular neighborhoods
To estimate the spatial activity of a specific ligand, we first downloaded manually-curated, literature-supported receptor ligand pairs

from the CellChat Human database20 and selected those in which both the receptor and the ligand were present in our 960-gene

panel. For each center cell, we quantified the spatial activity of 164 ligands in its 2D and 3D cellular neighborhoods. To quantify

the activity of each ligand in a given cellular neighborhood, we first evaluated single pairs of interacting cells comprising the center

cell and one of its neighbors. For each pair, we computed the geometric mean of receptor expression in the center cell and ligand

expression in the neighbor cell. In this way, we required the non-zero expression of both receptor and ligand to have positive pair

scores. We then compute the overall ligand activity score for a specific cellular neighborhood summing all the pair scores having

the center cell as receiver. In the case of ligands paired with multiple receptors, we summarized the ligand activity as the sum of

the interactions with each of the associated receptors.
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ECM composition analysis
To quantify ECM levels of collagen and elastin in section 4 cellular neighborhoods, we first imported cropped and aligned section 3

SHG TIFF images in R using the grDevices package (v. 4.1.3). We then normalized the collagen and elastin channels by dividing the

pixel intensities by themaximum value in the respective channel. Finally, we quantified the mean collagen and elastin pixel intensities

in the square with side 2x50mm centered on the segmentation center of each cell in section 4.

Unbiased identification of ECM compartments
To identify ECM compartments, we used k-means clustering of the scaled collagen and elastin intensities per cell as implemented in

kmeans function of the R package stats v4.1.3. We selected k=3 based on the screeplot.

Fibroblast transcriptomic clustering and annotation
To identify transcriptomic states of the fibroblast in the TME, we selected cells annotated as fibroblasts with more than 100 detected

transcripts for unsupervised clustering as described above, this time selecting the first 5 PCs and identifying 6 clusters and a reso-

lution= 0.15. We then identifiedmarker genes enriched in each cluster for literature-based cluster annotation82–86: ‘matrix fibroblasts’

(LUM+MGP+ TIMP1+), ‘myofibroblasts’ (FN1+ COL11A1+ ACTA2+), ‘activated fibroblasts’ (JUN+ FOS+ IGF1+), ‘antigen-present-

ing’ (CD74+ HLA-DRB1+), ‘CCL19+ reticular’ and ‘CXCL10+ reticular’ fibroblasts.

Tumor pseudotime analysis
To reconstruct their molecular dynamics, we ordered tumor cells according to their pseudotime. We first generated a Seurat object

including only tumor cells using the subset function and then re-normalized gene expression counts using SCTransform. We then

selected the top 400 variable genes and grouped them in 5 PCs using the RunPCA function for downstream analyses. These included

UMAP embedding using the RunUMAP function and pseudotime analysis. For the latter, we converted the Seurat object

into SingleCellExperiment format using the R package SingleCellExperiment (v1.16.072 and then used the slingshot function of

the R package slingshot (v2.2.1)87 to compute tumor cell pseudotime. Finally, we converted pseudotime scores to ranks

(between 0 and 1) and added them as metadata in the Seurat object for plotting.

Preprocessing of imaging data
To stitch and register the .czi image files, acquired on the Zeiss Axioscan7 widefield microscope, the ASHLAR algorithm (v 1.17.0)88

was used. To correct the tissue autofluorescent background signal, we performed background subtraction. Images were acquired

before the first round of antibody staining; using the same settings for each channel (only exposure time was modified). The software

package from github.com/SchapiroLabor/Background_subtraction was used (v 0.3.3) based on the following formula:

Markercorrected = Markerraw � Background �Markerexposuretime

Backgroundexposuretime

Registration of IF and CosMx images
The IFmulti-channel image stack from Section 12 was registered to the CosMx images of Section 10. To do this, the IF data stored as

pyramidal OME-TIFF images were cropped into a rectangular region of interest (ROI) using bftools from Bio-Formats (v6.11.1).89 This

was done to exclude parts of the tissue outside CosMx ROI, reducing the overall size of the images and simplifying the registration

process. The 24 contiguous fields of view of CosMx raw imaging data for Section 10 were then stitched into a single image using the

Grid/Collection stitching v1.2 plugin in Fiji v1.53t.74 The average z-stack projection of the stitched stack was exported as a pyramidal

OME-TIFF image. Rigid and affine registration was performed usingwsireg 0.3.7 with default parameters, with the full IF stack of Sec-

tion 12 as the moving image, and the stitched CosMx stack of Section 10 as the fixed (target) image.

Niche enrichments
To identify the preferential localization of a group of cells g in a specific niche n, we compared the observed and expected counts of g

cells in niche n. The expected counts are computed under the assumption of random, independent distribution of cells belonging to

group g and niche n. To compute expected counts, we simply multiplied the total abundance of g cells in the TME and the fraction of

niche n in the TME. We then compute the log2 fold changes as the log2 of the ratio between observed and expected counts. In this

way, we quantified the enrichment of infiltrating tumor cells, fibroblast states and cell types across all 3D niches and ECM

compartments.

Quantification and visualization of 3D cellular density
We quantified the 3D spatial density of a group of cells g and visualized its 2D projection using the geom_density_2d_filled function

from the ggplot2 package (v 3.5.0) using alpha=0.5 and h= 5.6*700. In this way, we quantified and visualized the 3D density of cyto-

toxic T cells, mesenchymal-like tumor cells (defined as pseudotime rank > 0.75), and myofibroblasts.
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3D rendering of tissue niches, gene expression and ligand activity scores
Three-dimensional visualizations were generated by downscaling and mapping the spatial coordinates of segmented cell centroids

onto 300x300 images along the xy-axes, using data from sections 10, 16, 22 and 28 along the z-axis. From these, 300x300x100 voxel

data was constructed by interpolating 25 intermediate sections between each of the four sections using weighted Convolutional

Wasserstein barycenters [93]. Voxel data were exported as TIFF files and visualized using ParaView v5.1073 as surface or volumetric

representations.

Statistical methods
Cluster-specific marker genes used for cell type and fibroblast state annotation, niche-specific differentially expressed genes in a

specific cell type (including tumor cells, fibroblasts and macrophages) were identified using a Wilcoxon Rank Sum Test comparing

the expression of all genes in the group of interest versus all the remaining cells as implemented in the FindAllMarkers function in the

Seurat R package (v. 4.0.4). To identify differential genes and receptor-ligand interactions, we first computed the average SCT-

normalized expression or spatial activity score across all cells inside a group and then computed the log2 fold change against the

mean of all cells outside the group. We also computed the percentage of expressing/receiving cells inside and outside the group

of interest. Only genes/ligands surpassing both a log2 fold change and percentage difference thresolds are considered differentially

expressed/active. p-values added to violin and boxplots were computed through an unpaired t-test using the stat_compare_means

function of the ggpubr R package (v 0.6.0). Computed p-values were adjusted using Bonferroni correction for multiple testing.
Cell Systems 16, 101261, May 21, 2025 e6


	CELS101261_proof.pdf
	Combining spatial transcriptomics and ECM imaging in 3D for mapping cellular interactions in the tumor microenvironment
	Introduction
	Results
	Multimodal study of one aggressive, routinely collected NSCLC tumor in 3D
	Molecular histology of the TME at single-cell resolution
	3D neighborhoods enable the unbiased identification of TMEs multicellular niches
	3D neighborhoods improve the identification and spatial mapping of intratumoral immune niches
	3D neighborhoods enable the systematic study of ligand-receptor interactions in TMEs multicellular niches
	Communication networks within dendritic cell niches pinpoint active immunosuppressive interactions, including druggable imm ...
	Second harmonic imaging enables the study of the ECM in cellular neighborhoods
	Multimodal spatial profiling links fibroblast phenotypes and ECM compartments
	Multimodal analysis of tumor infiltration reveals an EMT niche at the tumor surface
	A wound healing-like communication network activates tumor integrins in the EMT niche

	Discussion
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and subject details
	Human participants

	Method details
	Study design
	Sample collection and histological examination
	Quantification of RNA fragmentation
	CosMx sample processing, staining and imaging for 1000-plex RNA profiling
	Second Harmonic Imaging (SHG)
	Immunofluorescence (IF) imaging
	Verhoef’s Van Gieson staining

	Quantification and statistical analyses
	Deep learning segmentation of whole slide H&E images
	CosMx data processing
	Unbiased transcriptomic clustering of segmented cells
	Cell type annotation of transcriptomic clusters
	Data integration with reference atlases
	3D alignment of spatial transcriptomic data
	Identification of 2D and 3D cellular neighborhoods
	Unbiased identification and annotation of 2D and 3D multicellular niches
	Ligand spatial activity scores in 2D and 3D cellular neighborhoods
	ECM composition analysis
	Unbiased identification of ECM compartments
	Fibroblast transcriptomic clustering and annotation
	Tumor pseudotime analysis
	Preprocessing of imaging data
	Registration of IF and CosMx images
	Niche enrichments
	Quantification and visualization of 3D cellular density
	3D rendering of tissue niches, gene expression and ligand activity scores
	Statistical methods





