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Creation of a segment-based model to estimate immune cell
fraction from whole genome sequencing (WGS) data

Description of ImmuneLENS model

In T cell ExTRECT, we used a general additive model (GAM) to estimate — the read depth𝑟
𝑉𝐷𝐽

   

ratio at the maximum locus of V(D)J recombination — from whole exome sequencing (WES)
data. We then calculated the T cell fraction from the detected depletion in 1. Because𝑟

𝑉𝐷𝐽
  

standard exome capture kits do not sequence large parts of the TCRA locus—leading to
non-uniform coverage in WES data—we modeled V(D)J recombination as a smoothed process.
However, this simplification made the model more sensitive to noise and did not reflect the true
biological process of V(D)J recombination.

In ImmuneLENS, we developed a model directly based on the biological process of V(D)J
recombination. We fit the read depth ratio to constant piecewise segments, similar to ASCAT’s2

allele-specific copy number segmentation. However, unlike ASCAT, we know the precise
locations of potential copy number breakpoints—representing the starts of deletion sites after
V(D)J recombination—from the genomic positions of the V and J gene segments. Furthermore,
the read depth ratio should start at 0 and decrease monotonically until the point of maximum
V(D)J recombination. For example, in TCRA V(D)J recombination, only some TCR chains select
the first TRAV-1 segment; all other V segments are deleted. However, all TCR chains have a
deletion after the final V segment. Similarly, for J segments, the read depth ratio increases
monotonically to 0. This model could then be applied to the following V(D)J gene: TCRA, TCRB
or TCRG for T cells.

To fit this model, we transformed each segment defined by V and J gene breakpoints into binary
vectors, assigning 1s within their regions and 0s outside. Using a constrained linear model, we
fitted these vectors to the normalized read ratios, applying the following inequality constraints for
each of the n V and m J segments:
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While fitting the V(D)J recombination model, we also adjusted for GC biases in the data by
fitting values to the GC content within 100bp bins, their smoothed values in a vector and the
square of these values. Using the fitted values from the model, we calculate the total T cell
fraction from the model's maximum deviation, such as the value from the last V segment. We
also determine individual fractions from specific segments.

To extend the model to the IGH locus for quantifying B cell fractions, we included segments
representing class-switching deletion events that result in different antibody production. The
breakpoints of these deletion events were restricted to their genomic locations—the coordinates
of the S regions where class-switching breakpoints occur. The locations of the S regions were
identified from the literature3 and confirmed by detecting split reads within the 100KGP cohort.
These split reads had one mate aligning upstream of the class-switch segment and the other
downstream of IGHM. We found that the S region listed for IGHG2 in Kuri-Magaña et al. better
fit IGHG4, so we redefined the S regions based on the presence of split reads (coordinates in
hg38: IGHM: chr14:105856501-105860500, IGHG3: chr14:105773001-105774000, IGHG1:
chr14:105744501-105745500, IGHA1:chr14:105709501-105712500, IGHG2:
chr14:105645000-105648000, IGHG4: chr14:105627501-105628500 , IGHE:
chr14:105602501-105604500 and IGHA2: chr14:105589001-105591500, see Supplementary
Fig. 1).

Supplementary Figure 1
a. Frequency of discordant split reads between around expected class switching S region between iG
class switching segments and IGHM.

Within the model, we set the ends of the class-switching segments to the ends of the
corresponding S regions (or the beginnings for IGHM). Because the exact breakpoint location
within the S region is unknown, we masked coverage values from the ends of the
class-switching segment exons and the ends of the S regions.

https://paperpile.com/c/Uram5J/fuyK5


There were two additional restrictions for the IGH model:

1. The total fraction of class-switched B cells must be less than or equal to the total B cell
fraction measured from the V(D)J region.

2. The final V segment, IGHV3-73, was restricted to be less than 0.01 times the total B cell
fraction.

These restrictions prevent model solutions with artificially high B cell fractions and clonally
dominant IGHV3-73 segments, which were frequently observed due to overfitting of the GC
correction terms. The fraction for non-class switched IgM/D B cells was calculated as the total B
cell fraction minus the class switched B cell fraction.

Quality control of genomic loci within V(D)J genes used in ImmuneLENS

We performed a robust quality control process to identify 100bp segments in the V(D)J genes
that had outlier coverage either (1) across the entire cohort or (2) within a subset linked to
known germline genomic variants.

As the first step, we calculated the mean GC-corrected ratios in all the V(D)J genes across the
100KGP lung cancer cohort. This revealed 100bp segments with anomalously low or high
coverage compared to surrounding regions. We fitted a GAM model to the mean GC-corrected
ratios and flagged for exclusion any segments deviating from the fitted line by more than ±0.25.
This approach worked well for TCRA, but for other genes, such as TCRB, large clustered
segments interfered with the GAM model fit. For these genes, some clear outlier regions were
initially removed manually—for example, all TCRB regions with a mean GC ratio above 0.25.

After removing these 100bp segments, we identified additional biased segments using a
GWAS-type analysis with PLINK software. We found germline SNPs within the
TCRA/TCRB/TCRG/IGH loci strongly associated with changes in ImmuneLENS-estimated T or
B cell fractions. We then tested whether the 100bp segments containing these SNPs showed
under- or overcoverage compared to surrounding regions, but only in patients with the
alternative allele. This procedure identified additional outlier segments, which we flagged for
removal. We reran the PLINK/GWAS analysis without the flagged regions to ensure no
additional artifact segments remained.

Germline and somatic IGH focal copy number correction
To identify a patient's IGH locus copy number haplotype, we used germline blood samples
assumed to have low B cell content (<10%). Next, we divided the GC-corrected coverage by the
median read depth, smoothed it using a 1kb rolling average, and rounded to the nearest 0.5. We
then categorized genomic regions as having loss or gain events. At each of five iterations, we
recalculated GC-corrected coverage values, dividing by the median read depth only in regions
without predicted copy number changes. After determining the IGH germline copy number
variations (CNVs), we normalized the raw IGH coverage values. For regions with predicted loss
events, we doubled the coverage values (if one allele was lost) or set them to zero (if deleted).
For regions with predicted gains, we divided coverage values by the number of extra copies.



After this germline correction, we applied the ImmuneLENS method to calculate the IGH B cell
fraction as described above

For somatic tumour samples, we ran a simplified copy number alteration (CNA) caller within the
IGH locus using paired germline and tumour coverage values. We blacklisted the focal regions
of expected class switching (hg38: chr14:105712500–105860500) and V(D)J recombination
(hg38: chr14:105865458–105939756) to reduce the likelihood of these events being called as
tumour somatic events. For somatic CNA calling, we first adjust both germline and tumour
coverage values for GC content, then divide each by the median coverage within the IGH locus.
We calculated the log ratio (logR) at each base as the log₂ ratio of GC-adjusted tumour reads to
germline reads, then normalized it by the median value in 1kb bins. We then grouped the logR
values into line segments by fitting a recursive partitioning and regression tree using the rpart R
package (version 4.1). For each segment, we calculated the median logR. We then perform a
breakpoint check to see if any somatic segment breakpoints fall within the V(D)J or
class-switching blacklisted regions. If so, we adjust the breakpoint to best fit the differences in
log₂ ratio between the segments on either side of the blacklisted region. We did this for every
segment overlapping the blacklisted region with a logR value not equal to 1 (indicating a
copy-number change overlapping the blacklisted region). We re-included the blacklisted regions
and reran the recursive partitioning and regression tree on that overlapping segment, splitting it
into subsegments. We then checked each new subsegment to see if its breakpoint matches the
logR difference between the original overlapping segment and the adjacent one. If this
difference is small (<20% difference between the logR change in the subsegments and the
original adjacent segment), we choose it as the new breakpoint. After calling potential somatic
CNAs, we only use them for normalization if the segments with predicted somatic CNA are >100
kb and the maximum logR change among all segments is >0.2. If these conditions are met, we
correct the tumour coverage regions for the somatic CNA by dividing the coverage within this
region by the ratio of the segment's median coverage to the baseline median coverage of the
entire IGH locus.

After the somatic CNA correction, we correct for any germline copy number alterations identified
in the matched germline sample. We adapt the germline correction process to account for
tumour purity and ploidy. Instead of using theoretical normalization values valid for diploid
tumors, we calculate the observed coverage ratio for each segment with called copy number
alterations. This ratio compares the coverage in the tumor segment to a baseline from the entire
IGH locus. These normalisation values are then used directly to perform germline correction for
the tumour samples. We then calculate the IGH fractions from the tumour sample using both
somatic and germline corrections, depending on whether the called somatic CNAs passed the
QC checks (somatic CNA >100 kb and maximum logR change >0.1). Even if the somatic CNA
correction passes QC, we also run the germline correction alone. As a final check, we accept
the combined correction only if it is less than the germline correction alone. We do this because
samples with confirmed somatic CNAs in the IGH locus often have focal amplifications that
inflate IGH B cell fractions, and we aim to be conservative when calling somatic CNAs.



Because our method for calling germline CNVs was invalid for samples with high B cell
fractions, we developed an adapted version for these cases. It followed a similar procedure but
used only the final 20 kb of the IGH locus as a coverage baseline to avoid the effects of V(D)J
recombination. We first divided the IGH locus into regions representing IGHV segments or
class-switched segments. Next, we calculated mean coverage in 1kb windows, using the
principle that coverage increases along the IGHV region due to fewer V segments being deleted
in V(D)J recombination toward the locus's end. We performed this analysis in both directions to
identify potential breakpoints inconsistent with V(D)J recombination. For example, a sudden
drop and subsequent rise in coverage along the V segment region is unlikely due to V(D)J
recombination but may indicate germline CNVs like copy number deletions. We then
categorized these segments based on the change in coverage before and after the breakpoint,
using the same method as the standard germline CNV caller.

Supplementary Fig. 2a gives an overview of the procedure for IGH germline haplotype and
somatic CNA normalisation.

Additional validation of ImmuneLENS

IGH germline and somatic copy number validation

One complication of the IGH locus is the prevalence of germline copy number variants involving
deletions and duplications4. These variants have been recently studied regarding disease
susceptibility. However, when estimating B cell fractions, a large germline deletion in the IGH
locus can be misinterpreted by the ImmuneLENS model as a V(D)J deletion event. To assess
the scale of this issue, we applied the standard ImmuneLENS model to blood germline samples
from the 100KGP pan-cancer and rare disease cohort. In previous studies, B cells comprise
approximately 10% of circulating lymphocytes in healthy adults5. However, our calculations
showed a substantial proportion with enriched (>10%) or high (>20%) B cell content as a
percentage of all nucleated cells (Supplementary Fig. 2b). We hypothesized that these high B
cell fractions were due to prevalent germline copy number variants. To test this, we examined all
Father-Mother-Child trios within the 100KGP rare disease cohort. We categorized the parents'
samples as normal, enriched (>10%), or high (>20%) and then examined the distribution of the
child's B cell fraction (Supplementary Fig. 2c). We observed a clear inheritance pattern of high B
cell fractions, suggesting they are due to germline copy number variants. By examining
individual family trios, we identified clear cases of large germline variants affecting B cell fraction
calculations. Supplementary Fig. 2d shows a case where both the mother and child have a
~242 kb deletion of one allele. This region lies within the IGHV locus (~106,082–106,324 kb)
and contains 19 IGHV genes used in the ImmuneLENS model. It results in both the mother and
child having a calculated B cell fraction of 0.35 (Supplementary Fig. 2d, right panels).

While the ImmuneLENS model for T cell fraction assumes somatic copy number alterations
affecting TCR loci in tumour samples are unlikely, this is not the case for the IGH locus. Within
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the TRACERx100 samples, we identified tumour samples with copy number changes in the IGH
locus that are inconsistent with V(D)J recombination, such as tumor region 4 of CRUK0062
(Supplementary Fig. 2e). These alterations led to incorrect IGH B cell fraction calculations.

To correct for germline and somatic copy number alterations in the IGH locus before calculating
the estimated IGH B cell fraction, we used our developed IGH copy number callers (see
Supplementary Fig. 2a). Applying this to the 100KGP germline blood samples (Supplementary
Fig. 2f) reduced the number of samples with enriched or very high B cell content. The previously
highlighted mother and child B cell fractions, as well as the CRUK0062 R4 sample
(Supplementary Fig. 2h), were reduced to a normal physiological range. Therefore, germline
haplotype variants within the IGH locus likely explain the majority of our enriched and high IGH
B cell fraction samples. An exception is one 100KGP pan-cancer participant identified with
extremely high predicted circulating B cell content before correction (circulating IGH B cell
fraction = 0.95, Supplementary Fig. 2i). However, hospital records show this participant had
B-cell chronic lymphocytic leukemia (B-CLL) concurrently with their solid tumor, and the
germline blood sample likely consisted almost entirely of these B cells.





Supplementary Figure 2
a. Cartoon overview of method to call germline IGH haplotype copy number alterations within the IGH loci
and potential somatic CNA occurring in cancer cells. b. Histogram showing the distribution of circulating
IGH B cell fraction in the 100KGP rare disease and healthy or pan-cancer cohort, separated by those
samples with physiologically normal fractions (< 0.1), enriched (> 0.1 and < 0.2) and high fractions (>0.2).
c. Density plots of circulating IGH B cell fraction for the child within a mother-father-child trio, grouped by
the status of the parents calculated IGH B cell fraction into physiologically normal, enriched or high
groups. d. Left panels: Normalised number of reads in 1kb bins within the IGH locus for a
mother-father-child trio within the 100KGP. 1kb bins are coloured by the called copy number status in the
ImmuneLENS methods, genomic regions showing clear inheritance patterns are highlighted. Right
panels: Output of ImmuneLENS on non-corrected IGH coverage values. e. Normalised number of reads
in 1kb bins for TRACERx patient CRUK0062, germline blood sample and tumour region 4. f. Output of
ImmuneLENS on uncorrected coverage values of CRUK0062 tumour region 4. g. Histogram showing the
distribution of circulating IGH B cell fraction in the 100KGP cohort using corrected coverage values for
germline IGH haplotype variation called by ImmuneLENS. h. Output of ImmuneLENS on corrected IGH
coverage values on the mother-father-child trio in C. and CRUK0062 tumour region 4. i. ImmuneLENS
output of circulating IGH B cell fraction on uncorrected IGH coverage values for a participant that has B
cell chronic lymphocytic leukaemia.

Comparison of ImmuneLENS and T cell ExTRECT on TRACERx WGS vs
WES
We applied the ImmuneLENS model to matched TRACERx WES and WGS data, comparing the
results to T cell ExTRECT values from WES data. The ImmuneLENS and T cell ExTRECT T cell
fractions from WES data were highly correlated (ρ = 0.92, P= 0, Supplementary Fig. 3a).
Similarly, ImmuneLENS values from WES and WGS data were highly correlated (ρ = 0.77, P =
2.27 x 10-72, Supplementary Fig. 3b). However, compared to the Danaher T cell score6

(Supplementary Fig. 3c), the ImmuneLENS method showed higher correlation on WES data
and significantly higher on WGS data (T cell ExTRECT (WES) ρ = 0.6, P = 2.18 × 10⁻⁴⁷;
ImmuneLENS (WES) ρ = 0.64, P = 1.43 × 10⁻⁶⁰; ImmuneLENS (WGS) ρ = 0.84, P = 0).

For samples with low T cell infiltration by T cell ExTRECT WES (<0.02), we found that
ImmuneLENS again showed improved correlations with the Danaher T cell score
(Supplementary Fig. 3c) (T cell EXTRECT (WES) ρ = 0.07, P = 0.36; ImmuneLENS (WES): ρ =
0.41 , P = 9.3 x 10-8; ImmuneLENS (WGS): ρ = 0.71 , P = 1.05 x 10-6). This suggests the WGS
method is more sensitive than the exome approach for detecting low T cell fractions. However,
we do not recommend using ImmuneLENS on WES data because the model does not account
for probe biases in exome capture kits.

https://paperpile.com/c/Uram5J/mA6IF


Supplementary Figure 3
a. Comparison of ImmuneLENS and T cell ExTRECT scores on the TRACERx421 WES data. Black line
represents the y = x line. b. Comparison of ImmuneLENS on either the TRACERx100 WES and matched
WGS data. c. Scatter plot of Danaher T cell scores versus TCRA T cell fraction as measured from either
WGS or WES and either using the T cell ExTRECT method (for WES) or the ImmuneLENS method (for
WES and WGS). Bottom panels: samples with < 0.02 estimated T cell fraction from T cell ExTRECT in
WES. IGH germline copy number validation using 100KGP cohort. The blue lines represent the line of
best fit and shaded grey region 95% confidence interval. P values for Spearman's ρ were derived from a
two tailed t-distribution using the correlation coefficient and sample size.

RNAseq validation of IGH class switching in the TRACERx100 cohort and
scRNA data
As an orthogonal method, we correlated IgA, IgG, and IgM/D proportions with those calculated
using the TRUST7 method from RNAseq data (Supplementary Fig. 3a-c). We also compared
these proportions to the number of unique IGHV clones identified by MiXCR on the RNAseq
data (Supplementary Fig. 3d-f). We identified a significant correlation only with the number of
IGHV clones from MiXCR8 (Supplementary Fig. 3d: ρ = 0.48, P = 3 x 10-12). There was no
significant correlation with TRUST IgG calls (Supplementary Fig. 3c: ρ = 0.051, P = 0.5) or with
IgA calls from either TRUST or MiXCR.

We hypothesise that the lack of concordance between the IgA B cell fraction and RNAseq data
is partly due to biological differences in gene expression levels among different class-switched B
cells. To test this, we examined a non-small cell lung cancer scRNA dataset9 and categorized B
and plasma cells into IgA, IgG, or IgM/D based on IGH class-switch gene expression. After
removing B cells with unclear class-switch status, we found that the majority of plasma cells

https://paperpile.com/c/Uram5J/6bPcX
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were enriched for IgG B cells (Supplementary Fig. 3g). We also observed that plasma cells had
higher read counts than B cells (Supplementary Fig. 3h), which, together with our data,
suggests that IgG plasma cells may dominate signals from RNAseq data.

Supplementary Figure 4:
a-c. Correlation of proportion of RNA reads mapping to IGH from the TRUST algorithm with different class
switched proportions to the proportion of class switched B cells as measured from DNA with the
ImmuneLENS method in TRACERx100. d-f. Correlation of the number of unique IGHV clones as
measured by MiXCR from RNAseq data to sample matched B cell fraction as measured by WGS for
either IgM/D, IgG or IgA B cells. g. Class switched status of B cell subsets in scRNA Salcher et al. data.
h. Number of reads by class switch status of different B cell subsets, with significance tested with



two-sided Wilcoxon rank-sum tests. In a-f the blue line represents the line of best fit and the shaded grey
region the 95% confidence interval.Boxplots in h show the median, lower and upper quartile and with
whiskers extending to 1.5 times the interquartile range above and below the interquartile range. P values
for Spearman's ρ were derived from a two tailed t-distribution using the correlation coefficient and sample
size.

IGH B cell fraction validation using the 1000 genomes cohort
To further validate our B cell fraction and class-switching predictions, we downloaded 2,557
high-depth WGS files (average depth = 34X) from the 1000 Genomes cohort10. These samples
are derived from lymphoblastoid cell lines (LCLs), which are Epstein-Barr virus-transformed B
lymphocytes typically sourced from blood samples. As expected, these samples had an
extremely high proportion of B cells (Supplementary Fig. 5a). Although LCLs in culture are
expected to become clonal within 8 weeks¹¹, we detected samples with high diversity of B cell
clonotypes and various IGHV segments used in the fitted models (Supplementary Fig. 5b). The
observed B cell fraction was often less than one, with some samples near 0.5. This is likely due
to allelic exclusion at the IGH locus, where only one allele undergoes V(D)J recombination12.
Therefore, our B cell fractions underestimate the true values because they cannot account for B
cell clonotypes with an un-recombined, non-functional IGH locus due to allelic exclusion.
Assuming all our LCL samples are 100% B cells, we can estimate the percentage undergoing
allelic exclusion. In the most polyclonal LCL samples (IGHV Shannon diversity >2), we predict
that a median of 35% of B cells have undergone allelic exclusion (Supplementary Fig. 5c-d).
From the entire 1000 Genomes cohort, we identified samples that were highly polyclonal or
completely clonal, with differing proportions of class-switched B cells (Supplementary Fig. 5e).

To validate our class-switching predictions, we obtained processed transcriptomic data from the
GEUVADIS study13 and conducted a differential gene expression analysis between predicted B
cell class-switching groups. Despite the polyclonal nature of many samples and the possibility
that DNA and RNA samples taken at different time points may not share the same polyclonal
structure, we identified numerous significant genes after multiple hypothesis adjustment.
Specifically, we found genes up- and downregulated for IgM/D (808 up, 615 down), IgG (536 up,
587 down), and IgA (32 up, 40 down). In particular, IGHM and IGHD were significantly
overexpressed in samples with high numbers of non-class-switched B cells measured from DNA
(IGHM: logFC = 2.98 , adj p =1.4 x 10-32 , IGHD: logFC = 2.35, adj p = 1.1 x 10-28). Similarly, the
IGHG genes were all significantly upregulated in the IgG comparison (IGHG1: logFC = 2.55 , adj
p =5.9 x 10-21, IGHG2: logFC = 1.61 , adj p =5.1 x 10-11, IGHG3: logFC = 1.64 , adj p =1.6 x
10-10, IGHG4: logFC = 2.15 , adj p =7.9 x 10-23). The IGHA genes were also significantly
upregulated in the IgA comparison (IGHA1: logFC = 2.67 , adj p =4.2 x 10-16, IGHA2: logFC =
2.15 , adj p =8.3 x 10-14) (Supplementary Fig. 5f). We note that significant transcriptomic
changes between class-switched B cells (1,423 genes for IgM/D, 1,123 genes for IgG) may
confound eQTL studies based on data from LCL cultures. We have released our full
classification of all 1000 Genomes samples as a resource to enable control in future analyses or
selection for studies involving different types of class-switched LCLs (see Data Availability).

https://paperpile.com/c/Uram5J/T8mDA
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Supplementary Figure 5
a. Histogram distribution of IGH B cell fraction in the 1000 genome cohort. b. Scatter plot of
IGHV Shannon diversity vs IGH B cell fraction with the blue line representing the fitted smooth
line from a loess model. c. Histogram of percent of B cells predicted to have undergone allelic
exclusion for most diverse samples from the 1000 genomes cohort (IGHV shannon diversity >
2), red line represents the median value 30% d. Scatter plot of the percent of B cells predicted
to have undergone allelic exclusion versus the IGHV Shannon diversity, blue fitted line is from a
loess model and red line represents the value of 35% B cells underground allelic exclusion. e.
ImmuneLENS output for IGH B cell fraction of three samples within the 1000 genome LCL
cohort. f. Volcano plots of limma voom analysis accounting for multiple hypothesis testing of the
Geuvadis 1000 genome RNAseq data with samples separated into high and low by the median
of the IgM/D, IgG or IgA B cell fractions. Dashed lines represent cut-offs for -log10(adj p) at
-log10(0.05) and Log2 fold change > 1 or < -1.



Performance of ImmuneLENS on matched high and low depth WGS data
sets
We validated these results using datasets with matched low- and high-depth WGS data. We first
utilised low-depth TCGA samples (median depth = 4.95X) matched with high-depth samples
from the PCAWG study (blood median depth = 37.3X, tumor median depth = 51.2X). We
identified significant correlations with both circulating and infiltrating T cell fractions
(Supplementary Fig. 6a) (TCRA: Circulating: ρ = 0.86, P = 0, Infiltrating: ρ = 0.64, p =1.17 x
10-16; TCRB: Circulating: ρ = 0.72, p = 0, Infiltrating: ρ = 048, p = 5.9 x 10-9; TCRG: Circulating:
ρ = 0.81, p = 3.14 x 10-29, Infiltrating: ρ = 0.56, p = 3.21 x 10-12).

To ascertain the accuracy of TCRA T cell fractions from low-depth WGS at low levels, we filtered
the high-coverage PCAWG samples. We selected samples below varying thresholds (0.2, 0.15,
0.1, and 0.05; Supplementary Fig. 6b). For samples below 0.2, the accuracy remained high (ρ =
0.73, p = 0), as it did for samples below 0.15 (ρ = 0.64, p = 1.2 x 10-6). In both cases, the
concordance—the percentage of low-coverage samples also below 0.2 and 0.15,
respectively—was high (88.1 and 88%). For samples below 0.1, the correlation was no longer
significant (ρ = 0.26, p = 0.18), though the concordance remained high (86.2%), indicating they
were still calculated as low fractions in the low-depth samples. For samples below 0.05 in the
high-depth data, there was neither a significant correlation (ρ = 0.31, P = 0.25) nor high
concordance; only 40% were also below 0.05 in the low-depth samples.

For IGH B cell fraction, we observed a much higher correlation without copy number corrections
(Supplementary Fig. 6c) (Circulating: ρ = 0.66, p = 5.52 x 10-17, Infiltrating: ρ = 0.6, p = = 3.32 x
10-14), compared to with corrections (Circulating: ρ = 0.38, p = 0.00088, Infiltrating: ρ = 0.29, p =
0.0016). This suggests that higher coverage is necessary for accurate IGH locus copy number
calling.

We used low-depth 1000 Genomes samples of lymphoblastoid cell lines (LCLs, median depth =
1.25X) to assess the accuracy of class-switching predictions. We noticed that many low-depth
samples had a very low estimated B cell fraction but a high TCRA T cell fraction score
(Supplementary Fig. 6d). We assumed these were newly established LCLs not yet dominated
by B cells and still containing substantial fractions of other cell types. Therefore, we removed
any sample with an IGH B cell fraction below 0.5 from our analysis. Following this, we identified
significant correlations between high- and low-depth samples for IGH B cell fraction (ρ = 0.65, p
= 1.21 x 10-182), IgA (ρ = 0.61, p = 1.38 x 10-309), IgG (ρ = 0.81, p = 0) and IgM/D B cell fraction
(ρ = 0.65, p = 0) (Supplementary Fig. 6e).

Using the low-depth WGS samples (excluding those with low total IGH B cell fraction), we
classified samples into high and low class-switched groups and replicated the LIMMA analysis
presented in Supplementary Fig. 5f. Supplementary Fig. 6f shows that using the low-coverage
WGS samples, we still identified significant upregulation of relevant class-switched B cell gene
segments. Comparing the calculated log fold change values from the LIMMA analysis using
either high or low coverage, we observed notable concordance (Supplementary Fig. 6g).



Supplementary Figure 6
a. Scatter plots for T cell fraction as measured by TCRA, TCRB or TCRG on the matched high coverage
WGS samples (median coverage blood samples 37.3X, tumour samples 51.2X) with low pass WGS



TCGA data (median coverage 4.95X). b. Scatter plots for circulating TCRA T cell fraction between high
and low coverage WGS filtered by the high depth fraction being lower than varying thresholds (0.2, 0.15,
0.1 and 0.05) signified by shaded grey regions, dotted black line represents the line y = x c. Scatter plots
for IGH B cell fraction calculated with or without haplotype correction on the high coverage PCAWG data
versus lowpass TCGA. d. IGH B cell fraction calculation on the high coverage 1000 genome data (median
coverage 34X) versus the matched low coverage data (1.25X), points are coloured by calculated TCRA T
cell fraction from the high coverage data (left panel) and the low coverage data (right panel). e. Scatter
plots for IGH class switching fractions for high versus low WGS data with samples with < 0.5 IGH B cell
fraction in the low coverage cohort removed. f. Volcano plots showing differentially regulated genes as
calculated by LIMMA. High and low class switched fraction groups in the 1000 genomes cohort were
calculated from the low coverage WGS data, g. Comparison of significant genes from limma-voom
analysis, accounting for multiple hypothesis testing, in the 1000 genomes cohort using either the low or
high coverage WGS data to calculate high and low class switched fraction groups. Dashed lines
represent cut-offs for -log10(adj P) at -log10(0.05) and Log2 fold change > 1 or < -1. In a, c and e the
blue lines represent the line of best fit and grey regions the 95% confidence interval. P values for
Spearman's ρ in were derived from a two tailed t-distribution using the correlation coefficient and sample
size.

Use of ImmuneLENS in additional pan-cancer WGS data sets

Our results on the pan-cancer landscape of circulating T and B cell fractions rely primarily on the
100KGP dataset, which uses a consistent DNA sequencing protocol and detailed matched
clinical data. Other datasets using WGS blood samples may have differing protocols, particularly
in the timing and method of DNA sequencing, which could affect T and B cell quantification
using ImmuneLENS. To investigate these effects, we applied ImmuneLENS to a subset of the
PCAWG/TCGA WGS dataset with matched blood and tumor samples (n = 539) (Supplementary
Fig. 7a). We also examined the TCGA data, using the WES version of T cell ExTRECT to
calculate lymphocyte scores in 6,189 tumour and 5,492 blood samples (Supplementary Fig. 7b).

We observed many of the same trends in this cohort as in the 100KGP, such as low levels of
circulating T cell fractions in glioblastoma. However, we could not confirm the timing of germline
blood samples relative to surgery or treatments for these cases. For the PCAWG data, we noted
many cases of extremely high germline blood TCRA fractions, especially within the colorectal
cohort (Supplementary Fig. 7c). Many values were above the 95th and 99th percentiles of
circulating TCRA T cell fractions (0.28 and 0.37) in the 100KGP cohort. This could be related to
the TCGA treatment center that sequenced the samples, but we consider a treatment-related
effect more likely. One notable colorectal cancer case had an estimated TCRA T cell fraction of
~0.5 and, when examined, revealed a clear signal of V(D)J recombination with a high TRAV
Shannon diversity (Supplementary Fig. 7d).

Taking all germline blood samples within the PCAWG data, we saw no significant differences
between males and females (Supplementary Fig. 7e). However, when we include only samples
with TCRA T cell fractions below the 95th percentile of the 100KGP quantile, a significant
association emerges. In contrast, within the TCGA WES data, we detected a significant
difference between male and female fractions (Supplementary Fig. 7e). This leads us to suspect



an unaccounted factor is causing increased T cell fractions in a minority of the PCAWG germline
samples. In the absence of comprehensive clinical information on these germline samples,
especially their timing related to treatment, it is extremely difficult to explain these differences.
This highlights an important issue when using ImmuneLENS with WGS germline samples. In
many datasets, these samples were collected not as measurements of time-dependent
variables but as presumed unchanging germline controls for cancer analysis.

Supplemental Figure 7
a. Overview plot of output of ImmuneLENS run in the subset of the PCAWG data set composed of TCGA
samples. b. Overview plot of T Cell ExTRECT run on the TCGA WES data. c. Circulating TCRA T cell
fraction within the PCAWG cohort coloured by TCGA sequencing centre. Dashed red lines represent the
95 and 99 percentiles of the 100KGP pan-cancer circulating TCRA T cell fractions. d. Example output of
case within the PCAWG data with very high circulating TCRA T cell fraction. e. Boxplots showing
differences between males and females within PCAWG and TCGA, with 0.2836 representing the 95%



percentile of TCRA T cell fraction scores calculated in the 100KGP data set with significance tested with a
two sided Wilcoxon rank-sum test. Boxplots in a and e show the median, lower and upper quartile and
with whiskers extending to 1.5 times the interquartile range above and below the interquartile range.

Extended analysis of 100KGP

ImmuneLENS reveals differences in TCR repertoire

We investigated whether ImmuneLENS could uncover differences in TRAV segment usage
between tumour and blood samples and among cancer histologies. We restricted analysis to
samples with TCRA T cell fraction > 0.05 and used propensity matching to create cohorts with
similar T cell fraction distributions to test for differences in TRAV segment usage. Between blood
and tumour samples, we found 29 TRAV segments with significant usage differences
(Supplemental Data, Supplementary Fig. 8a), signifying distinct circulating and infiltrating T cell
repertoires. We then tested for significant differences in the infiltrating T cell repertoire among
cancer histologies. Significant usage differences were identified in B cell-derived hematological
cancers (Supplementary Fig. 8a), with a substantial increase in TRAV41 usage (58% vs. 23% in
the propensity-matched cohort, p = 0.0001). This was driven almost entirely by acute
lymphoblastic leukemia (TRAV41 usage 81% vs 30% in propensity matched cohort, P = 4.3x
10-6 Supplementary Fig. 8a). Only a minority of ALL cases in the 100KGP cohort were
T-cell-derived ALL (7.9%, 24/304), with the majority being either of unknown origin due to lack of
clinical data (40%, 124/304) or B cell ALL (51%, 156/304). While aberrant V(D)J recombination
involving TRAV41 has been reported in T-ALL14, we suspect the predicted TRAV41 usage may
actually be the downstream TRDV2 segment not included in the standard TCRA ImmuneLENS
model. TCRD rearrangements involving the TRDV2 segment have been shown to be common
within B-ALL15.

Another histology group with significant alterations in TRAV segment usage was mucosal
gastrointestinal cancer types (colon adenocarcinoma, rectum adenocarcinoma, colorectal and
upper GI neuroendocrine, stomach adenocarcinoma, and other colorectal cancers)
(Supplementary Fig. 8a). This group was characterised by increased TRAV1-2 usage (17% vs
11%, p = 7.5 10-4) and decreased TRAV20 usage (20% vs 31%, p = 1.1 10-6) compared to a
propensity matched cohort. We hypothesise that this is a signal of mucosal associated invariant
T (MAIT) cells which exclusively use the TRAV1-2 segment.

https://paperpile.com/c/Uram5J/kFw36
https://paperpile.com/c/Uram5J/AXK3K




Supplementary Figure 8
a. Percentage of samples with TRAV segments at fractions > 0.001 in different cohorts
compared to propensity matched for TCRA T cell fraction cohorts of the same size with P values
(top panel) calculated using Chi-squared tests to identify segments used at significantly different
proportions.

Fold change analysis of circulating lymphocyte fractions between males
and females in the healthy and cancer cohort

We quantified the fold change (FC) between females and males for lymphocyte counts using a
bootstrap method to obtain 95% confidence intervals (see Supplementary Data). Across the
pan-cancer cohort, females had a 21% higher circulating TCRA T cell fraction than males (p =
1.3 x 10-70). The IGH B cell fraction was 6.9% higher in females (p = 4.6 x 10-8), driven entirely
by the IgM/D subpopulation (15% higher, p = 1.9 x 10-10), while the class-switched B cells
showed no significant difference. In contrast, in the healthy cohort, females had decreased total
IGH B cells (3% decrease, p = 3.4 x 10-6) and IgM/D B cells (7.3% decrease, p = 6.5 x 10-14)
compared to males. There was only a small increase in TCRA T cell fraction in females (1.2%
increase, p = 0.0017) (Supplementary Fig. 9). The T/B cell ratio was also significantly higher in
females than males (pan-cancer: 11% higher, p = 2.4 x 10-12), suggesting that sex-related
differences in immune infiltrate do not solely reflect neutrophil levels.

We observed higher circulating TCRA T cell fractions in females compared to males (FC > 1
with p < 0.05) across 12 different cancer histologies (Supplementary Fig. 9). This remained
significant after multiple hypothesis testing in the following cancers: lung squamous carcinoma
(FC= 1.34, adj p = 2.0 x 10-5), sarcoma (FC= 1.19, adj p = 2.0 x 10-4), lung adenocarcinoma
(FC= 1.16, adj p = 4.5 x 10-2) and colon adenocarcinoma (FC= 1.14, adjusted P= 2.0 x 10-5). In
contrast, limited sexual dimorphism was observed in infiltrating lymphocytes. Overall IgM/D
levels in the pan-cancer cohort were reduced in females (FC = 0.88, adjusted p = 0.15).
Additionally, renal cell carcinoma showed higher TCRA T cell fractions in males than females
(28.7% higher, adjusted p = 0.0016), consistent with previous work16. These data suggest that
biological sex significantly impacts circulating lymphocyte levels in the blood of cancer patients.
However, associations between sex and lymphocyte infiltrate in tumors are restricted to lung
adenocarcinomas and renal cancers. Only weak associations are observed with the circulating
T cell content of healthy individuals.

Next, we examined the differences in circulating lymphocyte fractions between healthy
individuals and cancer patients. Using propensity matching, we selected cohorts with the same
age and sex distribution for each disease type. We found that T cell fraction, IGH B cell fraction,
and IgM/D B cells were significantly decreased in cancer patients compared to healthy controls
(TCRA: 18% decrease, p = 5.1 x 10-342, IGH: 5.3% decrease, p = 2.2 x 10-10, IgM/D: 21%
decrease, p = 1.6 x 10-85 ). In contrast, class-switched B cells, both in fraction and as a
proportion of total B cells, were increased (Supplementary Fig. 9, right panels). Notably, the T/B
cell ratio was also significantly decreased by 17% in cancer patients compared to healthy

https://paperpile.com/c/Uram5J/MQ5fp


participants (p = 3.7 x 10-106). Thus, these differences cannot be solely explained by altered
neutrophil levels.

Supplementary Figure 9
A. Left panels: ratio of circulating ImmuneLENS fraction from cancer patients with propensity
matched for age and sex 100KGP participants within the healthy cohort. Dotted red line is at
fold change = 1. Right panels: fold change and 95% confidence interval of female versus males
for ImmuneLENS fraction for both circulating and tumour infiltrating fractions. P values obtained
from a bootstrapping method with 1000 bootstrap replicates.

GWAS SNPs associated with circulating TCRA T and IGH B cell fraction

Due to the smaller cohort size, our power to identify significant SNPs in the pan-cancer cohort is
reduced. Despite this, some SNPs highly significant in the healthy European ancestry cohort
showed no trend toward significance in the pan-cancer cohort. Two examples are rs2853946
within the HLA-B locus, linked to white blood cell count, and rs2919917, an intron variant in IL7



linked to lymphocyte counts. Both SNPs were highly significant in the European ancestry
healthy cohort (-logp = 6.60 and 7.12, respectively, from PLINK) but were non-significant in the
pan-cancer cohort (Supplementary Fig. 10a). The only significant SNP in the pan-cancer cohort
was rs7919533, a variant within the CDH23 gene previously associated with monocyte counts
(-logp = 4.84, Figure 3E). This analysis for the pan-cancer cohort is likely underpowered. For
instance, variant rs3785549 within the PSMD3 gene was highly significant in the healthy cohort
(-logp = 13.5) but only near the significance threshold in the cancer cohort (-logp = 3.02,
Supplementary Fig. 10b).

To determine whether germline SNPs were affecting T cells directly or neutrophil levels, we
repeated the PLINK analysis examining the T/B cell ratio. In this case, we found only one
significant association in the African ancestry healthy cohort, which was with the Duffy SNP but
instead rs6058796 (-logp = 5.47). Implying that the effect from the Duffy SNP is, as expected,
completely driven by neutrophil levels (Supplementary Fig. 10c). We identified seven significant
SNPs in the European ancestry healthy cohort (Supplementary Data) but none in the
pan-cancer cohort.

We additionally looked for associations between SNPs and the IGH B cell fraction
(Supplementary Fig. 10d). None were significant in the pan-cancer setting, but two SNPs were
significant in the European ancestry healthy cohort. When dividing by class-switching status,
one of these hits, rs56356600, was also found to be associated with IgM/D B cell fraction (IGH:
-logp = 5.2, IgM/D: -logp = 7.1,Supplemental Data, Supplementary Fig. 10e). rs56356600 is an
intron variant within EBF1, a key B cell transcription factor. There was limited overlap with SNPs
significant for TCRA T cell fraction, T/B cell ratio, and IGH B cell fraction, as shown in an upset
plot (Supplementary Fig. 10f). Only two SNPs were significant in both the T/B cell ratio and
TCRA analyses (rs113542380 and rs10774625).



Supplementary Figure 10
a-b. Boxplots showing the effect size associated with the presence of different significant SNPs
across the different ancestry cohorts. c-d. Volcano plots for tested known GWAS SNPs
association with T/B cell ratio and IGH B cell fraction. e. Boxplots showing the effect size
associated with the presence of different significant SNPs associated with IGH B cell fraction in
the European ancestry cohorts f. Intersection of significant SNPs from known GWAS studies
associated with circulating TCRA T cell fraction, IGH B cell fraction and T/B cell ratio. Boxplots
in a, b and e show the median, lower and upper quartile and with whiskers extending to 1.5
times the interquartile range above and below the interquartile range. P values in a, b and e
from two sided Wilcoxon rank-sum tests. The p-values in c and d are derived from the PLINK
software that uses a linear regression model and performs a Wald test for each SNP, for the
cancer cohort this was done separately for each histology and the p-values were combined
using a meta-analysis with a common effects model.
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