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Abstract 37 

Cell type-specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are 38 

poorly understood.  Here we performed single nucleus multiomics and spatial transcriptomics in 39 

up to 32 non-diabetic (ND), autoantibody-positive (AAB+), and T1D pancreas donors. Genomic 40 

profiles from 853,005 cells mapped to 12 pancreatic cell types, including multiple exocrine sub-41 

types.  Beta, acinar, and other cell types, and related cellular niches, had altered abundance 42 

and gene activity in T1D progression, including distinct pathways altered in AAB+ compared to 43 

T1D. We identified epigenomic drivers of gene activity in T1D and AAB+ which, combined with 44 

genetic association, revealed causal pathways of T1D risk including antigen presentation in beta 45 

cells. Finally, single cell and spatial profiles together revealed widespread changes in cell-cell 46 

signaling in T1D including signals affecting beta cell regulation. Overall, these results revealed 47 

drivers of T1D progression in the pancreas, which form the basis for therapeutic targets for 48 

disease prevention. 49 

  50 
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 71 

Introduction 72 

Type 1 diabetes (T1D) is a complex endocrine disorder characterized by autoimmune 73 

destruction of beta cells in the pancreatic islets, leading to lifelong dependence on insulin 74 

therapy. The destruction of beta cells in T1D is caused by interactions with multiple cell types in 75 

and surrounding the islet microenvironment including infiltrating immune cells, other endocrine 76 

cells, and endothelial cells1–3.  Cell types in the pancreas outside the local islet environment, 77 

such as exocrine acinar and ductal cells, are also increasingly implicated in T1D 78 

pathogenesis4,5. Beta cells themselves likely contribute to the development of T1D as well 79 

through response to environmental factors, external signaling to immune, beta, and other cell 80 

types, and cellular survival6.  The sequence of events in the pancreas that drives initiation of 81 

beta cell autoimmunity and progression through stages of T1D, however, as well as the role of 82 

each pancreatic cell type in these processes, remains poorly understood.  83 

 84 

Seroconversion to autoantibody positivity (AAB+) against islet proteins (i.e. self-antigens) 85 

precedes T1D onset in nearly all cases and is used as a clinical biomarker of T1D 86 

progression7,8.  Individuals at T1D diagnosis can present with differing number and type of 87 

autoantibodies, which are associated with varying rates of disease incidence; for example, the 88 

presence of a single islet AAB has a relatively low lifetime risk of T1D while individuals with 89 

multiple AAB have disease rates over 90%9–11.  As clinical presentation of T1D does not occur 90 

until a large fraction of beta cells has been destroyed, there is a window of time between 91 

seroconversion and T1D onset where disease processes can potentially be halted or reversed7.  92 

Even after onset of T1D, residual beta cell mass could potentially be modulated therapeutically 93 

to restore metabolic function12. Defining changes in disease-relevant cell types across the 94 

stages of T1D progression would both improve our understanding of the mechanisms of T1D as 95 

well as reveal potential targets to prevent or reverse disease. Furthermore, an improved 96 

understanding of key changes associated with progression would also help identify novel 97 

biomarkers of T1D, which are particularly needed in the early stages of disease to identify 98 

progressors and candidates for therapeutic intervention13.   99 

 100 

Single cell technology, the focus of this work, enables profiling of individual cells within the 101 

pancreas5,14. Previous single cell studies of the pancreas in T1D have been limited in that they 102 

focused primarily on gene expression profiling of dispersed cells4,15, which does not provide 103 

information on the spatial localization of cellular transcriptomes within the pancreas nor the 104 
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genomic elements driving changes in gene activity. Recent developments in spatial 105 

transcriptomics enables profiling cells in their native location16, which enables understanding cell 106 

type-specific changes in the context of specific cellular neighborhoods and niches in the 107 

pancreas.  This is particularly important in the context of T1D which has extensive heterogeneity 108 

in disease processes within the pancreas17.  In addition, single cell epigenome profiling, for 109 

example using snATAC-seq or single cell multiome (paired snRNA-seq+snATAC-seq), can 110 

reveal transcriptional regulators, cis-regulatory elements (cREs), and gene regulatory networks 111 

driving altered gene expression in T1D5,14. Critically, gene regulatory networks and cREs can be 112 

intersected with T1D-associated variation to infer cell type-specific regulatory programs that 113 

may play a causal role in driving disease18,19.  114 

 115 

Previous single cell studies have also been limited in the extent to which they have captured key 116 

windows of T1D progression and pathogenesis4,15. Specifically, non-diabetic AAB+ donors in 117 

these efforts were largely those with single glutamic acid decarboxylase (GAD) autoantibodies4, 118 

which have a relatively lower risk of developing T1D compared to multiple AAB+ donors and do 119 

not reflect the full arc of progression to T1D20. Furthermore, many of the T1D donors in these 120 

studies had long-standing T1D where disease processes are potentially more dormant, whereas 121 

profiling donors who had more recently developed T1D may give greater insight into active 122 

disease processes. Third, as these studies profiled purified islets, they offer more restricted 123 

insight into genomic changes in cells outside of the islet microenvironment during T1D 124 

progression, including in exocrine cells which are both altered in T1D as well as implicated 125 

causally in the development of T1D4,18,21.   126 

 127 

In this study, we addressed these limitations by performing single cell gene expression and 128 

epigenome profiling in whole pancreas from 32 non-diabetic, non-diabetic single and multiple 129 

AAB+, recent-onset T1D, and long-standing T1D organ donors, as well as spatial 130 

transcriptomics in a subset of non-diabetic and recent-onset T1D donors. We determined 131 

changes in pancreatic cell type abundance, cellular pathways, gene regulatory networks, and 132 

cell-cell signaling across these stages of T1D progression and pathogenesis and, using T1D 133 

association data, identified pathways and gene networks that may play a causal role in the 134 

development of T1D. 135 

 136 
Results 137 
 138 
A comprehensive, multimodal, spatially resolved map of pancreatic cell types  139 
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We selected whole pancreas samples from 32 donors in the nPOD biorepository including 11 140 

non-diabetic (ND), 9 non-diabetic autoantibody positive (ND AAB+), and 12 T1D which we 141 

separated into 7 recent onset (<1 year from diagnosis) and 5 longer duration (>5 years from 142 

diagnosis) (Supplementary Table 1). Within the ND AAB+ group, most organ donors, by our 143 

study design, had multiple autoantibodies (multiple ND AAB+).  For all samples, we performed 144 

single nucleus RNA-seq (snRNA-seq) and single nucleus ATAC-seq (snATAC-seq) assays and, 145 

for eight of the samples, we performed single nucleus multiome (joint snRNA-seq and snATAC-146 

seq in the same nucleus) assays.  In addition, for six of the samples, we performed spatial 147 

transcriptomics assays using the CosMx Spatial Molecular Imager (Figure 1A).  148 

 149 

After extensive barcode quality control and filtering steps, (see Methods), we performed 150 

integration using Harmony22 and clustered 276,906 gene expression profiles (Figure 1B, 151 

Supplementary Figures 1-2).  We annotated the resulting 18 clusters based on the expression 152 

of known cell type marker genes which revealed 12 pancreatic cell types including exocrine 153 

(acinar, ductal), endocrine (alpha, beta, delta), immune (T cell, B cell, macrophage, mast), 154 

stellate, endothelial, and Schwann cells (Figure 1B-C, Supplementary Table 2).  Cell type 155 

clusters had broadly consistent representation across donors and donor characteristics 156 

(Supplementary Figures 2-3).  We aggregated expression profiles for all cells in the cell type 157 

and derived normalized expression levels of each gene using transcripts-per-million (TPM), 158 

which revealed, on average, 17,885 genes expressed (TPM>1) per cell type (Supplementary 159 

Table 3). For each cell type, we further identified genes with expression levels specific 160 

(FDR<.10) to the cell type which revealed both known as well as previously unreported sets of 161 

genes with cell type-specific expression (Supplementary Table 4); for example, well-known 162 

genes with expression highly specific to beta cells included INS, IAPP and G6PC2 as well as 163 

others with no currently known role in beta cell function (e.g., PLCH2, NRG2, RBFOX3, 164 

MTUS2).  165 

 166 

Several cell types displayed multiple sub-clusters representing both known cell sub-types, such 167 

as active and quiescent stellate cells, blood vessel (BVEC) and lymphatic endothelial (LEC) 168 

cells, and MUC5b+ ductal cells, as well as several potential sub-types of acinar cells (Figure 169 

1B,C).  As the genomic properties of these sub-types have not been completely described in 170 

previous efforts, we derived sets of marker genes for each sub-type (see Methods, 171 

Supplementary Table 4). For BVECs and LECs, in addition to reported marker genes PLVAP 172 
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(BVECs) and FLT4 (LECs), we observed specific up-regulation of genes in each sub-type such 173 

as INHBB, BMP6, FCN3, and PCAT19 in BVECs and EFNA5, COLEC12, and MYCT1 in LECs.  174 

In MUCB5+-ductal cells, there was up-regulation of ERN2, CYP2C18, MYO7B, and DMBT1 175 

compared to the primary sub-type of ductal cells. For acinar cells, the primary cluster, which we 176 

annotated as ‘basal’ acinar cells, was enriched for genes and pathways involved in digestive 177 

enzyme production and secretion. Other clusters included ‘high-enzyme’ acinar cells with higher 178 

expression of enzymes such as chymotrypsin (CTRB1/2), trypsinogen (PRSS1, PRSS2), lipase 179 

(PNLIP), carboxyl ester lipase (CEL), chymotrypsin-like elastase (CELA3A/B) and increased 180 

oxidative phosphorylation and translation, ‘signaling’ acinar cells with increased signaling and 181 

stress-response activity, and ‘signaling/differentiation’ acinar cells with increased signaling, 182 

metallothionein (MT1/MT2), and identity and differentiation genes (REG1A/B, PTF1A) (Figure 183 

1D). 184 

 185 

To next characterize the spatial organization of pancreatic cell types, we performed RNA in situ 186 

hybridization (ISH) of 1,010 genes with CosMx from a subset of donors including three ND and 187 

three recent-onset T1D (Supplementary Table 1, Supplementary Table 5).  We imaged a 188 

total of 82.6M transcripts from 71 fields of view (FOV) in whole pancreas sections from three ND 189 

(32 FOV) and three recent-onset T1D donors (39 FOV) (Supplementary Figure 4A) and 190 

assigned transcripts to 392,248 cells overall (80 median genes, 200 median transcripts per cell), 191 

using the CosMx default segmentation. We first performed unsupervised clustering of cellular 192 

gene expression profiles, which revealed nine distinct clusters including exocrine, endocrine, 193 

endothelial, immune and mast cells (Supplementary Figure 4B). We next mapped finer-194 

grained cell type annotations from the snRNA-seq atlas using moscot23 (Supplementary Figure 195 

4B,C), which revealed 14 total cell types and sub-types that were confirmed based on marker 196 

gene expression (Figure 1E). Spatial neighborhood enrichment using squidpy24 revealed 197 

expected cell types clustering together including acinar sub-types, ductal sub-types, endocrine 198 

cells (beta, alpha, delta), and connective cells (e.g., endothelial, immune, stellate) (Figure 1F). 199 

 200 

Next, we sought to determine whether spatial neighborhoods form recurrent niches across the 201 

pancreas, by defining niches involving a cell type using a gene-gene covariance matrix25 in a 202 

spatial neighborhood of 30 cells. We recovered six niches in total, characterized by cell type 203 

abundance (see Methods), including three exocrine (acinar-enriched, ductal-enriched, and 204 

MUC5b ductal-enriched) niches, one endocrine niche, one niche including both endocrine and 205 

exocrine cells (endo-exo), and one niche consisting of connective cells (Figure 1G). To 206 
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characterize each niche, we identified spatially variable genes (Moran’s I >0.2, p<.05) that 207 

captured gene signatures specific to the niche (Figure 1G). In the acinar-enriched niche, marker 208 

genes from the ‘basal’ and ‘high-enzyme’ cell types showed strong spatial clustering (PRSS2, 209 

REG1A). In comparison, the ductal-enriched niche had more spatial association with ‘signaling’ 210 

and ‘signaling/differentiation’ acinar cells (MT1X, SOD2, MT2A). Interestingly, in the MUC5b 211 

ductal-enriched niche, spatially variable genes were strongly associated with immune 212 

interactions (HSPA1A, HLA-A, and B2M). In addition, the endocrine niche had highly distinct 213 

patterns which highlighted multiple endocrine-specific genes (e.g. INS, GCG, SST, and IAPP) 214 

(Figure 1G). 215 

 216 

Finally, we determined whether there were changes in abundance of cell types and sub-types in 217 

T1D progression based on snRNA-seq data (see Methods). There was a significant decrease 218 

(likelihood ratio test [LRT], FDR<.10) in beta cells (Figure 1H, Supplementary Table 6) 219 

although we still observed residual beta cell proportion in T1D particularly in recent-onset 220 

(ND=1.5%, recent-onset T1D=0.93%). We also observed significant decrease (FDR<.10) in 221 

delta cells in T1D, and increased abundance of multiple immune populations in ND AAB+ and 222 

recent-onset T1D.  There was also more nominal evidence (p<.05) for altered abundance of 223 

specific cell sub-types including ‘enzyme-producing’ acinar (p=.037) and MUC5b+ ductal cells 224 

(p=.049).  We next asked whether there were corresponding changes in the abundance of 225 

specific niches in T1D in spatial profiles. First, we quantified the pairwise similarity between ND 226 

and T1D spatial graphs using Wasserstein distance26 (Supplementary Figure 4D), which 227 

revealed significant changes in the underlying structure of endocrine cells (alpha and beta) in 228 

T1D.  We moreover observed significant changes in the abundance of the endocrine niche, as 229 

well as the MUC5b+ ductal cell niche, in T1D (p<.05) (Figure 1I). 230 

 231 

Comprehensive map of pancreatic cell type accessible chromatin  232 

To understand how the epigenome may drive changes in cell type-specific gene expression in 233 

T1D, we next created a matched map of accessible chromatin in pancreatic cell types.  For 29 234 

nPOD donors we performed snATAC-seq assays, and we also used the snATAC-seq profiles 235 

from single cell multiome assays of eight donors described above. After quality control, filtering 236 

and initial clustering steps (see Methods), we annotated cell type identity by label transfer of 237 

the gene expression map using Seurat27. After filtering nuclei with low transfer predictions 238 

(<0.5), there were 203,348 chromatin profiles mapping to the same cell types and sub-types 239 

(Figure 2A, Supplementary Figures 5,6). We estimated that label transfer was >97% accurate 240 
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at the cell type level by comparing the predicted and actual identity of accessible chromatin 241 

profiles in single cell multiome data. We also confirmed that predicted cell types had accessible 242 

chromatin at the promoter regions of key marker genes (Figure 2B). The proportions of each 243 

cell type were highly correlated between expression and accessible chromatin maps (r=.98, 244 

P=1.7x10-13; Supplementary Figure 7). 245 

 246 

We identified transcription factor (TF) binding motifs preferentially enriched in each pancreatic 247 

cell type and sub-type using chromVAR28. At the cell type level, enriched sequence motifs 248 

revealed key regulators of each cell type; for example, beta cells and other endocrine cells were 249 

enriched for RFX and FOXA motifs, ductal cells for HNF1, ONECUT and TEAD motifs, 250 

endothelial cells for ETV, FLI and GABPA motifs, and T cells for RUNX, ETV, and ETS motifs, 251 

among others (Figure 2C, Supplementary Table 7). Motif enrichments also highlighted 252 

regulators that distinguished accessible chromatin profiles of cell types within specific lineages; 253 

for example, NEUROD1 and NR3C1 had stronger enrichment in beta compared to other 254 

endocrine cells (Figure 2C).  Acinar cells showed distinct sets of enriched TF motifs across 255 

different sub-clusters, including ‘signaling’ acinar cells which were more enriched for FOS/JUN, 256 

ATF and NFE motifs (Figure 2C,D, Supplementary Table 7). In ‘high-enzyme’ acinar cells, the 257 

strongest enrichments were for TFs such as ZEB, SNAI1-3, and TCF3-4, which were also the 258 

most enriched motifs in acinar cells overall compared to other cell types (Figure 2C,D, 259 

Supplementary Table 7).  As structurally related TFs often have similar motifs, we linked TF 260 

motifs enriched in sub-clusters to specific TFs in the same structural sub-family with concordant 261 

expression patterns. For example, FOSL2 and JUNB/D, as well as ATF3, NFE2L2 and 262 

BACH1/2, were increased in ‘signaling’ acinar cells, and TCF3 had increased expression in 263 

‘high-enzyme’ acinar cells (Figure 2D). 264 

 265 

For each cell type and sub-type, we next defined candidate cis-regulatory elements (cREs).  We 266 

derived ‘pseudo’-bulk accessible chromatin profiles by aggregating reads from all cells for that 267 

cell type or sub-type and identified cREs by performing peak calling with MACS2. In total, there 268 

were 368,688 cREs across all cell types and an average of 94.3k cCREs per cell type 269 

(Supplementary Table 8).  Given expanded profiling of pancreatic cell types in our study we 270 

determined the proportion of cREs not present in previous catalogs. Among cREs in our study, 271 

9.4% and 7.4% were unique compared to a pan-tissue29 and pancreas-specific5 cRE catalog, 272 

respectively, such as a T cell-specific cRE directly upstream of ZNF746 (Figure 2E). We 273 

identified cREs with cell type-specific activity by comparing accessible chromatin profiles across 274 
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cell types (Supplementary Table 9, see Methods). Cell type-specific cREs were enriched for 275 

sequence motifs of key cell type TFs as well as proximity to genes involved in cell type-specific 276 

function (Supplementary Table 10,11).  For example, beta cell-specific cREs were significantly 277 

enriched (FDR<.10) for proximity to insulin secretion-related pathways and RFX, FOXA, 278 

NEUROD, and NKX6.1 TF motifs, whereas endothelial-specific cREs were significantly enriched 279 

for proximity to angiogenesis, blood vessel morphogenesis, and vasculature pathways and FLI, 280 

ETS, and ETV TF motifs (Supplementary Table 10,11).  We also identified cREs specific to 281 

several of the sub-types within acinar cells; for example, ‘signaling’ acinar-specific cREs were 282 

enriched for JUN, FOS, and ATF motifs.  283 

 284 

Due to the scarcity of immune populations in the pancreas, the epigenome of resident and 285 

infiltrating pancreatic immune cells has not been extensively described. In our study, we 286 

identified multiple immune cell types including T cells, macrophages, B cells and mast cells, 287 

although available cell numbers only enabled defining cREs in T cells and macrophages.  T cell-288 

specific cREs were significantly enriched for proximity to genes involved in T cell activation, T 289 

cell receptor complex, and cytokine receptor activity, and motifs for ETS, ETV and RUNX TFs, 290 

and macrophage-specific cREs were enriched for immune-related processes and PU.1 and 291 

SPIB motifs (Figure 2F). Compared to a previous study which profiled several whole pancreas 292 

donors, more than double the number of cREs were identified in each cell type (T cells: 58.8k vs 293 

24.5k; Macrophages: 114.3k vs 55.7k).  The increased number of cREs improved annotation of 294 

T1D-associated variants at immune-related loci; for example, at the PRCKQ locus likely causal 295 

T1D variant rs947474 (PPA=.88) from published fine-mapping data5 overlapped a pancreatic T 296 

cell and macrophage cRE not identified in these cell types in the pancreas previously, and not 297 

active in other pancreatic cell types (Figure 2G). 298 

 299 

We next predicted networks of genes regulated by TF activity in each pancreatic cell type (see 300 

Methods). We linked cREs to target genes in each cell type using the activity-by-contact (ABC) 301 

method, which revealed an average of 46,474 cRE-target gene links per cell type, as well as 302 

based on promoter proximity (Supplementary Table 12). Using ABC and promoter proximity, 303 

genes were linked to, on average, 2.8 cREs per cell type (Figure 2H). We identified genes 304 

which had highly cell type-specific cRE links (see Methods), and genes with highly cell type-305 

specific cRE links included key marker genes such as INS in beta cells, GCG in alpha cells, IL2, 306 

IFNGR1 and GZMA in T cells, and MARCOS in macrophages. In each cell type, we next 307 

constructed gene regulatory networks (GRNs) for 366 TFs by combining (i) cRE-target gene 308 
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links, (ii) TF sequence motif predictions in cREs, and (ii) TF and target gene expression levels 309 

(Figure 2H, see Methods, Supplementary Data 1). We then annotated likely cellular functions 310 

of TF GRNs by identifying biological pathways with gene sets that significantly overlapped TF 311 

GRNs. There were thousands of significant relationships linking TF GRNs to biological 312 

pathways across all cell types (Fisher’s test, FDR<.10) (Supplementary Table 13), which 313 

annotated many known regulators of biological pathway activity as well as many putative 314 

functions of TFs.  315 

 316 

Finally, we utilized spatial transcriptomics data in combination with cell type-specific TF GRNs to 317 

infer TF activity within cell types and sub-types in the pancreas. Briefly, we used a univariate 318 

linear model to predict the observed gene expression based on TF–gene interaction weights, 319 

from which we scored TFs as active or inactive in each cell type30. We identified TFs with 320 

endocrine-specific activity in line with the previously described regulators of endocrine cell 321 

activity, such as NEUROD1, as well as high activity of PAX6 in beta cells, where it is a key 322 

regulator of beta cell identify, function and survival31 (Figure 2I,J). Among other cell types, we 323 

inferred high activity for BHLHA15/MIST1 in acinar cells, where it may play a role in the 324 

maintenance of pancreatic acinar identity32, and highly specific activity for MEOX2 in endothelial 325 

cells and RUNX3 in T cells (Figure 2I,J). Integrating GRNs with spatial transcriptomic profiles 326 

thus confirmed the specificity of key TFs regulating pancreatic cell types, including for TFs not 327 

measured on the spatial panel directly.   328 

  329 

Pancreatic cell type gene expression in T1D progression 330 

Changes in genome-wide gene activity within each pancreatic cell type during progression to 331 

T1D are poorly understood.  We therefore identified genes and biological pathways in each cell 332 

type with altered activity in ND AAB+ and T1D. To increase our power to detect changes in 333 

endocrine cell types, we also utilized single cell RNA-seq from purified islets of 48 non-diabetic, 334 

ND AAB+ (primarily single AAB+), and T1D donors from the HPAP consortium4,33,34. For each 335 

cell type and sub-type, we derived gene counts per sample, tested for differential expression in 336 

single and multiple ND AAB+ and recent and long-standing T1D compared to non-diabetes, and 337 

considered genes significant at FDR<.10 (see Methods). We further performed gene set 338 

enrichment of differential expression results for each cell type and sub-type and identified 339 

pathways with significant (FDR<.10) changes in activity in each condition (see Methods).     340 

 341 
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Marked gene expression changes were observed in beta cells in T1D (Figure 3A). In recent-342 

onset T1D, 665 genes in beta cells had significant change (FDR<.10) in expression, where the 343 

most up-regulated genes included MHC class I and related (CD74, B2M) genes, cytokines and 344 

cytokine-induced genes (IL15, GBP2, IFIT3), cytokine-responsive TFs (STAT1/4, IRF1), and 345 

components of the 20S proteosome (Figure 3B, Supplementary Figure 8, Supplementary 346 

Table 14). We also observed up-regulation of MHC class II genes in T1D, particularly HLA-347 

DPB1. At the pathway level, there was up-regulation of antigen processing and presentation, 348 

interferon signaling, interleukin signaling and JAK-STAT signaling, and down-regulation of 349 

oxidative phosphorylation, translation, mitochondrial function, mitosis, mRNA processing, 350 

protein folding and localization, ER-Golgi transport, and autophagy (Figure 3C, Supplementary 351 

Table 15). We examined whether specific pathways up-regulated in T1D showed heterogeneity 352 

in expression across beta cells, and several had evidence for bimodal expression patterns most 353 

prominently ECM-related pathways but also antigen presentation, while others such as 354 

interferon and JAK-STAT signaling did not (Supplementary Figure 9). Compared to recent-355 

onset T1D, the largest changes generally differed in long-standing T1D (Supplementary Figure 356 

8), where antigen presentation and class I MHC genes were less pronounced, interferon 357 

signaling was less pronounced although specific IRF TFs had higher expression, and class II 358 

MHC genes had stronger up-regulation. There was also stronger down-regulation in long-359 

standing T1D of insulin secretion and beta cell function and genes such as GLIS3 and G6PC2 360 

(Supplementary Table 14,15). 361 

 362 

Given marked changes in gene expression in beta cells in recent-onset T1D, we further 363 

characterized whether these pathways had altered activity within specific localizations in the 364 

pancreas. Of the genes with altered expression in beta cells in recent onset T1D and present in 365 

the spatial gene panel, almost all (95%) were up-regulated in T1D in spatial profiles (Figure 3D, 366 

Supplementary Figure 10). Furthermore, multiple up-regulated genes in T1D such as MHC 367 

class I genes (e.g. HLA-A, B2M) showed spatially-dependent expression patterns (Moran’s I 368 

>0.2) within endocrine, immune and ductal cells (Figure 3D). We further characterized 369 

pathways in recent-onset T1D with expression profiles dependent on specific niches and altered 370 

in T1D progression. We identified pathways in the PROGENy database in LIANA+35 to predict 371 

pathways preferentially active in a niche using a multivariate linear model.  We identified 372 

multiple pathways with niche-dependent expression, including hypoxia in the endocrine niche 373 

(Figure 3E). When further assessing T1D-specific changes in pathway expression, pathways 374 
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related to hypoxia and inflammation such as TNFa and JAK-STAT were differentially active in 375 

T1D (Supplementary Figure 10). 376 

 377 

In contrast to T1D, few individual genes had significant changes in expression in beta cells in 378 

either single or multiple ND AAB+ (Figure 3A). We determined whether more subtle changes 379 

might be occurring at these stages. Genes altered in recent-onset T1D had significantly 380 

correlated effects in multiple ND AAB+, although not in single ND AAB+ (Figure 3F). At the 381 

pathway level, antigen processing and presentation was up-regulated in both single and multiple 382 

ND AAB+, and interferon signaling was up-regulated in multiple ND AAB+ (Figure 3G,H, 383 

Supplementary Table 15). Among key genes in these pathways, MHC class I genes (HLA-A, 384 

HLA-B, HLA-C) and interferon signaling IRF TFs were up-regulated in multiple but not in single 385 

ND AAB+ (Figure 3I, Supplementary Table 14). We also identified pathways altered 386 

specifically in single and multiple ND AAB+ and not in T1D; for example, heat stress response 387 

was up-regulated in single and multiple ND AAB+, extracellular matrix organization, cytokine-388 

cytokine interactions, and GPCR ligand binding were all down-regulated in multiple ND AAB+, 389 

and TGF beta signaling was down-regulated in single ND AAB+ (Figure 3H, Supplementary 390 

Table 15). Additionally, class II MHC antigen presentation was strongly up-regulated in multiple 391 

ND AAB+, but not single ND AAB+, including the class II MHC genes HLA-DBP1 and HLA-392 

DRB1 (Supplementary Table 14,15).  These results highlight that single and multiple ND AAB+ 393 

have both shared and distinct genomic changes in beta cells compared to T1D. 394 

 395 

Changes have been reported in the exocrine pancreas in both T1D and at-risk individuals21 and 396 

in our study, we observed marked changes in exocrine cell gene expression in T1D 397 

progression. In ‘basal’ acinar cells, there were 276 genes with altered expression in recent-398 

onset T1D, almost all of which (95%) had decreased expression (Figure 3A, Supplementary 399 

Table 14). Basal acinar and other acinar sub-types showed down-regulation of numerous 400 

pathways in recent-onset T1D including those related to signaling, stimulus response, 401 

metabolism, and protein transport (Figure 3A, Supplementary Table 15). In multiple ND AAB+, 402 

the ‘basal’ and ‘high-enzyme’ acinar sub-types showed higher expression of genes related to 403 

amino acid metabolism, which is necessary for enzyme production, as well as carbohydrate and 404 

glucose metabolism, insulin signaling, immune signaling, transcriptional activity, and respiration 405 

(Figure 3J, Supplementary Table 15). We also observed down-regulation of genes in ductal 406 

cells in recent-onset and long-duration T1D associated with small molecule transport, stimulus 407 
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response, cytokine signaling and RNA processing, but no evidence for changes in ND AAB+ 408 

(Supplementary Table 15).  409 

 410 

Other cell types in islets and the surrounding micro-environment also had significant changes in 411 

activity across entire pathways during progression to T1D. In alpha cells, while antigen 412 

presentation, interferon signaling, and other pathways were increased in T1D, in contrast to 413 

beta cells there were few changes in single or multiple ND AAB+ (Figure 3J, Supplementary 414 

Table 15). Delta cells showed more prominent changes in multiple ND AAB+, including 415 

increased hypoxia and heat stress response and cell cycle-related pathways and decreased 416 

signaling pathways, as well as in single ND AAB+ (Figure 3J, Supplementary Table 15). In 417 

endothelial cells there was increased IL2 and JAK-STAT signaling as well as SCF/KIT signaling, 418 

which promotes angiogenesis36,37, in recent-onset T1D (Figure 3J, Supplementary Table 419 

14,15). In activated stellate cells, there was increased expression of genes associated with fibrin 420 

clotting and decreased expression of translation in ND AAB+, and down-regulation of many 421 

pathways in recent-onset T1D (Supplementary Table 14,15). While we did not observe 422 

evidence for significant changes in gene or pathway activity in immune (T cell, macrophage) 423 

cells, this could be due to the small number of cells profiled for these cell types. 424 

 425 

Together, these results reveal key genes and pathways altered in pancreatic cell types in ND 426 

AAB+ and T1D donors with both shared and distinct changes in ND AAB+ compared to T1D, 427 

which in ND AAB+ included antigen presentation, interferon signaling, ECM-related and stress 428 

response pathways in beta cells and metabolism and immune signaling in acinar cells.   429 

 430 

Changes in the pancreatic cell type-specific epigenome in T1D progression 431 

We next examined to what extent altered gene and pathway activity in pancreatic cell types in 432 

T1D progression is driven by changes in the epigenome of ND AAB+ and T1D donors using 433 

snATAC-seq profiles from 29 nPOD donors. 434 

 435 

First, we identified cREs in each cell type with altered activity in T1D progression using a linear 436 

mixed model to account for pseudo-replication (see Methods). We observed significant 437 

changes (FDR<.10) in cRE activity in ND AAB+ and T1D for most pancreatic cell types 438 

(Supplementary Table 16). Beta cell cREs with increased activity in recent-onset T1D were 439 

significantly enriched (FDR<.10) for sequence motifs of steroid hormone receptors (NC3C1, 440 

NR3C2), NF-Y (NFYA, NFYB, NFYC), interferon response factors (IRF2, IRF7), and stress-441 
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response TFs (ATF4, STAT1, CEBPG) among others (Figure 4A, Supplementary Table 17). 442 

Conversely, cREs with decreased activity in T1D were significantly enriched for sequence motifs 443 

of TFs involved in core beta cell functions, such as HNF1 and RFX, with many beta cell identity 444 

TFs (NKX6.1, PDX1) and other TF families including FOXA and MEF showing more nominal 445 

enrichment (Figure 4A, Supplementary Table 17). We also identified sequence motifs 446 

enriched in beta cell cREs altered in ND AAB+, including IRF, TCF and STAT TF motifs in cREs 447 

with increased activity and MEF, RFX, and NFAT TFs in cREs with decreased activity, although 448 

other T1D-associated motifs such as HNF1 showed no change in ND AAB+ (Figure 4A, 449 

Supplementary Table 17). Sequence motifs were also enriched cREs altered in T1D 450 

progression for other pancreatic cell types, such as MEF and RFX TF motifs in alpha cells, 451 

RUNX TF motifs in activated stellate cells, STAT TF motifs in endothelial cells, and FOS/JUN 452 

motifs in ductal cells.   453 

 454 

We determined next whether TF motifs enriched in T1D-associated cREs in pancreatic cell 455 

types had broader, genome-wide changes in activity in T1D progression by modeling sequence 456 

motif accessibility across individual cells using chromVAR28 (see Methods). In beta cells, we 457 

observed consistent changes in the genome-wide accessibility of specific sequence motifs in 458 

T1D progression, including increasing accessibility of IRF motifs and decreasing accessibility of 459 

RFX, FOXA, and MEF motifs from ND AAB+ to T1D states (Figure 4B, Supplementary Table 460 

18).  In other cases, sequence motifs had different patterns in ND AAB+ and T1D, such as 461 

decreased accessibility of HNF1 and increased accessibility of PAR-related and hormone 462 

receptor TFs in T1D only and opposed accessibility of SIX TFs in ND AAB+ and T1D. While 463 

alpha cells showed similar increases in accessibility of hormone receptor, stress-response, and 464 

PAR-related TFs in T1D progression as in beta cells, there were also several marked 465 

differences such as increased accessibility of MEF and RFX motifs in ND AAB+ and recent-466 

onset T1D, respectively (Figure 4B, Supplementary Table 18).    467 

 468 

We used TF GRNs to determine which TFs drive changes in pathway activity in T1D 469 

progression. In beta cells, pathways altered in ND AAB+ and T1D had highly specific links to TF 470 

GRNs, suggesting key regulators of pathway activity in T1D progression (Figure 4C, 471 

Supplementary Table 13). For example, pathways up-regulated in beta cells in T1D and ND 472 

AAB+ such as interferon signaling were linked to GRNs for IRF TF motifs and antigen 473 

processing and presentation were linked to NFY, IRF and NFkB TF GRNs, while down-474 

regulated pathways in T1D such as ER and Golgi-related processes were linked to CREB3L1, 475 
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XBP1 and other TF motifs (Figure 4C, Supplementary Table 13). We also identified TF GRNs 476 

linked to pathways altered specifically in ND AAB+, such as heat stress related pathways and 477 

HSF TF GRNs, extracellular matrix-related pathways and ETS, ELK and ELF TFs, and GPCR 478 

signaling pathways and RFX and FOXA GRNs (Figure 4C, Supplementary Table 13). While 479 

we observed a strong change in HNF1 motif accessibility, as well as HNF1A expression, in beta 480 

cells in T1D (Figure 4B,D), no pathways linked to the HNF1 GRN had significant change in 481 

expression in T1D. However, there was a more nominal change in beta cell development and 482 

function pathways linked to the HNF1 GRN in T1D (Figure 4D, Supplementary Table 13), 483 

supporting that reduced HNF1 activity likely underlies altered beta cell function in T1D, as has 484 

been shown in the context of type 2 diabetes38.   485 

 486 

Similarly, in other pancreatic cell types, TF GRNs were linked to pathways with altered activity in 487 

ND AAB+ or T1D. For example, in enzyme-high acinar cells, metabolic pathways altered in ND 488 

AAB+ were linked to GRNs for specific TFs such as glucose metabolism and HNF1, amino acid 489 

metabolism and STAT1, and oxidative phosphorylation and MEF and FOS TF GRNs (Figure 490 

4E, Supplementary Table 13). In activated stellate cells, fibrin-related pathways up-regulated 491 

in ND AAB+ were significantly linked to ELK, HOX, CEBP and other TF GRNs. In endothelial 492 

cells, IL2 and JAK-STAT signaling pathways up-regulated in T1D were strongly linked to NFkB 493 

(REL, RELA) and IRF TF GRNs, and SCF/KIT signaling was also linked to HOX family TF 494 

GRNs, among others.  We further explored changes in TF activity inferred from spatial gene 495 

expression profiles of TF GRNs across cell types, which revealed increased activity of immune 496 

regulation, inflammation and signaling TFs (e.g. STAT3, RBPJ, FOSL2, JUND), and reduced 497 

activity of endocrine-related TFs (e.g. PAX6, GLI3, MAFA, INSM1, NEUROD1), in T1D 498 

compared to non-disease (Supplementary Figure 11). 499 

     500 

We next annotated specific beta cell cREs altered in T1D progression with putative target genes 501 

and assessed changes in regulatory programs at specific loci. There were 114 beta cell cREs 502 

with altered activity in T1D progression linked to genes with significant changes in expression. 503 

For example, a beta cell cRE on chromosome 14 in the first intron of TSHR had increased 504 

accessibility in recent-onset T1D and was linked to TSHR, which had among the largest 505 

increases in expression in recent-onset T1D (Figure 4F). We identified similar cREs up-506 

regulated in recent-onset T1D linked to genes with highly up-regulated expression including 507 

HLA-A (Figure 4F), as well as CD74, GAD1, IL15, and STAT1/4. In other cases, we observed 508 

epigenomic changes in beta cells that may precede changes in expression of cognate target 509 
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genes. For example, a cRE upstream of IAPP had reduced accessibility in early T1D although 510 

IAPP itself only had a significant decrease in expression in longer-duration T1D.    511 

 512 

Given pathways and transcriptional regulators with altered cell type activity in T1D progression, 513 

we determined whether any changes prior to T1D onset showed evidence for a role in genetic 514 

risk of T1D. We tested for enrichment of cREs linked to genes in each pathway for T1D 515 

associated variants genome-wide (excluding the MHC locus) using fgwas18,39 (see Methods). In 516 

beta cells, several pathways altered in ND AAB+ were enriched for T1D-associated variants 517 

including antigen processing and presentation (log enrich=4.48), class II MHC antigen 518 

presentation (log enrich=4.74), and interferon signaling (log enrich=6.00) as well as several 519 

extracellular interaction-related processes (focal adhesion, laminin interactions) and GPCR 520 

signaling (Figure 4G). By comparison, multiple other pathways previously implicated in driving 521 

T1D risk in beta cells such as apoptosis, autophagy, mitophagy, and senescence, showed 522 

limited to no enrichment (Figure 4G). Among other cell types, we found evidence for enrichment 523 

of immune, metabolism, and transcription related pathways in ‘high-enzyme’ as well as ‘basal’ 524 

acinar cells (Supplementary Figure 12).   525 

 526 

We further identified specific T1D risk loci that may alter regulatory activity of disease-enriched 527 

pathways in key cell types such as beta cells, T cells and other immune populations, and 528 

exocrine cells during T1D progression. We identified candidate causal variants at known T1D 529 

loci by overlapping cREs altered in T1D progression with published fine-mapping data5. In beta 530 

cells, multiple candidate causal variants at the IRF1 locus overlapped cREs with increased 531 

activity in T1D including at the promoter and downstream of IRF1 (Figure 4H, Supplementary 532 

Table 19). There was increased beta cell expression of IRF1 through stages of T1D progression 533 

and IRF1 is a driver of beta cell interferon responses, which is a pathway broadly enriched for 534 

T1D associated variants (Figure 4G). Conversely, at the STAT4 locus we identified cREs with 535 

increased activity in beta cells as well as T cells, although candidate causal variants for T1D at 536 

the STAT4 locus only overlapped cREs active in T cells (Figure 4I). This finding supports that 537 

while increased STAT4 activity in beta cells is observed in T1D, the STAT4 locus more likely 538 

affects T1D risk through altered T cell function. 539 

 540 

Together these results reveal transcriptional regulators and networks altered in T1D 541 

progression, including those regulating pathways that likely play a causal role in the 542 
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development of T1D such as antigen presentation, interferon signaling, and extracellular 543 

interactions in beta cells.   544 

 545 

Changes in pancreatic cell-cell signaling in T1D progression 546 

 547 

External signaling between cell types is a key driver of changes in cell type-specific regulation 548 

and function, and therefore we finally identified cell-cell signaling interactions in the pancreas 549 

altered in T1D progression.  550 

 551 

We first inferred cell-cell interactions in snRNA-seq data for non-diabetes, ND AAB+ and T1D 552 

using 1,939 ligand-receptor pairs in CellChat40 (see Methods), which revealed 87,650 553 

interactions significant (FDR<.10) in at least one condition (Supplementary Table 20). 554 

Grouping ligands into functional categories revealed classes of outgoing signals preferentially 555 

produced by each cell type; for example, hormones, neuropeptides, and cell adhesion 556 

molecules from endocrine cells, and enzymes from exocrine cells (Supplementary Figure 13, 557 

Supplementary Table 21). 558 

 559 

We identified cell-cell interactions with changes in activity in T1D progression using a 560 

permutation test and considered changes significant at FDR<.10 (see Methods). Overall, there 561 

was a reduction in the number and strength of interactions in recent-onset and long-standing 562 

T1D compared to non-diabetes, which was largely driven by exocrine cells (Figure 5A). In both 563 

ND AAB+ and recent-onset T1D there was increased strength of interactions involving 564 

endocrine cells and other cell types, although the total number of interactions was reduced 565 

(Figure 5A).  We further identified cell-cell interactions among cells in spatial niches and 566 

determined changes in T1D using spatial transcriptome profiles. We identified spatially co-567 

expressed ligand-receptor (LR) interactions by Moran’s bivariant extension in SpatialDM41 using 568 

LR pairs from CellChat40. We compared the number of detected interactions considering each 569 

FOV as technical replicates of a donor and observed significant heterogeneity across donors 570 

and, like dispersed cell data, fewer interactions in T1D compared to ND donors (H-571 

statistic=19.6, p=.0015) (Figure 5A).  572 

 573 

Among specific cell types, endocrine cells displayed significant increases in both outgoing and 574 

incoming signaling in recent-onset T1D (Figure 5B,C). We also observed significant increases 575 

in incoming signaling to endothelial, ductal, and activated stellate cells, as well as nominal 576 
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changes in ‘basal’ and ‘high-enzyme’ acinar, immune, and stellate cells, in recent-onset T1D. 577 

Summarizing signaling by functional category revealed broad classes of cell type-specific 578 

signals altered in T1D; for example, beta and other endocrine cells had increased signaling from 579 

cell adhesion molecules, whereas T cells had increased antigen presentation and interleukin 580 

signaling (Figure 5D).  We further examined changes in signaling between specific pairs of cell 581 

types in T1D progression (Supplementary Table 22). Significant changes (FDR<.10) in recent-582 

onset T1D included increased incoming and outgoing signaling involving beta cells, including 583 

between beta cells themselves (Figure 5C), as well as increased signaling for alpha cells, 584 

outgoing signaling from ‘high-enzyme’ acinar cells and incoming signaling to endothelial cells.  585 

 586 

Given the importance of external signaling to beta cells in T1D, we focused specifically on 587 

signals involving beta cells. In recent-onset T1D, autocrine/paracrine signals incoming to beta 588 

cells with significant changes in activity included cell adhesion molecules NRXN1, CADM1, and 589 

NEGR1 from all endocrine cell types and the secreted factor BMP5 from beta cells (Figure 5E). 590 

In addition, high-enzyme acinar cells had increased signaling of trypsinogen (Figure 5E), and 591 

stellate cells had increased signaling of ECM and cell adhesion molecules to beta cells. Among 592 

immune cells, signals with significant changes in signaling to beta cells included GZMA and 593 

CCL5 from T cells and VSIR, GRN, and LGALS9 from macrophages (Figure 5E). In return, beta 594 

cells had increased signaling of IL7 and MHC class I genes HLA-A and HLA-C to T cells, as well 595 

as increased signaling of BMP5, EFNA5, DLK1, and ANGPTL2 to macrophages. Notably, 596 

multiple beta-immune cell signals altered in T1D map to T1D risk loci (e.g. DLK1, HLA-A, HLA-597 

C, IL7R)18. 598 

 599 

We next identified differential interactions (p<0.05) in spatial profiles by performing a likelihood 600 

ratio test, which provided support for many T1D-associated interactions identified in dispersed 601 

cell data. For example, interactions involving HLA class I (e.g., HLA-C), APP, SPP1, and BMP5, 602 

as well as ECM-related interactions, were altered in T1D (Figure 5F,G). We also identified 603 

additional interactions enriched in T1D donors, for example between migration inhibitory factor 604 

MIF and its transmembrane receptor CD74, consistent with previous studies42, and involving 605 

several chemokines.  Next, we identified spatially-co-expressed ligand-receptor pairs using 606 

Morans’ I score in Liana+35.  We obtained the top interactions associated with each niche using 607 

non-negative matrix factorization (see Methods). In T1D, an interaction between APP and 608 

CD74 was enriched in the endocrine niche, where APP is involved in inflammation and could 609 

promote immune responses in T1D (Supplementary Figure 14).  Conversely, interactions 610 
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involving INS, IGF1R, and INSR and CALM1, among others, were enriched in the endocrine 611 

niche from non-disease donors (Supplementary Figure 14).   612 

 613 

Several ligands altered in T1D progression BMP5 and GRN (granulin) are growth factors that 614 

have not been previously implicated in T1D. We determined the effects of in vitro exposure to 615 

these ligands on gene expression using the beta cell model EndoC-BH1. Exposing beta cells to 616 

BMP5 in culture revealed 1,926 genes with significant change (FDR<.10) in expression, where 617 

the most up-regulated genes were ID1-4 and SMAD6-7, known targets of BMP that regulate 618 

proliferation and differentiation, and the beta cell identity gene MAFA (Figure 5H, 619 

Supplementary Table 23). More broadly, BMP5 exposure up-regulated pathways (FDR<.10) 620 

related to TGF beta signaling, glycolysis, secretion, and lipid metabolism, and down-regulated 621 

pathways such as antigen presentation and chemokine signaling (Figure 5H). Second, granulin 622 

encodes secreted proteins produced by macrophages and ductal cells. Upon exposure to 623 

granulin, 491 genes had significant change (FDR<.10) in expression including up-regulation of 624 

beta cell function and insulin secretion genes MAFA, ISL1, SOX4, CRY2 and down-regulation of 625 

apoptosis related genes PEA15, PDCD5, and CCAR1 (Figure 5I, Supplementary Table 24).  626 

More broadly, granulin up-regulated pathways related to cholesterol and glycerolipid metabolism 627 

and down-regulated interleukin signaling and inflammation, transcription and translation, and 628 

cell death. 629 

 630 

These results together reveal broad changes in predicted cell-cell signaling in T1D progression 631 

most prominently among endocrine cells and niches but also involving other cell types, including 632 

altered signals in T1D that modulate T1D-relevant regulatory programs in beta cells.  633 

 634 

Discussion 635 

Single cell and spatial profiling of human pancreas donors revealed extensive changes in the 636 

abundance, regulation, and signaling of specific cell types in T1D progression, including 637 

processes that play a likely causal role in driving disease. In beta cells, class I and class II MHC 638 

antigen presentation and interferon signaling pathways, TF regulators of these pathways, and 639 

cREs linked to genes in these pathways all had up-regulated activity in recent-onset T1D and 640 

ND AAB+. Antigen presentation was altered as early as single ND AAB+ donors, suggesting 641 

that aberrant antigen presentation in beta cells may be an initial triggering event in T1D. Further, 642 

the heterogenous activity of antigen presentation pathways in beta cells suggests that subsets 643 

of beta cells may initiate the immune responses. Antigen presentation and interferon signaling 644 
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pathways in beta cells were broadly enriched for T1D-associated variants and specific risk loci 645 

for T1D were linked to key genes in these pathways such as IRF1.  In contrast, we found limited 646 

evidence that pathways directly related to apoptosis, as well as other processes implicated in 647 

T1D in beta cells such as autophagy, senescence, and mitophagy, harbor T1D risk, and are 648 

thus more likely consequences of disease.  It has been long hypothesized that beta cells affect 649 

genetic risk of T1D through increased cell death43–49. Our results support that beta cells may 650 

primarily contribute to T1D risk via the initiation or exacerbation of immune responses, which 651 

necessitates different cellular models and phenotypic readouts to understand their role in 652 

disease.  653 

 654 

In addition to shared pathways, gene activity in beta cells and other pancreatic cell types had 655 

distinct changes in ND AAB+ compared to recent-onset T1D, revealing that genomic profiles 656 

prior to T1D onset are only partially intermediate to those in T1D.  In addition, the lack of 657 

individual genes with highly significant changes expression in ND AAB+ suggests that changes 658 

at these stages are likely more subtle, in contrast to previous reports4.  Several pathways in 659 

beta cells were altered specifically in multiple and single ND AAB+ such as heat shock 660 

response and ECM organization.  Heat shock responses are activated by a variety of stressors, 661 

promote antigen presentation in beta cells, and can act as chaperones for antigens and thus 662 

may plausibly contribute to the initiation of autoimmunity50,51. The breakdown of ECM is also an 663 

important process in T1D, as both a precursor to immune invasion as well as by affecting 664 

intrinsic beta cell function52.  We observed a similar pattern of both shared and distinct changes 665 

in the epigenome of beta cells in ND AAB+ compared to T1D, including increased NEUROD1 666 

activity and decreased SIX TF activity.  There were also shared and distinct features in T1D 667 

based on the duration of disease; for example, a more pronounced reduction in beta cell 668 

function in long-standing T1D. 669 

 670 

In contrast to beta cells, changes in gene activity in alpha cells were largely restricted to after 671 

the onset of T1D, including for antigen presentation and interferon response pathways and 672 

transcriptional regulators of these pathways.  This supports that immune responses are more 673 

pronounced within beta cells compared to alpha cells prior to T1D onset, which may reflect 674 

differences in immune targeting as well as the intrinsic properties of each cell type.  The latter is 675 

supported by multiple in vitro studies showing pronounced responses of beta cells to external 676 

T1D-relevant stressors19.  A previous study revealed changes in alpha cell function and gene 677 

expression in single ND AAB+ donors using data from the HPAP consortium53, although there 678 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2025. ; https://doi.org/10.1101/2025.02.13.637721doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.13.637721
http://creativecommons.org/licenses/by-nc/4.0/


were overall few genes with altered expression in this study which supports our findings that 679 

genomic changes in alpha cells prior to T1D onset are likely subtle. In addition, several TF 680 

families such as RFX and MEF2 had different patterns of accessibility between alpha cells and 681 

beta cells in T1D progression, further highlighting the unique responses of each cell type to 682 

disease progression. Conversely to alpha cells, delta cells had altered activity of multiple 683 

pathways related to stress and inflammatory responses in single and multiple ND AAB+, as well 684 

as decreased abundance in T1D, suggesting they may play an as-of-yet unappreciated role in 685 

T1D progression.     686 

 687 

Given that we profiled whole pancreas donors, our study was uniquely placed to reveal changes 688 

in the exocrine pancreas compared to previous single cell studies which used purified islets4,15.  689 

We identified multiple clusters of acinar and ductal cell types which had distinct genomic profiles 690 

and may represent heterogeneous sub-types of these cell types. In acinar cells, sub-clusters 691 

were broadly related to enzyme production and signaling responses, and previous reports 692 

highlighted similar heterogeneity in secretory and idling acinar cells54. Similar hormone 693 

producing and signaling states have been reported in endocrine cells55, and thus may represent 694 

a common property of secretory cells. Resolving exocrine sub-clusters revealed genomic 695 

changes within specific exocrine sub-types in T1D. Enzyme-producing acinar and MUC5B+ 696 

ductal cells were more abundant in ND AAB+ donors, and multiple acinar sub-types had altered 697 

metabolism, immune, and transcriptional pathways, as well as increased signaling to beta cells, 698 

in T1D progression. Specific pathways within acinar cells altered in T1D progression also 699 

harbored T1D-associated variants, further supporting a role for exocrine pancreas in T1D risk4,18 700 

and providing new in-roads to determine how cellular processes in acinar cells contribute 701 

causally to T1D. 702 

 703 

Signaling relationships between pancreatic cell types revealed incoming and outgoing external 704 

signals during progression to T1D. Cell-cell signaling between immune and beta cells 705 

highlighted known signals in T1D, such as granzyme B incoming to beta cells and class I MHC 706 

presented by beta cells56,57, as well as potential mechanisms of genes implicated in T1D genetic 707 

risk such as DLK1 and IL7 signaling from beta cells to immune cells18.  Additional signals 708 

incoming to beta cells in T1D such as BMP5 and granulin have no prior known role in disease. 709 

BMP5 has increased autocrine/paracrine signaling in T1D and in vitro suppressed antigen 710 

presentation- and chemokine-related genes and enhanced expression of several genes linked 711 

to beta cell proliferation and function. Other BMP proteins have been shown to both enhance 712 
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and inhibit beta cell function, maturity, and proliferation58,58–60, where the direction of effect may 713 

depend on the level of BMP signaling. Granulin suppresses class I MHC expression and T cell 714 

infiltration of ductal adenocarcinoma cells in the context of pancreatic cancer and has been 715 

shown to promote proliferation in mouse models of beta cells61,62.  Signaling pathways altered in 716 

T1D, particularly those involved in T1D genetic risk, may represent therapeutic areas for 717 

preserving beta cell function to prevent or reverse T1D. 718 

 719 

There were multiple limitations of our study that could be used to inform directions for future 720 

studies.  For example, while we grouped non-diabetic donors by number of autoantibodies, 721 

there is additional granularity in stages of T1D stages; for example, stage 2 of T1D is marked by 722 

both autoantibody positivity and reduced beta cell function63. Future studies may therefore 723 

utilize islet functional measures to help refine characterization of T1D stages for genomic 724 

analyses.  In addition, heterogeneity in T1D pathogenesis has been defined based on criteria 725 

such as first-developed autoantibody, HLA background, age and other factors64–67, and 726 

continued collection of larger sample numbers will enable understanding genomic changes 727 

within donors mapping to disease sub-groups.  As immune subsets infiltrating the pancreas 728 

arise from pancreatic lymph nodes (pLNs)68, studies combining pLN data with pancreas data 729 

from matched donors will be valuable in understanding the role of immune cells in driving T1D 730 

progression in the pancreas.  Finally, expanded spatially-resolved profiling of cells will continue 731 

to help reveal cell type-specific changes within disease-related cellular niches and 732 

neighborhoods.  733 

 734 

In summary, our study revealed gene regulatory changes in pancreatic cell types in T1D 735 

progression and highlighted pathways, regulatory networks, and signals that may play a causal 736 

role in T1D; efforts that inform both new directions for mechanistic studies and novel targets for 737 

therapies to prevent or reverse T1D.  We provide these data and maps in visualization tools 738 

(available at http://t1d-pancreas.isletgenomics.org) to further enhance their utility to the research 739 

community. More broadly, our study highlights the utility of single cell multiomics and spatial 740 

analysis to reveal insight into cellular processes underlying progression to complex disease. 741 

 742 

Methods 743 

Sample selection 744 

Whole pancreas tissue was obtained from the Network for Pancreatic Organ Donors with 745 

Diabetes (nPOD) biorepository according to federal guidelines with informed consent obtained 746 
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from each donor’s legal representative. Studies were considered exempt and approved by the 747 

Institutional Review Board (IRB) of the University of California San Diego. We selected 7 T1D 748 

donors with more recent onset (<1 year from diagnosis) and 5 T1D donors with longer duration 749 

(>5 years from diagnosis), along with 11 age- and sex-matched non-diabetic (ND) individuals. 750 

We also selected 9 non-diabetic donors with T1D autoantibodies (ND TD AAB+), the majority of 751 

which had multiple antibodies although one donor was single GAD+. In total, 32 donors were 752 

obtained for genomic profiling (Supplementary Table 1).   753 

 754 

Single cell assays 755 

Tissue homogenization 756 

Flash-frozen pancreas tissue was homogenized using mortar and pestle on liquid nitrogen. ~40 757 

mg of ground tissue was used as input for the different single nucleus assays. 758 

 759 

Generation of single nucleus ATAC-seq data 760 

Roughly 40�mg of ground pancreas tissue was resuspended in 1�ml of nuclei permeabilization 761 

buffer (10�mM Tris-HCl (pH 7.5), 10�mM NaCl, 3�mM MgCl2, 0.1% Tween-20 (Sigma), 0.1% 762 

IGEPAL-CA630 (Sigma), 0.01% digitonin (Promega) and 1% fatty acid-free BSA (Proliant, 763 

68700) in molecular biology-grade water). Nuclei suspension was filtered with a 30-µm filter 764 

(CellTrics, Sysmex) and then incubated for 5�min at 4�°C on a rotator. Nuclei were pelleted 765 

with a swinging-bucket centrifuge (500�×�g, 5�min, 4�°C; Eppendorf, 5920 R) and washed 766 

with 1 ml wash buffer (10�mM Tris-HCl (pH 7.5), 10�mM NaCl, 3�mM MgCl2, 0.1% Tween-20, 767 

1% BSA (Proliant, 68700) in molecular biology-grade water). Nuclei were pelleted and 768 

resuspended in 10�µl of 1x Nuclei Buffer (10x Genomics). Nuclei were counted using a 769 

hemocytometer, and 15,360 nuclei were used for tagmentation. snATAC-seq libraries were 770 

generated using the Chromium Single Cell ATAC Library & Gel Bead Kit v1.1 (10x Genomics, 771 

1000175), Chromium Chip H Single Cell ATAC Kit (10x Genomics, 1000161) and indexes 772 

(Single Index Kit N Set A, 1000212) following manufacturer instructions. Final libraries were 773 

quantified using a Qubit fluorometer (Life Technologies), and the nucleosomal pattern was 774 

verified using a TapeStation (High Sensitivity D1000, Agilent). Libraries were sequenced on 775 

NextSeq 500, HiSeq 4000 and NovaSeq 6000 sequencers (Illumina) with the following read 776 

lengths (Read1�+�Index1�+�Index2�+�Read2): 50�+�8�+�16�+�50. 777 

 778 
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Generation of single nucleus RNA-seq data 779 

Roughly 40�mg of ground pancreas tissue was suspended in 500�µL of nuclei buffer: 0.1% 780 

Triton-X-100 (Sigma-Aldrich, T8787), 1× EDTA free protease inhibitor (Roche or Pierce), 1�mM 781 

DTT, and 0.2 U/µL RNase inhibitor (Promega, N211B), 2% BSA (Sigma-Aldrich, SRE0036) in 782 

PBS. Sample was incubated on a rotator for 5�min at 4�°C and then pelleted with a swinging 783 

bucket centrifuge (500× g, 5�min, 4�°C; 5920�R, Eppendorf). Supernatant was removed and 784 

pellet was resuspended in 400 μl of sort buffer [1 mM EDTA and RNase inhibitor (0.2 U/μl) in 785 

2% BSA (Sigma-Aldrich, SRE0036) in PBS] and stained with DRAQ7 (1:100; Cell Signaling 786 

Technology, 7406). 75,000 nuclei were sorted using an SH800 sorter (Sony) into 50 μl of 787 

collection buffer [RNase inhibitor (1 U/μl) and 5% BSA (Sigma-Aldrich, SRE0036) in PBS]. 788 

Sorted nuclei were then centrifuged at 1000g for 15 min (Eppendorf, 5920R; 4°C, ramp speed of 789 

3/3), and supernatant was removed. Nuclei were resuspended in 18 to 25 μl of reaction buffer 790 

[RNase inhibitor (0.2 U/μl) and 1% BSA (Sigma-Aldrich, SRE0036) in PBS] and counted using a 791 

hemocytometer. 16,500 nuclei were loaded onto a Chromium controller (10x Genomics). 792 

Libraries were generated using the 10x Genomics, Chromium Next GEM Single Cell 3’ GEM, 793 

Library & Gel Bead Kit v3.1 (10x Genomics, 1000121), Chromium Next GEM Chip G Single Cell 794 

Kit (10x Genomics, 1000120) and indexes (Single Index Kit T Set A, 10x Genomics, 1000213 or 795 

Dual Index Kit TT Set A, 10x Genomics, 1000215) according to the manufacturer specifications. 796 

Complementary DNA was amplified for 12 PCR cycles. SPRISelect reagent (Beckman Coulter) 797 

was used for size selection and cleanup steps. Final library concentration was assessed by the 798 

Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific), and fragment size was checked using a 799 

TapeStation (High Sensitivity D1000, Agilent). Libraries were sequenced using a NextSeq 500 800 

and a Novaseq6000 (Illumina) with the following read lengths 801 

(Read1�+�Index1�+�Index2�+�Read2): 28 + 8 + 0 + 90 (single index) or 802 

28�+�10�+�10�+�90 (dual index).  803 

 804 
Generation of joint single-nucleus RNA and ATAC-seq data (Multiome) 805 

~40�mg ground tissue was resuspended in 1�ml of wash buffer (10�mM Tris-HCl (pH 7.4), 806 

10�mM NaCl, 3�mM MgCl2, 0.1% Tween-20 (Sigma), 1% fatty acid-free BSA (Proliant, 68700), 807 

1�mM DTT (Sigma), 1x protease inhibitors (Thermo Fisher Scientific, PIA32965), 808 

1�U�µl−1 RNasin (Promega, N2515) in molecular biology-grade water). Nuclei suspension was 809 

filtered with a 30-µm filter (CellTrics, Sysmex) and pelleted with a swinging-bucket centrifuge 810 

(500�×�g, 5�min, 4�°C; Eppendorf, 5920 R). Nuclei were resuspended in 400�µl of sort 811 

buffer (1% fatty acid-free BSA, 1x protease inhibitors (Thermo Fisher Scientific, PIA32965), 812 
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1�U�µl−1 RNasin (Promega, N2515) in PBS) and stained with 7-aminoactinomycin D (7-AAD; 813 

1�µM; Thermo Fisher Scientific, A1310). A total of 120,000 nuclei were sorted using an SH800 814 

sorter (Sony) into 87.5�μl of collection buffer (1�U�µl−1 RNasin (Promega, N2515), 5% fatty 815 

acid-free BSA (Proliant, 68700) in PBS). Nuclei suspension was mixed in a ratio of 4:1 with 5x 816 

permeabilization buffer (50�mM Tris-HCl (pH 7.4), 50�mM NaCl, 15�mM MgCl2, 0.5% Tween-817 

20 (Sigma), 0.5% IGEPAL-CA630 (Sigma), 0.05% digitonin (Promega), 5% fatty acid-free BSA 818 

(Proliant, 68700), 5�mM DTT (Sigma), 5x protease inhibitors (Thermo Fisher Scientific, 819 

PIA32965), 1�U�µl−1 RNasin (Promega, N2515) in molecular biology-grade water) and 820 

incubated on ice for 1�min before pelleting with a swinging-bucket centrifuge (500�×�g, 821 

5�min, 4�°C; Eppendorf, 5920 R). Supernatant was gently removed, and ~10�µl were left 822 

behind to increase nuclei recovery. A total of 650�µl of wash buffer (10�mM Tris-HCl (pH 7.4), 823 

10�mM NaCl, 3�mM MgCl2, 0.1% Tween-20 (Sigma), 1% fatty acid-free BSA (Proliant, 68700), 824 

1�mM DTT (Sigma), 1x protease inhibitors (Thermo Fisher Scientific, PIA32965), 825 

1�U�µl−1 RNasin (Promega, N2515) in molecular biology-grade water) was added with minimal 826 

disturbance of the pellet, and samples were centrifuged again with a swinging-bucket centrifuge 827 

(500�×�g, 5�min, 4�°C; Eppendorf, 5920 R). Supernatant was gently removed without 828 

disturbing the pellet, leaving ~2–3�µl behind. Approximately 7–10�µl of 1x Nuclei Buffer (10x 829 

Genomics) were added, and nuclei were gently resuspended. Nuclei were counted using a 830 

hemocytometer, and 18,300 nuclei were used as input for tagmentation. Single-cell multiome 831 

ATAC and gene expression libraries were generated following manufacturer instructions 832 

(Chromium Next GEM Single Cell Multiome ATAC�+�Gene Expression Reagent Bundle, 10x 833 

Genomics, 1000283; Chromium Next GEM Chip J Single Cell Kit, 10x Genomics, 1000234; 834 

Dual Index Kit TT Set A, 10x Genomics, 1000215; Single Index Kit N Set A, 10x Genomics, 835 

1000212) with the following PCR cycles: 7 cycles for pre-amplification, 8 cycles for ATAC index 836 

PCR, 7 cycles for complementary DNA (cDNA) amplification, and 12 cycles for RNA index PCR. 837 

Final libraries were quantified using a Qubit fluorometer (Life Technologies), and the size 838 

distribution was checked using a TapeStation (High Sensitivity D1000, Agilent). Libraries were 839 

sequenced on NextSeq 500 and NovaSeq 6000 sequencers (Illumina) with the following read 840 

lengths (Read1�+�Index1�+�Index2�+�Read2): ATAC (NovaSeq 6000), 841 

50�+�8�+�24�+�50; ATAC (NextSeq 500 with custom recipe), 50�+�8�+�16�+�50; RNA 842 

(NextSeq 500, NovaSeq 6000), 28�+�10�+�10�+�90 843 

 844 

Quality control and filtering 845 
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Single nuclei ATAC data was processed and aligned to reference genome hg38, and duplicate 846 

reads were removed using Cellranger ATAC (version 1.1.0). Chromatin accessibility for each 847 

sample was quantified in 5kb genome windows as previously described69. Nuclei with less than 848 

1000 unique ATAC-seq fragments were removed. Initial quality control was performed to retain 849 

cells in each sample using the following metrics unique usable reads > 5000, fraction promoters 850 

used > 0.01, TSS enrichment (TSSe) > 0.3 using scanPy v1.8.0. Doublets were removed using 851 

Amulet v1.0 per sample70. Single nucleus ATAC-seq datasets were processed and aligned to 852 

reference genome hg38, and duplicate reads were removed using Cellranger ATAC v1.1.0. 853 

Chromatin accessibility for each sample was quantified in 5kb genome windows as previously 854 

described69. Nuclei with less than 1000 unique ATAC-seq fragments were removed. Initial 855 

quality control was performed to retain cells in each sample using the following metrics unique 856 

usable reads > 5000, fraction promoters used > 0.01, TSS enrichment (TSSe) > 0.3. Doublets 857 

were removed using Amulet v1.0 per sample70.  858 

 859 

Single nuclei RNA samples were processed using Cellranger (version 6.0.1) with reference 860 

genome hg3871. Individual samples were processed for quality initially by removing nuclei with 861 

less than 500 expressed genes. Doublets were detected for each sample using DoubletFinder 862 

(version 2.0.3) using an expected doublet rate of 4% for all samples72. In effort to reduce 863 

ambient RNA contamination largely driven by acinar cells, we utilized SoupX (version 1.6.2) and 864 

selected acinar marker genes, REG1A and PRSS1, to estimate contamination rates73. Gene 865 

expression count matrices were then corrected for this predicted contamination, these correct 866 

counts were used for both clustering and downstream analysis.  Single nucleus RNA-seq 867 

datasets were processed using Cellranger v6.0.1 with reference genome hg3871. Individual 868 

samples were processed for quality initially by removing nuclei with less than 500 expressed 869 

genes. Doublets were detected for each sample using DoubletFinder using an expected doublet 870 

rate of 4% for all samples72. In an effort to reduce ambient RNA contamination largely driven by 871 

acinar cells, we utilized SoupX and selected acinar marker genes, REG1A and PRSS1, to 872 

estimate contamination rates73. Gene expression count matrices were then corrected for this 873 

predicted contamination, these correct counts were used for both clustering and downstream 874 

analysis.   875 

 876 

Paired multiome data was processed, aligned, and multiplet reads were removed using 877 

cellranger arc (version 2.0.0) with the reference genome hg38. Individual sample quality control 878 

was done using both modalities to remove low quality nuclei without a minimum of 500 879 
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expressed genes and 1000 ATAC-seq fragments. Ambient RNA contamination was removed 880 

using SoupX (version 1.6.2) using the same parameters as previously described. Doublets were 881 

detected and removed for both modalities using DoubletFinder (version 2.0.3) and Amulet 882 

(version 1.0), with the same parameters as above for single modality data70,72. Paired multiome 883 

datasets were processed, aligned, and multiplet reads were removed using cellranger arc 884 

(version 2.0.0) with the reference genome hg38. Individual sample quality control was done 885 

using both modalities to remove low quality nuclei without a minimum of 500 expressed genes 886 

and 1000 ATAC-seq fragments. Doublets were detected and removed for both modalities using 887 

DoubletFinder and Amulet, with the same parameters as above for single modality data70,72.  888 

 889 

Clustering 890 

Gene expression 891 

After individual sample quality control, high quality barcodes from single modality snRNA-seq 892 

and the RNA modality of our multiome data were clustered for 40 samples (32 snRNA and 8 893 

snRNA multiome) using Seurat (version 4.3)74. Quality control metrics such as high 894 

mitochondrial percentage (>1%), high number of genes detected (>4,000 genes), and high 895 

number of RNA counts (>7,500) were used to remove low quality barcodes. A combined 896 

clustering was created using principal components (PCs) from PCA of gene expression.  We 897 

used Harmony8 (version 1.0.3) to correct the PCs for batch effects across samples, sex, and 898 

sequencing technology. Clusters were removed with low number of cells (<10 cells) and with 899 

quality metrics such as number of detected genes and RNA counts lower than other clusters. 900 

Additional doublet cells were removed based on the expression of 2+ canonical markers from 901 

unrelated cell types. 902 

 903 

We leveraged gene expression profiles specific to the wide array of pancreatic cells from 904 

previous work to broadly label each snRNA-seq cluster as one of the following types: alpha 905 

(GCG), beta (INS), endothelial (PLVAP), lymphatic endothelial (FLT4), ductal (CFTR), acinar 906 

(REG1A), stellate (PDGFRB), and variety of immune cells including T-cells (CD3D), 907 

macrophages (C1QC), and mast cells (KIT) (Supplementary Table 2). Using cell type markers 908 

previously used to annotate cell type and sub-type populations such as activated stellate 909 

(COL6A3) and quiescent stellate (SPARCL1) we were able to annotate these clusters. We 910 

identified previously characterized ductal subtype MUC5b ductal cells from the presence of 911 

known marker genes such as MUC5B, TIFF3, and CRISP354.   912 

 913 
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Marker genes of acinar sub-clusters were identified using DESeq276 (version 1.34), followed by 914 

gene set enrichment of sub-cluster marker genes in KEGG77–79 and REACTOME80 pathways 915 

using fGSEA81 (version 1.20). In brief this was done by first creating two sets of sample pseudo-916 

bulk count matrices of SoupX corrected gene expression for each cell type, one set which has 917 

the summation of count per sample per gene for that cell type and another with the summation 918 

of counts per sample per gene for all other cell types. We then performed DESeq for each cell 919 

type by concatenating these two matrices as our input and using cell type as outcome variable 920 

with sample ID as a covariate.  921 

 922 

Accessible chromatin 923 

We first merged  40 samples (32 snATAC samples, 8 multiome snATAC samples) from 29 924 

donors using read counts in 5kb windows using Signac82(version 1.9.0). We then performed 925 

latent semantic indexing (LSI) of the combined snATAC data using Signac82. Harmony (version 926 

1.0.3) was used to correct for batch effects using the covariates sample, sex, and sequencing 927 

technology75. Clustering was performed on the batch-corrected PCs using graph-based Leiden 928 

clustering.  We removed nuclei with a TSS enrichment (TSSe) score <2, and removed clusters 929 

with less than 10 cells or with overall lower quality metrics, such as fraction of read in peaks, 930 

number of ATAC fragments per barcode, and fraction of reads in promoters compared to other 931 

clusters. After an initial window-based clustering, we called peaks using MACS283 (version 932 

2.2.7.1) (parameters: -q 0.05 --nomodel --keep-dup all) on each cluster and then repeated the 933 

entire clustering process using a consensus set of peaks merged across clusters. Additional 934 

doublets were manually removed based off the presence of promoter accessibility of other cell 935 

type marker genes. This was done using 9 known marker genes (INS, GCG, REG1A,REG2B, 936 

CTRB2, PRSS1,PRSS2, CFTR, C1QC); promoter region was considered 2kb upstream of the 937 

TSS. Data was clustered again after the removal of doublets. To identify cell types, we first 938 

assigned gene names to peaks that overlapped 2kb upstream of TSS and gene body using the 939 

gene activity function in Signac and then determined gene activity in established marker genes 940 

for each cell type and sub-type.  941 

 942 

We next performed label transfer on the snATAC object using our gene expression map as 943 

reference and the peak-based chromatin data as query in Signac.  Due to the size of the 944 

chromatin data, prior to label transfer we randomly split the barcodes in the object into smaller 945 

subsets. We used the 2k most highly variable features from the gene expression map to derive 946 

transfer anchors using canonical correlation analysis (CCA). These anchors were then used to 947 
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transfer to our chromatin map using the TransferData function in Seurat (version 4.3). After 948 

each subset object was done with label transfer, we merged the objects and re-clustered all the 949 

chromatin data together using the same methods described above. Finally, we removed cells 950 

with low prediction scores (max.predicted.score<0.5), and all cells passing this threshold were 951 

labelled with the predicted cell type annotation. For acinar cells, we summed the prediction 952 

scores of all acinar subtypes then filtered by a combined acinar max.predicted.score <0.5.  953 

 954 

To determine the accuracy of label transfer, we utilized single cell multiome data where the 955 

identity of the accessible chromatin profile is already known from the paired gene expression 956 

profile. Since the gene expression and chromatin profiles for these nuclei were analyzed 957 

separately, we could use them as an independent check to determine how many barcodes were 958 

correctly labeled.  We identified multiome barcodes present both chromatin and gene 959 

expression maps, and then calculated the percentage of accessible chromatin barcodes with 960 

matching cell type assignments in label transfer and from the paired gene expression profile. 961 

Due to the limited transferring of subtypes in the chromatin modality, we calculated a 962 

percentage at both the sub-type and primary cell type levels.  963 

 964 

Generation of spatial transcriptomics data 965 

Pancreatic tissue from six nPOD organ donors - three with T1D (6228, 6247, 6456) and three 966 

without diabetes (6431, 6339, 6229), matched by age and sex - was selected for spatial 967 

transcriptomic profiling on the CosMx platform (NanoString, Seattle, WA). For each donor, five 968 

consecutive FFPE tissue sections from the pancreatic body region were cut at a thickness of 4 969 

microns. Sections #1, #2, #4, and #5 were mounted on the back of VWR Superfrost Plus Micro 970 

Slides, centered within the scanning area. After sectioning, the slides were air-dried overnight at 971 

room temperature, sealed, and immediately shipped with desiccant and ice packs to the 972 

NanoString facility (Seattle, Washington), where they were processed within two weeks of 973 

receipt. Section #3 was triple-stained for CD3, insulin, and glucagon using chromogen-based 974 

immunohistochemical staining using the Mach2 Double Stain 1/Mach2 Double Stain 2 HRP-AP 975 

Polymer Detection Kit according to the manufacturer’s instructions (Biocare Medical, Pacheco, 976 

CA) and chromogens used included Betazoid DAB (CD3), Warp Red (insulin), and Ferangi Blue 977 

(glucagon; all from Biocare Medical). Slides were then counterstained with hematoxylin. After 978 

staining, the slide was digitized at 20X magnification using an Aperio CS2 slide scanner (Leica 979 

Biosystems, Inc., Wetzlar, Germany), and this image served as a reference for field-of-view 980 

(FOV) selection during CosMx data processing.  The FOVs were selected by prioritizing specific 981 
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features such as insulitic islets, islets with few insulin-positive cells, insulin-negative islets, and 982 

areas of inflammation in acinar tissue. The gene panel used for spatial imaging included 1010 983 

total genes, including a fixed panel of 1000 genes on the Human Universal Cell Characterization 984 

RNA Panel and 10 additional custom genes selected for this project. The imaging experiments 985 

using the CosMX platform were performed at NanoString (Seattle, WA).  Cell segmentation was 986 

performed by NanoString using Giotto84, which included using immunofluorescence for 987 

glucagon to mark islets, CD3 or CD45 to mark immune cells, and PanCK for ductal cells + 988 

DAPI.    989 

 990 

Quality control and transcriptomic clustering of segmented cells  991 

For downstream analysis of spatial transcriptomes, we used the python toolkits Scanpy85 and 992 

Squidpy24. For each slide, we imported matrices containing the gene expression, metadata and 993 

positions of segmented cells. We defined a unique cell name and created a merged anndata 994 

object with data from all the slides. We adopted a standard filtering strategy, removing cell with 995 

less than 10 detected genes and removing genes detected in less than 300 cells. We then 996 

normalized the counts per cell, such that every cell has the same total count after normalization 997 

(1e6), and we log-transformed the counts.  998 

 999 

Clustering of segmented cells and cell type annotation in spatial data 1000 

To cluster the segmented cells we first integrated the samples using scVI v1.1.286.  We 1001 

performed integration by condition using the slide as a categorical covariate. We then used the 1002 

latent representation to create a shared nearest neighbor graph and compute UMAP for two-1003 

dimensional visualization. We performed hierarchical clustering on the scVI latent space at 1004 

resolutions of 0.5 and 0.7 and we identified 15 and 16 transcriptomic clusters for ND and T1D 1005 

respectively. To annotate cell types, we identified marker genes enriched in each cluster for 1006 

knowledge-based cell type annotation. We detected endocrine cells by hormone expression, 1007 

beta (INS, IAPP) and alpha (GCG, TTR); we also identified exocrine cells positively expressing 1008 

epithelial marker EPCAM, ductal (SOX9, KRT19) and acinar (EGF, DLL1, JAG1); we further 1009 

annotated endothelial cells (PECAM1, VWF), fibroblasts (VIM, COL1A1), immune cells (CD4, 1010 

CD8A), and mast cells (CPA3, TPSAB1). 1011 

 1012 

Cell type label transfer from reference snRNA-seq data  1013 

To achieve a finer annotation on the spatial context, we transferred the cell type labels from the 1014 

dissociated reference to the spatial data using spatial mapping function from moscot v0.3.587. 1015 
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First, we performed pseudo-bulking of dissociated data using decoupler v1.6.030. We found the 1016 

optimal combination of parameters for the spatial mapping task by hyperparameter tunning per 1017 

FOV and we used cosine distance between the modalities. For the annotation mapping, we 1018 

selected the label of the annotated cell with the highest matching probability.  1019 

 1020 

Identification of spatial cellular neighborhoods 1021 

Cellular neighborhoods in the spatial context were computed per FOV utilizing the squidpy24 1022 

function spatial_neighbors, where we utilized generic coordinates and considered 30 nearest 1023 

neighbors.  1024 

 1025 

Identification and annotation of multicellular spatial niches  1026 

To identify multicellular niches, we computed the covet representation implemented in envi 1027 

v0.3.025 per FOV. We used the default parameters, which included 64 genes to represent the 1028 

covariance matrix. We then created a shared nearest neighbor graph using the covet 1029 

representation and performed unsupervised Leiden clustering with a resolution of 0.2. To 1030 

annotate the clusters, we evaluated the relative cell type abundance in each group per fov and 1031 

performed hierarchical clustering. We aggregated ‘Acinar basal’, ‘Acinar High Enz’, ‘Acinar 1032 

signal’ and ‘Acinar sig/diff’ subtypes in the acinar niche, ‘Ductal’ and ‘MUC5b ductal’subtypes in 1033 

the ductal niche, ‘Alpha’, ‘Beta’ and ‘Delta’ subtypes in the endocrine niche and ‘Act stellate’, ‘Q. 1034 

stellate’, ‘Endothelial’, ‘Macrophage’ and ‘T cells’ in the connective tissue niche.  1035 

 1036 

Downstream analysis:  1037 

Final peak calling and signal tracks 1038 

Cell type specific set of chromatin peaks were derived using MACS283 v2.2.7.1 on the final cell 1039 

type annotations of our chromatin map using the following parameters -q 0.05 --nomodel --keep-1040 

dup all. These peak calls were used to accessible chromatin signal tracks in UCSC genome 1041 

browser88. 1042 

 1043 

Marker CREs  1044 

Cell type-specific cREs were derived for each cell type and subtype.  We first created a set of 1045 

union peaks across the whole dataset. This was achieved by limiting peak size for all called 1046 

peaks to 300bp by centering any peaks larger than 300bp at their summit and extending 1047 

coordinates 150bp in either direction. We then grouped peaks based on overlap to create 1048 

clusters of peaks. Within each cluster, the peak with the highest read count at its summit was 1049 
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identified as the reference peak for the region. We then generated a list of peaks that did not 1050 

overlap any of the reference peaks and iteratively identified additional reference peaks again 1051 

until no peaks remained. 1052 

 1053 

We used this set of union peaks to calculate two sets of sample level pseudo-bulk matrices per 1054 

cell type as follows: first, we aggregated the number of ATAC fragments within peaks per donor 1055 

per cell type, then for each cell type created a second matrix with the summation of fragments 1056 

from all other cell types. Normalized counts matrices were generated by dividing number of 1057 

fragments within a peak by total number of fragments for that sample in that cell type then 1058 

multiplying by scaling factor (1e6). Cell type specific regulatory elements were then determined 1059 

for each cell type by comparing the normalized counts matrix for a given cell type with the 1060 

normalized counts matrix of all other cell types summed together. To test enrichment of a given 1061 

peak for each cell type, we performed a logistic regression model using sample id as a covariate 1062 

and corrected for multiple tests using the Benjamini-Hochberg correction method (FDR<0.1).  1063 

We limited the marker cREs per cell type to the top 5,000 cREs ranked by fold-change.   We 1064 

performed sequence motif enrichment of marker cREs for each cell type compared to a 1065 

background of all cREs in the cell type using HOMER89 v5.0.1 and retained enriched motifs at 1066 

FDR<.01. We also tested for gene set enrichment in marker cREs using GREAT90(version 1067 

4.0.4).   1068 

 1069 

Calculation of TPM  1070 

We derived gene expression profiles for each cell type by creating aggregate count matrices by 1071 

donor per cell type. Using GENCODE v38 91 GRCh38.p13 gene size annotations we calculated 1072 

transcript per million (TPM) to normalize for gene size.  1073 

 1074 

Cell type proportion changes 1075 

We first scaled the counts for each cell type in a sample to 10,000 total cells per sample.  For 1076 

several cell types we excluded samples with abnormally high counts (sample 6278 for beta and 1077 

delta; sample 6393 for T cells and B cells; sample 6375 for MUC5b+ ductal cells). We then 1078 

created a linear model of the log transformed counts as a function of disease status (ND, ND 1079 

AAB+, recent-onset T1D, long-duration T1D), age, sex, and BMI, as well as a linear model 1080 

without the disease status variable.  We performed comparison of the nested models using a 1081 

likelihood ratio test in package lmtest92 in R and considered p-values from the test significant at 1082 

.05.   1083 
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 1084 

Differential gene expression 1085 

To determine disease-related changes in gene expression, we performed differential analysis 1086 

using DESeq276 v1.34. Using the snRNA- seq data, we derived pseudo-bulk count matrices for 1087 

each cell type by aggregating all barcodes of a donor for each gene on a per cell type basis. We 1088 

created the count matrices from the SoupX73 corrected expression counts, and then rounded 1089 

counts in the matrix to the nearest integer. We included sex, age, and BMI, as well as proportion 1090 

of beta cells, as covariates in the model. For endocrine cell types, we included expression 1091 

counts from scRNA-seq of 48 donors from the HPAP consortium93 derived from a previously 1092 

created single cell map34, and included an additional covariate in the model for cohort. For a 1093 

given cell type, we only used samples with at least 20 cells, except for long-duration T1D beta 1094 

cells where we included all samples. In addition, genes were only tested for a cell type if 1095 

detected in at least 2 samples per tested condition and if there was total of at least 10 counts 1096 

across all tested conditions. We further excluded genes for each cell type that are established 1097 

marker genes for a different cell type.  Multiple test correction was performed using Benjamini-1098 

Hochberg correction and we considered genes significant at FDR<.10.  1099 

 1100 

Differential cRE accessibility 1101 

Using cell type specific peak calls from MACS283 v2.2.7.1 per cell type we created peak by 1102 

barcode fragment count matrices all snATAC-seq donors for each disease condition. Lowly 1103 

accessible peaks were removed from analysis, as determined by the average accessibility of 1104 

peak across all samples less than median accessibility of all peaks across all samples. In 1105 

addition, for each cell type samples were removed with less than 10 barcodes in that cell type. 1106 

Lastly, cell types with less than 10 cells were not used in this analysis. We tested each disease 1107 

condition against non-diabetic using glmer94 in R using the logistic regression model [Peak 1108 

accessibility ~ Disease  + scale(FRiP) + scale(count) + (1|Sample)] using a binary peak count 1109 

matrix. We used the fixed covariates of fraction reads in peak (FRiP) and ATAC fragment count 1110 

(count) to account for sequencing depth variation and used sample ID as a random effect to 1111 

adjust for sample variation. We used sample as random effect to mediate the pseudo-replication 1112 

side effect of barcode level analysis. Cell types with more than 30k cells were subsampled down 1113 

to 10k for this analysis. Disease related fold change was calculated by the following formula: 1114 

(mean(disease peak accessibility) /mean(non-diabetic peak accessibility)). Multiple test 1115 

correction was performed using the Benjamini-Hochberg method and we considered cREs 1116 

significant at FDR<.10. 1117 
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 1118 

Pathway enrichment during T1D using gene expression input 1119 

To test for pathways enriched by disease, we performed gene set enrichment analysis 1120 

(GSEA)95,96. Using the results from our differential expression analysis input genes were ranked 1121 

using the following formula (-log10(pvalue)*log2FoldChanges), and fGSEA81 v1.20 was run 1122 

using both KEGG77–79 and REACTOME97–103 databases [parameters: eps=0.0, minSize = 0, 1123 

maxSize = 1000]. Enriched pathways were filtered down using an FDR cutoff of 10%.  1124 

 1125 

Motif Enrichment  1126 

We used chromVAR20 to measure z-scored motif accessibility in snATAC-seq data. To do so, 1127 

we prepared peak count data for input to chromVAR by converting the fixed peak sparse count 1128 

matrix into a SummarizedExperiment and estimated GC content bias using chromVAR’s built in 1129 

method20,21. Human TF motifs from JASPAR 202222 were accessed using the JASPAR2022 1130 

Bioconductor package23 and motifs were annotated to peaks using motifmatchr24. The 1131 

SummarizedExperiment and motif annotations were used as inputs into chromVAR’s 1132 

computeDeviations function to derive GC bias corrected motif accessibility z-scores.  1133 

  1134 

Motifs Enriched in Cell Types  1135 

TF motifs were filtered for those with an accessibility >1.2 based on chromVAR’s built in 1136 

computeVariability function. Cell types with fewer than 50 cells were excluded. Cell type motif 1137 

accessibility z-scores were averaged and plotted with pheatmap25 and RColorBrewer26.  1138 

  1139 

Motifs Enriched in Acinar Subtypes 1140 

After sub-setting the motif matrix to barcodes from acinar cells, we averaged motif accessibility 1141 

of each acinar subtype per sample then tested each motif using a two-way ANOVA across 1142 

acinar subtypes also including a donor variable. We then calculated FDR on the p-values using 1143 

qvalue104. To identify which specific subtype a significant motif was most enriched in, motifs 1144 

were further tested using a two-way ANOVA comparing motif accessibility within the subtype to 1145 

the average motif accessibility for the other acinar subtypes together also including a donor 1146 

variable. P-values for each motif were corrected by Holm’s method. Motifs were annotated to 1147 

sub-clusters based on being significant in the pan-subtype ANOVA, significant in the post-hoc 1148 

ANOVA with Holm’s correction, and having the highest average deviation score in the given 1149 

cluster. 1150 

  1151 
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Motif Differential Accessibility 1152 

To identify motifs with differential accessibility across disease states we used a linear mixed 1153 

model using the lmerTest package105.  We identified motifs in a cell type enriched in cREs with 1154 

altered activity in ND AAB+ or T1D.  For these motifs, accessibility was modeled by barcode 1155 

using encoded variables to contrast autoantibody, recent-onset and long-duration T1D 1156 

independently against non-diabetic controls. Scaled fractions of reads in peaks and scaled 1157 

number of counts were used as fixed effect covariates and a random effect for sample was used 1158 

to control for pseudo-replication. Samples with less than 10 cells in the given cell type were 1159 

excluded and cell types with fewer than 50 cells, or disease states with fewer than 20 cells and 1160 

3 samples were not tested. We obtained p-values from the resulting models.  Motif accessibility 1161 

was averaged by sample and disease state to make boxplots. Average motif accessibility per 1162 

condition was generated by averaging sample average motif accessibility and volcano plots 1163 

were generated by comparing difference in motif accessibility vs negative log10 q values, with a 1164 

difference threshold of 0.25 and q-value cutoff of 0.05 (5% FDR) for dashed lines and coloring 1165 

and labeling of samples. 1166 

 1167 

Motif enrichment in differential accessible CREs 1168 

To identify TF motifs enriched in cREs differential accessibility in each cell type, we used 1169 

HOMER106 (version 5.0.1).  For each cell type, we identified cREs with nominal association 1170 

(uncorrected p<.05) and split cREs by fold change as input, and user HOMER function 1171 

findMotifsGenome with a background of all cREs for the cell type with a size parameter of 200 1172 

and a masked version of the human genome hg38. Multiple test correction was done using the 1173 

Benjamini-Hochberg method, and significant motifs were considered at FDR<.10.  1174 

 1175 

ABC analysis 1176 

To link cREs to target genes we used Activity-by-contact (ABC)107 v0.2. This was done by first 1177 

creating .bam files for each cell containing only barcodes from the accessible chromatin map. 1178 

Since the HiC reference panel used was in hg19 genome build, cell type bams and peaks were 1179 

coverted to hg19 using CrossMap108 v0.6.3, and we called peaks for each cell type with MACS2 1180 

v2.2.7.1 using this genome build. To further improve enhancer activity prediction, we used 1181 

publicly available H3K27ac ChIP-seq data for acinar, ductal, alpha, beta, and delta cells109.  We 1182 

predicted candidate regions and enhancer activity for each cell type using the following flags: --1183 

peakExtendFromSummit 250, --nStrongestPeaks 150000, and all genes with a TPM greater 1184 

than 1 as ubiquitously expressed genes. After ABC analysis, links were converted back to hg38 1185 
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using CrossMap.  We identified genes with cell type-specific cRE link profiles by calculating the 1186 

proportion of the total number of ABC links for that gene by cell type and calculating Shannon 1187 

entropy based on the proportion.    1188 

 1189 

Constructing TF gene regulatory networks 1190 

To determine gene regulatory networks (GRNs), we constructed units of transcription factors 1191 

linked to cCREs linked to genes. We first used a position frequency matrix (PFMatrixList object) 1192 

of TF DNA-binding preferences from the JASPAR 2022 database110 and width-fixed peaks111 as 1193 

input to perform TF binding motif analysis. We used the ‘matchMotifs’ function in the R package 1194 

motifmatchr112 v.1.21.0 to infer cell type specific cREs bound by each TF.  We linked cREs 1195 

bound by each TF to target genes based on proximity to the gene promoter (±5 kb of a TSS in 1196 

GENCODE V19 or through Activity-by-contact (ABC) links 107,113 at a score cutoff of .015. TF 1197 

GRNs were retained for analysis if the network includes fewer genes then the 90th percentile of 1198 

number of genes linked to a given TF. In addition to ensure TF GRNs were active in the 1199 

associated cell type, we removed any TF GRNs with an average TF expression (TPM) less than 1200 

5.  1201 

 1202 

Identification of cell type specific TF-modules and pathways enrichment 1203 

For each pancreatic cell population, we identified pathways and TF modules enriched using our 1204 

identified marker CREs. In brief this was done for each cell type by deriving CREs associated 1205 

with KEGG and REACTOME paths using the bedtools intersection TF-module gene linked 1206 

CREs with union peaks accessible in that cell type. These union peak based pathways were 1207 

tested for enrichment using fGSEA. We used the logistic regression marker CRE results to rank 1208 

peaks using the following formula (-log10(pvalue)*log2FoldChanges). Similarly, we tested for TF 1209 

modules enriched in each cell type by defining union peaks associated with a TF either 1210 

proximally or through ABC; then using the logistic regression marker CRE results to rank peaks 1211 

and test for enrichment using fGSEA. For both analyses, we used the Benjamini-Hochberg 1212 

method for multiple test correction and retained results with an FDR < .10. 1213 

 1214 

Identification of TF GRNs linked to biological pathways altered in T1D 1215 

To identify regulators of enriched pathways for each cell type, we next tested enrichment of 1216 

each TF-module in pathways identified in our fGSEA analysis. We performed Fisher's exact test 1217 

to test for overlap in genes in each TF GRN and genes in each biological pathway in KEGG and 1218 

REACTOME for each cell type.  We performed multiple test correction using FDR and 1219 
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considered TF GRNs linked to a pathway at FDR<.10. Next, we filtered results to biological 1220 

pathways with significantly altered expression in T1D and TF motifs belonging to TF sub-1221 

families with differentially accessibility in T1D from chromVAR114 results. 1222 

 1223 

Genetic association enrichment 1224 

We tested for enrichment of T1D associated variants using summary statistics from a published 1225 

genome-wide association study5.  We defined groups of cREs in multiple ways; first, by 1226 

identifying all cREs in each cell type linked to genes in each biological pathway in KEGG and 1227 

REACTOME using ABC and promoter proximity links and, second, by identifying cREs in each 1228 

cell type in GRNs for each TF. We calculated Bayes Factors (BFs) for each variant with minor 1229 

allele frequency (MAF)>.05 genome-wide, excluding all variants at the MHC locus, using the 1230 

method of Wakefield115.  We then tested for enrichment of T1D associated variants in groups of 1231 

cREs genome-wide using fgwas v0.3.639 with a block size (-k) of 2,500. 1232 

 1233 

We also tested for enrichment of fine-mapped T1D risk variants using finrich116, which compares 1234 

the cumulative posterior probability of a set of variants in an annotation to a null distribution 1235 

drawn from permutations of a background set of annotations.  For each enrichment analyses 1236 

using subsets of cREs in a cell type, we used the posterior probabilities in credible sets from a 1237 

previously published GWAS5, the full set of cREs for the cell type as background, and 10,000 1238 

permutations. 1239 

 1240 

We overlapped cREs in each cell type with credible sets of variants at known T1D signals from 1241 

a published fine-mapping study.  We further determined which cREs had at least nominal 1242 

evidence (uncorrected p<.05) for differential accessibility in ND AAB+ or T1D. 1243 

 1244 

Cell-cell interactions 1245 

The gene expression data was pre-filtered prior to running CellChat40 v1.1.3. First, any cell type 1246 

represented by fewer than 20 cells for a sample was excluded. Next, cell types that appeared in 1247 

fewer than two samples within a control or disease group were excluded from that group.  1248 

 1249 

We considered a ligand expressed in a specific cell type if the average expression of the ligand 1250 

in the cell type was greater than half the standard deviation (SD) of its average expression 1251 

across all cells in at least two samples.  After applying these filters, we ran CellChat using the 1252 

RNA data slot of the Seurat object across the entire CCdb with default parameters except for 1253 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2025. ; https://doi.org/10.1101/2025.02.13.637721doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.13.637721
http://creativecommons.org/licenses/by-nc/4.0/


‘trim = 0’ in the “computeCommunProb” command and ‘thresh=1’ in the “subsetCommunication” 1254 

command40. Each control and disease group were processed independently.  Ligands from the 1255 

CellChat database (CCdb) were grouped into high level categories by manual curation using 1256 

UniProt117 and GeneCard118,119 (listed in Supplementary Table 21). Gene families were 1257 

downloaded using biomart120 in R. 1258 

 1259 

Results from different conditions were consolidated and subjected to FDR correction using the 1260 

Benjamini-Hochberg method with the q-value104 package.  Predicted interactions were 1261 

considered with an FDR<0.1 and an IS above the second quartile were considered for 1262 

downstream interpretation.  To remove residual background contamination due to highly 1263 

expressed genes, the following interactions were blacklisted in all cell sources except the ones 1264 

listed: INS in beta cells, GCG in alpha cells, SST in delta cells, PRSS1/2/3 in acinar cells, 1265 

CD8A, CD8B, CD8B2 in T cells, and CD4 in T cells and macrophages. 1266 

 1267 

To assess the significance of differences between conditions, we randomly permuted sample 1268 

IDs among conditions and re-performed the CellChat analysis 100 times and comparing these 1269 

outcomes with the observed CellChat results. The permutations were produced and filtered 1270 

using the identical parameters as those for the observed data. Next, we aggregated the 1271 

Interaction Strength (IS) across different "units" by summing all Ligand-Receptor (LR) pairs 1272 

within a unit and normalizing this sum by the number of significant interactions for each 1273 

condition (for example, the total of all incoming ligands to Beta cells in non-diabetic samples 1274 

divided by the number of significant interactions identified in that condition). We then quantified 1275 

the difference in effect size (IS-effect size) across contrasts: ND AAB+ vs. ND, recent-onset 1276 

T1D vs. ND, and long-duration T1D vs. ND. A p-value was calculated by comparing the 1277 

observational results against the simulations using the formula: the number of instances where 1278 

simulation IS-effect size exceeded observational IS-effect size, divided by the number of 1279 

permutations. Subsequently, p-values were corrected for multiple tests using the Benjamini-1280 

Hochberg method. We considered only interactions with an FDR less than 0.10 as significant. 1281 

 1282 

Functional Analysis of spatial genomics profiles 1283 

We inferred TF and pathway activities utilizing the package Liana v1.1.035. For TF activity 1284 

inference, we use the cell type-specific GRNs derived from single cell multiome. We then fit a 1285 

univariate linear model to infer the interaction wights. To identify cell type-specific TFs we 1286 

performed a t-test overestimating the variance of each group and filtered TFs according to an 1287 
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adjusted p-value <0.05. We inferred pathway activities using the PROGENy model35. We used 1288 

weights of the top 500 responsive genes ranked by p-value. We then fit a multivariate linear 1289 

model to obtain the weights corresponding to pathway interactions. As with the TF activity 1290 

analyses, we identified cell type specific pathways by performing a t-test overestimating the 1291 

variance of each group.  1292 

 1293 

Cell-Cell communication  1294 

We analyzed cell-cell communication in spatial transcriptomic data using SpatialDM v0.2.041. 1295 

We performed the analysis per condition, and per donor, having each FOV as technical 1296 

replicate. For this study, the parameters l and cutoff were set to 100, and 0.2 to represent the 1297 

spatial context. Additionally, we computed the weight matrix using the single-cell mode and we 1298 

extracted the ligand-receptor interactions from the CellChat database40. To compute the global 1299 

Morans’ I score and the local spot detection, we used the z-score method.  1300 

 1301 

EndoC-Bh1 stimulation experiments and RNA-sequencing 1302 

A total of 25,000 EndoC-BH1 cells were seeded in media composed of DMEM (Corning, 1303 

10014CV), 2% BSA (Sigma, A1470), 3.5 × 10^−4% 2-mercaptoethanol (Gibco, 21985023), 1304 

0.12% Nicotinamide (MilliporeSigma, 481907), 5.5 ng/mL transferrin (MilliporeSigma, T8158), 1305 

6.7 pg/mL Sodium Selenite (Sigma, 214485), and 1% Penicillin-Streptomycin (Gibco, 1306 

15140122) on a 96-well (CellTreat Scientific Products, 229105) plate coated with ECM (Sigma, 1307 

E1270) and Fibronectin (Sigma, F1141). The recombinant protein concentrations used were: 1308 

1ug/ml PGRN and 50ng/ml BMP5. EndoC-βH1 cells were obtained from Human Cell Design. 1309 

RNA was isolated using the RNeasy Mini Kit (Qiagen) from EndoC-Bh1 cells either stimulated 1310 

or unstimulated with each ligand. Samples included three replicates each for PGRN and its 1311 

untreated controls, and six replicates each for BMP5 and its untreated controls. RNA integrity 1312 

was assessed using a 2200 TapeStation (Agilent Technologies), and all samples achieved an 1313 

RNA Integrity Number (RIN) greater than 7. Ribodepleted total RNA libraries were prepared 1314 

using the TruSeq Stranded Total RNA Library Prep Gold kit (Illumina, Catalog #20020599) and 1315 

sequenced at the UCSD Institute for Genomic Medicine on an Illumina NovaSeq S4 platform. 1316 

 1317 

Bulk RNA-seq analysis 1318 

Quality control of the sequencing data was assessed using FastQC121. Transcript quantification 1319 

was performed using Salmon122 with default parameters and the hg38 reference indexes. 1320 

Counts were imported into R using the tximport123 package, and genes with fewer than 10 reads 1321 
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were excluded. Differential gene expression analysis was conducted using DESeq276, applying 1322 

a false discovery rate (FDR) threshold of less than 0.1. For pathway enrichment analysis, the 1323 

fGSEA package was employed using the “stat” column from DESeq2 results. fGSEA analysis 1324 

was restricted to gene sets containing more than 10 and fewer than 500 terms. Pathways were 1325 

corrected for multiple testing using FDR with a threshold of 0.1, and only pathways belonging to 1326 

the KEGG77,79 or REACTOME80 databases were considered. 1327 

Figure legends 1328 

 1329 

Figure 1. Cell type-specific map of gene expression in the pancreas. (A) Design of study 1330 

profiling human pancreas from ND, ND AAB+ and T1D donors using single cell assays. (B) 1331 

Uniform manifold approximation and projection (UMAP) plot showing clustering of 276,906 1332 

nuclei from single nuclear RNA-seq of 32 whole pancreas donors from the nPOD biorepository. 1333 

Clusters are labeled based on cell type and sub-type annotations. (C) Dot plot showing the 1334 

normalized expression levels of selected known marker genes for pancreatic cell types and sub-1335 

types. (D) Dot plot of genes with preferential expression across different sub-types of acinar 1336 

cells (top left), and normalized enrichment score (NES) of pathways enriched in each subtype 1337 

using fGSEA (top right).  Donor transcripts per million (TPM) of selected genes with preferential 1338 

expression in different sub-types of acinar cells. (E) Representative FOV per condition (ND: top, 1339 

T1D: bottom) showing (from left to right) immunofluorescence, coarse cell type annotation with 1340 

the spatial gene panel directly, and finer-grained cell type annotation transferred from the 1341 

snRNA-seq data. (F) Matrix plots showing the neighborhood enrichment of cell types based on 1342 

spatial neighbors. (G) Stacked barplot illustrating the relative abundance of each cell type in 1343 

each multicellular niche (left). Dot plot showing the normalized gene expression levels of 1344 

spatially variable genes across multi-cellular pancreatic niches (right). (H) Normalized cell 1345 

counts for selected pancreatic cell types and sub-types organized by donor T1D and ND AAB+ 1346 

status.  ** FDR<.10, * uncorrected p<.05.  (I) Stacked barplot showing the relative abundance of 1347 

each multi-cellular niche per condition. Niches with * have altered abundance in ND samples 1348 

(p<0.05).  1349 

 1350 

Figure 2. Cell type-specific map of accessible chromatin in the pancreas. (A) Uniform 1351 

manifold approximation and projection (UMAP) plot showing clustering of 203,348 nuclei from 1352 

single nuclear ATAC-seq of 29 whole pancreas donors from the nPOD biorepository. Clusters 1353 

are labeled with cell type and sub-type identity based on label transfer from the gene expression 1354 

map. (B) Genome browser showing cell type-specific accessible chromatin signal at the 1355 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2025. ; https://doi.org/10.1101/2025.02.13.637721doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.13.637721
http://creativecommons.org/licenses/by-nc/4.0/


promoter regions of known marker genes for pancreatic cell types. (C) Heatmap showing 1356 

genome-wide accessibility from chromVAR of sequence motifs for selected transcription factors 1357 

(TF) across cell types (left), and boxplots showing donor-level accessibility of selected TF 1358 

sequence motifs across cell types (right). (D) Genome-wide accessibility of sequence motifs for 1359 

TFs with preferential enrichment in specific sub-types of acinar cells (left), and log fold-change 1360 

in expression for genes in structural sub-families for the enriched TF motifs (right). (E) Number 1361 

of cREs identified across all cell types and the percentage of cREs that do not overlap previous 1362 

catalogs of cREs from Zhang et al and Chiou et al (top).  Example of a pancreatic T cell-specific 1363 

cRE novel to this study compared to previous catalogs at the ZNF746 locus. (F) Sequence 1364 

motifs for TFs enriched in cREs with activity specific to each cell type (left) and barplots showing 1365 

-log10 p-values of gene sets enriched for proximity to cell type-specific cREs using GREAT.  (G) 1366 

Example of a cRE active in pancreatic T cells and macrophages that overlaps a candidate 1367 

causal T1D risk variant at the PRCKQ locus.  (H) Number of gene-CRE links per gene per cell 1368 

type (top) and schematic of TF gene regulatory network (GRN) creation (bottom). (I) Matrix plot 1369 

showing the scaled Z-score of TF activities for top TFs identified for each cell type using a t-test 1370 

with overestimated variance. (J) Spatial plot of selected TFs showing the TF activity profile (top), 1371 

and cell type distribution for the respective cell type (bottom).  1372 

 1373 

Figure 3. Cell type-specific changes in gene expression in T1D progression.  (A) Number 1374 

of genes in each pancreatic cell type with significant (FDR<.10) changes in expression in ND 1375 

AAB+ or T1D status compared to non-diabetes. Endocrine cell types include scRNA-seq data 1376 

from HPAP donors (top). Number of biological pathways enriched in genes with up- and down-1377 

regulated expression in each cell type in ND AAB+ or T1D (bottom). (B) Volcano plot showing 1378 

differential expression results in beta cells in recent-onset T1D compared to ND.  (C) Bar plot 1379 

showing normalized enrichment score (NES) of biological pathways enriched in up- and down-1380 

regulated genes in beta cells in recent-onset T1D (bottom). (D) Scaled expression in spatial 1381 

profiles of genes with up-regulated expression in T1D in beta cells (left). Spatially-dependent 1382 

expression of selected genes (HLA-A, B2M) up-regulated in T1D in each cell type (right).  (E) 1383 

Biological pathways with differential expression within spatial niches in T1D compared to ND in 1384 

spatial profiles.  (F) Scatterplot of log fold-change in expression of genes in beta cells in single 1385 

or multiple ND AAB+ compared to recent-onset T1D (top) and longer-duration T1D (bottom).  1386 

Line shown in each plot is from a linear model of log fold-change values, and p-values are from 1387 

Spearman correlation.  (G) Normalized enrichment score (NES) of biological pathways enriched 1388 

in differential expression results of recent-onset T1D and multiple ND AAB+.  Pathways are 1389 
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colored based on significant enrichment (FDR<.10) in either, or both, disease states. (H) 1390 

Normalized enrichment score of biological pathways enriched in differential expression results in 1391 

beta cells across each T1D state (single ND AAB+, multiple ND AAB+, recent-onset T1D, and 1392 

long-duration T1D) compared to non-diabetes.  Red stars are for pathways with significant 1393 

enrichment (FDR<.10) in each state. (I) Log fold-change of expression of selected MHC and 1394 

interferon related genes in beta cells in each state compared to ND. Red stars indicate genes 1395 

with significant change in expression (FDR<.10) and red dots indicate more nominal change in 1396 

expression (un-corrected p<.05). (J) Normalized enrichment score (NES) of biological pathways 1397 

enriched in genes with up- and down-regulated expression in ND AAB+ and T1D in other 1398 

pancreatic cell types.  Red stars indicate pathways with significant enrichment (FDR<.10).    1399 

 1400 

Figure 4. Epigenomic changes in pancreatic cell types in T1D progression. (A) Fold 1401 

enrichment of sequence motifs for transcription factors (TFs) enriched in beta cell cREs with up-1402 

regulated or down-regulated activity in recent-onset T1D (top) or ND AAB+ (bottom). (B) Box 1403 

plots showing donor-level genome-wide accessibility of selected TF motifs in beta cells (left) and 1404 

alpha cells (right) from chromVAR across non-diabetes (ND), ND AAB+ (AAB) and recent-onset 1405 

T1D (T1D). (C) TF GRNs enriched for overlap with genes in biological pathways in beta cells 1406 

altered in T1D progression. (D) Biological pathways in beta cells enriched for overlap with the 1407 

HNF1A GRN (top).  Beta cell expression of HNF1A in T1D progression (middle).  Beta cell 1408 

activity of biological pathways linked to the HNF1A GRN in T1D progression (bottom).  (E) 1409 

Genome browser views of the TSHR (top) and HLA-A (bottom) loci where beta cell cREs with 1410 

altered activity in T1D were linked to genes with concordant changes in expression in T1D. (F) 1411 

Genome-wide enrichment of T1D-associated variants in beta cell cREs linked to pathways with 1412 

altered expression in ND AAB+.  (G) Genome browser view of T1D associated variants and 1413 

beta cell accessible chromatin in non-diabetes, ND AAB+ and T1D at the IRF1 locus, where 1414 

candidate T1D variant overlaps a beta cell cRE with altered activity in T1D progression.  (H) 1415 

Genome browser view of T1D associated variants and both beta cell and T cell accessible 1416 

chromatin in non-diabetes, ND AAB+, and T1D at the STAT4 locus.  Candidate T1D variants at 1417 

this locus overlap a T cell cRE but not a beta cell cRE.  1418 

 1419 

Figure 5.  Cell-cell signaling networks altered in T1D progression.  (A) Summary of total 1420 

interaction strength (top) and number of interactions (middle) for each pancreatic cell type 1421 

lineage in non-diabetes, ND AAB+, recent-onset T1D and long-duration T1D. Bar plot showing 1422 

the number of ligand receptor interactions identified per donor in spatial slides (bottom). (B) 1423 
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Heatmap showing normalized interaction strength of outgoing and incoming signals for each cell 1424 

type among donors which were non-diabetes, ND AAB+, recent-onset T1D and long-duration 1425 

T1D.  Stars represent the significance of the difference in interaction strength in each disease 1426 

state compared to non-diabetes using permutations. **FDR<.01, *FDR<.05.  (C) Difference in 1427 

strength of interactions between beta cells and other pancreatic cell types and sub-types in ND 1428 

AAB+, recent-onset T1D and long-duration T1D. **FDR<.01, *FDR<.05. (D) Interaction strength 1429 

of outgoing and incoming signals for each cell type summarized by broad functional categories.  1430 

**FDR<.01, *FDR<.05.  (E) Normalized interaction strength in recent-onset T1D and non-1431 

diabetes for ligands with significant change in incoming or outgoing signal involving beta cells. 1432 

(F) Heatmap per donor showing the interaction score of the top ligand-receptor interactions from 1433 

a likelihood ratio test comparing ND and T1D donors.  (G) Spatial plots of a representative FOV 1434 

per condition (T1D: top, ND: bottom) highlighting, from left to right, spots where the interaction 1435 

between HLA-C and CD8A presented a significant spatial pattern and the cell types where this 1436 

interaction occurs. (H) Volcano plot showing genes with up- and down-regulated expression in 1437 

EndoC-BH1 cells after treatment with BMP5 compared to no treatment (left).  Biological 1438 

pathways enriched in genes with up- and down-regulated expression in BMP5 exposure (right). 1439 

(I) Volcano plot showing genes with up- and down-regulated expression in EndoC-BH1 cells 1440 

after treatment with granulin (GRN) compared to no treatment (left). Biological pathways 1441 

enriched in genes with up- and down-regulated expression after GRN exposure (right).   1442 
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