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Abstract 

Multi-omic and multimodal datasets with detailed clinical annotations offer significant potential to 

advance our understanding of inflammatory bowel diseases (IBD), refine diagnostics, and enable 

personalized therapeutic strategies. In this multi-cohort study, we performed an extensive multi-omic 

and multimodal analysis of 1,002 clinically annotated IBD patients and non-IBD controls, 

incorporating whole-exome and RNA sequencing of normal and inflamed gut tissues, serum 

proteomics, and histopathological assessments from images of H&E-stained tissue sections. 

Transcriptomic profiles of normal and inflamed tissues revealed distinct site-specific inflammatory 

signatures in Crohn’s disease (CD) and ulcerative colitis (UC). Leveraging serum proteomics, we 

developed an inflammatory protein severity signature that reflects underlying intestinal molecular 

inflammation. Furthermore, foundation model-based deep learning accurately predicted histologic 

disease activity scores from images of H&E-stained intestinal tissue sections, offering a robust tool 

for clinical evaluation. Our integrative analysis highlights the potential of combining multi-omics and 

advanced computational approaches to improve our understanding and management of IBD.  
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Introduction 
Inflammatory bowel disease (IBD) is a non-infectious chronic inflammatory disease of the 

gastrointestinal (GI) tract. It manifests as two major subtypes, ulcerative colitis (UC) and Crohn’s 

disease (CD). In UC, the inflammation is limited to the mucosa and submucosa of the colon and 

continuously spreads to a varying extent from the rectum to the proximal colon and, in severe cases, 

to the terminal ileum. CD affects all layers of the gastrointestinal wall and may discontinuously affect 

different portions of the entire GI tract. Symptoms of both UC and CD include diarrhea, rectal 

bleeding, abdominal pain, weight loss, and fatigue1. IBD increases the risk of colorectal cancer2, and 

of concomitant manifestation of other immune-mediated inflammatory conditions, such as arthritis3. 

The disease affected 4.9 million persons worldwide in 2019, and both incidence and prevalence have 

been increasing globally since 19904. The exact cause of the disease is currently not known, but the 

leading hypothesis is that it arises from a combination of genetic predisposition, dysbiosis of the gut 

microbiome, and environmental factors5. 

Despite recent advances in the treatment of IBD patients, including the development of Biologicals, 

IBD can currently not be cured. Therefore, clinical interventions focus on minimizing symptoms with 

immunosuppressive and anti-inflammatory drugs1. First-line treatment options include 

aminosalicylates for mild cases of UC and various steroids for mild to severe cases of UC and CD. 

More recently, tumor necrosis factor α (TNFα) inhibitors are being used as first or second-line 

treatment in moderate to severe cases, with promising results1,6. However, about a third of IBD 

patients are refractory to anti-TNFα treatment, and of the primary responders, 23-46% lose their 

response per year6. Patients failing to respond to treatment may require surgical removal of the 

inflamed intestinal segments1. Clinical symptoms do not always reliably reflect disease activity, as  

patients may experience significant inflammation without overt symptoms or report severe symptoms 

despite minimal inflammatory activity. This inconsistency underscores the need for objective 

measures of disease activity to guide clinical decision-making and improve patient outcomes. 

However, there is no single “gold standard” for diagnosing IBD, assessing disease severity, or 

evaluating treatment response. A multifaceted approach is employed by physicians, integrating 

clinical symptoms, laboratory biomarkers, radiological imaging, endoscopic examinations, and 

histological analysis of biopsy specimens7. While this comprehensive strategy provides valuable 

insights, it also highlights the complexities of assessing disease activity and the ongoing need for 

standardized, objective, and accessible diagnostic tools. 

In this study, we address these challenges by creating a comprehensive multi-center, multi-omic, and 

multimodal IBD atlas (IBDome atlas), integrating individual genomic, transcriptomic, proteomic, 

histopathologic, and clinical data from 1,002 patients. Using this resource we investigate site-specific 

immunological pathways and features, develop a novel serum protein-based disease activity signature 
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(IBD-IPSS), and leverage deep learning prediction of histologic disease activity from pathology 

images through the use of general-purpose foundation models. Our integrative approach aims to 

provide a more comprehensive understanding of the IBD immunopathogenesis, by combining detailed 

clinical disease characteristics and in-depth multi-omic molecular analyses on an individual level in a 

multi-modal IBD atlas, enabling novel translational research approaches and pathophysiological 

concepts that will foster the concept of personalized medicine in IBD.  

 

Results 

Development of the IBDome atlas 

We first generated multi-omic and multimodal data, encompassing clinical metadata from 1,002 

patients diagnosed with IBD and a matched cohort of individuals without IBD including 

histopathology, high-resolution H&E images, whole exome sequencing (WES), RNA-sequencing, 

serum proteomics data, endoscopy scores, stool scores, and clinical disease characteristics to 

comprehensively characterize the underlying immunopathogenesis of IBD in the individual patient 

(Fig. 1a, b and Extended Data Fig. 1a, b). We consolidated all datasets into a unified relational 

database, termed the IBDome atlas. In total, this atlas includes data from 539 patients diagnosed with 

CD, 321 patients with UC, 26 patients with indeterminate colitis (IC), and 116 non-IBD controls 

without any known intestinal inflammatory condition from two distinct study centers, Berlin and 

Erlangen (Fig. 1c). To facilitate the exploration of the clinical and molecular data, we developed an 

interactive and publicly available web application, accessible at https://ibdome.org. The graphical user 

interface allows to interactively select patients based on clinical variables and visualize gene 

expression or correlation with protein abundance, endoscopy and histopathology scores. 

Genomic and transcriptomic characterization confirms that our atlas accurately represents the 

molecular landscape of IBD (Fig. 1d, e). As expected, mutations in NOD2 are predominantly 

observed in CD patients. The three most common variants (R702W, G908R, and 1007fs)8 exhibit 

higher mutation frequencies compared to UC and non-IBD patients (Fig. 1d). Differential expression 

analysis between inflamed IBD (tissue- and date-matching histopathology score > 0) and non-IBD 

control samples showed an upregulation of cytokines, chemokines, and chemokine receptors 

associated with disease severity scores determined by histopathology or endoscopy scores (Fig. 1e, 

Extended Data Table 1). Furthermore, disease activity scores (modified Naini Cortina9 and modified 

Riley10 scores evaluated through histopathology, UCEIS - Ulcerative Colitis Endoscopic Index of 

Severity11 - and SES-CD - Simple Endoscopic Score for Crohn’s Disease12 - assessed by endoscopy, 

Bristol stool score, and the clinical activity scores HBI - Harvey-Bradshaw Index13 and PMS - Partial 
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Mayo Score14) showed significant positive correlations (Extended Data Fig. 1c-e), highlighting their 

interconnectedness in capturing the severity and progression of IBD.  

Molecular disease activity scoring to enhance IBD assessment 

The assessment of disease severity in IBD is crucial for selecting appropriate treatment regimens. 

However, there is no universally defined and validated standard for measuring disease activity. 

Although existing scores demonstrate significant positive correlations  (Extended Data Fig. 1c-e), a 

definitive measure capable of identifying disease activity, including subclinical inflammation that may 

persist undetected at the molecular level, has yet to be established. Argmann et al.15 recently 

introduced biopsy- and blood-based molecular signatures—the biopsy molecular inflammation score 

(bMIS) and the circulating molecular inflammation score (cirMIS)—derived from RNA-seq data to 

evaluate disease severity. Following their approach, we calculated biopsy inflammatory scores for our 

collected samples, which effectively distinguished inflamed IBD from non-inflamed IBD and 

non-IBD control groups (Extended Data Fig. 2a). However, measuring a panel of over 100 genes, as 

done in the cirMIS, is impractical for routine clinical use. To address this, we developed the IBD 

Inflammatory Protein Severity Signature (IBD-IPSS), a more straightforward approach based on the 

quantification of serum proteins derived from patients’ blood. First, we performed principal 

component analysis for detecting potential confounding factors (Extended Data Fig. 2b). 

Subsequently, we employed the methodology outlined by Argmann et al.15, to conduct a differential 

protein abundance analysis comparing samples from actively inflamed and non-inflamed patients 

(Fig. 2a). For each of the three subtypes (IBD, UC and CD), significantly upregulated proteins were 

identified and incorporated into distinct inflammatory protein severity signatures: IBD-IPSS (42 

proteins), UC-IPSS (32 proteins), and CD-IPSS (25 proteins), with 17 proteins shared across all 

conditions (Fig. 2b, Extended Data Table 2). We then compared these protein-based signatures with 

the cirMIS scores and found that a single protein, namely oncostatin M (OSM)16, was shared among 

all signatures (Extended Data Fig. 2c). To further evaluate the IBD-IPSS, we performed an in-silico 

protein-protein interaction analysis, which indicated that proteins from our signature are 

predominantly implicated in cytokine-related pathways (Extended Data Fig. 2d). Additionally, a 

protein-protein interaction network analysis identified five major clusters, all of which have been 

determined to be critical processes in the pathophysiology of IBD17–20: neutrophil chemotaxis, 

interleukin-6 family signaling, interleukin-7 signaling, interleukin-18 mediated signaling pathways, 

and positive regulation of cellular respiration (Fig. 2c). Since a direct comparison with blood-derived 

RNA-seq scores is not possible within our cohort, we evaluated the correlation between the computed 

IPSS-score (Extended Data Table 3) and several established inflammatory outcome measures 

including endoscopic scores (UCEIS and SES-CD), histopathology scores (modified Riley and 

modified Naini Cortina score), clinical activity scores (PMS and HBI), and computed molecular 
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inflammation scores (bMIS-UC and bMIS-CD; Extended data Table 4). The results, presented in 

Fig. 2d, demonstrate that the serum protein signatures exhibit the strongest correlation with 

endoscopic scores, with a Pearson correlation coefficient (R) of 0.75 for UC-IPSS and UCEIS and 

R=0.58 for CD-IPSS and SES-CD. To complete the serum protein characterization, we compared 

inflamed and non-inflamed IBD samples with non-IBD controls (Extended Data Fig. 2e), confirming 

that OSM levels are significantly elevated during inflammation (0.58 increase in mean NPX in 

inflamed IBD vs. nonIBD and 0.56 increase in mean NPX in inflamed IBD vs. non-inflamed IBD 

samples; adjusted p-value < 0.01). Notably, TNF and AXIN1 showed a significant increase in 

inflamed (1.37 and 0.52 increase in mean NPX, respectively) and non-inflamed IBD (1.17 and 0.6 

increase in mean NPX, respectively) compared to non-IBD controls, suggesting that these markers 

may serve as effective biomarkers for IBD, irrespective of the disease activity status, whether it is 

active or in remission.  

Distinct immunological pathways underpin site-specific inflammatory signatures in IBD 

In recent years, mounting evidence has highlighted substantial disparities between ileal CD and 

colonic CD across diverse intestinal layers. Colonic CD has been observed to manifest comparable 

disease characteristics to UC, reinforcing the notion that IBD encompasses a more intricate spectrum 

of disease manifestations beyond the conventional classifications of CD and UC21,22. The principal 

component analysis of RNA-seq profiles from the IBDome atlas underscored that the tissue type 

accounted for the largest variance (PC1=62%), followed by inflammation grade (PC2=12%). Notably, 

there was no clear visual separation between the overall disease entities CD and UC (Fig. 3a). 

Subsequently, we grouped the transcriptomic samples by disease entity, sampling site, and histologic 

disease activity (CD colon inflamed, CD ileum inflamed, and UC colon inflamed) and performed 

differential gene expression analyses relative to the corresponding non-IBD control groups (non-IBD 

colon and non-IBD ileum) (Extended Data Fig. 3a, Extended Data Tables 5-7). The overlapping 

differentially expressed genes (adjusted p-value < 0.05 and |log2FoldChange| >1) are shown in Fig. 

3b and Extended Data Fig. 3b. An over-representation analysis (ORA) of these significantly 

upregulated genes, using the Gene Ontology - Biological Process (GO-BP) database, revealed 

enrichment for known immune-related pathways, including acute inflammatory response (fold 

enrichment=8.12), chemokine (fold enrichment=6.92), and cytokine production (fold 

enrichment=3.48) (Fig. 3c). ORA of overlapping downregulated genes did not show enrichment for 

any term, but the expression profiles are shown in Extended Data Fig. 3c, highlighting the 

differences in gene expression between different tissues. 

The composition of the mucus layer varies between the colon and ileum23, and previous studies have 

shown that the structure and function of the mucosal barrier, including the mucus layer, may be 
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significantly disrupted in IBD24,25. Mucins (MUCs), which are proteins expressed by epithelial cells, 

are key components of the mucus. Differential gene expression analysis revealed that seven mucins 

and one mucin-like gene were significantly upregulated (adjusted p-value < 0.05 and |log2FC| > 1): 

MUC2 in the colon of CD patients , MUC6, MUC16, and MUC17 in the colon of UC patients, and 

MUC5B, MUC4, MUC20, and MUCL3 in the ileum of CD patients (Fig. 3d). MUC6, MUC16, and 

MUCL3 are generally expressed at low levels and are therefore likely to be of limited relevance. In 

contrast, MUC17, a transmembrane mucin found in both the colon and small intestine, is significantly 

upregulated in inflamed UC colon samples compared to non-IBD controls, but no significant changes 

were observed in CD. Interestingly, we also observed an upregulation of MUC4 in inflamed ileal CD 

samples, although MUC4 is primarily associated with colonic membrane mucins. 

To better understand the signaling pathways involved in IBD, we inferred cytokine signaling activities 

using CytoSig26. Unlike traditional approaches that rely on pathway gene expression, CytoSig infers 

signaling activities by focusing on the expression of genes that respond to pathway activation. The 

majority (n=40) of cytokine signaling pathways encoded within CytoSig (total n=43) were 

significantly activated or suppressed in at least one of the site-specific conditions (Fig. 3e). The most 

commonly known pathways, such as TNFA, OSM, and IFNG, show consistently high activation in all 

inflamed samples compared to non-IBD controls. Notably, we also identified site-specific pathway 

activations, including IL-22, IL-21, IL-3, interferon lambda (IFNL), and fibroblast growth factor 

(FGF) 2, in inflamed colon samples, regardless of disease entity. Additionally, we observed 

disease-subtype specific pathway dysregulation, such as the interleukin-13 pathway in CD, but not in 

UC (Fig. 3e). This aligns with the failure of anti-IL-13 antibody therapies in clinical trials in UC27,28. 

Interestingly, two signaling pathways – IL-12 and, to a lesser extent tumor necrosis factor-like weak 

inducer of apoptosis (TWEAK) – were significantly active in inflamed colonic CD samples. IL-12 is a 

key cytokine, known to initiate Th1-mediated inflammation. Examining the expression of individual 

genes involved in IL-12 signaling (Extended Data Fig. 3d), we observed a modest, but statistically 

significant increase in the expression of IL12A, IL12B, and IL12RB2 in inflamed colonic samples 

from CD patients compared to colonic non-IBD control samples. Consistent with our findings, Dulai 

et al.29 reported in a meta-analysis of the CERTIFI and UNITI clinical trials that treatment with 

ustekinumab, an IL-12- and IL-23p40 antibody, was less effective in CD patients with isolated ileal- 

compared to colonic disease. To investigate the cell types potentially responsible for the activation of 

interleukin-12 signaling in colonic CD, we utilized the published single-cell dataset of Kong et al.30, 

filtering for inflamed colonic samples and inferring cytokine signaling activities at the single-cell 

level using CytoSig26 (Fig. 3f). The analysis revealed upregulated IL-12 signaling activity in CHI3L1 

- CYP27A1 positive monocytes. Chitinase-3-like protein 1 (CHI3L1) is a glycoprotein associated with 

several diseases, including IBD31 and was recently identified as a neutrophil autoantigenic target in 

CD32. 
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Multi-omics profiling identifies potential serum protein biomarkers for disease 

localization in IBD  

The identification of site-specific immune signatures, mucin expression patterns, and cytokine 

signaling pathways in IBD underscores the complexity of its pathogenesis and highlights the need for 

precise, tailored therapeutic approaches. Building on these insights, the next critical step is to translate 

them into actionable tools for clinical application. Specifically, we sought to determine whether 

distinct immunological pathways driving IBD can be leveraged to identify biomarkers capable of 

differentiating disease subgroups. Such biomarkers could provide a basis for improved diagnosis, 

stratification, and personalized treatment strategies for IBD patients33.  

Therefore, we categorized serum protein samples into three groups based on inflammatory disease 

localization: CD-ileum (isolated ileal disease), CD-colon, and UC-colon. We then performed a 

differential protein abundance analysis comparing samples from inflamed IBD patients with non-IBD 

controls (Fig. 4a, ExtendedDataTables 8-10). This analysis identified five proteins—TNF, IL-12B, 

AXIN1, OSM, and tumor necrosis factor superfamily 14 (TNFSF14)— that were commonly 

upregulated in all patient groups. Colon samples of both IBD entities showed the highest overlap of 

differentially abundant proteins (n=8: CCL20, CCL25, CXCL1, CXCL11, EN-RAGE, HGF, IL-24, 

and LAP TGF-beta-1), while no commonly regulated proteins were identified between ileal CD and 

colonic UC (Fig. 4b, Extended Data Fig. 4a). In ileal CD, the uniquely regulated proteins CUB 

domain-containing protein 1 (CDCP1), leukemia inhibitory factor receptor (LIF-R), and C-X3-C 

motif chemokine ligand 1 (CX3CL1) were all downregulated in patients with active inflammation 

compared to non-IBD controls.  

To explore potential associations between severity of inflammation and protein abundance, we 

integrated protein data with histopathology inflammatory scores of both IBD entities (modified Naini 

Cortina score for CD and modified Riley score for UC). In UC, all six upregulated serum proteins— 

Transforming Growth Factor alpha (TGF-α), matrix metalloproteinase-10 (MMP-10), CC-chemokine 

ligand 11 (CCL11), IL-10, IL-17A, and IL-7 (Fig. 4b) —showed significant positive correlations with 

the modified Riley score (Fig. 4c). Conversely, only one protein exhibited a significant correlation 

with the modified Naini Cortina score in colonic CD (SLAMF1, Fig. 4c). Notably, most 

colon-specific proteins (shared between colonic CD and UC) were also positively correlated with the 

histologic inflammation scores, with the exception of two proteins, CCL25 and EN-RAGE (Extended 

Data Fig. 4a,b). Among the overlapping proteins in CD, an increased abundance of IFN-gamma and 

decreased abundance of FGF-19 and CCL4 were observed. However, only IFN-gamma displayed a 

significant correlation with the severity of inflammation (Fig. 4c). Mucosal expression of 

interferon-gamma is known to be upregulated in inflamed CD34.  
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Building on these findings, we next examined the association between protein abundance in the serum 

and tissue gene expression. Across all samples, the strongest correlation between protein abundance 

and tissue gene expression was observed for CXCL9 (Pearson’s R=0.4) and the strongest inverse 

correlation for IL2 (Pearson’s R=-0.4) (Extended Data Fig. 4c). Stratification of samples by disease 

and site revealed several significant correlations, such as CCL20, CXCL1, CXCL11, HGF and IL-24 

in colonic samples (Extended Data Fig. 4c) and MMP-10, IL-17A and TGF-alpha (inverse 

correlation) in UC (Fig. 4e). 

Summarizing these results, we identified 5 proteins (CCL20, CXCL1, CXCL11, HGF, and IL-24) 

with increased abundance in colonic diseases, irrespective of the disease entity (colonic CD and UC) 

that significantly correlated with both, tissue gene expression and inflammatory severity. Additionally, 

MMP-10, IL-17A and TGF-alpha were more prominently associated with UC, while elevated serum 

IFN-gamma was linked to CD (Fig. 4f). These findings align with previous research showing higher 

tissue gene expression levels of MMP10 in active UC compared to active colonic CD and controls, as 

well as an association with disease activity in UC35. Similarly, multiple studies have reported elevated 

HGF serum levels and mucosal gene expression in IBD, particularly in UC36,37. 

AI-foundation models predict accurately histologic disease activities  

Histologic disease activity scoring in IBD is crucial for the assessment of treatment efficacy, 

prediction of disease outcomes, and for guiding clinical decision making. However, traditional scoring 

systems, such as the Naini Cortina score for CD and the Riley score for UC, are time-consuming, 

subjective and affected by inter-observer variability. In an attempt to develop a robust predictor for 

histologic disease activity scores, directly from pathology images of intestinal mucosal sections, we 

applied foundation models on images of H&E-stained tissues (Fig. 5a) to predict the modified Naini 

Cortina and modified Riley scores. Our workflow incorporates a preprocessing step where whole slide 

images (WSI) were tessellated into patches and color-normalized, followed by a feature extraction 

step leveraging four different foundation models:  CHIEF38, UNI239, Virchow240,41 and H-optimus-042, 

which is the largest open-source AI foundation model for pathology. Finally, we applied an 

attention-based multiple instance learning (attMIL) model to predict histologic disease activity scores 

(Fig. 5a). To evaluate the prediction performance, we used 1,212 H&E images and categorized them 

according to histologic disease activity scores: 699 images with the modified Naini Cortina score (514 

images from Berlin and 185 from Erlangen) and 556 with the modified Riley score (472 images from 

Berlin and 84 from Erlangen) (Extended Data Fig. 5a). We performed a 5-fold cross-validation 

(5FCV) using the Berlin cohort (986 images in total) to train and internally validate the model.  

The performance of the different foundation models was assessed based on Pearson correlation 

between true and predicted scores (Fig. 5b). The highest performance in predicting the normalized 
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modified Riley score was achieved by the Virchow2 model, with an R of 0.933, while the UNI2 

model showed the best results for the normalized modified Naini Cortina score, reaching an R of 

0.801. A comprehensive comparison of all models’ performance on the Berlin cohort across both 

scoring systems is provided in Extended Data Fig. 5b. To validate generalizability, we deployed the 

models to the Erlangen cohort (Extended Data Fig. 5c), using averaged predictions across all 

cross-validation folds. This approach provides a robust estimate and demonstrates strong performance 

achieving an R of 0.776 for the modified Naini Cortina score and an R of 0.858 for the modified Riley 

score. 

We assessed correlations between the original (normalized modified Naini Cortina and Riley) and 

predicted scores with various scoring systems. While both original and predicted scores correlated 

strongly with bMIS in CD and UC, the predicted scores showed marginally higher correlations (CD: 

R=0.682 vs. 0.651; UC: R=0.799 vs. 0.790) (Extended Data Fig. 5d,e). Comparisons with additional 

scoring systems (CD-IPSS, UC-IPSS, UCEIS, SES-CD) (Extended Data Fig. 5f) showed that 

predicted scores maintained comparable or improved correlations. These findings suggest that 

predicted scores match or even surpass original scores, offering a viable alternative scoring method. 

To understand the decision-making process of the regression model, we leveraged the attention 

mechanism within the attention-based multiple instance learning (attMIL) architecture. Attention 

heatmaps were generated to highlight the most influential regions for the model’s predictions. For 

detailed evaluation, we selected 10 heatmaps for each scoring system, focusing on cases with high 

disease activity scores and strong alignment between predicted and true scores. These heatmaps were 

then reviewed by expert pathologists for alignment with clinically relevant regions. In Fig. 5c, a UC 

patient’s heatmap shows the model’s attention levels. Regions with high attention (yellow) indicate 

strong influence on the model’s prediction, focusing primarily on peripheral areas near the mucosa 

and submucosa lining. These regions often display histologic signs of disease activity, such as crypt 

abscesses, immune cell infiltration, and architectural distortion, hallmarks of UC pathology. This is 

demonstrated by three of the top attention tiles (outlined in red) in Fig. 5d, which highlights areas 

with inflammatory cell infiltration, including lymphocytes and plasma cells. In contrast, low-attention 

regions (green) are concentrated in the inner, non-inflamed, mucosal areas. These results demonstrate 

that the model accurately identifies histologic patterns consistent with UC pathology when predicting 

disease activity. Extended Data Fig. 5g provides an additional example from a CD patient with 

moderate disease activity, where the model similarly focuses on pathologically relevant regions, with 

the top two attention tiles shown in the zoomed-in view. 

In summary, by leveraging multiple foundation models and an interpretable attMIL framework, we 

show a robust and scalable solution for the prediction and assessment of histologic disease activity 
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scores. Its high performance and generalizability can reduce inter-observer variability and enhance 

diagnostic accuracy in IBD. 

 

Discussion 
We have created a comprehensive molecular, histopathologic, and clinical atlas of IBD by profiling 

over 1,000 patients using multi-omic and multimodal assays. Generation and integration of genomic, 

transcriptomic, serum proteomic, and H&E histological imaging data, coupled with standardized 

clinical disease characteristics annotation data, including histopathology and endoscopy scores, make 

IBDome a comprehensive resource for IBD. The IBDome allows the study of IBD characteristics and 

dissection of the phenotypic complexity in terms of molecular, cellular, and clinical features, and 

provides insights into the biology that could be used to improve  the diagnosis and therapy of IBD. To 

enhance the exploitation of this resource, we are providing a publicly available, user-friendly web 

platform for data exploration, analysis and validation (https://ibdome.org). Beyond building this 

accessible resource, our study provides several important insights. 

First, we developed an inflammatory protein signature from serum samples that reflects the 

underlying intestinal inflammation and can be used to monitor disease activity of patients 

non-invasively. The IBD-IPSS provides a novel approach to assess disease severity, complementing 

existing molecular and clinical scores. Our findings demonstrate that this serum-based signature 

strongly correlates with established endoscopic scores, underscoring its potential as a biomarker for 

disease monitoring. The identification of OSM as the only overlapping protein between the IBD-IPSS 

and the circulating molecular inflammation score (cirMIS)15, suggests its central role in systemic 

inflammation and further supports its relevance in IBD pathophysiology16. While our protein-based 

approach offers a practical and less invasive alternative to transcriptomic intestinal tissue scoring 

methods such as bMIS, the clinical translation of the IBD-IPSS requires further validation. 

Second, we uncovered distinct site-specific inflammatory signatures of CD and UC, emphasizing that 

the disease site plays a crucial role in shaping the inflammatory landscape. The observed differences 

between ileal and colonic CD, support the idea that IBD is more heterogeneous than the traditional 

CD and UC classification. The differential gene expression of mucins provides further insight into the 

tissue-specificity of IBD pathology. The selective upregulation of MUC17 in UC colon inflammation 

but not in CD, and the increased expression of MUC4 in inflamed CD ileum, suggest distinct 

mechanisms of barrier dysfunction in different disease subtypes. These findings highlight the need for 

more subtle therapeutic strategies that address the unique mucosal barrier dysfunction that occurs in 

different IBD subtypes. Moreover, our cytokine signaling analysis revealed key differences in 
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inflammatory pathway activation across disease subtypes and sites. While canonical inflammatory 

pathways such as TNFA and OSM were consistently upregulated in all inflamed tissues, we identified 

site-specific and disease subtype-specific pathway activations, including IL-12 signaling in colonic 

CD. This is particularly relevant given the variable response to biologic therapies targeting IL-12/23, 

such as ustekinumab, which has been shown to be less effective in isolated ileal CD compared to 

colonic CD29.  

At the serum protein level, we observed that colonic CD and UC share a substantial overlap in 

differentially abundant proteins, while ileal CD exhibits a more distinct inflammatory profile. The 

ability to differentiate IBD subtypes based on serum protein signatures offers a promising avenue for 

non-invasive disease monitoring and personalized treatment approaches. Specifically, the detection of 

MMP-10, IL-17A and TGF-alpha as UC-associated markers and IFN-gamma as a CD-associated 

marker may help in more accurate disease classification and targeted therapeutic strategies. Given the 

failure of anti-IL-13 therapies in CD27,28 and the ongoing investigation of anti-IFN-gamma 

antibodies43,44, our results emphasize the need to guide treatment strategies based on disease 

localization and immune signatures. Despite these insights, further validation in independent cohorts 

is necessary to confirm the diagnostic and prognostic utility of these potential biomarkers. 

Furthermore, the functional roles of these proteins in disease pathogenesis and their potential as 

therapeutic targets should also be explored further. 

Third, we show that foundation models for images of H&E-stained tissue sections have superior 

diagnostic performance, indicating that diagnostic accuracy can be significantly improved. By 

leveraging several state-of-the-art foundation models (CHIEF38, UNI239, Virchow240,41, and 

H-optimus-042) with an attention-based multiple instance learning framework, we developed a 

scalable and interpretable approach for predicting histologic disease activity scores with high 

accuracy. Our deep learning framework demonstrated high correlation between predicted and true 

scores, with strong generalizability across the Berlin and Erlangen cohorts. Explainability analyses 

showed that the model focuses on histologically relevant regions when making predictions. The 

attention heatmaps highlighted key pathological features closely aligning with expert pathologist 

assessments. Furthermore, the model’s predictions showed a strong correlation with endoscopic 

scoring systems such as UCEIS and SES-CD, as well as molecular scores such as bMIS and IPSS. 

These findings suggest that AI-based histologic scoring could reduce inter-observer variability, 

thereby improving disease monitoring in IBD and patient outcomes.  

A notable limitation of our study is that although the multi-centric cohort was relatively large and 

complete, it lacks sufficient power for subgroup analysis. Additional studies focusing on subgroups 

will be necessary to increase the power. For example, stratifying patients based on disease severity 

(mild vs. severe) or treatment history (treatment-naïve versus previously treated) may provide deeper 
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insights into disease mechanisms and therapeutic responses. We did not perform single-cell RNA 

sequencing or spatial single-cell analysis to further investigate cellular heterogeneity and cell-cell 

interactions within the tissue microenvironments of the disease localization subtypes described in this 

study. Spatial single-cell analysis could provide a deeper understanding of how cellular organization 

within tissues influences disease localization, allowing for more targeted therapeutic approaches and 

improved patient stratification. 

In conclusion, the IBDome is a powerful resource for uncovering IBD biology and ultimately 

advancing precision medicine to improve patient outcomes. 
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Methods 

Study centers 

The IBDome study centers are located at the Department of Medicine 1, Universitätsklinikum 

Erlangen, and at the Department of Gastroenterology, Infectious Diseases and Rheumatology 

including Clinical Nutrition at the Charité – Universitätsmedizin Berlin.  

Ethics approval and consent to participate 

The IBDome was approved by the institutional ethics boards in both Erlangen and Berlin (project 

identifiers 332-17B and EA1/200/17, respectively). The IBDome is granted permission to collect and 

share patient samples, clinical and molecular data. All included participants are 18 years or older and 

have provided informed consent before inclusion into the study.  

Data management 

We distinguish between clinical databases at the study center and a centralized research database. The 

former was implemented by the IT departments of the study centers in accordance with data 

protection laws, while the latter only contains non-identifiable information that may be shared 

publicly according to the ethics approval. In regular intervals, data are transferred from the clinical 

centers to the central research database located in Innsbruck (Biocenter, Institute of Bioinformatics at 

the Medical University of Innsbruck). 

Study participants were assigned a randomly generated pseudonym when entering the study, which 

was used to label specimens and samples in the research database. The data related to biomaterials are 

stored in pseudonymized form in the Starlims biobank management software. Access to the systems 

(clinical databases and Starlims) was restricted and regulated by an authorization concept. 

To ensure data security, all systems are hosted in a secured environment of the university hospital IT 

infra-structure of Erlangen and Berlin with an information security management system (ISMS) based 

on guidelines from the German Federal Office for Information Security. The ISMS specifies 

procedures and rules within the hospital to define, manage, control, maintain, and continuously 

improve data security. The documented standard operating procedures for data security and data 

safety were followed and were checked on a regular basis. The data management fulfills all 

requirements of the EU General Data Protection Regulation and good scientific practice. 
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Collection of clinical data 

A standardized and unified medical questionnaire was designed and implemented as part of the 

clinical information systems of both study centers. The questionnaire consists of two parts: (1) basic 

data, which is entered at the initial visit, including birth year, sex, diagnosis, and preexisting 

conditions, and (2) time course longitudinally collected data, which the attending doctor enters at each 

visit, including body weight, disease activity scores, and ongoing medication. Clinical disease activity 

is recorded as Partial Mayo Score (UC)45 and Harvey-Bradshaw Index (CD)46, respectively. Several 

consistency checks ensure data integrity during data entry. 

Biomaterial collection, processing and storage 

The following specimen are collected from patients in the study  

●​ whole blood, collected in heparinized tubes (Vacuette® Greiner Bio-One plasma tube with 

heparin, Thermo Fisher Scientific) for peripheral blood mononuclear cell isolation as well as 

K3EDTA tubes (Vacuette® Greiner Bio-One, Thermo Fisher Scientific) for DNA isolation.  

●​ Serum, collected in (Vacuette® Greiner Bio-One Z Serum Sep Clot Activator tubes, Thermo 

Fisher Scientific). 

●​ Mucosal biopsies collected during endoscopy or after surgery from surgical specimen, stored 

in test tubes containing RNA protect reagent (RNAprotect Tissue Reagent, Qiagen) for RNA 

isolation and neutral buffered, 10 % formalin solution (Sigma-Aldrich) for histopathology.  

●​ Surgical resections, including ileocecal resection, hemicolectomy, colectomy, and cancer 

surgery, where we collected the unaffected tissue at the resection margin for IBDome. 

●​ Stool samples, by providing patients with a stool sample tube containing RNA protect reagent 

(RNAprotect Tissue Reagent, Qiagen) and a questionnaire to sample stool 3-5 days after 

endoscopy or surgery.  

In brief, samples were processed as follows. Peripheral blood mononuclear leukocytes (PBMC) are 

isolated from whole blood employing the SepMate™-50 (IVD) tube for density gradient 

centrifugation (StemCell Technologies). PBMCs are stimulated with PMA/Ionomycin and LPS or left 

unstimulated for 4 hours. Naїve PBMC (directly after isolation), stimulated PBMC and unstimulated 

PBMC (with or without brefeldin A) are fixed in Proteomic Stabilizer PROT1 (SMART TUBE Inc.) 

and stored at -80°C for CyTOF analysis. The supernatants of LPS-stimulated PBMC are stored at 

-80°C for cytokine analysis. Whole blood from EDTA tubes is stored in 1 mL aliquots at -80°C for 

DNA isolation. Serum is stored in 1 mL aliquots at -80°C for proteomics (Olink). After incubation of 

biopsies in RNA protect reagent (RNAprotect Tissue Reagent, Qiagen) overnight at 4°C, biopsies are 

stored individually at -80°C until RNA isolation. Formalin-fixed biopsies or resected tissue is 
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processed by and stored at iPATH.Berlin, the core unit of Charité-Universitätsmedizin Berlin for 

histopathology. Stool samples in RNA protect reagent (RNAprotect Tissue Reagent, Qiagen) are 

stored in pea-sized aliquots or 1 mL aliquots when liquid at -80°C until analysis. 

Histopathological assessment 

Formalin-fixed tissues were embedded overnight and paraffin blocks were prepared. Paraffin sections 

(1-2 µm) were dewaxed and hydrated in a descending alcohol series. Sections were stained with 

hematoxylin (Merck) and eosin (Sigma-Aldrich). Sections were dehydrated in an ascending alcohol 

series with xylene (Carl Roth) as intermediate and coverslipped with corbit balsam (Hecht). 

Histomorphology of the ileum and colon was evaluated according to modified scores based on Naini 

and Cortina9 for CD and Riley10 for UC. The main modification of both scores include the evaluation 

of resected tissue with scores for submucosal and transmural inflammation, fissures and increased 

lymphatic follicles. Minor modifications to the Nini and Cortina scoring system add villous atrophy 

and fibrosis. Also for the Riley scoring scheme, the modifications include the scores for resected 

tissue as well as the scoring for ileal involvement (evaluation of infiltration with acute and chronic 

inflammatory cells, architectural distortion and epithelial integrity). 

Endoscopic assessment 

Patients who underwent endoscopy were scored according to the Ulcerative Colitis Endoscopic Index 

of Severity (UCEIS) 47 for UC and Simple Endoscopic Score for Crohn's Disease (SES-CD) 12, for CD 

respectively. The scoring was done based on the established criteria of both scores by experienced 

endoscopists at both participating centers. The endoscopists were blinded to the individual molecular 

date of the investigated patients. 

Stool score assessment 

Stool samples were taken by the patients and shipped in RNAprotect reagent accompanied by a 

questionnaire. In order to classify various types of feces the Bristol stool chart was used48. 

RNA-seq library preparation and sequencing 

Biopsies collected during endoscopy or from resected tissue by using a single-use biopsy forceps 

(Olympus) were incubated in RNA protect reagent (RNAprotect Tissue Reagent, Qiagen) and stored 

at -80°C. For RNA isolation, biopsies were thawed on ice and homogenized in RLT buffer (Qiagen) 

employing the TissueLyser LT (Qiagen). RNA was isolated, cleaned and concentrated using the 

RNeasy kit (Qiagen) and RNA Clean & Concentrator kit (Zymo Research). The concentration was 

measured at NanoDrop One/One (Thermo Fisher Scientific) and quality (RNA integrity number, RIN) 
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at TapeStation (Agilent). RNA was shipped on dry ice to the NGS Competence Center Tübingen for 

sequencing. 

Serum protein assessment 

An serum sample aliquot was thawed on ice for one hour and centrifuged at 3,000 rpm for one minute 

at 4°C. Resistand PCR-clean 96-well full skirted PCR plates (ThermoFisher Scientific, catalog 

number AB0800) were used with 80 µL of serum per well and sealed with adhesive tape (MicroAmp 

seal; ThermoFisher Scientific, catalog number 4306311). The pipetting scheme for all plates was 

randomized by the BIH Core Unit Proteomics. Samples were shipped on dry ice to the BIH Core Unit 

Proteomics, Charité, Berlin for measurements with the Olink® Target 96 Inflammation panel.  

Whole exome sequencing analysis 

Germline mutations were called using a custom-built nextflow pipeline. Briefly: Whole exome 

sequencing raw reads were cleaned from residual adapter sequences and low-quality sequences using 

fastp v0.12.449. The reads were then aligned to the reference genome (hg38) using BWA v0.7.1750. 

Duplicate reads were marked with sambamba v0.8.051. Base-call quality score recalibration was 

performed with GATK4 v4.2.352. Germline variants are called using the haplotypecaller program from 

GATK4 and Strelka2 v2.9.1053. Variants that were called from both algorithms were used as 

high-confidence variants and annotated using the Ensembl variant effect prediction (VEP v104.3) 

tool54. 

To investigate NOD2, all mutations were filtered to retain only coding variants associated with 

protein-coding transcripts. Exon regions were extracted from the Gencode v33 primary assembly 

annotation GTF file using the R-package GenomicFeatures (v.1.56.0). A transcript database (TxDb) 

was created with the makeTxDbFromGFF function. Transcript names were retrieved using the 

transcripts function and filtered to match NOD2 transcript IDs present in our dataset. The distribution 

of NOD2 mutations was visualized using the trackViewer R-package (v.1.40.0). A lollipop plot was 

generated, highlighting the most frequent mutations in red. 

Transcriptomics analysis 

RNA-sequencing samples from four different batches were processed with the nf-core RNA-seq 

pipeline version 3.455. In brief, sequencing reads were aligned to the hg38/GRCh38 reference genome 

with GENCODE v33 annotations using STAR v2.7.7a56. Read counts and transcripts per million 

(TPM) were quantified using Salmon57. 
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Differential expression analysis was performed in R v.4.4.1 with DESeq2 (v.1.44.0) using raw counts 

and the covariate formula ~ group + batch + sex + scaled age. For comparisons between IBD 

inflamed and non-IBD samples tissue_coarse was added as an additional covariate to account for the 

different tissues involved. Genes were considered differentially expressed if they met an adjusted 

p-value threshold of < 0.05 and a |log2FoldChange| threshold of >1. For visualization of the results we 

used the EnhancedVolcano (v.1.22.0), ggplot2 (v.3.5.1), ComplexHeatmap (v.2.20.0), and ggvenn 

(v.0.1.10) R-packages.  

Cytokine signaling activities for bulk gene expression data were inferred using CytoSig26 in Python 

v.3.8.20, leveraging the cytosig.v0.1 implementation available on GitHub 

(https://github.com/data2intelligence/CytoSig). TPM values were log-transformed as log2(TPM + 1) 

prior to analysis and used as input. CytoSig calculates the z-score by dividing the regression 

coefficient by the standard error. The p-values are obtained using a permutation test when the random 

count is > 0 or using a Student’s t-test if the random count is 0.  

For cytokine signaling activities at the single-cell level we used the processed dataset from Kong et 

al.30 accessible through the Broad Single Cell Portal under accession number SCP1884. To infer 

cytokine signaling activities, we applied weighted means (using the run_wmean function implemented 

in the decoupler-py package58) with the CytoSig database retrieved from OmniPath59.  

Biopsy and circulating molecular inflammation signatures were obtained from Argmann et al.15. To 

calculate the biopsy molecular inflammation scores (bMIS) for our samples, we applied gene-set 

variation analysis (GSVA)60 using the GSVA R-package (v.1.52.3). 

Serum protein analysis 

Data tables containing normalized protein expression (NPX) values, Olink Proteomics’ arbitrary unit 

on log2 scale, were loaded into R v.4.4.1 and further processed with the OlinkAnalyze (v.4.0.1) 

R-package. Differential protein analysis was conducted using the olink_ttest function. Only proteins 

detected in at least 90% of the measured samples were included in the analysis. Statistical differences 

were assessed using the Welch two-sample t-test with Benjamini-Hochberg correction applied to 

adjust for multiple testing. Proteins were considered differentially abundant if they met a FDR 

threshold of < 0.05. Results were visualized using the EnhancedVolcano (v.1.22.0) R-package. 

Intersections were retrieved and plotted with the ggVennDiagram (v.1.5.2) or the UpSetR (v.1.4.0) 

R-package.  

We developed an IBD Inflammatory Protein Severity Signature (IBD-IPSS) using a method consistent 

with the approach outlined by Argmann et al.15. In brief, differential protein abundance between 

inflamed and non-inflamed IBD samples was analyzed using OlinkAnalyze as described above, 
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identifying significantly upregulated proteins for inclusion in the IBD-IPSS. Similarly, 

disease-specific signatures were generated: the UC-IPSS and CD-IPSS, derived by analyzing protein 

abundance separately in ulcerative colitis and Crohn’s disease samples. Correlation analysis with the 

various inflammatory scores available within IBDome including endoscopic scores (SES-CD and 

UCEIS), clinical scores (HBI and PMS), histopathology scores (modified Riley and modified Naini 

Cortina score) and the computed bMIS scores (bMIS-CD and bMIS-UC) was conducted using 

Pearson correlation with pairwise complete observations.  

Functional analysis and clustering of the IBD-IPSS proteins was performed using the STRING 

database61. Evidence for protein interactions was considered only from curated databases and 

experimentally validated interactions. Clustering was performed using MCL (Markov Cluster 

Algorithm)62 with an inflation parameter set to 3. Clusters were annotated using the default settings of 

the STRING database web application. This annotation process prioritized general terms or pathways 

that summarize multiple specific terms and pathways, derived from various databases integrated 

within STRING.  

Normalization of histopathology scores 

To ensure comparability between different histopathology scores (modified Naini Cortina Score and 

modified Riley score), we normalized the scores to a 0-1 scale, considering the tissue-specific 

maximum score for each disease entity (CD or UC) and sampling method (biopsy or resection). The 

maximum scores are listed in Table 1. 

tissues sampling method 
max. modified  

Naini Cortina score 
max. modified  

Riley score 

colon, rectum, caecum 
resection 20 21 

biopsy 16 17 

ileum, ileocecal valve, small 
intestine, anastomosis, pouch 

resection 14 16 

biopsy 10 12 

Table 1: Maximum histopathology scores for the modified Naini Cortina and modified Riley scores 

categorized by tissue type and sampling method (biopsy or resection). 

The IBDome research database 

A relational database was designed and implemented in the Python package sqlalchemy using SQLite 

as database engine. Data integrity is ensured through check constraints and foreign key validation. 

SQLite was chosen over other database systems, because it makes the database easy to share as a 

single file, does not require a server, and offers good performance for a use-case without concurrent 
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writes. Inconsistencies in clinical data were resolved manually, and implausible entries were removed. 

Both clinical and molecular data were processed and imported into the database in a set of Jupyter 

notebooks and a custom helper library written in Python. All data loading steps are integrated into a 

Nextflow63 pipeline, which allows rebuilding the database from scratch in a single command. 

Web application 

The IBDome web application is implemented in R Shiny and directly interacts with the IBDome 

SQLite database. Dependencies are packaged in a Docker container and a docker-compose file is 

provided which allows executing the app locally. Plots were generated in R using the ggplot264, 

ggpubr, plotly, and ggbeeswarm packages. For visualization of gene expression data, transcripts per 

million (TPM) values were log10(TPM+1) transformed. P-values were computed using a two-tailed 

Wilcoxon test on the transformed values. 

Acquisition of high-resolution H&E images 

H&E whole slide images were scanned in two batches at different centers: MUI (Innsbruck) and 

Charité (Berlin). Whole slide images from the first batch were scanned using a NanoZoomer S210 

slide scanner (Hamamatsu), and the analysis was performed using NDP.view2 software (Hamamatsu). 

Whole slide scans in x100 magnification of the second batch of H&E-stained tissue sections were 

taken using a Vectra3 automated quantitative pathology imaging system (Akoya Biosciences). 

Deep Learning Inflammation score prediction 

H&E WSI were tessellated into patches with dimensions of 224×224 pixels, representing a 256 µm 

edge length. To ensure consistent color distribution across cohorts, patches from each cohort 

underwent color normalization using the Macenko spectral matching technique65, which maps images 

to a standardized color space. For performance comparison purposes and to ensure the robustness of 

our findings, we employed four distinct Foundation models—CHIEF38, UNI239, Virchow240,41 and 

H-optimus-042—which generated feature matrices of dimensions n × 768, n × 1536, n × 2560 and n × 

1536 respectively, for each patient’s pre-processed patches. Here, n is the number of (224 ×224 pixels) 

pre-processed image patches obtained per whole slide image. All preprocessing steps followed the 

STAMP protocol66.  

These feature matrices were then processed in an attention-based multiple instance learning (attMIL) 

framework67,68 designed for weakly supervised regression. For each foundation model, a separate 

attMIL model was trained using 5-fold cross-validation on the Berlin cohort to predict the normalized 

modified Naini Cortina score and the normalized modified Riley score. The cross-validation 
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employed score-based stratification to maintain consistent data distributions across all folds, resulting 

in five models trained and tested on distinct and balanced splits. To externally validate the model's 

prognostic performance, all five attMIL models from the cross-validation folds were independently 

deployed to the Erlangen cohort to mitigate fold-specific variability. Slide-level predictions were 

generated by each model and then aggregated through arithmetic averaging to produce the final 

prognostic scores. These steps were performed using the open-source Deep Learning pipeline 

“marugoto”66,69, with the default hyperparameters (learning rate = 0.0001, weight decay = 0.01, batch 

size = 1). 

Explainability of the Deep Learning model 

To interpret the decision-making process of the regression models, we leveraged the attention 

mechanism of the attMIL architecture. High-resolution attention heatmaps were created by loading 

the attMIL model architectures for regression into a fully convolutional equivalent70 with their 

respective weights from the training procedure. By running inference on each patient’s WSI, we 

extracted the attention layer associated with the score prediction and overlaid it on the WSI, 

highlighting the regions of focus for the model’s predictions of the scores. For visualization, we 

selected the Berlin cohort to observe the model performance in predicting disease activity scores. For 

a more detailed evaluation, we selected the top 10 attention heatmaps for each scoring system based 

on prediction accuracy. These heatmaps were then reviewed by an expert pathologist, who assessed 

the highlighted regions for correspondence with areas of known clinical relevance. 
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Data and code availability 
The data can be interactively explored using the IBDome Explorer (https://ibdome.org), where also 

the full SQLite research database and individual data tables are available for download. Raw data and 

complete mutation tables are not made available due to privacy concerns, but IBD-relevant SNPs as 

reported by de Lange et al.71 are included in the IBDome database. The code for reproducing the 

results of this study is available on GitHub: https://github.com/icbi-lab/plattner_ibdome_2025. 
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Fig. 1| Characteristics of the IBDome atlas. a, Schematic overview of the datasets and sample numbers for the 1002 
patients integrated in IBDome. b, Number of patients per sample type; colors are representing the different diseases 
and numbers on top of the graphs are depicting the total numbers. c, Patient distribution illustrated as a nested pie 
chart, with the outer circle representing the number of patients per disease and the inner circle indicating the 
proportion of patients per study center (Berlin and Erlangen). d, Exome mutation map of NOD2; highlighted in red 
are the known most frequent variants R702W (rs2066844), G908R (rs2066845), and 1007fs (rs2066847). e, Heatmap 
of differentially expressed cytokines, chemokines, and chemokine receptors between IBD inflamed samples (n=223) 
versus non-IBD controls (n=46), clustered by euclidean distance and complete linkage. SES-CD = Simple Endoscopic 
Score for Crohn’s Disease; UCEIS = Ulcerative Colitis Endoscopic Index of Severity.
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Fig. 2| Inflammatory protein severity signature (IPSS). a, Volcano plots of differentially abundant serum proteins in 
IBD-inflamed vs. non-inflamed, UC inflamed vs. non-inflamed and CD inflamed vs. non-inflamed samples assessed by 
Welch t-test with an adjusted p-value <0.1. b, Overlap of proteins in the different inflammatory protein severity 
signatures. c, Protein-protein interaction network of the serum proteins of the IBD-IPSS. d, Pearson correlation of the 
inflammatory protein severity signatures with biopsy molecular inflammation scores (bMIS-UC and bMIS-CD) derived 
from gene set variation analysis from RNA-seq data, histopathology scores (normalized modified Riley score and 
normalized modified Naini-Cortina score), endoscopic scores (UCEIS = Ulcerative Colitis Endoscopic Index of Severity, 
SES-CD = Simple Endoscopic Score for Crohn’s Disease) and clinical activity scores (PMS= Partial Mayo Score, 
HBI=Harvey-Bradshaw Index) for UC and CD, respectively; *** p<0.001, ** p<0.01, * p< 0.05;
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b

Fig. 3| Tissue-disease-specific inflammatory gene signatures. a, Principal component analysis of gene expression data, 
colored by disease type, tissue and normalized inflammation as assessed by histopathology (normalized modified Naini 
Cortina score or normalized modified Riley score). b, Venn-diagram depicting the overlap of DE genes in the different 
comparisons (CD inflamed colon vs. non-IBD colon; CD inflamed ileum vs. non-IBD ileum and UC inflamed colon vs. 
non-IBD colon). c, Commonly upregulated GO-BP terms across all groups. d, Expression [log10(TPM+1)] of 
significantly upregulated MUCINs detected by DE analysis; adjusted p-values were derived from the DE analysis with 
DESeq2. e, Cytokine signaling activities in the different groups inferred with CytoSig; z-scores and p-values were 
derived with the CytoSig permutation test (more details in methods); * FDR < 0.1, ** FDR < 0.05 and *** FDR < 0.01.  
f, IL12 signaling activity in different cell types of inflamed CD samples (dataset from Kong et al. Immunity 2023).
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Fig. 4| Multi-omics profiling identifies potential serum protein biomarkers for disease localization in IBD. a, 
Volcano plots displaying differentially abundant proteins in inflamed, disease-site-specific groups compared to non-IBD 
controls. Statistical significance was determined using Welch’s t-test with Benjamini-Hochberg correction (FDR < 0.1). 
b, Venn diagram illustrating the overlap of significantly differentially abundant proteins among CD colon, CD ileum, and 
UC colon, relative to non-IBD controls. c, Dot plot showing Pearson correlation coefficients (R) between serum protein 
abundance and histopathology scores (modified Riley score for UC, modified Naini Cortina score for CD) across the 
three subgroups. Highlighted are uniquely identified differentially abundant proteins from a and b. Significance 
threshold: adjusted p-value < 0.01. d, Heatmap of Pearson correlation coefficients between serum protein abundance and 
tissue gene expression in the different groups; * adjusted p-value < 0.05. e, Potential serum proteins associated with 
colonic disease, UC, and CD that significantly correlate with histopathology scores and, with the exception of 
IFN-gamma, also with tissue gene expression.
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Fig. 5| Prediction of histologic disease activity from pathology images. a,  Overview of the image preprocessing 
pipeline and tile-level feature extraction, utilizing four Foundation models (CHIEF, UNI2, Virchow2 and 
H-optimus-0) to generate a feature matrix for each patient. An attention-based multiple instance learning (attMIL) 
architecture is then applied to the extracted features to predict histologic disease activity scores. b, Correlation plots 
between the original histologic disease activity scores (x-axis) and AI-predicted scores (y-axis) for both Modified 
Naini Cortina and Modified Riley scoring systems, based on 5-fold cross-validation on the Berlin subset using the 
best performing Foundation Model (UNI2 and Virchow2 respectively). c, Representative attention heatmap of a 
WSI from a UC patient with high histologic disease activity. The heatmap shows the model’s attention levels, 
displaying only tiles with scores above 0.5. Higher scores (yellow) mark regions that strongly influence the model’s 
prediction, while lower scores (green) indicate less critical regions. d, Zoomed-in view of the highest-attention 
regions highlighted in c, showing 3 of the top 4 attention tiles, outlined in red.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2025. ; https://doi.org/10.1101/2025.03.26.645544doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.26.645544
http://creativecommons.org/licenses/by/4.0/


Extended Data Fig. 1| IBDome overview. a, Cohort distribution illustrated in a heatmap showing the available samples 
per patient. The heatmap is split by disease and study center and ordered according to the amount of different sample 
types available per patient. b, Number of samples per sample type; colors are representing the different diseases and 
number on top of the graphs are depicting the total sample numbers c, Correlation between histopathology (normalized 
Riley score and normalized Naini-Cortina score) and the Bristol stool score. d, Correlation between histopathology 
(normalized Riley score and normalized Naini-Cortina score) and clinical activity scores (PMS= Partial Mayo Score, 
HBI=Harvey-Bradshaw Index) for UC and CD, respectively. e, Correlation between endoscopic (UCEIS = Ulcerative 
Colitis Endoscopic Index of Severity, SES-CD = Simple Endoscopic Score for Crohn’s Disease) and histopathology 
scores for UC and CD, respectively.
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Extended Data Fig. 2| Protein abundance in the serum. a, Biopsy-based molecular inflammation scores (bMIS-IBD) 
across different groups, calculated using Gene Set Variation Analysis (GSVA); p-values were assessed using the 
Wilcoxon test. The color depicts the normalized inflammation score assessed by histopathology (modified Riley score for 
UC and modified Naini Cortina score for CD). b, Principal Component Analysis (PCA) of serum protein abundances, 
colored by disease type, sex, and inflammation status c, UpSet plot showing the intersection of different blood-based 
scores (cirMIS = circulating molecular inflammation score from RNA-seq from the blood, IPSS = inflammatory protein 
severity signature from serum proteins) highlighting OSM as the only protein shared across all signatures. d, 
Significantly enriched Gene Ontology - Biological Processes (GO-BP) terms (FDR < 0.05) from over representation 
analysis (ORA) in the IBD-IPSS. e, Heatmap of the differentially abundant proteins with significance levels determined 
by t-test: *** = adj.p<0.01, ** = adj.p < 0.05, * = adj.p < 0.1; “estimate” represent the numeric difference in mean NPX 
(normalized protein expression; Olink’s arbitrary unit) between groups.
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Extended Data Fig. 3| Transcriptional characterization. a, Volcano plots displaying the DE analysis results of 
inflamed CD vs. non-IBD colon samples, inflamed CD vs. non-IBD ileum samples and inflamed UC colon vs. non-IBD 
colon samples with thresholds: |log2FC| > 1 and adjusted p-value < 0.05. b) Overlap of significantly upregulated and 
downregulated genes in the different comparisons. c, Heatmap displaying the gene expression of the commonly 
downregulated genes (n=18) across the different groups (inflamed IBD, non-inflamed IBD and non-IBD) clustered by 
euclidean distance and complete linkage. d, Gene expression of genes involved in the IL12 signaling pathway with 
adjusted p-values retrieved from the differential expression analysis with DESeq2.
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Extended Data Fig. 4| Correlation of serum proteins. a, Venn diagram depicting the intersections of differential 
abundant proteins in the different comparisons. b, Dot plot of Pearson correlation coefficients (R) between serum protein 
abundance and histopathology scores (normalized inflammation = normalized modified Riley or normalized modified 
Naini Cortina score) across all samples and the tissue groups; adjusted p-value cutoff: 0.01; c, Heatmap of Pearson 
correlation coefficients between serum protein abundance and tissue gene expression across all samples (n=335) and 
splitted by group and tissue; * adjusted p-value <0.05.
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Extended Data Fig. 5| Prediction of histopathologic scores from H&E images. a, Distribution of all H&E images (n = 
1362). After preprocessing, the number of images is reduced to 1212*, which are then categorized with two scoring 
systems: the modified Naini Cortina score (n = 699) and the modified Riley score (n = 556). Each scoring category is 
further divided in the two center subsets: Berlin (n = 514 for modified Naini Cortina, n = 472 for modified Riley) and 
Erlangen (n = 185 for modified Naini Cortina, n = 84 for modified Riley). *Some indeterminate colitis and non-IBD 
samples were scored with both scoring systems. b, Performance of different Foundation Models (CHIEF, UNI2, 
Virchow2 and H-optimus-0) on the 5 folds cross-validation regression task on the Berlin cohort, shown by Pearson 
correlation (R) coefficients. c, Correlation plots between the original histologic disease activity scores (x-axis) and 
AI-predicted scores (y-axis) for both modified Naini Cortina and modified Riley scoring systems. Predictions are based 
on the ensemble of 5 cross-validation models trained on the Berlin cohort and evaluated on the Erlangen cohort. d, 
Cohort distribution: the outer circles represent the Berlin and Erlangen histopathology cohorts, and the inner circles 
indicating the proportion of available RNA-seq data within each cohort. e, Correlation plots between the bMIS score for 
UC and CD with the original score (normalized Naini Cortina and Riley score) on the left and the model’s predicted 
scores on the right. f, Comparison of Pearson correlation (R) coefficients between original and predicted histologic 
disease activity scores against CD-IPSS, UC-IPSS, UCEIS, and SES-CD. g, Representative attention heatmap of a biopsy 
slide image from a CD patient with moderate histologic disease activity. The heatmap shows the model’s attention levels. 
Higher scores (yellow) mark regions that strongly influence the model’s prediction, while lower scores (green) indicate 
less critical regions. On the right side, a zoomed-in view of the highest-attention region showing the highest attention tile.
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