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Abstract 

For a few years, it has been possible to experimentally probe the universe of cis and trans RNA–RNA interactions in a transcriptome-wide manner. 
T hese e xperiments giv e rise to so-called duplex data, i.e. short reads generated via high-throughput sequencing that each encode information 
on a cis or trans RNA–RNA interaction. T hese ra w duple x data require comple x, subsequent computational analy ses in order to be interpreted 
as solid e vidence f or actual cis and trans RNA–RNA interactions. While se v eral methods ha v e already been proposed to tackle this challenge, 
almost all of them lack one or more desirable feature—computational efficiency, ability to readily alter the main processing steps and parameter 
v alues, p -v alue estimation for predictions, and interoperability with the common bioinformatics tools for transcriptomics. To overcome these 
challenges, we present DUPLEXDISCOVERER —a computational method and R package that allows for the efficient, adjustable, and conceptually 
coherent analysis of duplex data. DUPLEXDISCOVERER is readily adaptable to analysing data from different experimental protocols and its results 
seamlessly integrate with the most commonly used bioinformatics tools for transcriptomics in R. Most importantly, DUPLEXDISCOVERER generates 
predictions that are of superior or comparable quality to those of the existing methods while significantly improving time and memory efficiency. 
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t has long been acknowledged that RNA transcripts have a
uch wider range of functions than merely acting as mes-

engers between a genome and its encoded proteins [ 1 , 2 ].
oreover, many genomes—including our human one—seem
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to encode many more non-coding genes (RNA genes) than
protein-coding ones. The functional roles of the former remain
mostly unknown [ 3 ]. All transcripts—whether protein-coding
or not—can exert some of their functional role(s) in cis via
their so-called RNA structure(s) [ 4 , 5 ] as well as in trans via
direct RNA–RNA interactions between transcripts [ 6 , 7 ] or
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with other molecules in the cellular environment, e.g. ligands,
proteins [ 8 , 9 ]. In contrast to networks of protein–protein
interactions, the universe of cellular trans RNA–RNA inter-
actions between two (or more) transcripts remains largely
unexplored [ 10 , 11 ]. We are also only beginning to get a
glimpse of all the functional RNA structures that regulate how
genes in vivo are expressed in a cell-specific manner. Overall,
the universe of functional cis and trans RNA–RNA interac-
tions in vivo thus remains mostly unchartered territory. 

To change the above status quo, we require experimen-
tal and computational methods that are able to tackle the
many inherent challenges that the investigation of cis and trans
RNA–RNA interactions in vivo poses [ 12 , 13 ]. Since 2016,
we have the first methods that enable the transcriptome-wide
probing of cis and trans RNA–RNA interactions in vivo in
a high-throughput manner. These methods utilize psoralen or
a psoralen-derived chemical for the covalent cross-linking of
double-stranded regions of RNA (which are double-stranded
because they interact either in cis or in trans ) followed by
proximity ligation and high-throughput sequencing of the
resulting short reads, e.g. SPLASH [ 14 ], PARIS [ 15 ], and
LIGR-seq [ 16 ]. 

Another class of related methods—CLASH [ 17 ],
MARIO [ 18 ], RIL-seq [ 19 ], and RIC-seq [ 20 ]—studies
cis and trans RNA–RNA interactions that involve RNA-
binding proteins (RBPs). Both classes of methods aim to
identify RNA duplexes, i.e. regions of cis or trans interacting
double-stranded RNA. 

The latter family of methods for investigating RBP-
mediated RNA–RNA interactions currently has a higher ef-
ficiency than the first class of methods as the binding of a pro-
tein allows for a pull-down step and thus a more efficient en-
richment in the corresponding experimental protocols while
the former methods offer a potentially more unrestricted view
of the RNA–RNA interactome. We will refer to both classes
of methods as RNA duplex probing methods in the following.

Challenges of the existing RNA–RNA interaction
probing methods

One major challenge of all RNA duplex probing methods
is the complexity of their experimental protocols and their
overall low efficiency [ 21 ]. Several methodological steps have
recently been improved in the PARIS2 protocol [ 22 ]. The
cross-linking chemistry has been enhanced by using a differ-
ent cross-linking compound. In addition, a new extraction
protocol has been developed which allows for the enrich-
ment of cross-linked fragments. Despite these improvements,
proximity ligation remains a persistent bottleneck, causing all
currently existing RNA duplex probing methods to deliver
sparse and noisy data. Therefore, the subsequent bioinformat-
ics analysis of the raw experiment data is of utmost impor-
tance for extracting evidence for functionally relevant cis and
trans interactions. This is a key pre-requisite for any subse-
quent biological interpretation and functional analysis of any
RNA duplex probing experiment. 

Bioinformatics analysis of the RNA duplex data

RNA duplex probing methods produce data in the form of
short chimeric reads, i.e. RNA-seq sequencing reads, consist-
ing of two or more segments, where each segment (also re-
ferred to as read arm) corresponds to a sub-sequence of a
transcript which forms an RNA duplex. These reads are also
called duplex reads. An overview of the key steps of any RNA
duplex data analysis is shown in Fig. 1 , using our method 

DuplexDiscoverer as an example. 
The first step involves the mapping of the reads and—

importantly—the correct identification of the chimeric reads 
within those. Any mistakes or omissions made in this first 
step cannot be fixed in the subsequent bioinformatics anal- 
ysis. This first step is thus of utmost importance as well as a 
key challenge due to the potentially large choice of alignment 
tools and the myriad of corresponding potential parameter 
settings. Technically, chimeric reads are mapped similarly to 

non-chimeric reads split at splice junctions. The length of a du- 
plex read, however, is typically comparatively short and does 
not exceed 50 nt. Finding the correct split alignments can thus 
pose a challenge to any mapping software. Moreover, reads 
may not only require the correct mapping of their respective 
fragments, but any fragment may—at least in principle—span 

a splice junction, further complicating the alignment proce- 
dure. Overall, it is thus fair to conclude that the complexities 
of correctly mapping the rather short fragments of a chimeric 
read to a much larger mapping space pose a tremendous chal- 
lenge. 

Once duplex data have been mapped, alignments can be 
classified according to their type, see Fig. 1 . Chimeric align- 
ments containing two segments are usually considered as the 
primary type of duplex reads and subjected to the main anal- 
ysis, whereas more complex arrangements are ignored or 
analysed separately. 

In the subsequent steps of the bioinformatics analysis 
pipeline, the duplex reads are clustered into so-called ‘duplex 

groups’ (DGs) based on the overlap of their alignments. DGs 
thus—hopefully—define boundaries within which the RNA 

duplexes are located. The number of reads contained in a DG 

is assumed to be proportional to the relative abundance of the 
corresponding RNA duplex. Even though grouping into DGs 
might be considered a trivial procedure, its implementation is 
not straightforward and may consume a significant amount of 
computational resources and time if not undertaken in an al- 
gorithmically well-defined and conceptually carefully chosen 

way. 
In the final step, the detected duplex RNA–RNA interac- 

tions are assigned a confidence score and can then be ranked 

accordingly. Each ranking may choose to assess a particular 
feature of the detected duplex. Commonly used features in- 
clude e.g. alignment coverage, random ligation probabilities,
or computationally estimated free energy of the duplex hy- 
bridization. Due to a lack of reliable positive and negative 
control reference datasets, arbitrary cut-offs are typically used 

by existing methods to distinguish between genuine and spu- 
riously detected RNA duplexes i.e. between true and false 
positives. 

Existing methods for the bioinformatics analysis of
the RNA duplex data

Currently, any analysis of duplex data requires state-of-the-art 
software. All published RNA duplex probing studies establish 

and propose a corresponding, dedicated computational anal- 
ysis pipeline alongside their particular experimental protocol 
for generating the raw RNA duplex data. Otherwise, the cor- 
responding raw duplex reads could not have been analysed 

by the corresponding studies. Each experimental protocol cur- 
rently comes with its own computational analysis pipeline.
While this current state of affairs is understandable, the dif- 
ferences between these computational analysis pipelines make 
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Figure 1. Ov ervie w of the RNA duple x probing data analy sis with DUPLEXDISCOVERER. Experimental part: depending on the e xperimental protocol, the 
RNA duple x es are captured through re v ersible UV-dependent cross-linking with probing compound or through cross-linking to the bound protein. After 
the protocol-specific fragmentation, ligation, and enrichment steps, sequencing libraries are prepared, where RNA duple x es are recorded as chimeric 
inserts. Computational part. Classification: reads are categorized by the type of alignment. Only two-arm split reads are retained for further analysis. 
Multi-mapped reads can be omitted or analysed assuming them as unique. Filtering: two-arm split reads are compared against a splice junction database 
and disregarded if the chimeric junctions coincide with a splice junction. Reads with unexpectedly short chimeric junctions are filtered out as mapping 
artefacts. Clustering: chimeric reads are clustered by the amount of overlap between the alignments and collapsed into ‘duplex groups’ (DGs). 
Post-processing: DGs are annotated with transcriptome or genome features. Base-pairing and hybridization energies are calculated. The probabilities of 
the DGs being the result of the random ligation are estimated based on the corresponding abundances of the genes or transcripts. 
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the replication and principled comparison of results difficult
to impossible. Moreover, any user wishing to refine or ad-
just selected steps of any computational analysis pipeline is
faced with the daunting task of having to delve deeply into
the source code of the software that is typically not laid out
in a modular way. 

In order to make the computational handling of RNA du-
plex data more uniform and efficient, several computational
pipelines have already been proposed [ 23–25 ]. We discuss
their main features below and summarize their differences in
Table 1 . 

RNAnue 
RNAnue [ 24 ] is a computational analysis pipeline that takes
the raw reads of an RNA duplex probing experiment as in-
put and outputs clustered DGs. The main steps of RNAnue
follow the outline described above, with the addition of the
steps for trimming raw reads. The authors of RNAnue claim
that they obtain a higher yield (1–1.5) of chimeric reads com-
pared to the respective original publications [ 14–16 ]. The in-
crease in sensitivity is attributed to the use of the mapping
method Segemehl [ 26 ], which has been shown to find more
correct split mappings. In addition to the statistical evalua-
tion and the use of hybridization energies, RNAnue offers
a so-called complementarity score as an additional way of
filtering DGs. 

RNAnue can be considered a solid choice for the anal-
ysis of duplex data. The main obstacle to its practical use,
however, is its implementation, which is detached from the
commonly used toolset for RNA-seq analysis. Also, RNAnue
is implemented as a C++ package with multiple dependen-
cies that requires compilation and packaging by experienced
users. In addition, the memory benchmarks for RNAnue im-
ply that the package has to be built for a high-performance
computing (HPC) environment which many users may only
have restricted access to, further limiting its use in practice.
For our work with duplex data, neither we nor our HPC IT
specialists were able to successfully install and test this tool
due to numerous dependencies and packaging issues. See
Supplementary Table S1 for additional details. 

ChiRA 

ChiRA [ 23 ] has been developed as a complete analysis and vi-
sualization framework for duplex data. ChiRA differs signif-
icantly from other approaches and includes several steps that
are exclusive to this method as it relies on transcriptome rather
than genome alignments. It aims to solve the problem of map-
ping the chimeric reads by first collecting as many ambiguous
read alignments as reasonable and resolving them probabilis-
tically later. 

ChiRA ’s post-mapping algorithm involves several steps.
Briefly, ChiRA considers each part of the split alignment of
a duplex read separately and—for clustering of DGs—builds
a so-called dataset of common read loci (CRL), i.e. groups
of mapping sites that are aggregated if they share a certain
number of multi-mapped reads. ChiRA uses an expectation-
maximization quantification algorithm to estimate the expres-
sion of CRLs and simultaneously selects the most likely CRL
and transcript attributed to the RNA duplex. 

The complexity of the ChiRA pipeline and the need to re-
solve ambiguities introduced by the transcriptome mapping
can be viewed as a disadvantage compared to other compu-
tational analysis pipelines. In particular, quantifying the ex- 
pression for loci of dynamic size is a procedure for which 

it can be difficult to find the right intuition about the al- 
gorithm’s parameters or the interpretation of the notion of 
‘locus expression’ in terms of TPM units. ChiRA is imple- 
mented as a set of Python scripts and as a complete GALAXY- 
based analysis and visualization pipeline [ 31 ]. ChiRA was de- 
veloped and tested on the published CLASH data sets and 

supports the use of split references, one containing one type 
of RNA microRNA (miRNAs) and another containing the 
rest of the transcriptome, making ChiRA best suited for the 
analysis of CLASH duplex reads where such a dedicated 

split reference will highlight any interactions involved with 

miRNAs. 

CRSSANT 

Developed by one of the authors of PARIS , CR SS ANT [ 25 ] 
provides a complete RNA duplex data processing pipeline us- 
ing a state-of-the-art alignment scoring approach and a thor- 
ough classification and clustering methodology. CR SS ANT 

proposes a considerable overhaul of the alignment procedure 
by disabling the STAR gap score penalties and relaxing other 
chimeric alignment scoring settings. These changes aim to in- 
crease the number of chimeric reads that can be detected and 

to recover the short alignments that share loci with more re- 
liable ones. CR SS ANT uses an extended classification scheme 
which allows the user to keep track of all mapped reads,
chimeric or otherwise. A special feature – implemented for the 
first time in CR SS ANT – is the categorization of reads mapped 

with more than one split into the separate gapm group. This 
allows for the possibility of investigating more complex ar- 
rangements of RNA duplexes. The clustering of chimeric reads 
is implemented by building multiple gene–gene networks from 

overlapping reads and searching for DGs using cliques or a 
spectral community detection algorithm. CR SS ANT does not,
however, provide any hybridization scores or any statistical 
evaluation of reported interactions in terms of estimated reli- 
ability values or p -values. The computed DGs can, however, at 
least be filtered either by coverage or by the minimum number 
of reads supporting the DG. 

The main drawback of CR SS ANT is its significant require- 
ment for computing time and memory. The complete analy- 
sis of a single sample of an RNA duplex probing experiment 
takes days, even with multi-threading enabled, see Fig. 2 . Fur- 
thermore, the clustering of reads is based on the existing an- 
notation and can thus only find DGs that overlap with al- 
ready known genes. This limits the usefulness of CR SS ANT 

for detecting RNA duplexes formed by interaction with novel 
transcripts that are currently missing from the annotation, e.g.
small non-coding RNAs. CR SS ANT is implemented as a set 
of Python scripts that can be executed step by step. Note that 
it also requires the prior computation of some auxiliary files 
such as genome coverage tracks and gene annotations. 

RNAContacts 
RNACont a cts [ 30 ] is a generic method, mainly designed for 
processing of the RIC-seq RBP-dependent RNA duplex prob- 
ing data [ 20 ]. It is implemented as a Snakemake-based pipeline 
which can map and identify paired-end chimeric reads, clus- 
ter them by ligation points and calculate DG abundance [ 32 ].
It incorporates a two-step mapping procedure, which takes 
the RNA-seq library matching the sample to refine the splice- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
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Table 1. K e y differences betw een the computational methods f or analy sing RNA duple x data DUPLEXDISCOVERER is compatible with multiple input types 
and is the only package implemented to support interoperability with existing tools and formats of Bioconductor 

Method Mapping Adapted for Clustering Annotation- Filtering Visualization Implemented in 
Library 
type 

dependent 

RNAnue [ 24 ] Segemehl [ 26 ] Any Read overlaps and No Binomial test, IGV , .sam file C++17 package SE 
transcript annotation complementarity 

ChiRA [ 23 ] CLAN [ 27 ] , CLASH Common read loci Yes TPM, Galaxy-tools Python scripts SE 
bwa-mem [ 28 ] hybridization energy 

CR SS ANT [ 25 ] STAR[ 29 ] PARIS Read overlaps Yes Coverage IGV (bedpe, sam) Python scripts SE 
RNACont a cts [ 30 ] STAR RIC-seq Chimeric junctions Yes None UCSC tracks Snakemake PE 
DuplexDiscoverer STAR , any Any Read overlaps No Hybridization energy, Gviz track, R package Both 

Binomial test IGV (bedpe, sam) 

Abbreviations: TPM: transcript-per-million, SE / PE: single / pair-end RNA sequencing reads. 

Figure 2. Compute time requirements of DUPLEXDISCOVERER compared to that of other methods, a v eraged f or n = 2 replicates of LIGR-seq , PARIS 
HEK, SPLASH ES, and RIC-seq–ribosomal RNA (rRNA) depleted HeLa cells RNA duplex data. As the separate analysis steps routines differ between the 
methods, the subroutines were annotated by their conceptual similarity. The post-processing step (calculation of hybridization energies) is not 
implemented in CRSSANT and RNACONTACTS and was omitted by us in CHIRA due to the excessive runtime requirements. 
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junction (SJ) database before mapping the RIC-seq prob-
ing data. RNACont a cts does not embed any particular DG
filtering strategy other than read coverage, leaving the calcu-
lation of the necessary metrics for the user. 

Motivation for developing a new tool for analysis
of the RNA duplex data

The main barrier to the detection and functional analysis of cis
and trans RNA–RNA interactions in transcriptomes in vivo
is the poor usability, the conceptual disadvantages and the
high time and memory requirements of all existing compu-
tational pipelines for analysing duplex data. Given the rela-
tively new and conceptually challenging nature of these data,
it is reasonable for the user to try running any of the exist-
ing pipelines with different pipeline settings—for example—
to adjust the parameters that affect the DG clustering or
the filtering options. This may be particularly necessary in
the case of CR SS ANT , where the spectral clustering algo-
rithm requires the user to specify values for the eigenvalue
threshold as well as minimum chimeric read overlap cutoffs.
The typical execution time of tens of hours for processing
a single sample of RNA duplex data, however, makes the
optimization of different parameter settings computationally
prohibitive. 

Moreover, every duplex analysis pipeline encodes a partic-
ular alignment tool with a specific set of parameter values.
While the limitation of the computational analysis pipeline
to one or a few alignment tools is practically unavoidable, it
remains desirable to give the user full control over the align-
ment rules. As we mentioned earlier and as we will show in
the results section below, the correct mapping and extraction
of chimeric reads is a key step that requires particular atten-
tion. It is also the step that is most likely to require adaptation
to a particular experimental protocol. 

Currently, every computational analysis pipeline is rigid in
terms of its ability to adapt the mapping step. RNAnue is only
compatible with Segemehl , ChiRA can be used with CLAN
or bwa-mem , and CR SS ANT relies on its own Python scripts,
which can only parse the sam-files generated by STAR [ 29 ]
in a specific configuration and does not allow for any multi-
maps in duplex alignments. Once changes have been made to
the mapping step, the compatibility with the existing down-
stream steps is no longer guaranteed. In addition, neither
RNA duplex analysis pipeline offers the ability to feed previ-
ously aligned or pre-existing duplex read data as input into
the pipeline to identify DGs, calculate hybridization ener-
gies or perform a statistical evaluation. These significant con-
ceptual design limitations discourage any customization of
these analysis pipelines, prevent the use of intermediate re-
sults, and leave the potential user bound to the explicit or im-
plicit assumptions made by the authors of the computation
pipeline. 

Our new method—DuplexDiscoverer —is a computa-
tional pipeline for analysing duplex reads that aims to over-
come all of the above challenges in the sense that it aims
for (i) reasonable time and memory requirements, (ii) flex-
ibility to change the strategy for mapping chimeric reads,
(iii) high modularity in the pipeline structure, allowing the
user to easily modify and add key analysis steps, and (iv)
built-in visualization capabilities. DuplexDiscoverer is im-
plemented as an R package. It facilitates the incorporation of 
additional layers of information into the computational data 
analysis, enables comparisons between samples and integrates 
seamlessly with the R packages widely used for transcriptome 
analyses. 

Materials and methods

In this section, we describe the key procedures employed by 
DuplexDiscoverer and the data we used for analysis. Please 
refer to Fig. 1 for an overview of the key steps of our analysis.

Duplex-probing datasets analysed with
DUPLEXDISCOVERER

In order to investigate the merits of DuplexDiscoverer ,
we analysed publicly available data generated by the 
original RNA duplex probing methods—LIGR-seq [ 16 ],
SPLASH [ 14 ], and PARIS [ 15 ]. In addition, we also 

processed two samples of RIC-seq in order to assess 
the functionality of DuplexDiscoverer to handle paired- 
end data. The full list of samples analysed and the 
pre-processing procedures we applied can be found in 

Supplementary Table S2 . 

Simulated RNA duplex probing datasets analysed
with DUPLEXDISCOVERER

To benchmark DUPLEXDISCOVERER against existing meth- 
ods, we used four samples SRR6811718, SRR6811722, 
SRR6811723, and SRR6811728 from a publicly available 
dataset of 100 bp single-ended RNA-seq from HeLa cells [ 33 ] 
to generate an artificial dataset of two-arm chimeric reads.
To test the performance as a function of the read length, we 
generated samples with variable length of chimeric segments 
(referred to as arms) of 20, 30, 40, and 50 nt. Each simu- 
lated sample features a specific combination of arm lengths 
and comprises artificial DGs of 5–15 chimeric reads and 

a single RNA-seq library serving as background. To mini- 
mize background-induced variability and benchmark the de- 
tection of simulated DGs, we used SRR6811722 as the sole 
background library. For the samples used for benchmark- 
ing, we added equal quantities of 30.000 cis- (both arms 
map to the same gene) and trans- (arms map to different 
genes) DGs. Key characteristics of the simulated samples 
are shown in Supplementary Table S3 . Additionally, to con- 
trol SJ filtering in DUPLEXDISCOVERER and CR SS ANT,
we extracted 100 000 non-chimeric SJ spanning reads from 

background libraries and added them to simulated datasets 
(see Supplementary Tables S4 and S5 for the breakdown of 
detected read types in the background and simulated con- 
trols). For further details on artificial DG simulation, refer to 

Supplementary Note S1 . 

Mapping of the split-reads

To make DuplexDiscoverer conceptually modular and in- 
dependent from any specific alignment tool as well as any 
RNA-seq-based, library-specific read pre-processing, we sep- 
arated the mapping of the chimeric reads from the rest of 
the analysis pipeline. DuplexDiscoverer analysis proceeds 
after the mapping is performed. We choose STAR [ 29 ] as 
the default alignment tool, as it is widely used for concep- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
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ually similar problems, e.g. for detecting fusion genes from
NA-seq reads. DuplexDiscoverer accepts as input the
himeric.junction.out file of STAR, which contains
he one-line records for each split alignment. When running
TAR , we utilize parameter –alignIntronMax 10 , which forces
early all split-mapped reads to be reported as chimeric and
dds the novel splice junctions to the output. The full list
f DuplexDiscoverer ’s default mapping parameters can be
ound in Supplementary Table S6 . Splice junction reads are
istinguished from RNA duplex splits and filtered out in sub-
equent analysis steps. 

If the user’s choice is to use a different tool than STAR
or mapping, the input for DuplexDiscoverer can be also
rovided in terms of an input file in bedpe-format specified
y bedtools [ 34 ]. In that case, split reads mapped with an-
ther alignment tool need to be extracted from the sam-file
nd provided to DuplexDiscoverer as a bedpe-formatted in-
ut file, where the first ten mandatory fields can be followed
y any number of user-defined columns. The paired-end reads
re supported, and the chimeric output can be used as-is if
TAR is employed for mapping. For a bedpe-format input file,
he following convention in the CIGAR string is adapted: ‘Lp’
hould be used for the gap between the read mates alignments
eparated by L nucleotides. Note that the value of L can be
egative if these mates overlap. We use GENCODE.v44 as the
eference transcriptome to generate the genome indexes. Du-
lexDiscoverer can also be used after the reads are mapped
o the transcriptome. It is, however, left up to the user to de-
ide how to process ambiguous chimeric read-to-transcript
elations. 

lassification and filtering of the alignments

fter the split reads are imported into DuplexDiscoverer ,
ach pair of split-read alignments is categorized into one or
ultiple of the following categories: 

• multi-split, if the read is aligned to more than two loca-
tions

• multi-map, if the read is mapped ambiguously
• two-arm, if the read is aligned in split-aligned to two lo-

cations and does not belong to any of the categories be-
low:
◦ self-overlap, if the read is split-aligned to two locations

and those locations overlap on the same strand
◦ antisense-overlap, if the read is split-aligned to two

locations and those locations overlap on opposite
strands

◦ small-gap, if the read is split-aligned to two locations
and the chimeric junction is shorter than the user-
defined threshold (10 by default)

• non-chimeric, if the read is continuously mapped or er-
roneously placed into the chimeric output.

If the CIGAR strings are not provided in the output, multi-
plit alignments cannot be identified, and any part of the split
lignment is considered as the entire chimeric arm. Every cat-
gory can be saved for separate treatment, i.e. the re-mapping
f the multi-split alignments to the transcriptome. For our
nalysis in the downstream steps, only the two-arm category
as used. Two-arm alignments on the same strand and chro-
osome are filtered by the minimum chimeric junction length

nd proximity to the splice junction. The minimum gap be-
ween the two arms was set to 10 nucleotides. To differenti-
te between chimeric and splice junctions or a circular RNA,
both the start and end sites of the chimeric junction are re-
quired to be outside of the + / − 15 nt regions flanking the
start and end coordinates of exon–exon junctions. Both the
minimum chimeric junction length and the threshold for call-
ing the splice junction can be readily changed in the analysis
pipeline. 

Clustering local alignments into DGs

To merge the two mapped parts of a duplex read to the DGs,
DuplexDiscoverer uses an approach based on graph clus-
tering. Each mapped part of the two chimeric arms is treated
as a node of a graph. If two duplex reads overlap in both
mapped parts, an edge between the corresponding nodes is
created. Each edge is weighted by an overlap score, similar
to the ones used by RNAnue and CR SS ANT . The definitions
of the overlaps and shifts between the chimeric reads can be
found in Supplementary Fig. S1 . Before finding the commu-
nities in the graph, the minimum overlap / span ratio thresh-
old with a default of 0.3 is applied to prune the edges cor-
responding to poorly overlapping reads. Decreasing this pa-
rameter can increase the number of reads in DGs at the cost
of longer and less well-defined RNA duplex loci. This default
value for the overlap / span was chosen to optimize the global
identification of reliably detected DGs. If the goal of the user
is, however, to evaluate DG read support for the individual
RNA helices at higher resolution, this value can be increased,
resulting in an increased number of DGs with reduced read
count. 

To call the DGs from the chimeric reads, we use an itera-
tive clustering strategy, see Supplementary Fig. S2 . In the first
step (collapsing), we collapse all reads which have identical
alignment coordinates and mapping scores into single enti-
ties. In graph-based clustering, these reads will correspond to
the nodes connecting the same set of neighbours because they
will overlap the same reads. Collapsing therefore reduces the
connectivity of the resulting graph, without losing any infor-
mation. 

In the second step (iterative merging), further collapsing is
performed. We define the graph based only on the reads, which
overlap and are shifted by a small deviation of + / −2 nt rel-
ative to each other in both mapped parts (arms). We use the
Louvain community detection algorithm from the R igraph
package [ 35 ] to find the clusters of reads. Each cluster is
then merged into a single DG with redefined boundaries. This
step is repeated multiple times—a maximum of five iterations
or until there are no duplex alignments (DGs and individ-
ual reads) which are shifted by only a small amount. In the
last step called ‘duplex group finding’, the graph based on
all the overlapping duplexes is formed, and the same com-
munity detection algorithm is applied to find the final set
of DGs. 

Annotation of the DGs

We use genes as the basic units of annotation for the inter-
action clusters. Each interaction can, however, be assigned to
multiple features and overlayed with multiple tracks. Thus,
if the sample-specific transcriptome is known, each interac-
tion can be readily assigned to an expressed transcript(s) or
the respective exon(s). Generally, any custom track provided
as an R GenomicRanges [ 36 ] object can serve as a reference
annotation with some layer of information. The extraction of
gene and transcript annotations from NCBI and GENCODE

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
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GTF files is supported. By default, DG arms are annotated
with gene names: DGs with arms corresponding to different
genes are classified as trans , while those with both arms match-
ing the same gene are classified as cis . When transcript-level
annotation is used, trans and cis specifically refer to inter- and
intra-transcript RNA–RNA interactions, respectively. 

Calculating p -values and hybridization scores

One of the known sources of spurious signals in high-
throughput duplex data is due to random ligations. Chimeric
reads can be present in the duplex data as the result of two
molecules being occasionally ligated due to their spatial prox-
imity or their high abundance in the cell. To account for the
latter scenario, a common approach used elsewhere [ 15 , 19 ,
24 ] is to model the probability of such a ligation event with
the binomial distribution. This model assumes that the prob-
ability of two non-interacting molecules originating from two
different genes being ligated is proportional to the relative
expression levels of their respective genes. In mathematical
terms, it corresponds to the independent draws of transcripts
‘ a ’ and ‘ b ’ with the following probability density. 

P(a, b) ∝ 

⎧ ⎨ 

⎩ 

2 · P(a ) · P(b) if a : b is observed and a � = b 

P(a ) · P(b) if a : b is observed and a = b 

0 else 
(1)

P(a ) = 

N reads(a) 
total N reads 

(2)

For each DG, the binomial test is applied to estimate the p -
value. By default, we apply the Benjamini–Hochberg (BH) cor-
rection and retain DGs with a significance level < 0.1 for sub-
sequent analysis. For the gene-level counts, the quantification
of STAR or FeatureCounts is supported. In case the DGs
are unambiguously annotated with their transcript identities
(i.e. if the transcript quantification is performed by conven-
tional computational analysis of an RNA-seq library in paral-
lel), the random ligation model can be used by switching from
gene to transcript counts. To predict the hybridization energy,
we use the RNAduplex method from the Vienna RNA [ 37 ],
which is invoked as an external software package. 

Implementation

DuplexDiscoverer is implemented as an R package. For
storing objects for duplex data, we utilize the functionality
of the InteractionSet library [ 38 ], originally designed for
the analysis of the HiC data. 

Analysis steps such as the import of split-read data, pre-
processing, classification, clustering, annotation, and visual-
ization are implemented as separate functions, allowing users
to readily specify any number of intermediate steps for ad-
ditional filtering, sub-setting or visualizing the data. Post-
processing steps such as the calculation of hybridization en-
ergies, the estimation of p -values or the re-clustering of the
reads into more dense or more sparse DGs can be done on
any subset of data, significantly facilitating the detailed data
analysis and alleviating the necessity to re-run the entire anal-
ysis pipeline whenever a specific change is introduced. 

Output and visualization

DuplexDiscoverer supports the output in bedpe- and sam-
formats. We implemented a custom annotation track based on
the Gviz -engine [ 39 ] which enables the plotting of the inter-
actions as a dedicated annotation track for a defined genomic 
region. 

In addition, we provide functions which conveniently dis- 
play two non-overlapping regions defined by the respective 
genomic loci involved in the interaction, allowing a user to 

visualize genome-wise distant transcript features. 

Comparisons between samples

Comparisons between the DGs are not entirely straightfor- 
ward for two reasons. First, many-to-many and one-to-many 
relations are natural when comparing ranges. One DG may 
match multiple DGs in another group, which can result in 

multiple accounts of a single observation. Second, the sizes of 
the DGs can vary if they are produced by different protocols 
or if different computational post-processing methods were 
used. We overcome these problems by using the following pro- 
cedure. We first assemble the non-redundant super-set of RNA 

duplexes by gathering all samples which are to be compared,
see Supplementary Fig. S3 . DGs in this set are then merged 

into a single representative DG if they have > 0.4 overlap / span 

ratio in each arm. 
Samples are then compared to the super-set and each one- 

to-many hit between the super-set and the tested sample is 
counted only once. In this manner, we avoid over-inflating the 
amount of overlap between samples and preserve the ability 
to find imperfect matches between DGs of proximal loci, yet 
different sizes. The comparison procedure is implemented as 
a part of the DuplexDiscoverer package and can be called 

for an arbitrary number of samples. This facilitates the anal- 
ysis of replicate reproducibility as well as the identification 

of the RNA–RNA interactions reliably observed by several 
protocols. 

Benchmarking of DUPLEXDISCOVERER and other
methods

To assess the accuracy and time-memory performance of Du- 
plexDiscoverer and other methods, we used the datasets 
emulating raw data of RNA duplex probing. If the simulated 

chimeric read is split and mapped to the correct pair of loci, it 
is considered a true positive (TP). Reads that are simulated 

as chimeric but do not appear in the chimeric output and 

reads that were not simulated but appeared as chimeric are 
considered false negatives (FNs) and false positives (FPs), re- 
spectively. Sensitivity and positive predictive value (PPV) were 
calculated as follows: For simulating the accuracy of the DG 

detection, rather than individual chimeric reads, we counted 

DG reported by the methods as TP, if it contained at least two 

correctly identified chimeric reads, and as FN, if zero reads of 
the simulated DG were identified. 

Sensitivity = 

TP 

TP + FN 

(3) 

PPV = 

TP 

TP + FP 

(4) 

Specificity was not calculated as true negatives would repre- 
sent the number of non-chimeric reads that would not make 
it into the chimeric output, which can easily be inflated by 
adding more non-chimeric reads to the simulated dataset. 

We used CPU clock time and memory [resident set size 
(RSS)] metrics implemented in Snakemake [ 32 ] to calcu- 
late the time requirements of ChiRA and CR SS ANT and 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
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 proc.time() and gc() for DuplexDiscoverer . Time was
easured in minutes and normalized by read count. Ei-

her method was run on the HPC cluster node with the
ollowing resources available: Intel Xeon E5-2667 v4
 cores / 16 threads Max RAM: 256 GB Storage: 
DN-SFA14K . 
We compared DuplexDiscoverer to ChiRA and

R SS ANT . For RNACont a cts , we evaluated only its
apping configuration (see Supplementary Fig. S4 ), as this
ipeline does not support the single-end RNA-seq samples
nd therefore not suitable for direct comparisons with other
ethods or immediate processing of the SPLASH , PARIS , or
IGR-seq data. We were unable to install the RNAnue due

o multiple packaging issues. 
Hybridization energies for DuplexDiscoverer and

R SS ANT were computed with RNAduplex . For ChiRA we
sed IntaRNA [ 40 ] with default parameters, by a separate
all after completion of the main pipeline. Hybridization
nergies were not calculated for RNACont a cts because this
ipeline does not report the DG strand in the output. 

iltering thresholds used for analysis of results of
UPLEXDISCOVERER and other methods

ifferent methods support different and incompatible filtering
trategies, i.e. ChiRA supports filtering by RNA duplex hy-
ridization energy, abundance in TPM and confidence scores,
R SS ANT results can only be filtered by the geometric mean
f the coverage between the DG arms covfrac or the number
f supporting reads, and only DuplexDiscoverer estimates
 -values. For the analysis of data from RNA duplex prob-
ng experiments and comparisons between results produced
y methods, we chose to apply compatible filtering thresh-
lds as they would be used to derive biological insights. For
hiRA , we selected only DGs with confidencescore = 1 and
PM > 10. For CR SS ANT and DuplexDiscoverer , we im-
osed a hard threshold of at least five reads in the DG. For
uplexDiscoverer , we kept DGs with BH p -values < .1. 

esults and discussion

enchmarking time and memory requirements

e measured the compute time required by DuplexDiscov-
rer and compared it to that of other tools which can process
ingle-end RNA-seq libraries. DuplexDiscoverer completes
ts analysis substantially faster, reducing the computing time
or the complete analysis four-fold and DG clustering time
o almost 20-fold compared to ChiRA and CR SS ANT , with
apping and hybridization being the most time-consuming

outines, see Fig. 2 . 
For CR SS ANT DuplexDiscoverer and ChiRA tools, the

eak memory is used during the clustering of the chimeric
eads, see Table 2 . For RNACont a cts , the most memory-
onsuming part is mapping. We attribute the higher speed
nd the lower memory usage of DuplexDiscoverer in com-
arison to CR SS ANT and ChiRA to our optimized read
ggregation strategy. The collapsing and iterative merging
rocedure of DuplexDiscoverer reduces the complexity of
he graph formed by all overlapping reads and thereby sub-
tantially decreases the compute time and memory required
or finding the DGs. We found that LIGR-seq produces far
ore highly abundant RNA duplexes than other protocols see

upplementary Fig. S5 . Applying DuplexDiscoverer to the
duplex reads produced by this protocol is thus particularly
beneficial for the identification of DGs. Clustering of 16 mil-
lion duplex reads of LIGR-seq into DGs using DuplexDis-
coverer takes < 10 min with an optimized read aggregation
strategy, compared to the 2 h when the iterative merging is
disabled. 

Benchmarking DG detection accuracy

The main challenge in evaluating the performance of RNA-
RNA duplex identification methods is the lack of a ‘gold stan-
dard’ transcriptome-scale dataset that includes not only a set
of known RNA secondary structures (i.e. cis RNA–RNA inter-
actions) but also of known RNA–RNA interactions (i.e. trans
RNA–RNA interactions). Specialized RNA databases such as
snoDB [ 41 ], mirTarBase [ 42 ], and large-scale resources such
as RNAInter [ 43 ] contain a substantial number of data sets
for different organisms. In most cases, information on RNA–
RNA interactions is available in the form of gene or transcript
names of the interactors, however, without the detailed posi-
tions of the interacting loci. The identification of these RNA
duplexes, however, is the purpose of the RNA duplex prob-
ing methods. Furthermore, cross-checking the names of inter-
acting molecules from databases with those detected in du-
plex probing experiments would not evaluate the performance
of the computational pipeline because each duplex probing
method has a preference for certain types of RNA–RNA in-
teractions. Therefore, observing or detecting the RNA–RNA
interactions known in a database cannot be used to assess the
performance of any computational method for detecting RNA
duplexes. 

To assess the accuracy of DuplexDiscoverer and com-
pare it to the other methods, we tested it on simulated data
that approximate the sequenced RNA-seq libraries produced
in the duplex probing experiments, see the above section for
more details on how this dataset was made. Several datasets
of different chimeric read lengths were evaluated for calculat-
ing the PPV and sensitivity, see ‘Materials and methods’ sec-
tion. DuplexDiscoverer has demonstrated substantially bet-
ter performance on the simulated data, with the best combina-
tions of PPV and sensitivity values obtained for the datasets
with the maximum simulated chimeric arm length of 50 nt,
see Fig. 3 and Supplementary Figs S6 and S7 for the cis and
trans subsets and per-sample comparisons. This benchmark
has shown that ChiRA is overall inferior to DuplexDiscov-
erer and CR SS ANT , particularly in terms of PPV due to re-
porting a high number of false positive DGs formed by the
background, non-chimeric ‘normal’ reads. 

To assess the extent to which the accuracy of DG de-
tection depends on the initial choice of the mapping pa-
rameters, we ran DuplexDiscoverer using several mapping
schemes on the simulated data set, see Supplementary Table S6
and Supplementary Fig. S4 , including mapping configura-
tions used in RNA duplex detection tools RNACont a cts ,
CR SS ANT, and ARRIBA [ 44 ] a computational tool for iden-
tifying fusion transcripts from RNA-seq data. We find that
the accuracy of RNA duplex detection in DuplexDiscov-
erer depends mainly on the accuracy of the alignment, see
Supplementary Fig. S4 . If the simulated read is correctly
mapped, it was found in 96% of cases within the designed
DG or as part of a larger DG formed by multiple overlapping
DGs. Surprisingly, we achieve high values of PPV and sensitiv-
ity by mapping reads with the CR SS ANT parameters followed

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
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Table 2. Memory requirements—maximum RSS of DUPLEXDISCOVERER in comparison to the other methods, averaged for n = 3 replicates of PARIS , 
n = 2 of LIGR-seq , SPLASH ES cells, and RIC-seq –rRNA depleted HeLa cells 

Method Step in the pipeline N threads Experiment Peak RAM usage, Gb 

DuplexDiscovereR Clustering 1 (main pipeline) LIGR-seq AMT+ 17.0 
Mapping 16 (mapping) PARIS HEK 14 
(STAR) SPLASH ES 14.5 

RIC-seq HeLa 13.1 
CR SS ANT Clustering; crssnt.py 8 PARIS HEK 28.5 

LIGR-seq AMT+ 52.2 
SPLASH ES 35.8 

ChiRA Clustering; chira_quantify.py 8 PARIS HEK 23.7 
LIGR-seq AMT+ 46.4 
SPLASH ES 21 

RNAContacts Mapping; align.pass2 (STAR) 1–16 (not adjustable) RIC-seq HeLa 13.1 

Figure 3. Benchmarking the predictive performance of DUPLEXDISCOVERER , CHIRA, and CRSSANT on the simulated data containing artificially created 
DGs. The length of the chimeric parts (arms) of the reads is variable between samples, with the total length of the artificial chimeric read equal to twice 
the chimeric arm length. 

 

 

 

by DuplexDiscoverer analysis downstream rather than run-
ning CR SS ANT , suggesting that correctly mapped chimeric
reads may be omitted by this pipeline. 

DUPLEXDISCOVERER reliably detects cis and trans
RNA–RNA interactions

Due to persistent efficiency bottlenecks in RNA duplex prob-
ing experiments, the results produced by these experiments 
are still sparse, making it challenging to build a proba- 
bilistic model that distinguishes the biological variability in 

cis and trans RNA–RNA interactions from the noise intro- 
duced by the experimental protocols. To account for a known 

source of spurious signal in RNA duplex data—random 

ligation—DuplexDiscoverer uses the model proposed in 

[ 16 ]. 



DuplexDiscoverer: a computational method for RNA–RNA interaction data analysis 11 

Figure 4. Comparisons of three RNA duplex detection methods for the two replicates of SPLASH duplex probing data performed on human embryonic 
stem cells. After accounting for random ligation events, only a small fraction of reads reported exclusively by DUPLEXDISCOVERER is observed in both 
replicates. 
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Another approach to identifying the most reliably detected
is and trans RNA–RNA interactions is to analyse the re-
roducibility of observations by comparing biological repli-
ates. Due to the absence of reference RNA interactome
atasets, a per-replicate analysis is currently the only way
o narrow down the credible observations in the duplex
ata. 
We have observed that selecting DGs predicted by Du-

lexDiscoverer by the combination of replicate support and
 -values corresponds to the lower hybridization energy—see
upplementary Fig. S8 , indicating that the random ligation
odel used within DuplexDiscoverer provides the reason-

ble approximation to account for technical noise in the prob-
ng experiments, allowing the user to adopt the most reliable
esults for downstream analysis. 

To compare the results of different methods, we analysed
he duplex data of several series of RNA duplex probing ex-
eriments with DuplexDiscoverer , ChiRA, and CR SS ANT .
e do not detect significant differences in the distribu-

ions of the hybridization energies between results produced
y three different pipelines, while the distributions of DG
lengths produced by either tool are moderately different—see
Supplementary Fig. S5 . 

The reproducibility analysis applied to all pipelines high-
lights substantial differences between methods. Figure 4
shows the comparison between the predictions for the two
replicates of the SPLASH experiment, see ‘Materials and
methods’ section for details on how the results were filtered
and Supplementary Figs S9 and S10 for other experimen-
tal protocols and Supplementary Fig. S11 for the extended
display of all intersection categories. In the instance of the
SPLASH data, which has the longer chimeric reads and the
least mapping uncertainty, most of the RNA duplexes pre-
dicted by DuplexDiscoverer in both biological replicates
are also supported by the other methods. For PARIS , LIGR-
seq , the level of cross-replicate support is lower with the ten-
dency of higher ‘single-replicate - multiple methods’ overlap
between DuplexDiscoverer and CR SS ANT . PARIS2 and
RIC-seq have the lowest level of replicate reproducibility for
DGs found by a single method as well as by a combination
of DuplexDiscoverer with CR SS ANT and RNACont a cts,
respectively. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
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Figure 5. Example of visualization of LIGR-seq DGs on the HDGF gene detected with DUPLEXDISCOVERER . Cis and trans DGs are split into separate 
tracks. For the trans DGs, both names of interacting genes are displa y ed. T he number of reads supporting each DG is sho wn in brack ets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We found that the group ‘multiple replicates—single
method’ has substantial size for each type of experiment
and computational method. Prioritization based on hybridiza-
tion energy or p -value is particularly important for this
category because it includes both ‘true’ RNA duplexes de-
tected by only one method and the spurious false positive
observations. Most of the DGs in this group for DuplexDis-
coverer have low statistical significance, which discrimi-
nates it from the DGs detected by multiple methods—see
Supplementary Fig. S9 . 

Finally, the group of ‘both replicates—all methods’ consis-
tently has a high fraction of the statistically significant DGs.
The majority of the RNA duplexes detected in all protocols
(‘both replicates all methods’ on Fig. 4 and Supplementary 
Figs S9 and S11 ) are also those with the best p -value ranking
according to the p -value estimates by DuplexDiscoverer .
Overall, the DGs detected by DuplexDiscoverer coincide
most with those of CR SS ANT for all probing methods, while
the overlap with the results of ChiRA is moderate. Taken to-
gether, we conclude that selecting the DGs predicted by Du-
plexDiscoverer that are (i) reproducible between replicates
and (ii) filtered by the estimated p -value selects the most trust-
worthy RNA duplexes that generally have lower hybridiza-
tion energies and can also be found by other methods. 

Visualization

DuplexDiscoverer provides the functionality to create a
Gviz -based annotation track for visualization of detected
DGs, see Fig. 5 . This is particularly useful when analysing
RNA duplex data in parallel with other assays, alleviating the
need to switch to another environment for exploratory analy-
sis or to create the track hub for web explorers i.e. UCSC [ 45 ].
Its use cases are not limited to cis RNA–RNA interactions and 

can be used to visualize the distant loci of the trans RNA du- 
plexes, which can be as far apart as the underlying genomic 
coordinates [ 45 ]. 

Conclusions

The field of RNA duplex probing is progressing. We expect 
further development of experimental protocols and more data 
to be generated in the near future. Technological advances 
may open up the possibility to quantitatively analyse and com- 
pare RNA structures and interactomes in different biological 
contexts and between conditions, possibly translating findings 
from fundamental RNA research into clinical applications.
Potential developments include the ability to probe RNA–
RNA interactions by targeting specific transcripts, reducing 
bias and increasing probe efficiency in high-throughput meth- 
ods. DuplexDiscoverer can easily be used by authors of new 

RNA duplex probing methods. The new levels of analysis i.e.
quantification procedures or new statistical models for filter- 
ing and comparing RNA–RNA interaction abundances may 
be required to exploit the full potential of RNA duplex data 
generated by a new generation of experimental methods. Du- 
plexDiscoverer provides a solid foundation on which such 

extensions can be built, facilitating the reproducibility and re- 
use of results. 

By making DuplexDiscoverer available to the commu- 
nity, we also hope that it will encourage and enable other re- 
searchers to incorporate the existing results from RNA du- 
plex probing experiments into their analyses. As we show,
there has been no reliable and convenient way to do this be- 
fore. DuplexDiscoverer is a highly customizable RNA du- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf266#supplementary-data
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lex data analysis method that implements raw data pro-
essing, essential statistical filtering, inter -sample compar -
sons, and visualization. DuplexDiscoverer is not tied to
ny particular mapping tool and is also suitable for the dis-
overy of RNA–RNA interactions with un-annotated tran-
cripts. Combined with the fact that the complete analy-
is takes significantly less time than other pipelines, Du-
lexDiscoverer is currently the fastest and most user-
riendly tool for the computational analysis of RNA duplex
ata. 
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