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13125 Berlin, Germany
2Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry,

Thielallee 63, Freie Universität Berlin, 14195 Berlin, Germany
3Department of Mathematics and Computer Science, Institute of Computer Science, Takustraße 9,

Freie Universität Berlin, 14195 Berlin, Germany

∗To whom correspondence should be addressed. Email: irmtraud.meyer@cantab.net

1



1 Supplementary Tables

1.1 RNAnue installation and runtime issues

Problem Encountered Program type Step Operation system Libraries link to Github issue/error log

Red Hat Enterprise
Linux (RHEL9)

Singularity:
apptainer

version 1.3.6-1.el9;
segmentation fault

RNAnue
detect

Ubuntu 20.04
https://github.com/Ibvt/RNAnue/issues/25

error when
there is no controls

RNAnue
align

Ubuntu 20.04
Docker: 28.0.1,
build 068a01e; https://github.com/Ibvt/RNAnue/issues/24

possible
removed sub-call

runtime
Docker
container

RNAnue
complete

missing htslib
unlisted in dependencies

cmake

compilation error
while building

installation
compiled

from source
make

RHEL9

Seqan 3.3.0;
Boost 1.83.0;

ViennaRNA 2.5.1;
Segemehl 0.3.4;
htslib 1.19;

https://doi.org/10.5281/zenodo.10789913

Supplementary Table S1: Description of the installation and runtime problems one can encounter for RNAnue
version 0.2.3. We provide a link to respective pages on RNAnue repository for the known issues. Error logs of several
runtime and installation problems are uploaded to Zenodo. We note that our HPC utilises Singularity to run Docker
containers which may have affected the execution on RHEL9. The run-time errors (Segmentation fault) persisted for
versions 0.2.1 and 0.2.3 compiled from the source.
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1.2 List of the samples analysed with DuplexDiscoverer

SRA accession Celltype Protocol Sample Pre-processing Layout

SRR3404929 HeLa SPLASH HeLa1

none, already processed in SRA

SINGLE

SRR3404931 HeLa SPLASH HeLa2 SINGLE

SRR3404943 hES1 SPLASH ES 1 SINGLE

SRR3404926 hES2 SPLASH ES 2 SINGLE

SRR3404927 RA5 SPLASH RA1 SINGLE

SRR3404928 RA5 SPLASH RA2 SINGLE

SRR3404939 LMB SPLASH LBpoly1 SINGLE

SRR3404940 LMB SPLASH LBpoly2 SINGLE

SRR3404941 LMB SPLASH LBpoly3 SINGLE

SRR3404942 LMB SPLASH LBpoly4 SINGLE

SRR3404924 LMB SPLASH LBtotal1 SINGLE

SRR3404925 LMB SPLASH LBtotal2 SINGLE

SRR3404936 LMB SPLASH LBtotal3 SINGLE

SRR3404937 LMB SPLASH LBtotal4 SINGLE

SRR3361013 HEK293T LIGR-seq LIGR rep1

Phread >=Q15 filter with fastp

SINGLE

SRR3361017 HEK293T LIGR-seq LIGR rep2 SINGLE

SRR8632820 HeLa RIC-seq RIC rrna1 PAIRED

SRR8632821 HeLa RIC-seq RIC rrna2 PAIRED

SRR2814761 HeLa PARIS PARIS hela low

Duplicates and barcodes
removed with PARIS scripts
https://github.com/qczhang/

icSHAPE/

SINGLE

SRR2814762 HeLa PARIS PARIS hela high SINGLE

SRR2814763 HEK293T PARIS PARIS HEK 1 SINGLE

SRR2814764 HEK293T PARIS PARIS HEK 2 SINGLE

SRR2814765 HEK293T PARIS PARIS HEK 3 SINGLE

SRR6811718 HeLa RNA-seq

Read data for
artificial chimeric
reads

Phread >=Q15 filter with fastp

SINGLE

SRR6811722 HeLa RNA-seq SINGLE

SRR6811723 HeLa RNA-seq SINGLE

SRR6811728 HeLa RNA-seq SINGLE

SRR6811719 HeLa RNA-seq SINGLE

Supplementary Table S2: List of the samples for RNA duplex probing experiments analyzed with
DuplexDiscovereR. Except for the SPLASH and PARIS data, we applied quality control via fastp [1] with default
parameters. SPLASH data is sequenced in pair-end mode and deposited to the NCBI Sequence Read Archive (SRA)
already preprocessed with overlapping read mates merged into single reads. PARIS data contains barcodes and
adapters, which needed to be removed by icSHAPE scripts, as in the original PARIS pipeline.
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1.3 List of simulated RNA duplex-probing libraries

Sample
Num.

chimeric
Num.

background

Num.
non

chimeric

Num.
total

Arm
A-B

lengths

Num.
cis DG

Num.
trans DG

Num.
cis

chimeric
reads

Num.
trans

chimeric
reads

cis:trans
ratio

sim 1 1053076 12498896 0 13551972 20-20 10819 99961 950003 103073 9.2
sim 2 919524 12498897 0 13418421 30-30 41822 55000 522424 397100 1.3
sim 3 1049450 12498898 0 13548348 40-40 55394 55000 522894 526556 1
sim 4 921385 12498899 0 13420284 50-50 41939 55000 522533 398852 1.3
sim 5 569112 12498896 100000 13168008 20-20 30000 30000 284556 284556 1
sim 6 570882 12498896 100000 13169778 30-30 30000 30000 285412 285470 1
sim 7 569990 12498896 100000 13168886 40-40 30000 30000 285256 284734 1
sim 8 569014 12498896 100000 13167910 50-50 30000 30000 284020 284994 1
sim 9 570077 12498896 100000 13168973 20-30 30000 30000 285037 285040 1
sim 10 570272 12498896 100000 13169168 20-40 30000 30000 284901 285371 1
sim 11 571155 12498896 100000 13170051 20-50 30000 30000 285721 285434 1
sim 12 570287 12498896 100000 13169183 30-40 30000 30000 285497 284790 1
sim 13 570315 12498896 100000 13169211 30-50 30000 30000 285130 285185 1
sim 14 569194 12498896 100000 13168090 40-50 30000 30000 284674 284520 1

Supplementary Table S3: Characteristics of the samples with simulated chimeric reads Four sets of
artificially created chimeric reads with variable lengths were simulated using publicly available RNA-seq libraries of
HeLa cells SRR6811718, SRR6811722, SRR6811723, SRR6811728. SRR6811722 library .fastq file was concatenated
with each set of chimeric reads, resulting in samples containing chimeric reads to be tested and ”normal” reads as the
background. Samples sim1-4 were used to test the mapping scheme, see Figure S4. Samples 4-14 with imbalanced
arm lengths were used to benchmark the accuracy of predictions. Non-chimeric splice-junction (SJ) spanning reads
from the background library were added separately to observe SJ filtering in DuplexDiscoverer and CRSSANT
explicitly
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1.4 Chimeric read types in the background of simulated dataset

Read type Count % of chimeric input % of the background library size
two arm splice junc. 6392 0.9 0.05
multi-map 38906 5.2 0.31
multi-split 12721 1.7 0.10
multi-split&map 5033 0.7 0.04
bad junction 5415 0.7 0.04
too short junction <5nt 479 0.1 0.00
self-overlap antisense 10064 1.3 0.08
self-overlap 4659 0.6 0.04
two arm no DG 48111 6.4 0.38
two arm clustered to DG 15455 2.1 0.12

Supplementary Table S4: Counts of read types obtained by DuplexDiscoverer in the background RNA-seq
library SRR6811722

1.5 Artificially created non-chimeric reads in the simulated dataset

DuplexDiscoverer CRSSANT
Classification type Count % of simulated SJ reads Intermediate file Count % of simulated SJ reads
2arm – not DG 77 0.08

gap1.sam 96046 962arm – SJ 267 0.27
multi map 316 0.32
multi split 209 0.21

rri.sam 364 0.36multi split&map 31 0.03
not chimeric 99053 99.05
Formed DG 42 0.04 Formed DG 7398 7.4

Supplementary Table S5: A total of 100000 reads which span 15473 splice junctions (SJ) were added to simulated
samples sim 4-14. For DuplexDiscoverer and CRSSANT it is possible to observe how these were processed and
whether they were included in the final DGs. For DuplexDiscoverer most of such reads were removed at the
mapping stage, while CRSSANT filters them internally. Overall, both methods correctly filter out most of the SJ-
spanning reads. DGs formed by artificial SJ reads comprise between 3-4% of DGs reported by CRSSANT in simulated
dataset
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1.6 STAR mapping configurations evaluated for mapping of the chimeric reads

DuplexDiscoverer ARRIBA

−−chimOutType Junct ions
−−chimOutJunctionFormat 1
−−a l ignIntronMin 1
−−al ignIntronMax 10
−−ou tSJ f i l t e rRead s Al l
−−chimSegmentMin 15
−−chimMultimapNmax 10
−−chimScoreDropMax 30
−−chimScoreJunctionNonGTAG 0

−−chimOutType Junct ions
−−chimOutJunctionFormat 1
−−a l ignIntronMin 1
−−al ignIntronMax 10
−−chimMultimapNmax 10
−−chimSegmentMin 10
−−chimScoreMin 1
−−chimJunctionOverhangMin 10
−−chimScoreSeparat ion 1
−−chimMultimapNmax 50
−−chimScoreDropMax 30
−−chimSegmentReadGapMax 3
−−chimScoreJunctionNonGTAG 0

CRSSANT RNAContacts

−−chimMultimapNmax 10
−−chimOutType Junct ions
−−chimOutJunctionFormat 1
−−a l ignIntronMin 1
−−al ignIntronMax 10
−−scoreGap 0
−−outFilterMultimapNmax 10
−−scoreGapNoncan 0
−−scoreGapGCAG 0
−−scoreGapATAC 0
−−ch imFi l t e r None
−−scoreGenomicLengthLog2scale −1
−−chimSegmentMin 5
−−chimJunctionOverhangMin 5
−−chimScoreJunctionNonGTAG 0
−−chimScoreDropMax 80
−−chimNonchimScoreDropMin 20
−−outFi lterScoreMinOverLread 0
−−outFilterMatchNminOverLread 0

−−chimOutType Junct ions
−−chimOutJunctionFormat 1
−−a l ignIntronMin 1
−−al ignIntronMax 10
−−chimSegmentMin 15
−−chimJunctionOverhangMin 15
−−chimScoreMin 1
−−chimScoreDropMax 25
−−chimSegmentReadGapMax 3
−−chimScoreJunctionNonGTAG −1
−−scoreGapNoncan −1
−−scoreGapATAC −1
−−scoreGapGCAG −1
−−outFilterMatchNminOverLread 0 .5
−−outFi lterScoreMinOverLread 0 .5

Supplementary Table S6: STAR [2] mapping configurations evaluated for mapping of the chimeric
reads. Parameters used in ARRIBA [3], CRSSANT [4] and RNAContacts [5] pipelines were adapted to output
chimeric reads into Chimeric.out.junction file. By setting ---alignIntronMax 10, predicting de-novo splice junc-
tions were disabled and new junctions were treated as chimeric. The default parameters for DuplexDiscoverer were
chosen by determining the best combination of the PPV and sensitivity estimated on the simulated data.
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2 Supplementary Notes

2.1 Supplementary Note S1. Simulating artificial duplex groups

To create the samples with artificial duplex groups, we used sequences from ”normal” RNA-seq reads libraries. The
general outline of the procedure consists of two steps. First, we arrange individual RNA-seq reads into pairs, forming a
pool of the paired sequences, which serve as the sequence sources or ”backbones” for the artificial duplex groups (DGs).
Second, we form synthetic chimeric reads by extraction and concatenation of sub-sequences from these backbones. We
expand on the details of these steps below.

2.1.1 Forming a pool of source read pairs

Four samples SRR6811718, SRR6811722, SRR6811723, SRR6811728 from a publicly available dataset of 100 bp sin-
gle-ended RNA-seq of HeLa cells were merged into a single file and aligned with STAR [2] using default parameters.
We selected reads that map to the genes with expression counts (values from GeneCounts.tab of STAR output) above
30 that map without gaps or ambiguities. There are two categories of DGs: cis - where both arms map to the same
gene (approximating true cis RNA-RNA interaction, where the RNA duplex is formed within the single transcript)
and trans - where the two arms map to different genes. To construct read pairs for cis DGs, we first split all genes
(that were filtered by the expression count cutoff 30) - into 50 subgroups of 400 genes. This partitioning was arbitrarily
selected for technical purposes to reduce the sampling space and to improve processing speed through parallelization.

For each gene subgroup, we considered only reads mapped to the corresponding subset of genes. One million reads
were randomly sampled (with replacement) two times - for arms A and B, respectively. Reads were arranged in par-
allel and formed pairs and their paired read mapping coordinates were converted into GInteractions object of the R
InteractionsSet package [6]. Read pairs were filtered to retain only those mapping to the same gene and consisting
of two distinct reads. To further refine the dataset and remove redundant pairs, we applied the clustering function
of DuplexDiscovereR. Artificial read pairs were treated as chimeric reads to identify and filter out overlapping pairs.
Within each subgroup, only unique (non-overlapping) read pairs and one representative pair per cluster were retained.
After the procedure above was repeated for each subgroup, we stacked derived read pairs into a single dataset and

performed a second round of clustering to remove potential rare or complicated cases where loci mapped to overlapping
genes. The final cis DG dataset consists of non-redundant read pairs mapping to the same genes. For the read pairs
for trans DGs, we followed a similar approach, which in this case required no gene sub-groups. We sampled 1.5 million
reads twice, arranged them into pairs and removed redundant pairs through clustering with DuplexDiscoverer.
For the trans DGs, we selected read pairs where arms A and B mapped to different genes. After applying these
procedures, we obtained a pool of 179,840 cis read pairs and 1.4 million trans read pairs. Among these, 96.2% reads
were used only once and formed a single pair, while the other reads were used at most twice - in cis and in trans pairs.

2.1.2 Simulating reads for artificial DGs

The number of artificial DGs in the simulated sample is determined by the selected number of source read pairs
from the pre-arranged pool. For samples sim5–sim14, we selected 30,000 cis and 30,000 trans read pairs by taking
two random samples from the respective subsets of cis and trans source read pairs. Each simulated sample featured a
single combination of chimeric arm lengths.

To generate chimeric reads belonging to one DG, we used the following approach: For each read in a source pair,
we extracted a sub-sequence starting at the read’s midpoint with a length corresponding to the target arm length. The
extracted sub-sequences were then concatenated to form synthetic two-segment sequences. This process was repeated
5 to 15 times, with the number of repeats randomly assigned for each DG, defining the number of reads in that DG.
During each iteration, random shifts were introduced at the start of a new sub-sequence within the range [-chimeric
arm length × 0.3; chimeric arm length × 0.3]. The arm lengths of the extracted sub-sequences were drawn from a
discrete normal distribution, with the mean set to the desired arm length and a standard deviation of 1 nt. The final
duplex group consisted of non-identical chimeric reads sharing at least 2/3 of their sequence in both segments.

For samples sim1–sim4, the same procedure was used to generate chimeric reads from source read pairs. However,
only trans source read pairs were pre-arranged, and trans DGs were generated first. Cis source read pairs were sam-
pled dynamically (”on the fly”) with no restriction to any gene sub-group. After sampling, redundant read pairs were
removed through clustering, as described above, and cis chimeric reads were then generated. Sampling was repeated
iteratively multiple times until the total number of cis and trans chimeric reads approached 1.2 million. These samples
were primarily used to investigate optimal STAR parameters for chimeric read mapping rather than for benchmarking.

After the chimeric reads were simulated, they were concatenated with the SRR6811722 RNA-seq library serving as
background reads. We used a single background sample to prevent background- induced variability in benchmarks and
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to reduce computational cost. Additionally, we extracted 100.000 reads which span 15473 splice junctions (SJs) and
added them to simulated samples sim5-sim14 to obtain the statistics on the filtering of SJ for DuplexDiscoverer
and CRSSANT, see Supplementary Table S5.
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3 Supplementary Figures

3.1 Parameters for clustering the duplex groups

Supplementary Figure S1: Definitions of the overlap and shift between chimeric reads. Split-read-
based overlap and shifts are parameters which can be adjusted for read comparison and clustering procedures of
DuplexDiscoverer.
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3.2 Iterative read clustering procedure

Supplementary Figure S2: The iterative DG merging procedure. The first step collapses identical chimeric
reads and is equivalent to the deduplication. Collapsing similar alignments uses user-defined shift thresholds to find
temporary duplex groups and repeats until all small-shifted reads are clustered, or a maximum of five times, whichever
condition is reached first. Finally, the full graph based on all reads is built, where each read becomes a node and
edges define overlap, weighted by the overlap ratio. After communities in the graph are found, graph representation
is reverted to the reads. Reads are collapsed to the DGs with alignment boundaries re-defined as min- and max-
coordinates of the reads within the group. Note that the ”collapse similar alignments” step internally uses the same
method of read merging based on the graph. For samples of small size with fewer than one million reads, iterative
merging can be disabled, which slightly increases the speed of the clustering.
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3.3 Comparisons between multiple sets of duplex groups
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Supplementary Figure S3: Strategy to compare duplex groups derived from different experiments. First,
the non-redundant superset of duplex groups (DGs) is created. If DGs overlap, they form a new DG with extended
boundaries in a superset, defining the total number of DGs. Each DG in the superset could be found in at least one
sample. Every sample is then compared to the superset. Finally, overlaps between the superset and the samples are
recorded once per DG in the superset. The resulting table can be used for further per-sample comparisons.
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3.4 Mapping the chimeric reads with different STAR configurations
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Supplementary Figure S4: Mapping accuracy of different STAR configurations. Several alignment con-
figurations were tested to map the simulated chimeric read samples, see Supplementary Tables S6 and S3. Coloured
connecting lines are drawn to highlight the groups of values. All mapping configurations performed best for the sam-
ples with chimeric arms longer than 30 nt. Both strategies with changed gap score penalties – RNAContacts and
CRSSANT – demonstrated lower sensitivity for samples with 50 nt chimeric arms.
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3.5 Distribution of DG features
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Supplementary Figure S5: Distribution of hybridisation energies and DG lengths for different pipelines. n=2
replicate SPLASH ES cells data was aggregated into a single set and only DGs supported by both replicates left.
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3.6 Benchmarking of the DG detection
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Supplementary Figure S6: Benchmarking the predictive performance of DuplexDiscoverer, ChiRA and
CRSSANT on the cis-DGs subset of the simulated data. For all methods, the correct detection of the trans chimeric
reads is a more challenging task.
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Supplementary Figure S7: Comparisons of simulated DG detected by DuplexDiscoverer, ChiRA and
CRSSANT pipelines for different DG arm lengths.

15



3.7 Distributions of hybridisation energies and p-values
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3.8 Comparisons of RNA interaction probing results produced by different methods
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Supplementary Figure S9: Per-replicate intersection of RNA-RNA interactions devised by three different compu-
tational methods. Fraction of p-values below 0.01, 0.01 and 0.05 are shown for the intersections with DuplexDiscov-
erer.
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3.9 Comparisons of RNA interaction probing results produced by different methods
— all replicate categories
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Supplementary Figure S10: Per-replicate intersection of RNA-RNA interactions in PARIS2 detected with Du-
plexDiscoverer and CRSSANT and RIC-seq with DuplexDiscoverer and RNAContacts.
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Supplementary Figure S11: Per-replicate intersection of RNA-RNA interactions in SPLASH, PARIS, LIGR-seq.
All replicate categories with n > 50 DGs in the intersection are shown.
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zinger,A., Scholl,C. et al. (2021) Accurate and efficient detection of gene fusions from RNA sequencing data.
Genome research, 31, 448–460.

[4] Zhang,M., Hwang,I.T., Li,K., Bai,J., Chen,J.F., Weissman,T., Zou,J.Y. and Lu,Z. (2022) Classification and clus-
tering of RNA crosslink-ligation data reveal complex structures and homodimers. Genome Research, 32, 968–985.

[5] Margasyuk,S.D., Vlasenok,M.A., Li,G., Cao,C. and Pervouchine,D.D. (2023) RNAcontacts: A Pipeline for Predict-
ing Contacts from RNA Proximity Ligation Assays. Acta Naturae, 15, 51–57.

[6] Lun,A.T., Perry,M. and Ing-Simmons,E. (2016) Infrastructure for genomic interactions: Bioconductor classes for
Hi-C, ChIA-PET and related experiments. R package available at https://doi.org/doi:10.18129/B9.bioc.

InteractionSet

20

https://doi.org/doi:10.18129/B9.bioc.InteractionSet
https://doi.org/doi:10.18129/B9.bioc.InteractionSet

	Supplementary Tables
	 RNAnue installation and runtime issues 
	List of the samples analysed with DuplexDiscoverer
	List of simulated RNA duplex-probing libraries
	Chimeric read types in the background of simulated dataset
	Artificially created non-chimeric reads in the simulated dataset
	STAR mapping configurations evaluated for mapping of the chimeric reads

	Supplementary Notes
	Supplementary Note S1. Simulating artificial duplex groups
	Forming a pool of source read pairs
	Simulating reads for artificial DGs 


	Supplementary Figures
	Parameters for clustering the duplex groups
	Iterative read clustering procedure
	Comparisons between multiple sets of duplex groups
	Mapping the chimeric reads with different STAR configurations
	Distribution of DG features
	Benchmarking of the DG detection
	Distributions of hybridisation energies and p-values
	Comparisons of RNA interaction probing results produced by different methods
	Comparisons of RNA interaction probing results produced by different methods — all replicate categories


