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Diagnosing eye and orbit pathologies through radiological imaging presents considerable 
challenges due to their low prevalence, the extensive range of possible conditions, and their variable 
presentations, necessitating substantial domain-specific expertise. This study evaluates whether a 
ML-based content-based image retrieval (CBIR) tool, combined with a curated database of orbital 
MRI cases with verified diagnoses, can enhance diagnostic accuracy and reduce reading time for 
radiologists diagnosing eye and orbital pathologies. It explores whether this tool alone, or in 
combination with status quo reference tools (e.g. Radiopaedia.org, StatDx) provides these benefits. 
In a multi-reader, multi-case study involving 36 radiologists and 48 retrospective orbital MRI cases, 
participants diagnosed eight cases: four using status quo reference tools and four with the addition 
of the CBIR tool. Analysis using linear mixed-effects models revealed significant improvements in 
diagnostic accuracy when using the CBIR tool alone (55.88% vs. 70.59%, p = 0.03, odds ratio = 2.07) 
and an even greater improvement when used alongside status quo tools (55.88% vs. 83.33%, p = 0.02, 
odds ratio = 3.65). Reading time decreased when using the CBIR tool alone (334 s vs. 236 s, p < 0.001) 
but increased when used in conjunction with status quo tools (334 s vs. 396 s, p < 0.001). These findings 
indicate that CBIR tools can significantly enhance diagnostic accuracy for eye and orbit diagnostics, 
though their impact on reading time varies.

Inaccurate diagnoses in medical imaging reports are a burden to the patient and the healthcare system1. Reading 
MRI scans of patients with eye and orbit diseases poses a particular diagnostic challenge due to the rarity of 
these lesions. Most radiologists lack profound experience reading these cases or they may find it difficult to recall 
imaging features from past cases. Radiologists specialized in the eye and orbit area are also rare, thus these cases 
are often read by general radiologists or neuroradiologists, increasing the probability for diagnostic inaccuracies. 
Additionally, the high number of distinctive tissue types in the orbit enables a variety of orbital pathologies, 
increasing the number of possible differential diagnoses to consider.

Although large, multi-center studies describing the diagnostic accuracy of eye and orbital lesions are lacking, 
it has been reported for lacrimal gland lesions that the degree of correspondence between image-based diagnosis 
and histopathologic diagnosis is only moderate (Cohen’s kappa = 0.451, p < 0.001)2. Other studies found that 
diagnostic errors occur at an average rate of 3–4%, with a 32% retrospective error rate for interpretation of 
abnormal studies3. These challenges may delay diagnosis and treatment or expose patients to potentially 
unnecessary biopsies and treatments, which can cause harm and be costly1.

Content-based image retrieval (CBIR) methods retrieve similar images from a database based on a query 
image, by comparing visual features like color, texture, and shape, rather than metadata or text4. In the context 
of Radiology, CBIR systems allow radiologists to retrieve relevant cases from a curated database with clinical or 
histopathological validation, based on visual similarity with supplied patient query images. Given the cases and 
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their associated diagnoses retrieved by the CBIR system, radiologists may be able to give better informed and 
more accurate diagnoses. Previous studies on CBIR showed increases in diagnostic accuracy, particularly for 
diagnosing interstitial lung diseases on CT scans5–8. However, these studies often did not compare CBIR with 
status quo reference tools (e.g. StatDx, radiopaedia.org, etc.)7,8, and involved a small number of participants, 
albeit many cases per participants. Notably absent is research on CBIR’s effectiveness in challenging MRI 
diagnoses and other organ systems where retrieval of reference cases can be crucial and time consuming.

Thus, our study seeks to close this gap by evaluating whether a CBIR system can improve diagnostic accuracy 
and reading time for diagnosing challenging eye and orbital pathologies. We developed an ML-based CBIR tool 
and conducted a retrospective study involving 36 radiologists and 48 orbital MRI cases to assess its effectiveness 
across a wide range of experience levels and orbital pathologies.

Methods
Ethics statement
This retrospective study was approved by the institutional review board of Charité University Medicine under 
ethics application code EA121422. The study was conducted in strict accordance with relevant guidelines and 
regulations. Written consent was obtained from radiologists participating in the study, informed consent from 
patients was waived due to the retrospective character of the study. All data were completely anonymized before 
inclusion.

Orbital pathologies datasets
For developing the CBIR machine learning (ML) model and the database, we collected anonymized data from 
patients with eye and orbit pathologies who were diagnosed between 2012 and 2022 at Charité University 
Medicine, Hôpital Fondation Rothschild, and Scripps Hospital La Jolla (Fig.  1a). The inclusion criteria 
required clinical or histopathological confirmation of the diagnosis verified through multidisciplinary clinical 
assessments, visible lesions on the respective MRI scans, scans performed prior to any therapeutic treatment, 
and sufficient image quality. For the ML model development, 3D regions of interest (ROIs) were annotated 
as bounding boxes around each lesion by three expert radiologists in a consecutive non-blinded manner. For 
annotation and review of the dataset we build tailormade data annotation software (based on Ruby-on-rails and 
the OHIF DICOM viewer). The following routinely acquired MRI sequences were annotated: T1-weighted spin 
echo sequences before and after intravenous contrast agent administration, T2-weighted sequences with and 
without fat suppression, and Fluid-Attenuated Inversion Recovery sequences. Sequences were acquired with 
a range of different scanners: Siemens (Skyra, Aera, Avanto, Magnetom Amira, Vida), Philips (Ingenia, Intera, 
Symphony), Toshiba (Titan) and GE (Optima, Signa). Field strength varied between 1.5 T and 3 T depending on 
the scanner. Data from Charité University Medicine and Hôpital Fondation Rothschild was split into training 
and validation cases, with the validation dataset being constructed by taking 10% of cases of each pathology to 
ensure a representative sample. The Scripps dataset was used as an external test dataset.

For the reader study, data with similar characteristics, but diagnosed after January 2023 were collected at 
Charité University Medicine. The dataset included 142 cases, spanning 28 pathologies which were a subset of the 
pathologies present in the training dataset. Six sets of eight cases were randomly sampled for the reader study, 
such that each set consisted of cases with eight distinct pathologies without repetition (Fig. 2a,b). This sampling 
procedure resulted in 48 cases spanning 20 different pathologies, with the pathology distribution shown in 
Fig. 2c. The 48 sampled patients had an average age of 43 ± 24 years and 48% were female.

Fig. 1.  Dataset composition and finetuning. (a) for the CBIR model we gathered data from 3 sources and 
excluded cases based on a range of quality control measures. (b), we used the training dataset to finetune a 
vision transformer with class token (CLS), Regional Generalized Mean (GeM) Pooling and GeM pooling with 
manual hyperparameter tuning (GeM +) for image retrieval, by optimizing the ArcFace loss.
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Content-based image retrieval tool
The CBIR tool is seamlessly integrated into the PACS viewer and accessible to eligible radiologists with one 
click on a dedicated button in the PACS (Fig. 3a). To use the CBIR tool, users navigate to a sequence slice where 
the pathology is clearly visible, then click on the button which opens the web application that shows a range of 
pathologies, sorted by image similarity (Fig. 3b). The user interface enables exploration of several cases across 77 
verified eye and orbit pathologies in seven anatomical subregions (preseptal space, globe, optic nerve, intraconal, 
extra ocular muscles, extraconal, lacrimal gland, subperiosteal space and bony orbit). The CBIR algorithm 
employs an ML model that compares the uploaded radiology sequence slice with those in the database, ranking 
them by similarity. The algorithm is based on the DinoV2 self-supervised learning framework9,10, whose pre-
trained checkpoint was further trained on publicly available radiology datasets11 (see Suppl. S3 for details). 
A head comprising Regional Generalized Mean (Regional GeM) Pooling and GeM + Pooling12 was added to 
extract features from the patch embeddings, which were then combined with CLS token features into a single 
embedding vector. The model was finetuned on the ArcFace image-retrieval objective13 using the CBIR fine-
tuning dataset (Fig. 1b). More details on the data pre-processing steps and the model performance are presented 
in Suppl. S2-S4 and Suppl. Figure 1. The ML model was developed using PyTorch (version 2.3.0) and Python 
(version 3.10).

Study population
The study was conducted in March and April 2024 at Charité University Medicine. Eligible for the study were 
radiologists with experience in reading MRI exams. 36 radiologists were randomly recruited for the study, who 
covered a representative cross section of the department (Table 1a), working in a range of medical roles (Table 
1b), having varying job tenure (Table 1c). Prior experience in reading orbital MRI cases was low (Table 1d), with 
28 of 36 participants having either no or only little prior experience.

Reader evaluation
In total 36 participants each diagnosed a set of eight cases only based on the MRI scans (Fig. 2a), four with and 
four without the CBIR tool available. Other status quo reference tools like radiopaedia.org, StatDx or Google 
were available throughout the study. Half of the participants had the CBIR tool available for the first four cases, 
whereas the other half for the last four cases. Each individual case was read by six randomly selected participants 
with alternating availability of the CBIR tool (Fig. 2b). Before the participants read cases with the CBIR tool, 
they went through a short tutorial and were allowed to test the tool by diagnosing a case with a pathology not 
present in the reader study dataset. In addition, they were allowed to ask questions of the experimenter regarding 
the CBIR tool. Cases were read on radiology workstations within a standard PACS environment. After each 
case, the participants were asked to give their diagnosis in free-text form, rate the perceived difficulty, provide 
their confidence level in the diagnosis, and the reference tools that they used. Confidence levels and difficulty 
ratings were assessed using a 4-point Likert scale, designed as a forced-choice format without a neutral option 
to encourage definitive responses. For confidence, participants responded to the statement ‘You are confident 
that your diagnosis is correct.’ with one of the following options: ‘Strongly agree,’ ‘Somewhat agree,’ ‘Somewhat 
disagree,’ or ‘Strongly disagree.’ For difficulty ratings, they answered the question ‘How would you assess the 
difficulty level of this case?’ with one of the following choices: ‘Very difficult,’ ‘Difficult,’ ‘Easy,’ or ‘Very easy.’ A 
person instructing the participants and taking time measurements was in the room during the session. After 
the measurements were completed, an eye and orbit radiology specialist with over 15 years of expertise with 
access to additional clinical information on each case, assessed the diagnoses given by the participants in a fully 
blinded manner. The evaluation was based on the criterion that the diagnosis was sufficiently correct to ensure 
the accurate administration of downstream treatment, meaning only clinically significant errors were counted 
as being incorrect (more details in Suppl. S1). This assessment considers that the classification of orbital lesions 
can vary among centers and countries, thus diagnostic accuracy should not be judged merely on technical 
correctness, but on its clinical impact on patient management and outcomes.

Fig. 2.  Reader study dataset composition. (a) for the reader study we only used cases from Charité University 
Medicine, diagnosed after the cases in the finetuning dataset. (b) cases were sampled such that each case set 
contained 8 distinct diagnoses, and the sets were read by 6 radiologists with alternating CBIR availability. c, the 
randomly sampled 48 cases span 20 distinct diagnoses of different types.
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Statistical analysis
Prior to commencement of the study, a power analysis was conducted to determine the number of participants 
required to detect significant effects (defined as p < 0.05) for the endpoints. We reviewed effect sizes 
from comparable studies and calculated that a sample size of 36 participants and 48 cases, resulting in 288 
measurements in total, would allow us to detect effects down to an effect size of Cohen’s D 0.6 at 80% statistical 
power (more details in Suppl. S7 and Suppl. Figure 2)14.

Instead of analyzing if the availability of the CBIR tool had an effect on accuracy and reading times, we 
focused on the actual reference tools that the participants used for each case, which we measured during the 
study for each participant and case individually. Therefore, we split reference tool usage into four categories: no 
reference used, only status quo (only SQ) used, only CBIR used, or both status quo and CBIR used (SQ + CBIR). 
However, the ‘no reference used’ category was not further analyzed in direct comparison to cases where reference 
tools were used, as participants refrained from using references only when they immediately and confidently 
recognized the diagnosis. This introduces a strong selection effect, rendering direct comparisons with tool-
assisted observations inappropriate (see Suppl. S6 and Suppl. Table 3 for details). We analyzed the effect of the 
CBIR tool on diagnostic accuracy using a logistic mixed effects model, treating individual participants and cases 
as random effects, and including reference usage, medical roles, tenure, and interaction terms as fixed effects. 
For analyzing the effect of the CBIR tool on reading times, we employed a linear mixed effects model with the 
same random and fixed effects. Reading times were log-transformed, to meet the distributional assumption 
of the model. We excluded fixed effects via a backwards elimination process based on the Akaike information 
criterion15,16. The residuals of the mixed effects models were examined to check if all assumptions were met in 

Fig. 3.  PACS integrated CBIR application. (a) the PACS viewer environment, with the button starting the 
CBIR tool highlighted with a red arrow. (b) the CBIR web application with the search results for the slice 
shown on the right in (a). The pathology is highlighted with a cyan box in (b).
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accordance with the approach published by Singer et al.17. Reported P values are based on two-sided Student’s 
t tests for generalized mixed effects models. Statistical analysis and data visualization were performed using R 
(version 4.3.3) and Python (version 3.10).

Results
Participants spent on average (± standard deviation) 01  h:03  m:57  s ± 35  m:31  s in total on the tutorial, 
reading the cases and providing the measurements. When not accounting for the reference tools that the 
participants actually used but only for the ones that were available in the respective study phase, reading times 
stayed approximately constant (no CBIR 260  s, CBIR 257  s p = 0.09, N = 288), while during the CBIR phase 
participants used reference tools more often (no CBIR 70.14%, CBIR 92.36%) and had a significantly higher 
diagnostic accuracy (no CBIR 63.19%, CBIR 73.61% p = 0.049, N = 288) (Table 2a). In addition, having the CBIR 
tool available slightly increased confidence in the diagnoses (Table 2b). No trend is visible on the perceived 
difficulty of the cases over the study phases (Table 2c). Without the CBIR tool available, most participants used 
radiopaedia.org and Google for finding reference cases, whereas with the CBIR tool available, participants used 
considerably fewer other reference resources (Table 2d). Participants often used only the CBIR tool when it was 
available and only used additional status quo reference tools in 20.83% of the cases (Table 2e). In the following 
sections, the impact on the diagnostic accuracy and reading times of using only status quo (only SQ) reference 
tools, only the CBIR reference tool (only CBIR), and using both in conjunction (SQ + CBIR) are analyzed.

Impact of CBIR usage on diagnostic accuracy
Diagnostic accuracy significantly improved overall from 55.88% with status quo reference tools only, to 
70.59% when using the CBIR tool only (odds ratio = 2.07, p = 0.03) and to 83.33% when using the CBIR tool in 
conjunction with status quo tools (odds ratio = 3.65, p = 0.02, Suppl. Table 1), which constitutes a 26.32% and a 
49.12% relative improvement over the status quo (Table 3f).

At the case level, accuracy increased on average with CBIR usage in 21 cases, stayed constant for 18 cases 
and decreased for 9 cases (Fig. 4b cases above, on and below the isoline). For three cases, diagnostic accuracy 
declined considerably with the CBIR tool available (from 66.66% without CBIR to 0% with CBIR), which 
we discuss in more detail in Suppl. S5. Accuracy declined with increased perceived difficulty independent of 
reference tool use, but using the CBIR tool retained a higher accuracy across increasing difficulty levels (Fig. 4a, 
Table 3a, Suppl. Figure 3a,b). Most cases within a pathology were consistently rated with similar difficulty ratings 
by study participants across experience levels (Suppl. Figure 3b,c), with the highest difficulty ratings given to 
arteriovenous malformations, orbital cysts, metastases and schwannomas. Difficulty ratings were relatively 
consistent across study participants of different prior experience levels (Suppl. Figure 3b). We found an increase 
in diagnostic accuracy from 65.52% with status quo tools only, to 91.18% with the CBIR tool only, a 39% relative 
increase (p = 0.02) for ‘easy’ cases. For ‘hard’ and ‘really hard’ cases, we found similar positive trends (Table 3b). 
Stratified by pathology type, the highest increase in accuracy was observed for inflammatory and infectious 
diseases (only SQ 55.56%, only CBIR 77.78% p = 0.055, SQ + CBIR 81.82% p = 0.11), albeit not significant.

At the participant level, diagnostic accuracy increased on average for 15 study participants, stayed constant 
for 16 and decreased for 5 (cf. Figure 4c, participants above, on and below the isoline). Accuracy of participating 
senior radiologists improved with the CBIR tool (only SQ 40.74%, only CBIR 77.42% p = 0.01), whereas accuracy 
of resident and board-certified radiologists showed positive but insignificant trends (Table 3c). Diagnostic 
accuracy improved the most for participants with no experience (only SQ 52%, only CBIR 77.27% p = 0.10, 
SQ + CBIR 100% p = 0.11) and those with little experience (only SQ 57.38%, only CBIR 69.81% p = 0.15, 

Demographic Share of participants

a | Sex

Female 41.67 (15/36)

b | Medical role

Resident 44.44 (16/36)

Board-certified 27.78 (10/36)

Senior 27.78 (10/36)

c | Tenure

0–5 years 44.44 (16/36)

6–10 years 27.78 (10/36)

11–15 years 11.11 (4/36)

 > 15 years 16.67 (6/36)

d | Prior exp. in orbital MRI

No exp 19.44 (7/36)

Little exp 58.33 (21/36)

Sufficient exp 22.22 (8/36)

Table 1.  Study participant demographics. Relative number of participants stratified by sex (a), medical role 
(b), tenure (c) and prior experience in reading orbital MRIs (d). Fractions of total number of participants in 
parentheses.
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SQ + CBIR 79.17% p = 0.058), albeit not significantly (Table 3d). Accuracy showed a positive trend for all tenure 
levels, except for the 11–15 years tenure level where it showed a slightly decreasing trend (only SQ 55.56%, only 
CBIR 50% p = 0.64, Table 3e).

Impact of CBIR usage on reading time
Reading time decreased by 29% when using only the CBIR tool compared to only status quo tools (only SQ 334 s, 
only CBIR 236 s p < 0.001). In contrast, reading time increased by 19% when using CBIR in conjunction with 
status quo tools (only SQ 334 s, SQ + CBIR 396 s p < 0.001, Table 4f and Suppl. Table 2).

At the case level, reading time decreased when using only the CBIR tool and increased when using it together 
with SQ tools, for hard cases (only SQ 357 s, only CBIR 271 s p = 0.002, SQ + CBIR 462 s p = 0.03, Fig. 5a, Table 
4a). In addition, we found evidence for a similar effect for malignant lesions (only SQ 314 s, only CBIR 207 s 
p < 0.001, SQ + CBIR 365 s p = 0.045) and a decrease in reading times for inflammatory and infectious lesions 
when using only the CBIR tool (only SQ 338 s, only CBIR 226 s p = 0.005, Fig. 5b, Table 4b).

At the participant level, resident radiologists benefited the most from the CBIR tool (only SQ 417 s, only 
CBIR 276 s p < 0.001, Table 4c). In addition, the decrease in reading time was the strongest for participants with 
little experience (only SQ 377 s, only CBIR 236 s p < 0.001, Fig. 5c, Table 4d). Reading times among participants 
of different tenure levels decreased the most for the 0–5 years of tenure group, with a relative decrease of 31% 
(only SQ 417 s, only CBIR 276 s p < 0.001), while they showed an increase when both CBIR and SQ tools were 
used together (only SQ 417 s, SQ + CBIR 444 s p = 0.049, Table 4e).

Discussion
Our results indicate a significant positive impact on diagnostic accuracy with high effect sizes when using the 
CBIR tool for characterizing various orbital lesions. Furthermore, we found evidence for a decrease in reading 
times when using only the CBIR tool, but an increase in reading time when using CBIR in conjunction with 
status quo tools.

Characteristics No CBIR CBIR

a | General

Reading time [s] 260 ± 228 257 ± 193

Reading time with reference tool [s] 336 ± 230 272 ± 193

Reference tool use 70.14 (101/144) 92.36 (133/144)

Accurate diagnoses 63.19 (91/144) 73.61 (106/144)

b | Confidence

Really low confidence 9.03 (13/144) 4.17 (6/144)

Low confidence 17.36 (25/144) 18.06 (26/144)

Sufficient confidence 61.81 (89/144) 63.19 (91/144)

High confidence 11.81 (17/144) 14.58 (21/144)

c | Difficulty

Really easy 0.00 (0/144) 0.00 (0/144)

Easy 37.50 (54/144) 35.42 (51/144)

Hard 47.22 (68/144) 48.61 (70/144)

Really hard 14.58 (21/144) 12.50 (18/144)

Not stated 0.07 (1/144) 3.47 (5/144)

d | Reference tools used by participants

CBIR tool 0.00 (0/144) 91.67 (132/144)

Radiopaedia 59.72 (86/144) 18.06 (26/144)

Google 38.19 (55/144) 10.42 (15/144)

StatDx 9.03 (13/144) 1.39 (2/144)

Pubmed 6.94 (10/144) 0.00 (0/144)

Others 2.08 (3/144) 0.69 (1/144)

e | Reference categories

No reference used 29.86 (43/144) 7.64 (11/144)

Only SQ 70.14 (101/144) 0.69 (1/144)

Only CBIR 0.00 (0/144) 70.83 (102/144)

SQ + CBIR 0.00 (0/144) 20.83 (30/144)

Table 2.  Summary statistics split by treatment phase. Unless otherwise stated, data is presented as percentages 
relative to the total number of measurements. Fractions of total number of measurements in parenthesis. 
Participants were allowed to use multiple reference tools, so the relative numbers in d add up to more than 
100%
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Our measured diagnostic accuracy of 55.88% with status quo reference tools is comparable to other studies 
that assessed accuracy for orbital lesions2,18. However, our measured status quo accuracy is considerably higher 
than status quo measurements of most studies that analyzed the effect of CBIR on interstitial lung disease 
diagnostics in chest CT. There, the reported diagnostic accuracies range between 35%7 and 46.1%5, except for 
Pogarell et al.8 who reported 30% for novice and 60.7% for resident readers. The positive effect of the CBIR 
tool on diagnostic accuracy is comparable to the effects reported in Choe et al.5 (without CBIR 46.1%, with 
CBIR 60.9%), but more moderate than the ones reported in other studies7,8. In general, the measured diagnostic 
accuracy in our and other studies might underestimate the true diagnostic accuracy in the clinic, as only limited 
patient history and no laboratory data, nor reports from other sub-specialties were available to the participants.

Fig. 4.  Diagnostic Accuracy. (a), diagnostic accuracy averaged over individual cases that readers perceived as 
easy, hard or really hard. (b,c), diagnostic accuracy with CBIR available (Y-axis) and without CBIR available 
(X-axis) averaged over individual cases (b) and over individual study participants (c). Dots above the white 
isoline indicate higher accuracy with the CBIR tool than without and vice versa. Dot-size indicates the number 
of measurements (a), of cases (b) and participants (c).

 

Characteristics Only SQ Only CBIR P value SQ + CBIR P value

a | Difficulty

Easy 65.52 (19/29) 91.18 (31/34) 0.02* 100.00 (9/9) 0.99

Hard 56.60 (30/53) 62.00 (31/50) 0.47 75.00 (12/16) 0.23

Really hard 40.00 (8/20) 46.15 (6/13) 0.86 80.00 (4/5) 0.13

b | Pathology type

Infl. & Infect 55.56 (20/36) 77.78 (28/36) 0.055 81.82 (9/11) 0.11

Benign 43.48 (10/23) 44.44 (8/18) 0.93 83.33 (5/6) 0.12

Malignant 62.79 (27/43) 75.00 (36/48) 0.22 84.62 (11/13) 0.23

c | Medical role

Resident 62.26 (33/53) 79.49 (31/39) 0.09 80.95 (17/21) 0.11

Board-certified 59.09 (13/22) 53.13 (17/32) 0.62 75.00 (3/4) 0.62

Senior 40.74 (11/27) 77.42 (24/31) 0.01* 100.00 (5/5) 0.99

d | Prior experience

No exp 52.00 (13/25) 77.27 (17/22) 0.10 100.00 (6/6) 0.11

Little exp 57.38 (35/61) 69.81 (37/53) 0.15 79.17 (19/24) 0.058

Sufficient exp 56.25 (9/16) 66.67 (18/27) 0.79 -

e | Tenure

0–5 years 62.26 (33/53) 79.49 (31/39) 0.10 80.95 (17/21) 0.11

6–10 years 41.67 (10/24) 61.76 (21/34) 0.15 100.00 (4/4) 0.90

11–15 years 55.56 (5/9) 50.00 (6/12) 0.64 -

 > 15 years 56.25 (9/16) 82.35 (14/17) 0.16 80.00 (4/5) 0.44

f | Overall

All 55.88 (57/102) 70.59 (72/102) 0.03* 83.33 (25/30) 0.02*

Table 3.  Diagnostic accuracy with/out CBIR. Statistics of diagnostic accuracy in percent are shown for 
measurements where only status quo reference tools were used (Only SQ), where only the CBIR tool was used 
(Only CBIR) and where both were used (SQ + CBIR). Total numbers as fractions in parentheses. P values 
indicate significant differences to reference level ‘Only status quo’ and were calculated using logistic mixed 
effects models with individual readers and patients as random effects. All models were estimated with the full 
dataset, consisting of 288 measurements in total.
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The effect of CBIR on reading time is mixed in the literature. Haubold et al. find an increase in reading time by 
22% (p < 0.001) which moderates to 7% after readers become more familiar with the software7, whereas Röhrich 
et al. find a decrease by 31.3% (p < 0.001)6. In our study we found a significant 29% decrease in reading times 
when using only the CBIR tool, and a significant 19% increase when SQ + CBIR tools were used for diagnosing 
eye and orbit mass lesions. Other studies did not analyze whether the CBIR tool was used in conjunction with 
other tools, thus the two opposing effects could be conflated. However, our study may have overestimated reading 
times with the CBIR tool, since participants only read four cases having the CBIR tool available, thus they only 
had limited time to get used to the software and reading times might be lower under routine conditions.

In other studies, participants were required to read 546 or more cases in total5,7,8, which allows readers to 
become more familiar with the software but severely limits the total number of study participants that could 

Fig. 5.  Reading time. (a), reading time split by perceived difficulty and use of the CBIR tool with averages 
overlayed. (b,c), reading time with CBIR available (Y-axis) and without CBIR available (X-axis) split by cases 
(b) and study participants (c). Dots below the white isoline indicate a lower reading time with the CBIR tool 
than without and vice versa, dots on the isoline.

 

Characteristics Only SQ Only CBIR P value SQ + CBIR P value

a | Difficulty

Easy 202 ± 113 158 ± 78 0.14 260 ± 173 0.01*

Hard 357 ± 206 271 ± 198 0.002* 462 ± 212 0.03*

Really hard 464 ± 317 364 ± 144 0.41 428 ± 215 0.94

b | Pathology type

Infl. & Infect 338 ± 201 226 ± 112 0.005* 389 ± 242 0.10

Benign 363 ± 240 335 ± 304 0.40 476 ± 278 0.34

Malignant 314 ± 250 207 ± 126  < 0.001* 365 ± 163 0.045*

c | Medical role

Resident 417 ± 278 276 ± 232  < 0.001* 441 ± 223 0.046*

Board-certified 208 ± 96 228 ± 136 0.34 205 ± 64 0.79

Senior 273 ± 112 195 ± 90 0.08 360 ± 188 0.58

d | Prior experience

No exp 313 ± 160 288 ± 181 0.75 393 ± 140 0.19

Little exp 377 ± 263 236 ± 186  < 0.001* 397 ± 232 0.054

Sufficient exp 204 ± 113 194 ± 122 0.50 -

e | Tenure

0–5 years 417 ± 278 276 ± 232  < 0.001* 441 ± 223 0.049*

6–10 years 237 ± 104 210 ± 126 0.58 408 ± 179 0.29

11–15 years 187 ± 89 250 ± 133 0.32 -

 > 15 years 286 ± 114 188 ± 74 0.17 198 ± 57 0.73

f | Overall

All 334 ± 230 236 ± 172  < 0.001* 396 ± 215  < 0.001*

Table 4.  Reading time with / without CBIR. Statistics of reading time averages ± standard deviations in 
seconds are shown for measurements where only status quo reference tools were used (Only SQ), where only 
the CBIR tool was used (Only CBIR) and where both were used (SQ + CBIR). P values indicate significant 
differences to reference level ‘Only status quo’ and were calculated using linear mixed effects models with 
individual readers and patients as random effects. All models were estimated with the full dataset, consisting of 
288 measurements in total.
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be included to 85,6 or less7,8. In our study, the low number of cases per participant allowed us to include 36 
participants with considerable differences in experience and tenure, which better accounts for the heterogenous 
effects that AI assistance can have on radiologists19. In addition, this and other studies5,6 compared CBIR usage 
with status quo reference tools, whereas others compared CBIR assistance to no assistance at all7,8, which may 
lead to different interpretations of the impact of CBIR tools on outcome variables.

This study has two main limitations. While we included a diverse range of cases and participants, the small 
sample size still limits the generalizability of our findings. Further studies will expand to a larger and more 
geographically diverse participant and case pool, ideally involving participants from multiple medical centers, 
which would provide more robust data and would allow for more granular sub-group analyses. Another concern 
is the potential for the CBIR tool to negatively influence radiologists by retrieving confusing or irrelevant 
cases, which was not evaluated. Given that 5 of 36 participants and 9 of 48 cases had lower diagnostic accuracy 
with the CBIR tool available than without, it is crucial to assess if there exist underlying systematic factors, 
either radiologist-specific or case-specific, that may lead to this disparate impact. Prior AI research suggests 
that radiologists’ decisions can be influenced by AI errors and that this effect is more severe for inexperienced 
radiologists20. A similar effect could occur with CBIR if retrieved cases are misinterpreted as strong diagnostic 
evidence. In contrast, our results suggest that inexperienced radiologists gain the most and have the highest 
diagnostic accuracy across experience levels when having the CBIR tool available (Table 3d, Suppl. Figure 3a). 
In addition, we do not find a clear relationship between model retrieval performance scores for individual 
pathologies and diagnostic accuracy of study participants (Suppl. Figure  3d). Future work should examine 
how CBIR influences diagnostic reasoning and whether retrieval-based recommendations affect radiologists 
differently depending on experience levels and retrieval quality. Furthermore, mitigation strategies to reduce the 
risk of over-reliance of radiologists on CBIR outputs should be assessed. Potential approaches include integrating 
uncertainty or confidence scores alongside retrieved images to help users gauge retrieval reliability, providing 
guidelines on how to critically interpret CBIR results, and implementing feature importance heatmaps overlaid 
on query images to highlight key regions driving similarity scores21.

In conclusion, adopting CBIR in routine diagnostic workflows for eye and orbital mass lesions could have a 
substantial positive impact on radiological decision making and thus patient outcomes. However, more work is 
needed to assess the benefits of CBIR tools in other organ systems and imaging modalities. We plan to continue 
developing and refining the CBIR tool, expanding it to other organ systems and testing it in future studies.

Data availability
Measurements from the reader study are available from the corresponding author upon request.
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