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intRoduction
Urothelial carcinoma is a prevalent malignancy that 

originates from the transitional epithelium of the bladder, 
ureter, renal pelvis, and urethra. Urothelial carcinoma often 
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presents as multifocal lesions, indicative of its heterogeneous 
nature. The progression of urothelial carcinoma is a com-
plex, multistage tumorigenesis process, typically unfolding 
through two pathways: (i) from urothelial hyperplasia to 

Extrachromosomal DNA (ecDNA) presents a promising target for cancer therapy; 
however, its spatial–temporal diversity and influence on tumor evolution and 

the immune microenvironment remain largely unclear. We apply computational methods to analyze  
ecDNA from whole-genome sequencing data of 595 patients with urothelial carcinoma. We demon-
strate that ecDNA drives clonal evolution through structural rearrangements during malignant 
transformation and recurrence of urothelial carcinoma. This supports a model wherein tumors 
evolve via the selective expansion of ecDNA-bearing cells. Through multiregional sampling of tumors, 
we demonstrate that ecDNA contributes to the evolution of multifocality and increased intratumoral 
heterogeneity. ecDNA is present in 36% of urothelial carcinoma tumors and correlates with an 
immunosuppressive phenotype and poor prognosis. Single-cell RNA sequencing analyses reveal that 
ecDNA+ malignant cells exhibit diminished expression of MHC class I molecules, enabling them to 
evade T-cell immunity. Finally, we show that sequencing of urinary sediment–derived DNA has excel-
lent specificity in detecting ecDNA.

SIgNIfICANCE: Our comprehensive analysis of ecDNA in urothelial carcinoma reveals its crucial 
role in driving the evolution and heterogeneity of multifocal cancer, as well as its early involvement 
in tumorigenesis. Moreover, this study sheds light on immune evasion mechanisms associated with 
ecDNA and offers valuable insights for developing targeted therapeutic strategies.
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papillary urothelial carcinoma and eventually to invasive 
cancer (1–3); and (ii) from urothelial dysplasia to carci-
noma in situ and ultimately to invasive cancer. The patho-
genesis of urothelial carcinoma involves a multifaceted  
interplay between genetic predisposition and environmental 
factors. Although considerable efforts focus on researching 
optimal treatment approaches, elucidating the molecular 
mechanisms driving malignant transformation and pro-
gression is crucial to optimize and personalize treatment 
(4, 5).

Oncogene copy-number amplification (CNA) plays a  
crucial role in urothelial oncogenesis (6–10). These ampli-
fications often manifest focally, with high amplitude, and 
are frequently present in the form of extrachromosomal 
DNA (ecDNA) circles (11, 12). Also known as double min-
utes (13), ecDNA refers to circular DNA particles derived 
from chromosomes, typically ranging from 100 kilobases 
(kbp) to several megabases (Mbp) in length (14, 15). ecDNAs 
have been found in multiple cancers (11, 16–18), and their 
frequency and composition are significantly influenced by 
the tissue of origin (19, 20). ecDNA can rapidly accumulate 
in cancer cells given uneven mitotic segregation of ecDNA 
attributed to their lack of centromeres (21). This inheri-
tance trait allows for ultra-rapid evolution of gene copy 
number (CN) and furnishes cancer cells with a competitive 
advantage over noncancerous cells when confronting selec-
tive pressures in cytotoxic treatments and tumor ecosys-
tems (21–23). Indeed, the presence of ecDNA is associated 
with an aggressive phenotype and unfavorable prognosis 
in several tumor types (11, 18–20, 24). We and others have 
previously demonstrated that ecDNA shapes genetic intra-
tumoral heterogeneity (10, 18, 25–28). Despite these ad-
vances, it is still largely unknown when ecDNA is acquired 
in the progression of many cancers such as urothelial car-
cinoma and how the dynamics of ecDNA in tumor space  
and time affect urothelial carcinoma tumor heterogeneity. 
One possibility is that ecDNA can emerge later in urothe-
lial carcinoma development and evolution, potentially re-
shaping the tumor immune microenvironment (TIME) in 
urothelial carcinoma, because (i) the acquisition of CNAs 
occurs late in clonal expansion in the urothelium (29); and 
(ii) the immunomodulatory genes are frequently encoded
on ecDNA (19, 30). Alternatively, the nonchromosomal
inheritance of ecDNA could arise early in tumor develop-
ment, as has been shown for the transition from Barrett’s
esophagus to cancer, with the intratumoral genetic hetero-
geneity arising as a consequence of random segregation
(21, 30).

Therefore, to delineate the molecular evolution of ecDNA 
in urothelial carcinoma pathogenesis, we analyzed single- 
regional and multi-regional whole-genome sequencing 
(WGS), whole-exome sequencing (WES), and Circle-seq on 
a large panel of tumors from 595 patients prospectively  
recruited into the Chinese Urothelial Carcinoma Genome  
Atlas (CUGA) study. To understand the transcriptional 
effects of ecDNA, we also analyzed bulk RNA sequencing 
(RNA-seq) and single-cell RNA-seq (scRNA-seq) data from 
the tumors. We show that urinary ecDNA can be a valuable 
marker for the detection of urothelial carcinoma in liquid 
biopsies.

Results
ecDNA Prevalence and features in 1,411 Urothelial 
Carcinoma Whole genomes

To explore the ecDNA landscape in urothelial carcinoma, 
we generated a large-scale, uniformly processed WGS inven-
tory. This inventory included 753 tumor samples, 296 tissues 
adjacent to tumor tissues [adjacent tissues (AT)], 195 blood 
samples, and 167 preoperative (1–3 days before definitive sur-
gery) voided urine samples. Samples originated from both the 
Yantai Yuhuangding Hospital UC dataset (YHD-UC, n = 493 
patients) and the Beijing Institute of Genomics (BIG) dataset 
(BIG-UC, n = 102 patients; Fig. 1A; refs. 31–33). This combined 
cohort (CUGA) of 595 patients represents a heterogeneous 
group of urothelial carcinomas in terms of age, pathologic 
stage and grade, tumor location, and molecular subgroups 
(Supplementary Tables S1–S8). None of the patients received 
any anticancer treatment before the collection of tumor spec-
imens during surgery. Notably, WGS data of 10% (61 of 595) 
of the patients involved multiregional tumors (57 cases) or 
matched primary−recurrent tumors (4 cases). We applied the 
AmpliconArchitect and AmpliconClassifier pipelines (34) 
to identify and reconstruct ecDNA from biopsy WGS data  
(Fig. 1A). Previous reports indicated that AmpliconArchitect 
and AmpliconClassifier have high efficiency in ecDNA detec-
tion, with a sensitivity of 90% (30).

We first examined the prevalence of ecDNA in our cohort. 
ecDNAs were found in 36% of tumor samples (217 of 595). 
Notably, ecDNAs were also present in 23% of urine samples 
(39 of 167) and 3% of ATs (9 of 296; Fig. 1B; Supplementary 
Tables S9 and S10). ecDNA was detected in a similar frequency 
across the BIG-UC (29%) and YHD-UC cohorts (38%; Sup-
plementary Fig. S1A and S1B). Moreover, the prevalence of 
ecDNA in urothelial carcinoma exceeded that of most cancer 
types previously reported in The Cancer Genome Atlas and 
Pan-Cancer Analysis of Whole Genomes cohorts, including 
hepatocellular carcinoma (10%) and gastric cancer (9%; Sup-
plementary Fig. S1A; Supplementary Table S11), suggesting 
that ecDNA may play an important role in urothelial carci-
noma development.

To understand the function of ecDNA in urothelial carci-
noma development, we explored its structural and sequence 
features. We observed significant structural variability in 
ecDNA, including single-locus ecDNA (35%, 113 of 440) 
and ecDNA formed from two or more genomic segments  
(65%, 287 of 440; Supplementary Fig. S2A). Whereas ecDNA 
and other focal somatic CNAs (fSCNA) exhibit significant 
overlap in their genomic distribution [Supplementary Fig. 
S2B; iSTAT test (35), P = 0.0001], ecDNA distinguished itself 
through markedly higher structural complexity, larger ampli-
con size, and increased CN (Supplementary Fig. S2C; Supple-
mentary Table S12; Wilcoxon rank-sum test; complexity score,  
P = 2.39e−30; amplicon size, P = 4.71e−17; CN, P = 1.23e−87).  
Localized hypermutation, or kataegis, is known to be prev-
alent in ecDNAs (36, 37). We found that kataegic muta-
tion clusters were significantly more frequent in ecDNAs 
than in other fSCNAs (Supplementary Fig. S2D; two-sided 
Fisher exact test, P = 3.023e−07). These findings highlight 
distinct features by which ecDNA shapes genetic hetero-
geneity. Furthermore, nearly half (48%, 105 of 217) of 
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Figure 1.  ecDNA can arise in flat urothelial lesions. A, Study samples and ecDNA detection. A total of 753 tumor samples, 296 adjacent tumor tissues (AT), 
195 blood samples, and 167 preoperative (1–3 days before definitive surgery) urine samples were collected from 595 patients with urothelial carcinoma.  
All samples were profiled by WGS. All tissue samples were pathology-checked. ecDNA and other fSCNAs were reconstructed using AmpliconArchitect  
software, utilizing biopsy-WGS data with CN calls as input. B, Fraction of patients bearing ecDNA in four different sample types. C, Proportion of tumor 
samples with ecDNA, stratified by ecDNA status in AT samples. The P value was calculated using a one-sided Fisher exact test. OR and 95% CIs were also 
determined. D, Number of identical ecDNA sequences detected in both ATs and their corresponding paired tumor samples. E, Comparison of the maximum  
CN segments from six ecDNAs detected in both ATs and their corresponding paired tumor samples. The P value was calculated using a paired-sample t test.  
f and g, AmpliconArchitect-generated SV and breakpoint graph (f) and the circular structure (g) of the ERBB2-containing ecDNA identified in urothelial 
dysplasia and tumor samples from patient CCGA-032. Similarity score and P value were computed based on the genomically overlapping regions of two ecDNA 
amplicons (see “Methods”). H, Representative hematoxylin and eosin–stained images of AT (pathology-confirmed urothelial dysplasia) and tumor samples from 
patient CCGA-032. HG, high grade. Scale bars, 50 μm. I and J, Validation of ERBB2-containing ecDNA detected in AT and tumor samples from patient CCGA-032 
through FISH targeting ERBB2 gene loci (I) and Circle-seq (J). The centromere of chromosome 17 (CEN 17) probe is represented in green, the ERBB2 probe 
is highlighted in red, and the nuclei counterstained with 4’,6-diamidino-2-phenylindole (DAPI, blue); Scale bars, 10 μm. (A, Created with BioRender.com.)
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ecDNA+ patients harbored two or more distinct ecDNAs 
within the same tumor (Supplementary Fig. S2E). Of note, 
our analysis might underestimate the true ecDNA diversity 
within the samples because we restricted consideration to 
regions with high CNs in bulk sequencing and cannot fully 
discern genomically overlapping, but structurally distinct 
ecDNA species.

We then examined the genes frequently encoded on ecDNA 
and found that oncogenes are important components of 
ecDNA in urothelial carcinoma. Specifically, we observed that 
the ecDNA contained a range of known oncogenes, including 
CCND1, FGF4, FGF3, and MDM2, which have well-established 
roles in urothelial carcinoma development (Supplementary 
Fig. S3A and SB; Supplementary Tables S13 and S14). More-
over, we found a significant enrichment of oncogenes within 
ecDNA compared with non-oncogenes (Supplementary Fig. 
S3C; two-sided Fisher exact test, P = 1.23e−05), and 35% of 
the ecDNAs contained multiple oncogenes on the same 
molecule (Supplementary Fig. S3D). We also found that in 
patients with only one ecDNA, the proportion of ecDNAs 
carrying oncogenes is significantly higher than in patients 
with multiple ecDNAs (Supplementary Fig. S3E; two-sided 
Fisher exact test, P = 0.001). On average, ecDNAs harbored 
1.7 unique oncogenes per amplicon (740 oncogenes in 440 
ecDNAs) compared with 0.7 unique oncogenes per amplicon 
in other fSCNAs (1,391 oncogenes in 2,028 other fSCNAs).  
After adjusting for amplicon size, ecDNA carries an average 
of 1.1 oncogenes per megabase, whereas other fSCNAs carry 
only 0.9 oncogenes per megabase. Collectively, these data 
demonstrate a positive selection for oncogene-containing 
ecDNA in urothelial carcinoma.

Importantly, the CN and RNA expression levels of onco-
genes were significantly higher in tumors in which oncogenes 
were amplified by ecDNA compared with samples in which 
they were amplified on other fSCNAs (Supplementary Fig. 
S3F; Wilcoxon rank-sum test; CN, P = 4.93e−78; mRNA ex-
pression, P = 0.0004). However, after normalizing gene expres-
sion levels by gene CN, no significant difference was observed 
in the expression of genes encoded by ecDNA compared with 
those encoded by other fSCNAs (Supplementary Fig. S3F; 
Wilcoxon rank-sum test; P = 0.5825). These findings support 
the hypothesis that ecDNA can drive tumorigenesis by pro-
moting substantial oncogene expression, with CNA likely the 
primary underlying mechanism (Supplementary Fig. S3G; 
refs. 12, 38, 39).

ecDNA Can Arise in flat Urothelial Lesions
Previous studies have shown that macroscopic somatic 

clonal expansion can occur within morphologically “nor-
mal” urothelium in patients with urothelial carcinoma (29). 
Moreover, adjacent tumor tissues have been characterized as 
a distinct intermediate state between healthy and malignant 
tissue (40). To understand whether ecDNA may be linked 
to early urothelial oncogenesis, we examined tissue biopsies 
taken from areas adjacent to the frank, raised tumor tissue, 
termed ATs. We identified 12 distinct ecDNA species in nine 
AT samples (Fig. 1B; Supplementary Table S9). Among the 
nine ecDNA+ AT samples, six exhibited histologic features 
that could potentially be precursor lesions for invasive 

cancer (1, 2), including hyperplasia (one case), dysplasia  
(two cases), and carcinoma in situ (three cases; Supplementary 
Fig. S4A). Phylogenetic analysis revealed a common origin 
for all ecDNA+ AT samples and their paired tumors within 
the same patients (Supplementary Fig. S4B). The presence 
of ecDNA in tumors was significantly elevated when paired 
with ecDNA+ ATs compared with ecDNA− ATs (Fig. 1C; one-
sided Fisher exact test, P = 0.037). To compare the ecDNA 
structure among ATs and paired tumors, we calculated the 
similarity score between amplicons by evaluating the relative 
proportions of shared overlap in genomic coordinates and 
structural variation breakpoint locations, as previously de-
scribed (Supplementary Table S10; ref. 30). Among these 12 
ecDNAs in ATs, six had similar genic content as ecDNA de-
tected in corresponding paired tumors (Similarity-P < 0.05), 
whereas the remaining six did not persist in the tumor sam-
ples (Fig. 1D). Although the sample size was limited, paired 
comparisons revealed a significantly higher ecDNA CN in 
tumors than in ATs (Fig. 1E; paired-sample t test, P = 0.028). 
For instance, in the case of CCGA-032, we detected an ecDNA 
containing several oncogenes, such as CDK12, ERBB2, and 
RARA, in both AT and tumor samples (pT2a, high grade;  
Fig. 1F–H; similarity score, 0.875; P = 5.06e−07). The maxi-
mum CN of ecDNA segments, estimated from WGS data in AT 
and tumor samples, was 7 and 80, respectively. To further 
validate the presence of ecDNA and its CN, we performed 
DNA FISH in interphase nuclei on a formalin-fixed, par-
affin-embedded (FFPE) section targeting the ERBB2 gene 
loci and analyzed the corresponding Circle-seq (a circular 
DNA enrichment library) data. As expected, we observed 
a robust fluorescence signal, with a pattern of ERBB2 foci 
consistent with ecDNA, and a high Circle-seq read density 
at ERBB2-ecDNA regions in both AT and tumor samples 
(Fig. 1I and J). Although limited in ecDNA+ AT sample size, 
these data suggest that ecDNA can arise in flat urothelial 
lesions and be selected during the malignant transforma-
tion and progression of urothelial carcinoma, similar to 
the transition from precancer to cancer in patients with 
Barrett’s esophagus (30).

ecDNA Contributes to Clonal Evolution through 
Structural Rearrangements during Urothelial 
Carcinoma Malignant Transformation and 
Recurrence

Cancers evolve through a reiterative process of clonal ex-
pansion, genetic diversification, and clonal selection within 
the adaptive landscape of the tumor microenvironment (41). 
To investigate whether ecDNA contributes to the clonal evo-
lution of urothelial carcinoma by undergoing diversifying 
mutations and subsequent selection, we analyzed the struc-
ture and oscillating CN states of six pairs of ecDNAs in which 
the same ecDNA was detected in both AT and tumor samples 
from the same patients (Supplementary Fig. S5A). We observed 
that ecDNA confers tremendous temporal intratumoral het-
erogeneity. For instance, in the case of CCGA-075, an ecDNA 
(ecDNA-1) containing MDM2 and YEATS4 was identified in the 
AT sample. This ecDNA was also present in the paired tumor 
sample but with reduced structural complexity and fewer os-
cillating CN states (Fig. 2A; Supplementary Fig. S5A and S5B; 
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complexity score: AT-ecDNA-1, 5.4; tumor-ecDNA-1, 2.5; CN 
state: AT-ecDNA-1, 8; tumor-ecDNA-1, 3). Moreover, tumor 
samples exhibited a second ecDNA (ecDNA-2) containing 

HRAS and CCND1 within the same amplicon. This indicates 
that ecDNA can evolve through structural rearrangement 
during tumor development.

B
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Figure 2.  ecDNA evolves through structural rearrangements during urothelial carcinoma malignant transformation and recurrence. A, Analysis 
of ecDNA evolution. SV and breakpoint graph generated by AmpliconArchitect for ecDNA detected in patient CCGA-075. We identified an ecDNA 
containing MDM2 and YEATS4 in ATs. This ecDNA was also present in the paired tumor sample but exhibited lower structural complexity and a lower 
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In our cohort, three patients (CUGA-058, CUGA-077, 
and CUGA-121) whose tumor samples carried ecDNA had 
matched primary and recurrent tumor samples with available 
WGS data (Fig. 2B). Tumor evolutionary tree analysis reveals 
that paired primary and recurrent tumors share some early 
somatic mutations, indicating that recurrent tumors are not 
entirely “new” tumors (Fig. 2C). In one case (CUGA-121), 
ecDNA was absent in the primary tumor sample but present 
in the recurrent tumor sample (Fig. 2D). In the second case 
(CUGA-058), the primary tumor samples had three ecDNAs. 
However, most ecDNA segments were not detected in the re-
current tumor samples. Instead, a novel ecDNA was identi-
fied in the recurrent tumor samples (Fig. 2D; Supplementary 
Fig. S5C). In the third case (CUGA-077), the primary biopsy 
showed an ecDNA amplification of MDM2. The ecDNA of the 
relapsed tumor contained most regions from the ecDNA of 
the primary tumor but exhibited higher structural complexity 
(Supplementary Fig. S5C). Additionally, three novel ecDNAs 
were identified in the recurrent tumor (Fig. 2D; Supplemen-
tary Fig. S5C). Although limited to three cases, these obser-
vations provide additional evidence that ecDNA experiences 
structural changes during tumor development and that new 
ecDNAs may emerge during the process.

Clonal and Subclonal Evolution of ecDNA in 
Urothelial Carcinoma Development

The presence of ecDNA in AT samples prompted us to fur-
ther explore the evolutionary dynamics of ecDNA in urothe-
lial carcinoma. We analyzed the WGS data from 211 spatially 
distinct tumor regions and 52 AT/blood samples obtained 
from 57 patients with urothelial carcinoma (with two to six 
tumor regions per patient; five patients lacked an available 
germline sample; Fig. 3A; Supplementary Figs. S6 and S7; 
Supplementary Table S15). In total, we identified 59 unique 
ecDNA species across 26 patients (Fig. 3A and B). In contrast 
to most urothelial carcinoma drivers, we found that ecDNA 
displayed pronounced intratumor heterogeneity (Supple-
mentary Fig. S8A). In 11 cases, ecDNA was detected only in 
specific tumor regions rather than uniformly across all regions 
(Fig. 3A). We identified a total of 15 unique clonal ecDNAs (the 
same ecDNA lineage present in all tumor regions) in 13 of 57 
patients (Fig. 3B). For instance, in CUGA-MR-018 (a patient 
with multifocal bladder tumors), in whom a chimeric ecDNA 
from chromosomes 6 and 11 with CCND1 was shared across  
every tumor region (Supplementary Fig. S6A–S6D). These 
data establish a direct link between ecDNA and the evolu-
tion of multifocal cancer. However, the majority of ecDNAs 
(75%, 44 of 59) were identified as subclonal ecDNA (present 
in at least one, but not all, regions), and subclonal ecDNA 
was observed in 19 of 57 patients (Fig. 3B). For example, in  
CUGA-MR-027, a heterogeneous ecDNA containing CCND1 
was present only in tumor regions R2 to R4 and R6 but not in 
R5. However, chromosomal CCND1 amplifications through 
complex noncyclic amplification were detected in tumor re-
gion R5, which exhibited a lower CN and structural com-
plexity in the fSCNA region (Supplementary Fig. S7A–S7C). 
Additionally, constructing a phylogenetic tree based on all 
somatic nonsynonymous mutations of all tumor regions indi-
cates that R5 represents an earlier stage of tumor development 

(Supplementary Fig. S7D). These findings suggest that mul-
tiple topologies of focal amplifications emerge during tumor 
progression, providing a vivid example of the dynamic evolu-
tion and diversification of focal amplifications.

Six tumors had both clonal and subclonal ecDNA events 
(Fig. 3B). For example, in CUGA-MR-032, a clonal ecDNA 
(ecDNA-1) was found in all tumor regions (R1–R4), whereas 
two subclonal ecDNAs (ecDNA-2 and ecDNA-3) were present 
only in tumor regions R3 and R4 (Fig. 3C and D). Clonal and 
subclonal ecDNAs collectively shaped the urothelial carci-
noma evolution (Fig. 3E). We then assessed intratumoral het-
erogeneity at the patient level by calculating the proportion of 
genes exhibiting copy-number variations (CNV) across sam-
ples, relative to all genes. Our findings indicate that patients 
with subclonal ecDNA demonstrate higher levels of intratu-
moral heterogeneity compared with those without ecDNA or 
those harboring only clonal ecDNA (Fig. 3F; Supplementary 
Table S15). However, the difference between patients with 
only subclonal ecDNA and those with only clonal ecDNA was 
not statistically significant, likely due to the limited sample 
size (Fig. 3F; Wilcoxon rank-sum test, P = 0.058). Moreover, 
we observed that almost all clonal ecDNAs (14 of 15) carried 
oncogenes, whereas nearly 43% (19 of 44) of subclonal ecDNAs 
were devoid of canonical oncogenes (Fig. 3G; two-sided Fisher 
exact test, P = 0.01124). The ratio of kataegic mutation clus-
ters carried on clonal ecDNA and subclonal ecDNA did not 
show a significant difference (Supplementary Fig. S8B; two-
sided Fisher exact test, P = 0.4725).

Mutation mapping on detected ecDNAs enabled us 
to infer the relative timing of mutations in the context of 
clonal and subclonal ecDNA evolution (9, 19). By examining 
variant allele frequencies (VAF), we found that mutations 
on clonal ecDNAs exhibited significantly higher VAFs  
than those on subclonal ecDNAs (Supplementary Fig. S8C; 
Wilcoxon rank-sum test, P = 0.0055), suggesting that clonal 
ecDNAs underwent longer periods of selection. Further-
more, our analysis revealed that most driver gene mutations 
had a higher VAF than both clonal and subclonal ecDNAs 
(Supplementary Fig. S8D), suggesting they occurred early in 
tumor progression.

Overall, these data suggest that ecDNA formation may 
be an ongoing process, providing a substrate for subclonal 
competition and selection, including for oncogenes, during 
tumor progression (Fig. 3H).

ecDNA Is Associated with Shortened Patient 
Survival and an Unstable Cancer genome

After revealing the properties and evolutionary trajectory 
of ecDNA in urothelial carcinoma, a crucial next step is un-
derstanding how its presence correlates with clinical mani-
festations. We utilized samples from 488 patients with paired 
tumor–germline WGS data to minimize potential biases for 
subsequent analysis. We observed a significant variation in 
the ecDNA frequency across different urothelial carcinoma 
subtypes. Specifically, ecDNA+ patients more frequently ex-
hibited a high-grade and muscle-invasive (pT2-4) histologic 
subtype (two-sided Fisher exact test; P < 0.01). Renal pelvis 
tumors demonstrated a lower ecDNA frequency than blad-
der tumors (P = 0.015). No significant differences in ecDNA  
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Figure 3.  Spatial dissection of ecDNA in urothelial carcinoma. A, Overview of the tumor multiregional WGS cohort (n = 211 tumors from 57 patients 
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in the subclonal form. C, Representative images of the multiregion sampling site of patient CCGA-MR-032. ecDNA detected in every tumor region 
was also annotated. D, The circular structure of one clonal ecDNA (ecDNA-1) and two subclonal ecDNAs (ecDNA-2 and -3) identified in tumors from 
patient CCGA-MR-032. E, Phylogenetic trees of patient CCGA-MR-032 were constructed from all somatic nonsynonymous mutations. The branch 
lengths are proportional to the number of mutations. Potential driver genes and ecDNAs are labeled. f, Comparison of intratumoral heterogeneity 
index of patients grouped by ecDNA status. The intratumoral heterogeneity index was calculated as the proportion of (continued on following page) 
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frequency were observed based on age (P = 0.452), sex  
(P = 0.750), or smoking history (P = 0.695; Fig. 4A; Supple-
mentary Fig. S9A). These results imply that specific physio-
logic cues and the tumor microenvironment can repress or 
fuel ecDNA-driven carcinogenesis. Patients with tumors har-
boring ecDNA, regardless of the specific gene amplified, ex-
perienced significantly worse outcomes than those without 
any fSCNAs (Fig. 4B; log-rank test, P = 3.0E−05). Patients 
with tumors harboring other fSCNAs had similar survival 
impacts (Fig. 4B; P = 0.007). A multivariate analysis that ad-
ditionally considered tumor stage showed that the presence 
of ecDNA was significantly associated with an increased 
hazard ratio (Fig. 4C; P = 0.032, ecDNA vs. non-fSCNA;  
P values determined by multivariate Cox proportional haz-
ards model). The ecDNA structure and whether it carries on-
cogenes were not associated with overall survival in urothelial 
carcinoma (Supplementary Fig. S9B; P > 0.1).

Given the substantial adverse impact of ecDNA on pa-
tient outcomes, we next investigated the genetic features as-
sociated with ecDNA (Supplementary Fig. S9C–S9F). After 
adjusting for tumor stage, we found that ecDNA+ tumors 
exhibited an overall increase in structural variants (SV) and 
higher chromosomal instability, as quantified by the ploidy, 
the fraction of genome altered, and the proportion of whole- 
genome duplication and chromothripsis events, compared 
with tumors without focal amplifications and tumors with 
other fSCNAs (Fig. 4D). Moreover, compared with tumors 
without fSCNA, ecDNA+ tumors showed a higher tumor 
mutation burden and number of predicted neoantigens 
(Fig. 4D; Supplementary Fig. S9D). Because not all somatic 
mutations represent potential therapeutic targets, we con-
ducted detailed annotations using OncoKB (a precision on-
cology knowledge base; ref. 42) for all detected mutations. 
We observed a lower frequency of level 1 actionable alter-
ations in ecDNA+ tumors (Fig. 4D; Supplementary Fig. S9E), 
suggesting ecDNA+ patients have a diminished potential for 
benefiting from FDA-approved drugs. Apolipoprotein B 
mRNA-editing enzyme catalytic polypeptide 3 (APOBEC3) 
may contribute to ecDNA evolution (36). To test this, we de-
termined mutational signatures in the urothelial carcinoma 
cohort and found a higher prevalence of APOBEC-related 
signatures of SBS2 and SBS13 in ecDNA+ tumors (Supple-
mentary Fig. S9F; Wilcoxon rank-sum test, P < 0.05).

Inactivating mutations in TP53 are known to promote 
genome instability (43–45). Consistent with this, after ad-
justing for tumor stage, we observed a higher frequency 
of TP53 alterations in ecDNA+ tumors compared with 
tumors without fSCNA (Fig. 4E), implying that p53 mal-
function may contribute to ecDNA formation in urothe-
lial carcinoma. In contrast, some well-established favorable 
molecular prognostic indicators, including FGFR3, HRAS, 
and STAG2, were less frequently altered in ecDNA+ tumors  

(Fig. 4E; Supplementary Table S16). TP53 mutatations  
and MDM2/4 amplification were mutually exclusive (Fig. 4F; 
χ2 = 0.001637). Moreover, the majority (86%) of ecDNA+ tu-
mors carry alterations in the TP53 pathway (Supplementary 
Fig. S9C).

Collectively, these data suggest that ecDNA may play a role 
in urothelial carcinoma progression and is associated with 
genomic instability and aggressive biological features, consis-
tent with recent pan-cancer ecDNA findings (19).

ecDNA Is Associated with a Distinct TIME
The TIME plays a crucial role in urothelial carcinoma de-

velopment, with increasing immune infiltration as the disease 
advances (46). Previous pan-cancer studies have explored the 
relationship between ecDNA and TIME using bulk RNA-seq 
data (47, 48); however, bulk RNA-seq has limitations in 
dissecting the interplay between the host immune system 
and ecDNA-containing cancer cells. To directly elucidate 
the differences in the immune ecosystem between ecDNA− 
and ecDNA+ tumors, we analyzed scRNA-seq data from 19 
tumors (10 ecDNA−, including 2 with other fSCNA and 8 
without any fSCNA, and 9 ecDNA+; Fig. 5A). After strin-
gent filtering (see “Methods”), we obtained 259,808 single-cell 
transcriptomes (Supplementary Table S17). Based on lineage- 
specific marker genes, cells were classified into six major 
clusters (Fig. 5A; Supplementary Fig. S10A). Single-cell CNV 
analysis using inferCNV software (49) identified all epithelial 
cells as malignant (Supplementary Fig. S10B). We observed 
that ecDNA+ tumors had a lower proportion of malignant 
cells and a greater enrichment of immune cells compared 
with ecDNA− tumors (Fig. 5B; Supplementary Fig. S10C and 
S10D). To avoid potential technical artifacts, we performed 
IHC staining (n = 19 tumors) and multiplexed immuno-
fluorescence (mIF) staining analysis (Supplementary Fig. 
S10E–S10G; Supplementary Table S18). The immune cell 
proportions determined by scRNA-seq were positively cor-
related with the immune infiltration patterns observed in 
IHC staining (Supplementary Fig. S10F; Pearson’s r = 0.575, 
P = 0.0113). To further validate this observation, we used 
the CIBERSORTx method to estimate the proportion of 
immune cells in tumors from bulk RNA-seq data (n = 331 
tumors). We revealed a significant increase in the density of 
immune cells within tumors harboring ecDNA compared 
with those without fSCNA (Fig. 5C; Wilcoxon rank-sum test, 
P = 0.00029). No significant difference in immune cell infil-
tration was observed between tumors with ecDNA and those 
with other fSCNAs (Fig. 5C; P = 0.65). This significant dif-
ference in immune cell infiltration between ecDNA+ tumors 
and fSCNA− tumors persisted after adjusting for tumor 
stage (Fig. 5D). These data suggested that ecDNA+ tumors 
harbor a distinct tumor immune ecosystem.

Figure 3. (Continued) genes with CNVs between samples, out of all genes (see “Methods”). The P value was calculated using a Wilcoxon rank-sum 
test. g, Fraction of ecDNAs carrying oncogenes, stratified by ecDNA clonal status. The P value was calculated using a two-sided Fisher exact test.  
H, A schematic diagram showing the evolutionary trajectory of ecDNA during the cancer life history. Somatic variants were classified as initiating clonal 
variants, late clonal variants, and late subclonal variants according to subclonal diversification. The normal urothelium acquires somatic mutations in 
driver genes when stimulated by carcinogens. Subsequently, some ecDNAs may appear in the early stages of tumors, even in precancerous lesions, and 
persist throughout cancer progression. However, the majority of ecDNAs emerge during the advanced stages of the tumor, contributing to subclonal evolu-
tion. Clonal and subclonal ecDNA collectively shaped the urothelial carcinoma evolution.
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The reclustering of immune cell populations identified 
multiple subsets of myeloid cells, B cells, and T/NK cells 
(Fig. 5E; Supplementary Fig. S10H). We observed signifi-
cant variation in the distribution of these clusters across 
fSCNA subgroups (Fig. 5F). Specifically, ecDNA+ tumors 

displayed enrichment of regulatory T cells (Treg), whereas 
ecDNA− tumors harbored more macrophages (Supplementary 
Fig. S10I). Tregs are known to enhance the immunosuppres-
sive program of CD4+ T cells, promoting tumor development 
(50). Moreover, we found a significantly higher prevalence of 
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B-cell infiltration in ecDNA+ tumors compared with ecDNA−

tumors. We identified a total of 15 distinct B-cell clusters,
including one for cycling plasma cells, 11 for plasma cells, one 
for naïve B cells, and three for memory B cells (Supplementary 
Fig. S10I). Of note, memory B cells expressed higher levels of
several regulatory B cell–related molecules, including IL10,
TGFB1, CD40, CD24, and CD27, further reflecting the immu-
nosuppressive nature of the ecDNA-associated urothelial car-
cinoma TIME (Fig. 5G).

During tumorigenesis, cancer cells evolve to avoid or 
suppress immune attacks through various mechanisms (51). 
The distinct clinical and molecular features associated 
with ecDNA prompted us to hypothesize that these dis-
tinctions arise from intrinsic variations within the malignant 
cells themselves. To explore this hypothesis, we analyzed 
scRNA-seq data from 158,450 malignant cells across 13 tu-
mors. Six tumors with fewer than 20 malignant cells were 
excluded from the analysis (Supplementary Table S17). 
These malignant cells exhibited significant intertumor 
heterogeneity and were classified into 13 distinct clusters 
based on their tumor origin (Fig. 5H). After adjusting for 
patient-specific effects, we observed a distinct distribution  
of malignant cells across fSCNA groups (Supplementary 
Fig. S11A). Using nonnegative matrix factorization (NMF) 
on each malignant cell, we identified five distinct expres-
sion programs that reflect common patterns of intratumor 
heterogeneity across different tumors (Supplementary Fig. 
S11B; Supplementary Table S19). Each expression program 
represents a unique biological process and varies among 
malignant cells from each group (Supplementary Fig. S11C; 
Supplementary Tables S20 and S21). Differential gene  
expression analysis between ecDNA− and ecDNA+ malig-
nant cells revealed an enrichment of genes associated with 
the cell cycle in ecDNA+ tumors, whereas genes linked 
to the p53 pathway were predominant in ecDNA− tumors  
(Fig. 5I; Supplementary Table S22). Furthermore, ecDNA+ 
tumors exhibited significantly higher CNV scores com-
pared with ecDNA− tumors (Supplementary Fig. S11D; 
Wilcoxon rank-sum test; P < 2.2e−16). These findings are 
consistent with our genomic analysis and further support the 
presence of distinct transcriptional programs in ecDNA+ 
malignant cells.

Besides abundance, the spatial distribution of immune 
cells—especially CD8+ T cells—is closely linked to TIME strat-
ification. Lower intraepithelial CD8+ T-cell density is asso-
ciated with poorer prognosis in urothelial carcinoma (46). 
Our analysis of genes involved in the antigen presentation 
machinery (APM) revealed the downregulation of MHC class 
I (MHC-I) genes and B2M expression in malignant cells in 
ecDNA+ tumors relative to tumors without fSCNA (Fig. 5J; 
Wilcoxon rank-sum test; APM score, P < 2.2e−16). Further-
more, by analyzing WGS data with SpecHLA software (52), 
we observed that allele-specific loss of heterozygosity (LOH) 
of class I HLA genes (HLA-I LOH) occurred more frequently 
in ecDNA+ tumors than in tumors without fSCNA (Fig. 5K). 
Controlling for tumor stage, ecDNA was strongly associated 
with HLA-I LOH (Fig. 5L; OR 2.1, 95% CI, 1.3–3.7). Ligand–
receptor analysis indicated that the cross-talk between malig-
nant cells and CD8+ T cells, IFN+ T cells, and CD56dimCD16hi 
NK cells through the MHC-I:CD8 axis was diminished or 

potentially absent in ecDNA+ tumors (Fig. 5M). To further 
elucidate the spatial interplay between CD8+ T cells and ma-
lignant cells, we performed mIF on four tumor samples. We 
observed that tumors with high MHC-I expression exhibited 
either an “infiltrated” or “desert” immune phenotype, char-
acterized by the infiltration of CD8+ T cells into the tumor 
urothelium or the absence of CD8+ T cells within the TIME, 
respectively. In contrast, tumors with low MHC-I expres-
sion exhibited an “excluded” immune phenotype, with CD8+  
T cells predominantly localized in the surrounding stroma, 
or a “desert” immune phenotype (Supplementary Fig. S11E). 
Further DNA FISH experiments confirmed the presence of 
ecDNA in two selected tumor samples (Supplementary Fig. 
S11F). These data suggest that one possible mechanism by 
which ecDNA+ tumors evade immune cell attacks is through 
the reduction of MHC-I antigen presentation, leading to dys-
functional antitumor immunity in ecDNA-driven urothelial 
carcinoma (Fig. 5N). It would be of interest to explore immu-
notherapeutic approaches for reinvigorating the immune sys-
tem against ecDNA+ tumors.

Urinary Sediment–Derived DNA Has High 
Specificity in Detecting ecDNA

Urine serves as an ideal clinical source for liquid biopsy 
(10, 53). However, the full potential of urine in identifying 
tumor-specific ecDNA remains to be fully understood. We 
analyzed the WGS data of paired tumor and urinary sedi-
ment samples from 167 patients with urothelial carcinoma. 
Despite lower tumor purity in urinary sediment, resulting in 
a reduced ecDNA detection rate (23%, 39 of 167) compared 
with tumors (46%, 77 of 167; Fig. 6A; tumor purity, Paired 
t test, P = 3.79e−23; ecDNA frequency, Fisher exact test,  
P = 9.47e−05), sequencing of urinary sediment–derived DNA 
demonstrated robust specificity (95.6%) in ecDNA detection 
(Fig. 6B). This high specificity remained consistent across 
different clinical subgroups and varying tumor purities in 
urinary sediment (Fig. 6C). Moreover, sequencing of urinary  
sediment–derived DNA revealed a moderate sensitivity 
(45.5%) for ecDNA detection, primarily influenced by tu-
mor purity within the urinary sediment and tumor location  
(Fig. 6B and C). Overall, these data indicate that urinary sed-
iment–derived DNA sequencing offers a promising approach 
for ecDNA detection, with a positive predictive value and  
negative predictive value of 89.7% and 67.2%, respectively  
(Fig. 6B).

At the ecDNA level, we identified 65 distinct ecDNAs 
in urine samples, exhibiting significant genomic overlap 
with tumor-derived ecDNA (n = 181; Fig. 6D; ISTAT test,  
P = 3.3184e−09). Of these, 62% (40 of 65) of ecDNAs were 
shared between paired tumor–urine samples with high sim-
ilarity scores (similarity-P < 0.05), whereas 25 ecDNAs were 
exclusively detected in urine (Fig. 6E and F). Notably, among 
the 25 urine-specific ecDNAs, five were identified in paired 
tumor tissues as non–ecDNA-based amplifications, four  
overlapped with tumor ecDNAs, and two overlapped with 
non–ecDNA-based amplifications (Fig. 6G; Supplementary 
Fig. S12A and S12B). Furthermore, 14 urinary ecDNAs 
showed no overlap with any fSCNA in tumors. These ecDNAs 
exhibited shorter lengths and a decreased likelihood of 
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harboring oncogenes compared with ecDNAs identified in 
both urine and tumor samples (Supplementary Fig. S12C 
and S12D). These findings suggest the presence of minor 

ecDNA clones in urine and also further emphasize that 
multiple forms of focal amplifications can emerge during 
tumor progression.
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discussion
The human genome consists of 23 pairs of linear chromo-

somes. In cancer, cancer-causing genes can liberate themselves 
from chromosomes and relocate to ecDNA, thereby reshap-
ing the genetic intratumoral heterogeneity and promot-
ing tumorigenesis (11, 19, 20, 22, 26, 54). Recently, Nguyen 
and colleagues (9) demonstrated that the interplay between 
mutagenesis and ecDNA may play a role in the evolution of 
treatment resistance in urothelial carcinoma. However, the 
evolutionary trajectory of ecDNA and whether the evolution 
of ecDNA itself can contribute to the early clonal expansion 
in cancer remain largely unexplored. Meanwhile, the spatial 
dynamics of ecDNA and the impact on genetic heterogeneity is 
still poorly understood. In this study, by analyzing the largest 
urothelial carcinoma WGS dataset to date, we demonstrate 
that ecDNA can be an early clonal mutational event in the 
transformation from flat urothelial lesions to invasive cancer. 
Throughout this process, ecDNA undergoes complex struc-
tural changes, supporting a hypothesis that tumors evolve 
through the continuous selection of such ecDNA. Although 
we cannot exclude the possibility that individual cancer cells 
have invaded from the adjacent tumor, these findings expand 
our understanding of the diversity of genomic alterations 
during the malignant transformation process of urothelial 
carcinoma and suggest the potential for early disease inter-
vention in patients bearing ecDNA. A larger cohort of lon-
gitudinal WGS studies from precancer to cancer is urgently 
needed to further understand the frequency and role of 
ecDNAs in precancerous tissue samples.

Traditional methods for tracking cancer clonality rely 
on chromosomal inheritance, making it challenging to de-
cipher the clonal architecture and evolutionary patterns in  
ecDNA-driven cancers. To address this, we used a multire-
gion tumor sampling approach to evaluate the spatial and 
temporal diversity of ecDNA in the development of urothe-
lial carcinoma. We demonstrate that ecDNA in multistage 
urothelial carcinoma carries different somatic variants of the 
same ecDNA. Deletions, translocations, and single-nucleotide 
variants (SNV) in one progenitor type result in the formation 
of new ecDNAs, which may exist either clonally or subclon-
ally. Hence, we show that urothelial carcinoma evolves not 
only through incremental chromosomal mutations but also 
through mutations on the ecDNA, which can potentially en-
hance fitness at each stage of tumor progression (Fig. 3; Sup-
plementary Figs. S5–S7). Several of the ecDNA alterations 
show evidence of selection, as variations over the same ecDNA 
recur across multiple foci within the same tumor. Also, onco-
gene ratios are significantly higher on ecDNA compared with 
other fSCNAs. Consistent with findings reported by Nguyen 
and colleagues (9), oncogenes such as CCND1, FGF4, and 
FGF3 occur recurrently on ecDNA (Supplementary Fig. S3), 
suggesting selection for these genes on ecDNA. ecDNA is 
also occasionally lost through the progression of the cancer, 
indicating that the loss occurs through a clonal or subclonal 
expansion. Loss may occur when there is no selection for the 
ecDNA in the local tumor microenvironment or when another 
advantageous mutation arises in a cancer cell that happens to 
lose the ecDNA through missegregation (38). Our findings 
also show that most ecDNAs are present in subclonal forms, 

with increasing frequency in the later stages of tumor evolu-
tion. These ecDNAs provide a substrate for subclonal compe-
tition and selection, including for oncogenes, during tumor 
progression. Additionally, they contribute to rapid and fre-
quent branching in the phylogenetic tree of the tumor. We 
also detected oncogene-containing ecDNAs in urothelial car-
cinoma that are under strong selection pressure. In particular, 
ecDNAs bearing canonical oncogenes were more likely to be 
clonal than oncogene-less ecDNAs. Moreover, the frequency 
of ecDNA increased from 27% in non–muscle-invasive disease 
to 46% in muscle-invasive disease, further indicating a pro-
gressive accumulation of ecDNA during tumor development.

ecDNA+ tumors generally exhibited a higher prevalence of 
complex karyotypes and increased chromosomal instability 
compared with both tumors without fSCNA and those with 
other fSCNAs. The majority (86%) of ecDNA+ tumors carry  
alterations in the TP53 pathway. This suggests a link between 
the TP53 pathway and ecDNA suppression, potentially by 
inhibiting their formation or maintenance. However, our 
data also revealed that approximately 14% of ecDNA+ cases 
did not exhibit alterations in the TP53 pathway, suggesting 
that ecDNA can arise in other genetic contexts. Patients for 
whom ecDNA was detected in at least one sample of the 
tumor had significantly shorter overall survival, aligning with 
results from previous studies of pan-cancer (11, 19, 20),  
small cell lung cancer (17), high-risk medulloblastoma (18), 
and hepatocellular carcinoma (24). Disrupting ecDNA main-
tenance or manipulating the formation process of ecDNA 
may offer promising avenues for potential therapeutic  
interventions (55).

Previous research suggests a direct link between ecDNA 
and immune evasion, as these ecDNAs may encode genes 
that modulate the immune response, such as suppressor of 
cytokine signaling 1 (SOCS1; ref. 30). Our study confirms this  
link by revealing striking differences in the TIME of ecDNA+ 
tumors and tumors without fSCNA using scRNA-seq data. 
Notably, ecDNA+ tumor cells displayed significantly lower or 
absent expression levels of MHC-I, and a strong association 
was observed between ecDNA and HLA-I LOH. This defi-
ciency renders them invisible to the immune system, hinder-
ing their elimination. These findings highlight the potential 
of incorporating immune-stimulatory drugs into treatment 
strategies, aiming to reinvigorate the immune response 
against ecDNA+ tumors. However, significant knowledge gaps 
remain regarding the intricate interplay between ecDNA+ can-
cer cells and the host’s immune system. A major hurdle in 
elucidating these mechanisms is the lack of suitable geneti-
cally engineered in vivo mouse models with an intact immune 
system. Establishing such in vivo immunocompetent will be 
a critical step toward a deeper mechanistic understanding of 
the impact of ecDNA on the immune systems and, ultimately, 
improved therapeutic approaches (56).

Urothelial tumors directly contact urine, providing the 
potential for detecting ecDNA in urine. Through analysis 
of paired urine and tumor samples from 167 patients with 
urothelial carcinoma, we found that urinary sediment–derived 
DNA sequencing offers a promising approach for ecDNA 
detection. Specifically, sequencing of urinary sediment– 
derived DNA demonstrated an excellent specificity (95.6%) 
for ecDNA detection. This high specificity was maintained 
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across different clinical backgrounds and varying tumor pu-
rities in urinary sediment. This is important because it means 
that ecDNA in urine may serve as a biomarker for urothelial 
carcinoma in screening, personalized treatment, and sur-
veillance of patients. However, not all ecDNA in tumors was 
also recorded in urine, and sequencing of urinary sediment– 
derived DNA revealed a moderate sensitivity (45.5%) for 
ecDNA detection. The sensitivity is primarily influenced by 
the low volume of tumor purity within the urinary sediment, 
as urine samples contain not only cancer cells but also a pro-
portion of normal cells and cellular debris (57). Thus, it may 
be worthwhile to consider enriching tumor cells from urine 
samples to enhance the sensitivity detection rate of ecDNA 
detection. Moreover, some of the ecDNA clones were detected 
only in urine samples. Because of the intratumoral genetic 
heterogeneity of ecDNA, and the fact that individual samples 
may miss specific ecDNAs, urine provides a pooled substrate 
for detecting the wider spectrum of ecDNAs that may be con-
tained within a tumor.

While the AmpliconArchitect method used here demon-
strates robust ecDNA detection (30), bioinformatic analysis 
of ecDNA from short-read WGS data still faces several chal-
lenges. These include technical hurdles such as detecting 
structural variations within repetitive genomic regions, un-
even sequencing coverage, and the algorithmic complexity 
of distinguishing different amplicon types, as well as tumor- 
specific factors like tumor purity and ecDNA CN. Neverthe-
less, continuous advancements in sequencing technologies 
and the development of more sophisticated ecDNA detection 
algorithms are paving the way for more precise estimations of 
ecDNA frequency and structure in cancer (19).

To conclude, our comprehensive analysis of ecDNA in 
urothelial carcinoma reveals its early involvement in tumor-
igenesis, as well as its crucial role in driving the evolution and 
heterogeneity of multifocal cancer. We also find that ecDNA+ 
malignant cells express little to no MHC-I molecules, thus 
enabling evasion of T-cell responses. These results provide 
novel insights for future ecDNA-targeted therapy research, 
with potential implications for other ecDNA-driven tumor 
types as well.

Methods
CUGA-WGS Datasets, Patients, Samples, and Ethics

We obtained WGS data from 616 tumors, 264 ATs, 195 blood 
samples, and 167 urine samples collected from 558 patients with 
urothelial carcinoma as part of the CUGA project. The CUGA project 
includes 102 patients with urothelial carcinoma from the BIG data-
set and 456 patients urothelial carcinoma from the YHD-UC dataset 
(Supplementary Table S2; refs. 31–33).

In this study, we also included 37 patients diagnosed with urothe-
lial carcinoma who underwent tumor resection at Yantai Yuhuang-
ding (YHD) Hospital (Supplementary Tables S2 and S3). None of 
the patients received any anticancer treatment before the collection 
of tumor specimens during surgery. Most patients (35 of 37) used 
a multiregion tumor sampling approach. For multifocal urothelial 
tumors, we sampled tumor tissues from various sites. In cases of sol-
itary urothelial tumors, representative tumor regions were collected, 
spatially separated from each other by a minimum of 5 mm, and dis-
tant from the tumor margin. Paired ATs were obtained at least 2 cm 
away from the tumor margin. Spatially distinct localized tumors, as 

documented through photography, were promptly collected within 
30 minutes after surgery. These samples underwent thorough wash-
ing with PBS to remove the blood and were then rapidly snap-frozen 
in liquid nitrogen. Each surgically resected tumor sample underwent 
a comprehensive macroscopic examination by 2 to 3 expert genito-
urinary pathologists. Tumors with low tumor purity were excluded. 
Patient identifiers were reassigned to ensure anonymity and protect 
confidentiality.

By integrating data from both the BIG and the YHD datasets, we 
established a 595-patient cohort (comprising 1,411 whole genomes) 
for a comprehensive analysis of ecDNA. Detailed clinical and se-
quencing information is available in Supplementary Tables S3 and 
S4. This study received approval from the Institutional Review Board 
(IRB 2021-456; 2022-399; 2022-401; 2022-402) of Yantai Yuhuang-
ding Hospital, and all patients provided written informed consent. 
This study was conducted under the ethical guidelines of the Helsinki 
Declaration.

WGS
High-molecular-weight genomic DNA (gDNA) was extracted from 

tissue samples using MagAttract HMW DNA Kit (Qiagen) following 
the manufacturer’s guidelines. The isolated gDNA underwent a 3-day 
equilibration period at room temperature for homogenization. DNA 
concentration was quantified using the Qubit dsDNA BR assay (Invi-
trogen), whereas DNA integrity was evaluated by electrophoresis on a 
0.8% agarose gel. A total of 500 ng of gDNA was utilized as input ma-
terial. The DNA samples were mechanically sheared to sizes ranging 
from 300 to 500 bp using the Covaris LE220 instrument. Sequencing 
libraries were constructed using MGIEasy DNA Library Preparation 
Kit (MGI) following the manufacturer’s protocols. The prepared li-
braries underwent deep sequencing on the DNBSEQ platform using 
the PE-150 sequencing strategy.

Uniform Data Processing and Detection of Somatic Variants
To mitigate potential variations in somatic variant detection, all 

raw sequencing datasets were processed using the same pipelines. 
The initial quality assessment of FASTQ files was performed using 
FastQC (v0.11.7; RRID: SCR_014583) from Babraham Bioinformat-
ics. Subsequently, sequencing reads underwent adapter trimming, re-
moval of N content, and elimination of low-quality bases using Fastp 
(v0.23.2; RRID: SCR_016962; ref. 58). The resulting cleaned FASTQ 
files were aligned to the human reference genome GRCh38 using 
BWA-MEM (v0.7.17; RRID: SCR_022192; ref. 59), generating BAM 
files. BAM files were then sorted and indexed with SAMtools (v1.11; 
RRID: SCR_002105; ref. 60). Coverage statistics were calculated using 
SAMtools, with a mean coverage of 41.2× observed for WGS (Supple-
mentary Table S4).

Mutation Calling. Somatic SNVs were identified using Mutect2 
(v4.2.5.0; RRID: SCR_000559; ref. 61) with default parameters. So-
matic insertions and deletions were detected using both Mutect2 
(61) and Strelka2 (v2.9.10; RRID: SCR_005109; ref. 62) with default
settings. Each algorithm was executed separately for each tumor
sample, utilizing the corresponding paired germline sample as the
control. To enhance specificity, insertions and deletions called by two 
algorithms were retained and then merged using bedtools (v2.30.0;
RRID: SCR_006646; ref. 63). The variant call format files were sub-
sequently split and underwent left trimming using GATK (v4.2.5.0;
RRID:SCR_001876). ANNOVAR (RRID:SCR_012821; ref. 64) was
employed for variant call format file annotation. To mitigate the risk 
of misidentifying germline variants, we filtered out variants with al-
lele frequencies exceeding 0.01 in the 1000 Genomes database (RRID: 
SCR_008801; ref. 65) or the Exome Aggregation Consortium (RRID: 
SCR_004068; ref. 66), unless flagged as pathogenic in the ClinVar
(RRID: SCR_006169; ref. 67) database. Tumor mutation burden was 
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determined by calculating the total count of nonsynonymous muta-
tions divided by the length of exonic regions. Genomic alterations 
were annotated using the OncoKB (RRID: SCR_014782; ref. 42) an-
notator tool (https://github.com/oncokb/oncokb-annotator). On-
coKB provides curated information about the functional and clinical 
significance of specific genetic alterations.

CNV Calling. The FACETS (v0.5.14; RRID: SCR_026264; ref. 
68), HMMcopy (v1.42.0; RRID: SCR_026464; ref. 69), and ichorCNA 
(v0.2.0; RRID: SCR_024768; ref. 70) software were used to detect so-
matic CNVs. FACETS software was utilized to determine the average 
tumor ploidy and purity, providing allele-specific estimations of CNs. 
Tumor regions with a major CN ≥2 fraction exceeding 50% were clas-
sified as exhibiting whole-genome duplication events. The fraction of 
genome altered was defined as the ratio of bases with log2 CNV (gain 
or loss) >0.2 to the total number of profiled genome bases. The Ge-
nomic Identification of Significant Targets in Cancer (GISTIC, v2.0; 
RRID: SCR_000151; ref. 71) algorithm was used to assess the CNV 
status of genes. Genes were categorized as deletion, loss, diploid, gain, 
or amplification based on GISTIC scores of −2, −1, 0, 1, and 2, respec-
tively. Using GISTIC scores, we computed the intratumoral heteroge-
neity index for each patient, defined as the proportion of genes with 
different CNV status across samples relative to all genes. The patient’s 
intratumoral heterogeneity index was averaged across all sample 
pairs. Eight patients were excluded from intratumoral heterogeneity 
index calculations due to tumor WGS data originating from different 
sequencing batches (CUGA-006, 009, 044) or lacking normal control 
WGS data (CUGA-MR-016, 019, 039, 043, 057). HMMcopy estimated 
read counts for 500 kbp bins across the genome for five ecDNA+ tu-
mors. The R package ichorCNA was executed with default parameter 
values to validate obtained CNV profiles.

SV Calling. We utilized four algorithms—Manta (v1.6.0; RRID: 
SCR_022997; ref. 72), Lumpy (v0.2.13; RRID: SCR_003253; ref. 73), 
SvABA (v1.1.0; RRID: SCR_022998; ref. 74), and Delly (v1.1.3; RRID: 
SCR_004603; ref. 75)—to detect SVs in paired tumor–normal WGS 
data. Each algorithm operated independently. The SV calls gen-
erated by each caller were merged using SURVIVOR (v1.0.7; RRID: 
SCR_022995; ref. 76), allowing 1,000 bp of slop at the breakpoints. 
SVs called by two algorithms were retained. We computed the num-
ber of SVs for each sample. Moreover, the detected SVs were used for 
further analysis of chromothripsis.

Detection of Clustered Mutations
Kataegis, a process characterized by focal hypermutation and clus-

tered point mutations, was identified using the R package Maftools 
(v2.14.0; RRID: SCR_024519; ref. 77) by analyzing mutation clusters 
across the genome. fSCNA-overlapping kataegis was defined as any 
clustered event that coincided with fSCNA regions.

Drivers
To identify driver genes in urothelial carcinoma, we used three in-

dependent methods: 20/20+ (v1.2.3; ref. 78), MutSigCV (v1.41; RRID: 
SCR_010779; ref. 79), and dNdScv (v0.0.1.0; RRID: SCR_017093; ref. 
80). Each software operated independently with default parameters. 
A total of 37 driver genes were identified by at least two software tools 
within the CUGA cohort, meeting the criterion of q value <0.1 (Sup-
plementary Table S16).

Phylogenetic Tree Construction
To construct the phylogenetic tree of each patient, we used the R 

package MesKit (v1.1.2; RRID: SCR_020959; ref. 81), using somatic 
nonsynonymous mutations as input data and utilizing maximum 
likelihood algorithms.

Analysis of Mutation Signature
The SNVs, including nonsynonymous and synonymous mutations, 

were classified into 96 substitution types, based on six base substitu-
tions (C > A, C > G, C > T, T > A, T > C, and T > G) and neighboring 
bases. The MutationalPatterns (v 3.8.1; RRID: SCR_024247; ref. 82)  
R package was utilized to assess the activity of APOBEC-related muta-
tional signatures (COSMIC SBS2 and SBS13) for each sample.

ecDNA Detection and Characterization
The AmpliconSuite-pipeline wrapper (v1.0.0; RRID: SCR_023150; 

ref. 30) was performed to identify ecDNA from WGS data. The seed 
detection pipeline integrated CNVKit (v0.9.9; RRID: SCR_021917; 
ref. 83) operating in tumor/urine–normal mode to detect somatic 
CNVs against matched normal WGS samples for each patient. ATs, 
blood samples, and tumor/urine samples without matched germ-
line samples also underwent the same pipeline in unpaired mode for 
standalone CNV detection. The CNV calls were processed using the 
amplified_intervals.py script, filtering regions larger than 50 kbp, 
and with a CN exceeding 4.5, generating a set of seed regions. The 
wrapper invoked AmpliconArchitect (v1.3.r6; RRID: SCR_023150; 
ref. 34) in default mode on the WGS BAM files to examine seed 
regions and profile the architecture of focal amplifications. The re-
sulting graph and cycles output files were then input into Amplicon-
Classifier (v.1.0.0) to classify AmpliconArchitect amplicons, including 
ecDNA, breakage–fusion–bridge, complex noncyclic, and linear focal 
amplifications. In cases in which a patient exhibits multiple amplifi-
cation topologies, we classify them based on the following priority  
order: ecDNA, breakage–fusion–bridge, complex noncyclic, and lin-
ear. We defined ecDNA species based on unique ecDNA sequences 
within individual samples and determined the number of ecDNA spe-
cies in each sample by summing the predicted ecDNA species across 
all detected AA amplicons (30, 84). The number of oscillating CN 
states of ecDNA was calculated based on the number of CN segments 
predicated by AmpliconArchitect. AmpliconClassifier also generat-
ed BED files corresponding to the classified regions and annotated 
the identity of genes on the focal amplifications. Candidate ecDNA 
was visualized using CycleViz (v0.1.5). The similarity score between 
the two amplicons was calculated as previously described (30), and  
P < 0.05 was considered significant. Clonal ecDNA was defined as 
the same ecDNA event detected in all tumor regions from the same 
patient. Additionally, to reduce false-positive focal amplifications, we 
manually reviewed all focal amplification outputs and filtered out 
similar amplicons across different patients, utilizing multiple hy-
pothesis testing corrections with a cutoff of P value divided by the 
total number of patients with focal amplification. The amplicon com-
plexity score was computed based on the Shannon entropy of the dis-
tribution of CNs assigned to the amplicon structure decompositions 
output by AmpliconArchitect (30).

Chromothripsis Detection
Chromothripsis events were evaluated in a cohort of 488 patients 

with urothelial carcinoma with paired tumor–germline WGS data 
using ShatterSeek (v1.1; RRID: SCR_026463; ref. 45). Briefly, it uses 
intrachromosomal SVs initially to identify clusters of interleaved re-
arrangements. Subsequently, it evaluates various statistical criteria 
within these regions. The results include a data frame presenting the 
statistical criteria values and supplementary details per chromosome. 
Regions potentially indicative of chromothripsis undergo visual scru-
tiny utilizing local SVs and CN profiles. The chromothripsis events 
were classified into low-confidence and high-confidence categories 
following the criteria outlined by Cortés-Ciriano and colleagues (45). 
Low-confidence calls encompassed 4 to 6 segments between two 
CN states, whereas high-confidence calls consisted of a minimum 
of 7 adjacent segments. Both low-confidence and high-confidence 
calls were retained for further analysis.
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Neoantigen Prediction
Class I HLA alleles (HLA-A, HLA-B, and HLA-C) were inferred from 

WGS data using HLA-Scan (v2.1.4; ref. 85) with default settings. To 
predict neoantigens associated with identified HLA genotypes, we 
used the pVACseq (v3.1.2; RRID: SCR_025435; ref. 86) pipeline. The 
pVACseq pipeline incorporates the NetMHC and NetMHCpan algo-
rithms to identify potential MHC ligands and predict their binding 
affinities to class I HLA molecules. We specifically considered neoan-
tigens with peptide lengths of 9 or 10 amino acids and binding affin-
ities (IC50) below 500 nmol/L.

Detection of HLA-LOH Events
SpecHLA (v 1.0.7; RRID: SCR_026462; ref. 52) was used to predict 

LOH events for MHC-I HLA genes from WGS data. LOH events were 
identified using SpecHLA’s default settings.

WES Processing
WES data (Supplementary Table S5) were utilized to detect so-

matic mutations, using a pipeline identical to that used for WGS. In 
cases in which both WGS and WES data were available for samples, 
we integrated the somatic mutation results to examine alterations in 
driver genes.

Oncogene List
The oncogene list was curated from ONGene (87) and COSMIC 

(88) databases. The complete gene list (n = 990) is provided in Sup-
plementary Table S13.

RNA-Seq Processing
FastQC was used to evaluate the quality of raw sequencing data. 

TrimGalore (v0.6.7; RRID: SCR_011847) was then utilized to remove 
low-quality bases and adapter sequences. The resulting trimmed 
RNA-seq reads were aligned to the human reference genome GRCh38 
using STAR (v2.7.10a; RRID: SCR_004463; ref. 89). RSEM (v1.3.3; 
RRID: SCR_000262; ref. 90) was used to quantify gene and isoform 
expression levels from the aligned reads.

Circle-Seq Processing
Circle-seq (Supplementary Table S7) is a sequencing library enrich-

ment protocol utilized for the detection of circular DNAs. Sequenc-
ing FASTQ files were converted to BAM files using the same pipeline 
used for WGS data processing. The ecDNA identified in WGS data 
underwent visual inspection using the Integrated Genomics Viewer 
(RRID: SCR_011793; ref. 91).

Timing Analysis of Mutations on Drivers and ecDNA
To infer the relative timing of mutations on driver genes and 

ecDNA, we categorized SNVs into three groups based on their 
VAFs: low (VAF ≤ 0.333), intermediate (0.333 < VAF ≤ 0.667), and 
high (VAF > 0.667; ref. 9). These groups were interpreted as repre-
senting minor, late, and early SNVs within the trajectory of tumor 
progression (19).

DNA FISH
DNA FISH was performed using HER-2 DNA Probe Kit (FP-001; 

Healthcare Biotechnology) and CCND1(BCL1)/CEP11 Gene Ampli-
fication Probe Detection Kit (FP-041; Healthcare Biotechnology) to 
confirm ERBB2 and CCND1 amplification status in tissue samples. 
Initially, FFPE tumor samples underwent deparaffinization in xylene, 
rehydration through ethanol washes, and rinsing in distilled water. 
This was followed by heat-induced epitope retrieval and protein di-
gestion. Slides were subsequently dehydrated by washing in 70%, 85%, 

and 100% cold ethanol stored at −20°C (120 seconds in each solution).  
FISH probes, diluted in hybridization buffer, were applied to the slides 
and covered with a coverslip. Denaturation of the slides occurred at 
85°C for 5 minutes, followed by overnight (14–18 hours) hybridization 
at 42°C. Slides were washed with 2×SSC/0.3% NP-40 (pH 7.0–7.5). The 
dried slides were stained with 10 μL of 4’,6-diamidino-2-phenylindole 
(DAPI) buffer, and images were captured using OLYMPUS BX43.

scRNA-Seq
Data Processing. In-house raw scRNA-seq data (Supplementa-

ry Table S8) generated from the DNBelab C4 platform underwent 
preprocessing steps, including demultiplexing cellular barcodes, 
read alignment to the hg38 reference genome, and generation of a 
gene count matrix, using PISA (92). Detailed quality control metrics 
were generated and assessed, and cells underwent rigorous filtering 
to ensure high data quality for subsequent analyses. Quality con-
trol procedures were performed using the R Seurat (v5.0.3; RRID: 
SCR_016341; ref. 93) package, involving the exclusion of likely 
apoptotic or dying cells with a mitochondrial fraction ≥25%, as 
well as cells with low-complexity libraries (≤200 genes) or highly 
complex libraries (≥6,000 genes). Potential doublets were identified 
and removed using the DoubletFinder (v2.0.3; RRID: SCR_018771;  
ref. 94) package.

Unsupervised Clustering and Major Cell Type Annotation. The 
default parameters of Seurat were utilized throughout unless spec-
ified otherwise. Briefly, the unique molecular identifier count ma-
trix was normalized using the “NormalizeData” function. Subse-
quently, 2,000 highly variable genes were identified from the natural  
log-transformed expression matrix using the “FindVariableFeatures” 
function with the “vst” method. These variable genes were used for 
both cell type clustering and dimensionality reduction. After adjust-
ing for unique molecular identifier counts, 30 principal components 
(PC) were obtained via PC analysis. Initial clustering was performed 
with the “FindClusters” function using these 30 PCs with a resolu-
tion of 0.1. For visualization, Uniform Manifold Approximation and 
Projection was applied using Seurat’s “RunUMAP” function, using 
the same PCs used for clustering. Six major cell types were identi-
fied using known markers: T/NK cells (CD2, CD3D, CD3E, NKG7, 
and GZMA), B cells (CD79A, CD79B, MS4A1, and MZB1), myeloid 
cells (CD14, CD163, CD68, and LYZ), epithelial cells (EPCAM, KRT18, 
KRT19, and KRT7), fibroblasts (COL1A2, COL1A1, ACTA2, and DCN), 
and endothelial cells (VWF, PECAM1, CDH5, and ENG). Cell clusters 
expressing markers from multiple major cell types were excluded. Fol-
lowing quality control, 259,808 cells remained for further analysis.

Single-Cell CNV Analysis. We established a reference for normal 
CNs by randomly selecting 2,000 endothelial cells and 2,000 fibro-
blasts. Next, we used InferCNV (v1.18.1; RRID: SCR_021140; ref. 49) 
to identify large-scale CNAs specifically in epithelial cells. Integrating 
information from cluster distribution and single-cell CNV patterns, 
we found that all epithelial cells displayed malignant characteristics. 
Next, for each sample, gene scores were restandardized between −1 
and 1. The CNV score for each malignant cell was then calculated as 
the squared sum of these gene scores. The ComplexHeatmap (v2.14.0; 
RRID: SCR_017270; ref. 95) R package was used to visualize the per-
gene CN scores for each malignant cell.

Reclustering of Malignant Cells and Immune Cells. To analyze 
malignant cells and three immune cell subgroups, we corrected for 
patient-specific variations using batch correction with the R package 
harmony (v1.2.0; RRID: SCR_022206; ref. 96). Dimensionality reduc-
tion and unsupervised clustering parameters were set to align with 
major cell types, except for resolution, which was adjusted to 1 for 
finer clustering (0.5 for malignant cells). Seurat’s “FindAllMarkers” 
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function was used to pinpoint differentially expressed genes (DEG) 
within each cluster, using default parameters (min.pct = 0.25, logfc.
threshold = 0.25). Subsequently, immune subtypes were identified by 
leveraging known published signatures, and these identified DEGs. T 
cells included CD4+ T cells, CD8+ T cells, Tregs (FOXP3, IL2RA, and 
IKZF2), naïve T cells (LEF1 and TCF7), and IFN+ T cells (IFIT1 and 
ISG15). NK cells were further categorized into CD56dimCD16hi and 
CD56brightCD16lo subtypes based on the expression levels of CD16 
(FCGR3A) and CD56 (NCAM1). Among B cells, three subtypes were 
identified: naïve B cells (FCER2 and TCL1A), memory B cells (AIM2 
and TNFRSF13B), and plasma cells (IGKC and IGHG3). Myeloid cells 
were divided into macrophages (CD68, CD163, and C1QA), conven-
tional dendritic cells of subtypes 1 (CLEC9A and XCR1), 2 (FCER1A 
and CD1C), and 3 (LAMP3 and CCL19), mast cells (TPSAB1 and 
TPSB2), and monocytes (FCN1, VCAN, and S100A8).

Gene Signature Scores. Multiple gene signature scores were cal-
culated based on the scRNA-seq data using the “AddModuleScore” 
function of Seurat. For malignant cells, the APM score was calculated 
based on the expression of six genes (HLA-A, HLA-B, HLA-C, HLA-E, 
HLA-F, and B2M).

Expression Programs of Intratumoral Heterogeneity. To system-
atically characterize transcriptional heterogeneity, we performed 
unsupervised NMF using the cnmf Python package (v1.4.1; RRID: 
SCR_025495; ref. 97) on the 13 tumors containing more than 100 
malignant cells. The NMF method identified sets of coexpressed 
genes, termed metagenes. To determine the optimal number of meta-
genes (K) for each tumor, we balanced stability and reconstruction 
error within the data. A total of 50 programs were identified across 
the 13 tumors. The top-ranked genes for each program, based on 
their NMF factor loadings, are detailed in Supplementary Table S19. 
Subsequently, we performed hierarchical clustering on these 50 pro-
grams, utilizing one minus the Pearson correlation coefficient as the 
distance metric across all gene scores. This analysis led to the identifi-
cation of five metaprograms. We leveraged the HALLMARK (98) and 
CancerSEA (99) collections to functionally annotate both programs 
and metaprograms. For each metaprogram signature, we combined 
the top 50 genes from each constituent metagene. We then calculated 
the average loading for each gene. Repetitive genes retained their orig-
inal loadings, whereas the loadings for exclusive genes were summed. 
Finally, these combined loadings were normalized by dividing by the 
number of metagenes within the signature. We designated the top 
30 genes with the highest resulting values as marker genes for the 
signature. The metaprogram score of each malignant cell was subse-
quently computed using the “AddModuleScore” function from the 
Seurat package.

Pathway Analysis. To identify DEGs between malignant cells of 
ecDNA− and ecDNA+ tumors, we used a two-pronged approach. First, 
we utilized the “FindMarkers” function within the Seurat package 
to identify significantly altered genes at the single-cell level (P value 
< 0.05). Second, we leveraged the pseudobulk method implemented 
in the Libra (v1.0.0; RRID: SCR_016608; ref. 100) package to ana-
lyze gene expression changes at the bulk level (P value < 0.01). Genes 
identified as significant by both methods were considered bona fide 
DEGs. Subsequently, we performed pathway enrichment analysis 
to elucidate the functional roles of these DEGs. Pathway and gene 
set collections were obtained from publicly available resources: the 
Molecular Signatures Database HALLMARK (98) and CancerSEA 
(99). We used the “enricher” R function (default parameters) of the 
clusterProfiler (v4.6.2; RRID: SCR_016884; ref. 101) R package to as-
sess the over- and under-expression of gene sets within the identified 
DEGs, leveraging the hypergeometric distribution for enrichment  
P value calculations. Gene identifiers were mapped using the  
org.Hs.eg.db (v3.16.0) package from AnnotationDbi. We used the 

“enricher” R function (default parameters). The top seven enriched 
pathways (ranked by P value for each group) were then visualized as 
bar plots using the ggplot2 (v3.5.0; RRID: SCR_014601) R packages.

Cell-to-Cell Communication. We used CellChat (v1.6.1; RRID: 
SCR_021946; ref. 102) to elucidate potential intercellular commu-
nication networks. We first imported the normalized expression 
matrix generated by Seurat and constructed a CellChat object using 
the “createCellChat” function. Next, we used the “identifyOverEx-
pressedGenes” and “identifyOverExpressedInteractions” functions 
within CellChat to identify significantly overexpressed ligands and 
receptors, respectively. These molecules potentially mediate intercel-
lular signaling. We then quantified the likelihood of ligand–receptor 
interactions using the “computeCommunProb” and “computeCom-
munProbPathway” functions. Finally, the “aggregateNet” function 
was utilized to construct the aggregated cell–cell communication 
network, summarizing these potential communication events.

IHC and mIF Staining
FFPE tumor tissue blocks were cut into thin sections (4–8 μm) and 

deparaffinized with xylene. To prepare for antibody staining, the sec-
tions were rehydrated through a graded ethanol series (100%, 95%, and 
70%) followed by microwave treatment in the citric acid solution for 
antigen retrieval (15 minutes). IHC was performed using a CD45 pri-
mary antibody (Cat# ZM-0183, ZSGB-BIO, RRID: AB_3676256) and 
evaluated by two independent pathologists. We performed mIF stain-
ing using two antibody panels: panel 1 [CD20 (Cell Signaling Tech-
nology, #48750S, RRID:AB_3107071), CD68 (Abcam, #ab213363, 
RRID:AB_2801637), CD4 (Zenbio, #R50028, RRID:AB_3676254), 
and FOXP3 (Abcam, #ab20034, RRID:AB_445284)] and panel 2 
[CD8a (Cell Signaling Technology, #85336, RRID:AB_2800052), pan-
CK (Abcam, #308262, RRID:AB_3676255), and HLA-I (Proteintech, 
#15240, RRID:AB_1557426)]. Akoya OPAL Polaris 7-Color Automa-
tion IHC Kit (NEL871001KT, RRID: AB_3674065) was used following 
the manufacturer’s instructions. Briefly, FFPE slides were incubated 
sequentially with primary antibodies. Secondary antibodies conju-
gated to Opal fluorophores were then applied. Finally, nuclei were 
stained with DAPI, and multispectral images were acquired using 
a PANNORAMIC SCAN II scanner. Images were processed using  
QuPath (v0.5.1; ref. 103).

Deconvolution of Bulk RNA-Seq for Immune Cell Estimation
We deconvoluted bulk RNA-seq data from 331 tumor samples to 

estimate the relative proportions of immune cell types. Utilizing the 
build_model function within the omnideconv (v0.0.0.9000) pack-
age (https://github.com/omnideconv/omnideconv), we construct-
ed a reference signature matrix. This matrix encompasses the top 
20 marker genes for each major cell type identified in our scRNA-
seq data, as well as pan-marker genes (Supplementary Table S23). 
CIBERSORTx (RRID: SCR_016955; ref. 104) then leveraged this 
matrix to estimate the relative abundance of each cell type within 
each sample.

ISTAT Analysis
The BED files for focal amplification regions were obtained from 

AmpliconClassifier. To evaluate the statistical significance of the 
overlap between two genome annotations (ecDNA and other fSCNAs; 
urine ecDNA and tumor ecDNA), we used the ISTAT software (v1.0; 
https://github.com/shahab-sarmashghi/ISTAT; ref. 35).

Statistical Analysis
All statistical analyses were performed in R (v4.3.0). The statistical 

tests used to analyze the data were described in figure legends and the 
results section. In multivariate Cox proportional hazards modeling, 
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we first assessed the impact of six clinical features (age, sex, smoking 
history, tumor stage, grade, and tumor location) and three fSCNA 
subtypes on overall survival using univariate analyses. Three clinical 
features (age, grade, and tumor stage) and fSCNA subtypes demon-
strated significant associations with survival. To address potential 
multicollinearity and prevent overfitting in subsequent multivariate 
analyses, we used a stepwise backward selection procedure using the 
Akaike information criterion (AIC). For categorical variables, pTa/
pT1 and tumors without fSCNA were used as reference groups.

In our logistic regression analysis, continuous variables were di-
chotomized into high and low groups based on their median values. 
Prevalence estimates were accompanied by 95% confidence intervals 
(CI) calculated using the propCI function. Logistic regression models 
were fitted using the glm function (family = “binomial”), and OR with 
95% CIs were reported.

Data Availability
A detailed overview of data accessibility, including data origins 

and accession identifiers for all sequencing datasets, is provided in 
Supplementary Tables S4–S8. The raw WGS data, histology, and 
metadata of the BIG cohort can be acquired from the Genome Se-
quence Archive for Human with accession numbers HRA001867 and 
HRA000029. All sequencing data from the YHD dataset is available 
in the Genome Sequence Archive for Human with accession numbers 
HRA003461, HRA005001, HRA004718, and HRA005963. The raw 
genome sequencing data are protected; deidentified data are available 
under restricted access to protect patient privacy and comply with the 
Regulations on Management of Human Genetic Resources in China. 
These data can be requested for research use from the correspond-
ing author. The identified ecDNA sequences in the CUGA dataset 
can be visualized and further analyzed on a dedicated web platform: 
AmpliconRepository (ampliconrepository.org/project/CUGA). The 
ecDNA profiles of multiple cancer types in the The Cancer Genome 
Atlas and Pan-Cancer Analysis of Whole Genomes datasets can also 
be acquired from AmpliconRepository. All other remaining data are 
available within the article and Supplementary Data. Any additional 
information required to reanalyze the data reported in this article is 
available upon request. No standalone software or code was gener-
ated to analyze the data. All software and analysis codes are publicly 
available. The tools and versions used are detailed in the Methods 
and Supplementary Table S24. The detailed codes and instructions 
for all software have been deposited on GitHub (https://github.com/
DreamLab-WeiLv/CUGA-ecDNA).
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