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Abstract
Time-course multi-omics data of a murine model of progressive heart failure (HF) induced by transverse aortic constriction (TAC) pro-
vide insights into the molecular mechanisms that are causatively involved in contractile failure and structural cardiac remodelling. 
We employ Illumina-based transcriptomics, Nanopore sequencing and mass spectrometry-based proteomics on samples from the left 
ventricle (LV) and right ventricle (RV, RNA only) of the heart at 1, 7, 21 and 56 days following TAC and Sham surgery. Here, we present 
Transverse Aortic COnstriction Multi-omics Analysis (TACOMA), as an interactive web application that integrates and visualizes tran-
scriptomics and proteomics data collected in a TAC time-course experiment. TACOMA enables users to visualize the expression profile of 
known and novel genes and protein products thereof. Importantly, we capture alternative splicing events by assessing differential tran-
script and exon usage as well. Co-expression-based clustering algorithms and functional enrichment analysis revealed overrepresented 
annotations of biological processes and molecular functions at the protein and gene levels. To enhance data integration, TACOMA syn-
chronizes transcriptomics and proteomics profiles, enabling cross-omics comparisons. With TACOMA (https://shiny.dieterichlab.org/app/
tacoma), we offer a rich web-based resource to uncover molecular events and biological processes implicated in contractile failure and 
cardiac hypertrophy. For example, we highlight: (i) changes in metabolic genes and proteins in the time course of hypertrophic growth 
and contractile impairment; (ii) identification of RNA splicing changes in the expression of Tpm2 isoforms between RV and LV; and (iii) 
novel transcripts and genes likely contributing to the pathogenesis of HF. We plan to extend these data with additional environmental 
and genetic models of HF to decipher common and distinct molecular changes in heart diseases of different aetiologies.
Database URL: https://shiny.dieterichlab.org/app/tacoma
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Introduction
Background
Transverse aortic constriction (TAC) is a commonly used 
experimental technique to study the pathophysiological mech-
anisms of heart failure (HF). TAC involves partial occlu-
sion of the transverse aorta (mainly in mice), leading to 
pressure overload-induced cardiac hypertrophy and HF in 
the end. The TAC-induced adverse effects typically depend 
on the degree of the aorta constriction as well as its 
duration (1). Over time, TAC-induced pressure overload 
causes progressive remodelling of the heart in both left 

ventricle (LV) and right ventricle (RV), and some of these 
responses include changes in gene expression, inflamma-
tory responses, fibrosis, etc. (2). In this context, TAC 
has been established in animal models to understand the 
dynamic changes in molecular mechanisms associated with 
the transition from compensatory hypertrophy to HF. Multi-
omics integration in the context of transverse aortic constric-
tion can provide a comprehensive understanding of disease 
mechanisms, leading to potential insights into therapeu-
tic strategies. Time-course multi-omics studies are particu-
larly suitable for TAC, since they allow the identification of 
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Figure 1. Workflow of multi-omics data analysis in TAC mouse model. Data consist of Illumina and Nanopore cDNA transcriptomics of TAC, Sham and 
Control (RV and LV) as well as mass spectrometry proteomics (LV only) at time points 0, Day 1, Day 7, Day 21 and Day 56. Differential 
gene/transcript/exon expression/usage analyses were performed over the transcriptomics data along with enrichment and clustering analyses. 
Differential protein abundances were estimated from raw mass spectrometry proteomics upon processing of the data (normalization, imputation, batch 
effect correction) and enrichment analyses were performed. Cross-omics integration of transcriptomics and proteomics allowed for a comparison 
between the two data modalities.

dynamic changes and temporal patterns of key molecules 
involved in disease progression (1). Such an approach would 
then allow us to identify early molecular markers that 
precede HF as well as to propose potential therapeutic
approaches.

In this study, we present a comprehensive multi-omics anal-
ysis based on a murine TAC model to study molecular changes 
during the progression of pressure overload-induced cardiac 
hypertrophy to HF (Figure 1). The study involved the collec-
tion of samples from the LV and RV of the heart at 1, 7, 21 and 
56 days following TAC and Sham surgery. Besides TAC and 
Sham, we also have measurements from healthy mouse tissues 
at the time point of 0 days, referred to as the Control samples. 
To comprehensively analyse the multi-layered molecular land-
scape of hypertrophy progression, we employed three distinct 
omics techniques: Illumina RNA-seq and Nanopore sequenc-
ing [long-read complementary DNA (cDNA) sequencing] as 
well as proteomics (LV only). All were produced in tripli-
cates. The Nanopore cDNA data were used to reconstruct a 
de novo assembled transcriptome. This allows us to identify 
novel transcript isoforms and provide a more comprehen-
sive view of the alternative splicing landscape and isoform 
switching dynamics during TAC progression. Furthermore, 
proteomics analysis was only performed on the LV samples 
due to input material limitations. Proteomics is complemen-
tary to RNA-seq approaches because it targets an additional 

molecular layer of TAC-induced hypertrophy across different 
time points.

To advance the visualization, interpretation and accessi-
bility of our new data, we have developed TACOMA as an 
online application, which allows any user to investigate the 
molecular mechanisms behind HF progression. TACOMA 
provides functionalities that allow the visualization of anal-
ysis results with a special focus on differential gene expres-
sion (DGE), function enrichment analysis, gene co-expression 
modules, differential exon and transcript usage analysis (DEX 
and DTU) as well as differential protein abundances. To 
the best of our knowledge, TACOMA is the first interactive 
web application to encompass such a wide range of analy-
ses in the context of TAC and cardiomyopathy progression
(Figure 2).

Methods
Sequencing data and processing
Illumina total RNA-seq
Total RNA from the LV and RV tissue was rRNA depleted 
and subjected to stranded RNA-seq library preparation for 
the Illumina platform at the Cologne Center for Genomics. 
All libraries were sequenced on a NovaSeq 6000 in paired-end 
mode (2× 100 bp) at an average depth of 50 million fragments 
per library.
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Figure 2. HF progression in the described TAC mouse model. (A) Progression of EF changes across time in TAC and Sham conditions. (B) Progression of 
HW/BW ratios across time in TAC and Sham conditions.

Nanopore cDNA sequencing
Total RNA from the LV and RV tissues was polyA-selected 
and subjected to cDNA library preparation on the ONT 
Nanopore platform (Kit: SQK-DCS109 and Flow cell: FLO-
MIN106). All libraries were sequenced on an ONT GridION 
X5 device at an average depth of 1 million long reads per 
library.

Illumina read processing, mapping and counting
We first removed adaptors and low-quality bases with Flexbar 
(v3.5.0) (3). We then identified reads that aligned to mouse 
tRNA or rRNA sequences using Bowtie2 (v2.3.5.1) (4) and 
discarded them. The remaining reads were aligned to the 
mouse EnsEMBL 102 genome with STAR (2.6.0c) (5). We 
observed an average proportion of unique mapping reads 
above 70% throughout all libraries. We generated gene, 
transcript and exon count tables using StringTie2 (v2.1.3b) 
(6) and ballgown (2.28.0) (http://bioconductor.org/packages/
ballgown/).

Nanopore processing and mapping
Nanopore base calling was performed with Guppy 3.4.5 using 
the dna_r9.4.1_450bps_hac.cfg model. Nanopore reads were 
mapped against the EnsEMBL 102 reference genome with 
minimap 2.22 (7).

Guided transcriptome assembly
The transcription assembly was performed using StringTie2 
(v.2.1.7) on autosomes and sex chromosomes, and features 
from other chromosomal regions were discarded. First, we 
paired a cDNA library that had been sequenced with ONT 
and Illumina and executed StringTie2 in the guided mode, 
using Ensembl as a reference. Next, we applied StringTie2 to 
each individual library, using the merged annotation obtained 
from the first step as a guide. Finally, the annotations were 
merged to create a unified annotation. We merged transcript 
annotation with the StringTie2 merge command and removed 
transcript isoforms representing <10% of relative transcript 
abundance or having less than three reads. The reference gene 
and transcript names as well as the class codes were obtained 
by running GffCompare (v0.12.2) (8) against the reference 
annotation GRCm38.102. Upon the transcriptome assembly, 
transcript counts were quantified with salmon (v1.10.1) (9) 

and gene counts were obtained from transcript counts using 
the DESeqDataSetFromTximport() function from DESeq2 
R-package (v.140.2) (10).

Analysis of gene expression data
DGE analysis was performed with edgeR (v3.38.4) (11). The 
analysis accounted for multiple variables, including Condition 
(TAC and Sham), Ventricle (RV and LV) as well as Time/Day 
(Days 0, 1, 7, 21 and 56). A full model design matrix was 
formulated, consisting of the ventricle, day, condition, inter-
action between ventricle and condition, and the interaction 
between day and condition as follows: model.matrix (∼ Ven-
tricle + Day + Condition + Ventricle:Condition + Day:
Condition, data = metatada). In the design matrix, the inter-
action terms capture the combined effects of Condition and 
Ventricle, as well as Condition and Day, on gene expres-
sion. The interaction term between Condition and Ventri-
cle accounts for how the gene expression is influenced by 
TAC/Sham depending on the sample position (RV or LV). Sim-
ilarly, the interaction term between Condition and Day reveals 
whether the effect of TAC/Sham on gene expression varies 
with the specific day of measurement. By including these inter-
action terms in the design matrix, we aim to better capture the 
relationships between the variables and potentially identify 
dependent effects among them. The details of the ‘metadata’ 
table used in the design matrix can be found in the Supplemen-
tary Materials (Supplementary Table 1). To guide the selection 
of appropriate comparisons for our DGE analysis, several key 
questions were considered:

i) which genes change by condition (TAC/Sham) globally?
ii) which genes change by ventricle (LV/RV) globally?

iii) which genes change in TAC for a day?
iv) which genes change at all time points compared to

control?
v) which genes change over time?

vi) which genes change on any day?
vii) which genes change in TAC for ventricle?

Considering the above, we have performed DGE analyses 
for a total of 12 comparisons and details about each (design 
and description) have been provided in the Supplementary 
(Supplementary Notes 1).

http://bioconductor.org/packages/ballgown/
http://bioconductor.org/packages/ballgown/
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Differential exon and transcript usage analysis
Differential exon and transcript usage analyses (DEX or DTU) 
were conducted to examine the variability of alternative splic-
ing across different conditions or comparisons. First, we 
compute exon and transcript counts for every expressed gene 
using ballgown. Then, for example, testing for differential 
exon usage is equivalent to testing whether the exons in each 
gene have the same log-fold-changes as the other exons in the 
same gene. To perform DEX analysis, we utilized the edgeR 
v3.38.4 R-package (11), which allowed us to identify exons 
with differential expression in the same comparisons as those 
used for DGE analysis. Gene annotations were fetched from 
the Ensembl BioMart database (version November 2020) 
using the biomaRt v2.54.0 R-package (12), to associate gene 
symbols and descriptions with Ensembl gene IDs. Exon counts 
were filtered to only include entries with a maximum unique 
read count >20 across all samples. The exon counts were then 
normalized using the calcNormFactors() function, and a gen-
eralized linear model was fitted to the data using the glmFit()
function from edgeR. The differential exon usage was tested 
for the 12 comparisons using the diffSpliceDGE() function, 
and the results were then filtered to identify genes with signif-
icant differential exon usage at a false discovery rate (FDR) 
threshold of 0.05 according to the Simes method. The same 
strategy was used to test for DTU.

Analysis of novel genes
The assembled sequences were scanned for open reading 
frames (ORFs) using ORFik (v1.20.2) (13) to identify poten-
tial coding sequences within the novel gene transcripts. The 
predicted ORFs were then translated into protein sequences 
via Biostrings (v2.68.1). The translated sequences were then 
used for the subsequent domain annotation step with Inter-
proscan (14) to provide insights into the potential functions 
of the novel proteins. The domain annotations included the 
domain IDs from various primary databases (PFAM, Pan-
therDB, CATH-Gene3D), along with the signature name and 
description of each domain, offering detailed insights into the 
protein characteristics.

Gene co-expression networks
To identify groups of genes with similar co-expression pat-
terns, we have followed a similar strategy as described in ref. 
(15). To summarize, we have employed the weighted gene 
co-expression network analysis (WGCNA) v1.72.1 R pack-
age (16) to analyse gene co-expression from RNA-seq data, 
focusing on 13 197 genes that met the criteria of being signif-
icantly regulated (adjusted P ≤ 0.05) in at least one of the 12 
DGE comparisons. By using topological overlap, genes were 
clustered to spot co-expression patterns. To ensure the repro-
ducibility and robustness of clusters, a bootstrap resampling 
was performed and final co-expression modules were identi-
fied using hierarchical clustering, and their significance was 
validated through post hoc resampling and a z-test. Associa-
tions between co-expressed gene networks and observed phe-
notypes were determined by calculating the biweight midcor-
relation between genes and biological traits or disease associ-
ation for continuous physiological variables [i.e. ejection frac-
tion (EF)—Supplementary Table 2]. For binary/discrete vari-
able correlation such as the pathological (TAC versus Sham), 
positional (RV versus LV) and temporal levels (Day 7 versus 

Day 1, Day 21 versus Day 7, Day 56 versus Day 21, etc.), the 
standard Pearson correlation was used instead of the biweight
midcorrelation.

Sample preparation for proteomics
Reduction of disulphide bridges in cysteine-containing pro-
teins was performed with dithiothreitol (56∘C, 30 min, 10 mM 
in 50 mM of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES), pH 8.5). Reduced cysteines were alkylated with 
2-chloroacetamide (room temperature, in the dark, 30 min,
20 mM in 50 mM of HEPES, pH 8.5). Samples were pre-
pared using the SP3 protocol (17, 18) and trypsin (sequencing
grade, Promega) was added in an enzyme-to-protein ratio
1:50 for overnight digestion at 37∘C. The next day, peptide
were recovered in HEPES buffer by collecting the super-
natant on magnet and combining it with the second elution
wash of beads with HEPES buffer. Peptides were labelled
with TMT10plex (19) Isobaric Label Reagent (ThermoFisher)
according to the manufacturer’s instructions. Samples were
combined for the TMT10plex and for further sample clean
up an OASIS® HLB μElution Plate (Waters) was used. Offline
high pH reverse phase fractionation was carried out on an
Agilent 1200 Infinity high-performance liquid chromatogra-
phy (LC) system, equipped with a Gemini C18 column (3 μm,
110 Å, 100 × 1.0 mm, Phenomenex) (20).

LC–MS/MS data acquisition
An UltiMate 3000 RSLC nano LC system (Dionex) was fit-
ted with a trapping cartridge (μ-Precolumn C18 PepMap 100, 
5 μm, 300 μm i.d. × 5 mm, 100 Å) and an analytical column 
(nanoEase™ M/Z HSS T3 column 75 μm × 250 mm C18, 
1.8 μm, 100 Å, Waters). Trapping was carried out with a con-
stant flow of trapping solution (0.05% trifluoroacetic acid 
in water) at 30 μl/min onto the trapping column for 6 min. 
Subsequently, peptides were eluted via the analytical column 
running solvent A (0.1% formic acid in water, 3% Dimethyl 
sulfoxide (DMSO)) with a constant flow of 0.3 μl/min, with 
increasing percentage of solvent B (0.1% formic acid in ace-
tonitrile, 3% DMSO). The outlet of the analytical column was 
coupled directly to an Orbitrap Fusion™ Lumos™ Tribrid™ 
Mass Spectrometer (Thermo) using the Nanospray Flex™ 
ion source in positive ion mode. The peptides were intro-
duced into the Fusion Lumos via a Pico-Tip Emitter 360 μm 
OD × 20 μm ID; 10 μm tip (New Objectives) and an applied 
spray voltage of 2.4 kV. The capillary temperature was set 
at 275∘C. Full mass scan was acquired with mass range of 
375–1500 m/z in profile mode on the Orbitrap with a reso-
lution of 120 000. The filling time was set at a maximum of 
50 ms with a limitation of 4 × 105 ions. Data-dependent acqui-
sition was performed with the resolution of the Orbitrap set 
to 30 000, with a fill time of 94 ms and a limitation of 1 × 105

ions. A normalized collision energy of 38 was applied. MS2 
data were acquired in profile mode.

Proteomics Database search
IsobarQuant (21) and Mascot (v2.2.07) were used to process 
the acquired data, which was searched against a customized 
database containing common contaminants and reversed 
sequences. The following modifications were included into 
the search parameters: Carbamidomethyl (C) and TMT10 (K) 
(fixed modification), Acetyl (Protein N-term), Oxidation (M) 
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and TMT10 (N-term) (variable modifications). For the full 
scan (MS1) a mass error tolerance of 10 ppm and for MS/MS 
(MS2) spectra of 0.02 Da was set. Further parameters were 
set: trypsin as protease with an allowance of maximum two 
missed cleavages: a minimum peptide length of seven amino 
acids; at least two unique peptides were required for protein 
identification. The FDR on peptide and protein level was set 
to 0.01.

Analysis of protein abundance data
Data preparation
Protein abundance data were prepared in a matrix format for 
analysis using the DEP2 v0.4.8.24 R-Package (22). The data 
were organized to include protein intensity levels quantified 
across different samples or conditions. For the processing and 
analysis of the protein abundance data, we have relied on an 
established workflow based on the DEP2 v0.4.8.24 R-Package 
(22).

Normalization
Protein intensities were normalized to mitigate the technical 
biases and variability. In this case, the normalization step 
was performed using the variance stabilization normaliza-
tion (VSN) method through the use of the normalize_vsn()
function from the DEP2 package.

Imputation of missing values
As 16.85% of the data in our protein intensity matrix are 
missing, a data imputation strategy from the DEP2 pack-
age was employed to estimate the missing values. In this 
case, we have assumed that missing values originated from 
low-abundant proteins. Therefore, a strategy was employed 
to impute the missing data by filling it with random values 
generated from a Gaussian distribution centred around the 
lower 1% value of the distribution of existing data using the 
impute() function from DEP2.

Batch effect correction
Principal component analysis of the normalized and imputed 
data set revealed clustering of samples based on each replicate, 
thus suggesting the presence of batch effects which needed 
to be corrected. Technical variations associated with the 
observed batch effects were identified and removed from the 
dataset by applying the removeBatchEffect() function from 
the limma R-package (23).

Differential protein analysis
Differential protein analyses (DPA) were subsequently per-
formed following batch effect correction to identify proteins 
exhibiting significant changes in abundance for the TAC ver-
sus Control, Sham versus Control and TAC versus Sham 
comparisons for all the time points combined as well as at each 
time point separately. For this, we have used the test_diff()
function from DEP2 as it performs a differential enrichment 
test based on protein-wise linear models and empirical Bayes 
statistics using limma. FDRs were estimated using fdrtool 
(24) with three adjustment methods: Benjamini–Hochberg,
Strimmer’s and Storey’s q-values.

Gene Ontology enrichment analysis
We have conducted Gene Ontology (GO) term enrichment 
analysis for each of the DGE and DPA comparisons for the 
biological process (BP), molecular function (MF) and cellu-
lar component (CC) ontologies. Integrated functional term 
enrichment analysis (of genes with adjusted P ≤ 0.05), as well 
as visualization, was performed using the CellPlot R-package 
(https://github.com/dieterich-lab/CellPlot).

Over-representation analysis
Over-representation analysis (ORA) over gene sets has been 
performed using the fora() function from the fgsea v1.22.0 
R-package (25). ORA was performed to identify which Path-
way and Hallmark sets (26) were enriched for each cluster
obtained from the gene co-expression network analysis.

TACOMA
We introduce TACOMA (https://shiny.dieterichlab.org/app/
tacoma), an interactive web-based tool designed to explore 
molecular signatures of TAC. TACOMA visualizes the 
above-mentioned analyses. The deployment strategy involves 
ShinyProxy and an internal PostgreSQL database. We con-
ceived TACOMA as an easily navigable dashboard, inten-
tionally designed to cater to a diverse audience of biomedical 
scientists delving into the molecular underpinnings of heart 
disease progression. Similar to Magnetique (27), we inte-
grated an interactive tour outlining the functions of each 
module and the available options within the application. 
TACOMA provides detailed and interactive results for 10 
views.

Phenotype view: provides a table with phenotype infor-
mation about each mouse sample undergone transcriptomics 
analysis such as Condition (TAC or Sham), Ventricle (RV or 
LV), Day (0, 1, 7, 21 and 56), EF as well as Heart Weight to 
Body Weight ratios (HW.BW), Global Longitudinal Strain and 
Reverse Peak Longitudinal Strain Rate scores.

Expression profile: provides a time-course view on gene 
and protein expression. A cross-reference to their correspond-
ing EnsEMBL (ensembl.org) web page is provided whenever 
applicable (for the GRCm38.102 reference genome). Users 
may select each gene to display the normalized expression pro-
files (mean expression and the standard deviation) across all 
time points on gene and protein levels as well as a heatmap of 
Z-scaled expressions at the protein (LV only) and gene level
(LV and RV).

Gene view: provides results from the DGE analysis: (i) a 
table of genes sorted from the most to the least significant 
(based on adjusted P-values); and (ii) a volcano plot visual-
izing the direction, magnitude and significance of changes in 
gene expression. On the sidebar users can select the question 
that they are interested in as well as the exact comparison that 
they wish to visualize as described in the ‘Methods’ section. 
Additionally, the users can select from the table a desired gene 
to visualize as box plots its CPM expression in groups of 
samples tailored to the selected comparison.

Proteomics view: provides results from the DPA analy-
sis: (i) a table of proteins sorted from the most to the least 
significant (based on adjusted P-values); and (ii) a volcano 
plot visualizing the direction, magnitude and significance of 
changes in protein abundances. On the sidebar users can select 
the main comparison that they are interested in (TAC versus 
Control/Day 0, Sham versus Control/Day 0 or TAC versus 
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Sham for all combined samples or for each time point sep-
arately). Additionally, the users can select from the table a 
desired gene to visualize its normalized abundance values in 
groups of samples tailored to the selected comparison. Sig-
nificantly regulated proteins have been highlighted in red in 
the volcano plots and the users can select from three adjust-
ment methods that have been applied (Benjamini–Hochberg, 
Strimmer’s or Storey’s adjustment).

Gene set view: provides a tabulated representation of 
enriched GO terms specific to each chosen DGE and DPA 
comparison sorted from the most to the least significantly 
enriched set. Gene set enrichments were performed for three 
types of ontologies: BP, MF or CC. After choosing a gene 
set, users can visualize the differential gene/protein expres-
sion/abundance of its members as well as their normalized 
expression across each sample grouped by their aetiology.

WGCNA view: provides a tabulated list of groups of 
modules of co-expressed genes based on the WGCNA strat-
egy described previously. This view additionally provides a 
heatmap which shows the correlation of each gene cluster to 
a specific phenotype as well as the significance of such corre-
lation (with a cut-off P-value of 0.05). Once a gene cluster 
gets selected, users receive a dot plot for Pathway (Reac-
tome and BIOCARTA) and Hallmark sets from MSigDB (26) 
enrichment (with adjusted P ≤ 0.05).

DEX view: provides a tabulated list of genes with differen-
tial exon usage sorted from the most to the least significant 
adjusted P-value score for a selected gene comparison. Gene 
structures are visualized through a ggtranscript plot (28), 
which shows the location and expressions of each exon. Sig-
nificant exons (adjusted P ≤ 0.05) are highlighted in green 
in the top half of the exon depiction, while the level of its 
regulation (LogFC) is depicted in the bottom half (blue for 
up-regulation and red for down-regulation). This is comple-
mented by a tabular representation below that contains the 
same exon-level information.

DTU view: provides a tabulated list of differential tran-
script abundance values and their significance for a given 
gene comparison. Users may select a transcript from the 
table to visualize transcript proportions of the corresponding
gene.

Integration view: provides cross-omics comparison func-
tionality between the proteomics and transcriptomics data 
for TAC versus Sham data at each time point (LV only) 
as well as for all the time points combined. This view 
provides a tabulated list of genes which appear to be sig-
nificant in either DGE and DPA comparisons, or only in 
DGE’s or DPA’s (adjusted P ≤ 0.05) or in neither. Addi-
tionally, a scatter plot shows LogFC values of the gene or 
protein level of analysis. Finally, we provide gene set enrich-
ment information on Pathway and Hallmarks sets (adjusted 
P ≤ 0.05) based on differential expression data from the two
modalities.

Novel genes: provides an interface to display key infor-
mation of novel genes, i.e. not overlapping any known gene 
locus, which are significantly regulated (adjusted P ≤ 0.05) in 
at least one of the 12 DGE comparisons. A table provides a list 
of gene symbols that are novel; comparisons in which such a 
gene becomes significant; ID’s of its transcripts as well as the 
number of exons and transcripts that are part of such gene. 
Similar to DEX View, structures of novel genes can be visu-
alized through ggtranscript upon the selection of a desired 

gene ID. Additionally, after the selection of a specific gene, 
additional detailed information will be displayed in a tabu-
lated format, such as (i) the DNA and protein sequences of 
the predicted ORFs; (ii) the domain IDs associated with each 
sequence; (iii) the signature name and (iv) description for each 
predicted domain (when applicable). Lastly, the genomic con-
text can be studied using links to the respective locus in the 
EnsEMBL genome browser.

Results
We demonstrate the utility of TACOMA by providing insights 
into potential biological processes that could be associated 
with the progression of cardiomyopathies.

Enrichment of oxidative phosphorylation and fatty 
acid metabolism hallmarks
From the cross-omics comparison of DGE and DPA in the 
Integration View of TACOMA, we were able to identify the 
most significant enrichment at both proteomics and transcrip-
tomics levels (LV only) for the combined TAC versus Sham 
comparison: ‘fatty acid metabolism’ and ‘oxidative phospho-
rylation’ (Figure 3A). Alterations in myocardial metabolism 
are a hallmark of HF, with a multitude of studies showing 
decreased cardiac mitochondrial ATP production, reduced 
TCA cycle flux and decreased fatty acid beta-oxidation in pre-
clinical models and humans (29, 30). Herein, we focus on the 
time-dependent enrichment of the above-mentioned gene sets 
over time in the LV (Supplementary Figures 1–6 for visualiza-
tion of genes and Figure 3A–C for visualization of enrichment 
scores).

It can be observed that we have an altered regulation 
of fatty acid metabolism at the protein level starting at the 
early time point Day 1, which is reflected more predomi-
nantly at the latter time point (Day 21) (Figure 3B). Such 
regulation is of a negative sign when comparing the aver-
age expression of gene set members for the TAC condition 
when compared to Sham, meaning that the above-mentioned 
gene set is down-regulated. Similarly, we have a significant 
down-regulation of the ‘Oxidative Phosphorylation’ processes 
at both gene and protein levels, starting from the very early 
time point (Day 1). Another interesting observation is that 
the majority of the gene members (56.94%) in the ‘Fatty 
Acid Metabolism’ and ‘Oxidative Phosphorylation’ seem to 
be associated with the paleturquoise cluster of genes obtained 
from the clustering analysis with WGCNA. Gene members of 
such a cluster are shown to have a very strong and significant 
negative correlation with the TAC versus Sham comparisons 
(at all time points individually as well as combined), a sig-
nificant negative correlation with the HW/BW phenotype 
and a strong and significant positive correlation with the EF
phenotype.

To conclude, these time-course analyses illustrate that 
changes in the expression of metabolic genes occur early in 
the development of pressure overload-induced HF before the 
detection of massive hypertrophy and contractile impairment. 
Of note, these findings are much in line with previous obser-
vations on early transcriptional alterations in the heart under 
chronic catecholamine exposure, indicating a general prin-
ciple of metabolic gene regulation as an early response to 
chronic cardiac stress (31).
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Figure 3. Enrichment scores from the differential gene and protein expression analyses for the significantly regulated MSigDB Hallmarks sets in DGE 
and DPA (A, TAC versus Sham). Time-resolved enrichment scores for ‘Fatty Acid Metabolism’ (B) and ‘Oxidative Phosphorylation’ (C) across time. 
Significant enrichment scores (P ≤ 0.1) have been highlighted with larger filled circles in the plot.

Differential transcript usage
Another aspect of gene regulation involves alternative RNA 
splicing. Generally, intronic sequences get removed from 
pre-mRNA molecules during mRNA maturation. This pro-
cess may also affect the combination of exons, which get 
included in the final mRNA product. In TACOMA, we have 
placed special attention on visualizing alternative splicing 
effects since they play a critical role in cardiovascular dis-
eases by modulating gene expression and protein function, 
influencing processes such as heart muscle contraction and
remodelling (32).

We performed enrichment analyses over all DTU results 
using GO (BP ontology) and Hallmark gene sets from 
MSigDB (26) (Supplementary Figures 7 and 8) to identify 
biological processes and pathways that may be enriched for 
alternative splicing and could have been missed in a gene-
level analysis. Our initial analysis revealed a distinct pattern 
of differential transcript usage between the TAC and Sham 
groups. For example, muscle contraction (GO:0006936), 
which consists of genes that are involved in generating force 
for muscle contraction, is one of the most significantly 
enriched gene sets for the main TAC versus Sham comparison 
(FDR = 0.0257). Another interesting significant term was Cell 
Cycle (GO:0007049) (FDR = 0.0072). The increased expres-
sion of cell cycle genes may reflect the induction of endothelial 
cell and fibroblast proliferation that occurs in the setting of 
TAC (33). Further results pointed towards the regulation 
of gene isoforms involved in particular aspects of the cell 
cycle such as the G2 to M transition phase as witnessed 
by the statistically significant G2M Checkpoint hallmark set 
(FDR = 1.0223e-05), thus suggesting an enhanced prolifera-
tive activity in response to TAC (Figure 4).

Among the genes with significantly regulated tran-
script usage, we have identified Racgap1 (ENSMUST000

00023756 and ENSMUST00000171702) and Kif23 (ENS
MUST00000214295, ENSMUST00000215743 and ENSMU
ST00000215965), which are known to perform essential 
functions in central spindle formation (34). Interestingly, 
‘Mitotic Spindle’ was also one of the Hallmark gene sets that 
appeared to have been significantly regulated in the DTU anal-
yses for the TAC versus Sham comparison, which is an event 
characteristic of cell division (35).

Alternative usage of Tpm2 variants between RV
and LV
Differential transcript usage can lead to the production of dif-
ferent protein isoforms from the same gene and may result 
in different functions of the RNA or protein product. Simi-
lar to our DTU analysis in the previous section, enrichment 
analyses over genes with significant changes in exon usage 
events were performed using GO (BP ontology). So far, we 
have not reported on changes between the RV and LV of the 
heart following TAC. Our enrichment analysis for the RV ver-
sus LV comparison revealed two biological processes, which 
were associated with alternative RNA splicing: cardiac mus-
cle contraction (GO:0060048) (FDR = 0.00767). One of the 
most striking observations was the differential expression of 
transcript isoforms of the Tropomyosin 2-beta (Tpm2) gene, 
another known regulator of muscle contraction (Figure 5), 
which is shown to be commonly spliced in the heart (36).

Figure 5A shows the Tpm2 exon usage pattern, which 
differs significantly between the RV and LV. Overall, we 
could identify six exons with an alternative usage pattern 
either pointing towards a preferential inclusion or exclu-
sion in RV over LV. In Figure 5B, additional details are 
provided on the consequences with regard to transcript 
usage of robustly expressed transcripts. The changes in
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Figure 4. Transcripts of genes involved in ‘Cell Cycle’ and ‘G2M Checkpoint’ gene sets. (A) Enrichment scores of the ‘Cell Cycle’ and ‘G2M Checkpoint’ 
gene sets estimated as -Log (natural logarithm) enrichment of P -value significance scores (in dashed lines is shown the significance threshold—adjusted 
P = 0.05). (B) Counts of significantly regulated transcripts of genes involved in the two gene sets. (C) Volcano plot of the DTU analysis for cell cycle (top) 
and G2M checkpoint (bottom). Significantly regulated transcripts, are considered those with adjusted P ≤ 0.05). (D) Significantly regulated transcripts 
(adjusted P -value ≤ 0.05) that are members of both the ‘Cell Cycle’ and ‘G2M Checkpoint’ gene sets.

Figure 5. DEX and DTU Views of Tpm2 gene. (A) Differential expression of individual exons of Tpm2 genes and transcripts for the RV versus LV 
comparisons. For each exon, the top half indicates whether the differential expression is significant or not, while the bottom half indicates the level of 
change (blue if we have a positive size effect and red for a negative size effect). (B) Box plot showing the differences in usage between RV and LV of 
Tpm2 transcripts.

ENSMUST00000107913 and ENSMUST00000107914 are 
only significant after correction for multiple testing. Both tran-
scripts express two different protein variants. Tropomyosin 
plays a crucial role in regulating the contraction process by 
facilitating the interaction between actin-containing thin fila-
ments and myosin-containing thick filaments within muscles. 

In non-muscle cells expressing various tropomyosin isoforms, 
tropomyosins are actively involved in numerous cellular 
events related to the cytoskeleton. These findings suggest a 
selective up-regulation of one specific Tpm2 isoform in the 
RV (ENSMUST00000107914), potentially contributing to 
the differential contractile response of the ventricles under 



Database, Vol. 00, Article ID baae060 9

TAC-induced stress. To the best of our knowledge, the func-
tional implications of the two protein isoforms of Tpm2 are 
not fully understood yet.

Novel genes
Upon de novo assembly of the GRCm38.102 reference 
genome with long-reads Nanopore cDNA transcriptomics 
with StringTie2 (v2.2.1), we identified 84 genes with com-
pletely novel transcripts i.e. no overlap with any annotated 
gene. Of these 84 genes, 33 of them were significant in at 
least one of the DGE comparisons that we have tested. Upon 
the identification of the novel genes, we then performed ORF 
identification over each novel gene sequence using the find-
ORFs() function from the ORFik R-package (v1.20.2, cita-
tion needed). The ORF DNA sequences were then translated 
into protein sequences using the translate() function from the 
Biostrings R-package (v2.68.1), followed by domain anno-
tation analysis with Interproscan (v5.65–97.0) (14). From 
such an analysis, Interproscan was able to predict functional 
domains for 26 out of 84 novel genes which were significant 
in at least one of the DGE comparisons.

Discussion
TACOMA enables interactive online analysis, exploration, 
integration and visualization of a new multi-omics time-
course data set from a TAC mouse model. To the best of 
our knowledge, there are no interactive web applications for 
integrated proteomics and transcriptomics data exploration 
in the cardiovascular field. However, the integration of var-
ious gene expression datasets in HF was recently addressed 
by the ReHeat (37) and the Magnetique (27) portals, which 
are also available as online applications. ReHeat comprises a 
comprehensive meta-analysis of public human HF microarray 
and RNA-seq datasets, while Magnetique used mRNA-seq 
data from the Myocardial Applied Genomics Network) con-
sortium. While ReHeat focused on the analysis at the gene 
level, Magnetique added special attention to the analysis at 
the transcript level by providing differential RNA transcript 
isoform usage (DTU) changes and predicting RNA-binding 
protein to target transcript interactions using a Global test 
approach.

TACOMA goes beyond a simple exploration of a new 
multi-omics data set by identifying clusters of co-expressed 
genes and putting special emphasis on exon- and transcript-
level analysis. Evidently, the interplay between the proteomics 
and transcriptomics layers is well represented as well. Addi-
tionally, we enhanced the known cardiac transcriptome by 
a de novo assembly, which we obtained from Illumina and 
cDNA Nanopore reads.

Several known and novel findings have been presented 
by example. First, we reported on a notable shift in 
energy metabolism within hypertrophied hearts, transition-
ing from fatty acid metabolism to glucose and glycolysis. This 
metabolic shift was initiated at the gene level by Day 7 and 
completed by Day 21 after TAC, as evidenced by the sig-
nificant regulatory patterns in gene and protein expressions 
associated with fatty acid oxidation. Similar to fatty acids, 
through TACOMA, we were able to demonstrate a significant 
down-regulation of the tricarboxylic acid (TCA) cycle gene 

set in cardiac tissue post-TAC, particularly evident at Week 
8, suggesting a link between TCA cycle disruption and the 
progression to HF, corroborated by consistent gene and pro-
tein expression patterns. Second, through TACOMA we were 
able to identify differential exon-skipping events in key car-
diac genes, notably in Tpm2 isoforms, between the RV and 
LV post-TAC, suggesting contractile differences and provid-
ing potential new insights into the molecular mechanisms of 
heart contraction under stress.

In the future, we plan to expand TACOMA in terms of 
new functionalities and data sets. Additional animal models 
of heart disease will be added, and several other methods for 
functional analysis of multi-omics data will be included.

Conclusions
In this study, we have produced and analysed a compre-
hensive time-series proteomics and transcriptomics data set 
from a TAC mouse model and provided subsequent analy-
sis results through the TACOMA web application (https://
shiny.dieterichlab.org/app/tacoma). The design included three 
factors (TAC versus Sham, time and LV versus RV) and we 
paid special attention to the details of the statistical mod-
elling. TACOMA is unique in integrating proteomics and 
transcriptomics data for a pressure-overload mouse model 
of HF in a user-friendly web application. We anticipate that 
TACOMA will be adopted by clinician scientists and cardio-
vascular research as an exploratory tool to further uncover 
relevant molecular mechanisms associated with HF progres-
sion and/or to make comparisons with their own independent 
studies. Future work about TACOMA will focus on the addi-
tion of other functional analysis methods and more layers of 
omes. We also plan to open up TACOMA to integrate private 
data from users through authentication-based mechanisms
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