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Rapid brain tumor classification from sparse 
epigenomic data
 

Although the intraoperative molecular diagnosis of the approximately 
100 known brain tumor entities described to date has been a goal of 
neuropathology for the past decade, achieving this within a clinically 
relevant timeframe of under 1 h after biopsy collection remains elusive. 
Advances in third-generation sequencing have brought this goal closer, but 
established machine learning techniques rely on computationally intensive 
methods, making them impractical for live diagnostic workflows in clinical 
applications. Here we present MethyLYZR, a naive Bayesian framework 
enabling fully tractable, live classification of cancer epigenomes. For 
evaluation, we used nanopore sequencing to classify over 200 brain tumor 
samples, including 10 sequenced in a clinical setting next to the operating 
room, achieving highly accurate results within 15 min of sequencing. 
MethyLYZR can be run in parallel with an ongoing nanopore experiment 
with negligible computational overhead. Therefore, the only limiting factors 
for even faster time to results are DNA extraction time and the nanopore 
sequencer’s maximum parallel throughput. Although more evidence from 
prospective studies is needed, our study suggests the potential applicability 
of MethyLYZR for live molecular classification of nervous system 
malignancies using nanopore sequencing not only for the neurosurgical 
intraoperative use case but also for other oncologic indications and the 
classification of tumors from cell-free DNA in liquid biopsies.

Intraoperative diagnostic procedures in oncologic surgery date back 
to the late 19th century and have substantially impacted patient out-
comes1. They serve two primary clinical purposes: first, to establish 
a pathologic diagnosis, and second, to evaluate tumor cells at the 
resection margins1. The most immediate intraoperative use case is 
to differentiate surgical tumors from those for which non-surgical 
treatment modalities are preferable2,3. The increasing reliance of 
modern neuropathology on molecularly and specifically epigeneti-
cally defined tumor classes is exemplified by the most recent edition 
of the World Health Organization (WHO) classification of central 
nervous system (CNS) tumors4. It is based, in part, on the funda-
mental insight that malignancies found in the CNS can be identified 
and grouped into tumor classes based on genome-wide methylation 
profiles5. Specifically, a method developed by Capper et al. using a 

random forest model for methylation microarrays5,6 enables, today, 
the classification of up to 184 CNS tumor categories (DKFZ Brain  
Classifier 12.8) and has been integrated into clinical practice7–9. 
However, all genome-wide molecular methods currently employed 
in translational research and clinical routine require turnaround 
times of several days or, in some cases, weeks, precluding their use 
as next-day or even intraoperative diagnostic applications8,10,11.

Nanopore sequencing has become a transformative technology in 
preclinical research at the point of care (POC)12. Three specific features 
render this technology an attractive candidate for delivering molecular 
information within the timeframe of a neuro-oncologic surgery. First, 
nucleotide-resolution sequence data are available for further analysis 
and interpretation only milliseconds after a DNA or RNA strand enters 
a nanopore. Second, information on epigenetic modifications of these 
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Although a typical CNS tumor resection requires a median time of 
3 h (179 min; 123–250 min)16, the decisive time after a neurosurgeon 
reaches a brain tumor and any diagnostic information from a biopsy 
could realistically influence the extent of a subsequent resection is 
limited to under 1 h (Fig. 1a). Although imaging-based, stimulated 
Raman histology has demonstrated sample-to-result times of less than 
2.5 min, the underlying neural networks currently identify substantially 
fewer tumor classes (n = 13) compared to those distinguishable using 
an integrated molecular approach (n = 108)3,4.

Most recently, the application of neural network models to nano-
pore data has yielded predictions of similar accuracy to an ad hoc 
random forest classifier within seconds, demonstrating a practicable 
turnaround time of approximately 1.25 h from sample to result15. How-
ever, due to the limited amount of publicly available training data, deep 
learning necessitates the simulation of tens of millions of nanopore 
datasets to train and validate the complex classifiers while demand-
ing extensive computational resources for hyperparameter tuning.

nucleotide sequences can be obtained within the same immediate 
timeframe. Third, transposase-based library preparation for nanopore 
sequencing experiments can be completed in minutes, enabling clini-
cal sequencing workflows with a relatively small equipment footprint 
at the POC.

Several workflows employ nanopore sequencing to diagnose 
CNS tumors, sometimes within a day or even during neuro-oncologic 
surgery. Such diagnoses are achieved by classifying tumors accord-
ing to characteristic CpG methylation profiles8,13–15. The initially 
proposed random forest approach has been customized to adaptive 
nanopore sequencing for a 4-day workflow8 and has been recently 
modified to also enable intraoperative applications13,14. This use case 
involves sample-specific, ad hoc training on only those CpGs covered 
in each nanopore sequencing experiment, typically necessitating 1.5 h  
(91–161 min) from sample to result13,14.

Sample-to-result time and clinically relevant diagnostic accuracy 
are the primary concerns for any intraoperative diagnostic procedure. 
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Fig. 1 | MethyLYZR enables tumor class prediction on sparse data without 
model retraining. a, Simplified schematic of the timeline of a brain surgery 
procedure. The stages encompass the following: (1) induction, involving 
anesthesia and patient positioning with neuronavigation adjustments 
(approximately 45–60 min); (2) incision and progression to the tumor 
(approximately 30 min); (3) tumor resection (approximately 60 min) and (4) 
retraction and completion of suturing (approximately 30 min). Notably, the 
60-min tumor resection stage is the critical time window for obtaining a 
molecular diagnosis. However, the turnaround times of established molecular 
diagnostics extend beyond the length of the surgical procedure. b, Illustration  
of the training and prediction process of the naive Bayes algorithm.  
Multiple tumor classes (m classes) with several samples contribute CpG 
methylation ratios (p features) for algorithm training. The training involves 
generating m centroids (μ) based on the provided samples (S1,… , Snm), 
describing the average methylation probability of each of the n CpGs (features) 

per tumor class. Additionally, weights (w) are calculated per CpG and class, 
reflecting the predictive power of a CpG for a specific tumor class. For tumor 
class prediction in a given sample, sparse, binary methylation values from 
individual molecules—for example, obtained through Nanopore sequencing—
serve as input for the pre-trained Bernoulli naive Bayes model. The output 
comprises a ranked list of posterior probabilities of all tumor classes in the 
model. c, Benchmarking analysis of MethyLYZR training time on published CNS 
450k methylation arrays across 91 tumor classes with a total of 2,801 samples5. 
The training was executed on a single core using a Dell PowerEdge R7525 server  
(3 GHz AMD 64-Core Processor, 256 CPUs, 1,031.3 GB DDR4 RAM, Linux 
distribution) and an Apple iMac Pro (3 GHz 10-Core Intel Xeon W, 64 GB  
2,666 MHz DDR4 RAM, 1 TB APFS SSD, Radeon Pro Vega 56 GPU with 8 GB VRAM, 
macOS 13.2.1). Notably, centroids and weight training were achieved on the 
server in under 20 min and on the iMac Pro in under 40 min.
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Here we present MethyLYZR, a probabilistic framework that 
enables live classification of malignant transformed tissues from 
sparse DNA methylation profiles without requiring ad hoc training.  
MethyLYZR results are similar and, in many cases, superior in diagnostic 
accuracy to competing methods.

Results
Nanopore sequencing is a stochastic ‘shotgun’ sequencing approach17. 
Despite its potential for high-throughput scaling18, it can realistically 
capture only a small portion of the human genome, typically well below 
2%, within the critical timeframe of neurosurgical oncology procedures. 
In this context, unlike methylation arrays or deep sequencing datasets, 
shallow nanopore sequencing provides a single-molecule, binary out-
put regarding a CpG’s methylation status. Each CpG site on a single DNA 
molecule is classified as methylated or unmethylated, diverging from 
the continuous, bulk methylation measurements (methylation rate or 
probability) typically obtained via methylation arrays. Another major 
challenge is the stochastically obtained feature set—every sequencing 
experiment will recover a different, random subset of CpGs.

These specific constraints render the Bernoulli naive Bayes 
classifier19,20 a suitable framework to address the unique algorithmic 
challenges of classifying cancer epigenomes in the shortest possible 
time. The classifier uses Bayes’ theorem to update the likelihood that a 
tumor sample belongs to a particular cancer class as new methylation 
data come in (Fig. 1b).

To train the Bernoulli naive Bayes classifier, we calculate the aver-
age methylation rate for each CpG site across different cancer classes, 
using data from the Illumina 450k methylation arrays. This gives us a 
probability of methylation for each CpG site within each cancer class 
(Fig. 1b, top). MethyLYZR then applies a weighting system21,22 to these 
probabilities to enhance its accuracy, particularly in distinguishing 
between closely related cancer types. This system also accounts for 
the fact that methylation patterns at different CpG sites are often cor-
related, which helps to improve the model’s reliability23–25 (Methods; 
Supplementary Fig. 1; Fig. 1b top; and Extended Data Fig. 1).

For the actual cancer classification, the naive Bayes classifier 
updates its predictions about the likely tumor type as new methylation 
data from the nanopore sequencing become available (Fig. 1b, bottom). 
It generates a list of possible tumor classes with the most probable class 
identified as the most likely result.

Of note, a central property of the naive Bayes classifier is its ability 
to accurately predict tumor types, even when only a random subset of 
CpG sites is available. Although missing values are a major challenge 
for most other machine learning approaches, they are intrinsically 
easy to deal with when employing a naive Bayes model: as long as the 
measurements are missing at random, ‘one simply ignores them’26.

Taken together, in the context of low-coverage nanopore sequenc-
ing with more than 98% of missing observations, the Bernoulli 
naive Bayes classifier is particularly well suited for intraoperative 
classification.

In the absence of extensive methylation sequencing references for 
most brain tumor types, we used a publicly available 450k methylation 
array atlas with 2,801 samples across 91 CNS tumor and control classes 
for training5. This dataset was previously used to train random forest and 
neural network algorithms for intraoperative classification tasks13–15.  
The 91 class labels in the training dataset represent a combination of 
CNS tumor entities, suggestive grading information and molecular con-
cepts and, in some instances, reflect computationally derived sample 
groups with unknown clinical significance5. For practical application, 
we reordered the 91 CNS training classes into 44 MethyLYZR (MZ) CNS 
classes, guided by their potential clinical impact (Extended Data Fig. 2a, 
Supplementary Table 1 and Supplementary Text) as well as eight broad 
methylation class families (MCFs) as outlined previously5. For example, 
we consolidated six glioblastoma subtypes identified in the training 
dataset5 to reflect the clinical reality where such specific subtypes are 

not routinely distinguished during standard diagnostic procedures. 
Similarly, nine control tissues were categorized as ‘non-diagnostic 
tissue’, supporting the distinction between neoplastic tumors and 
non-malignant or diagnostically inconclusive tissue, which is relevant 
for clinical decision-making.

Training of MethyLYZR’s weighted naive Bayes algorithm is effi-
cient and fast, with linear complexity in the number of features and 
quadratic complexity in the number of samples. This efficiency enables 
the algorithm to complete training while requiring minimal computa-
tional resources: within a few minutes on a high-performance server 
and in well less than 1 h on a 2017 Apple iMac personal computer (Fig. 1c, 
legend, and Supplementary Table 2).

For performance evaluation, we initially generated a synthetic 
dataset to simulate shallow nanopore methylation patterns based on 
the 450k methylation array reference (Extended Data Fig. 3a). This 
involved generating 100 replicates per sample for each of the 91 brain 
tumor classes, each providing binary methylation data for every CpG 
(280,100 synthetic samples in total).

To assess the impact of sequencing depth on accuracy, we sam-
pled methylation data of 1 to 20,000 CpGs from synthetic nanopore 
profiles. Using only 1,000 randomly selected CpGs, this resulted in an 
overall median accuracy across classes of 91.45%, 97.02% and 95.47% 
across all 280,100 synthetic samples (0.2% of all modeled CpGs; CNS, 
MZ CNS and MCFs, respectively; Fig. 2a, Extended Data Fig. 3b and 
Supplementary Tables 3–5). Including an increasing number of CpGs 
results in improved accuracy, saturating at approximately 7,500 CpGs. 
At this number of CpGs, we observed an accuracy of 94.52% across all 
samples within the 91 CNS classes (Fig. 2b). Furthermore, when intro-
ducing methylation calling error rates of up to 10% in silico, the accu-
racies appeared to be stable (94.70%, 94.53%, 94.92% and 93.73% with 
error rates of 1%, 2.5%, 5% and 10%, respectively; Extended Data Fig. 3c). 
Notably, across all tested CpG quantities, most misclassifications 
were not random but confined to our broader diagnostic categories  
(97.72% accuracy on MZ CNS classes for 7,500 CpGs; Fig. 2a–c and 
Extended Data Figs. 3b and 4a).

Epidemiologically, intracranial metastases are estimated to be 
10 times more common than primary brain tumors27. Consequently, 
neurosurgical biopsies for brain metastases are frequent and essential 
when neuroimaging is ambiguous, no primary tumor is known, multiple 
primaries exist or when specific tumor characteristics could influence 
treatment decisions28.

To expand the clinical utility of MethyLYZR and assess the impact 
of broadening its scope, we augmented the training dataset5 with addi-
tional tumor samples originating from breast cancer, lung cancer and 
melanoma CNS metastases29 (three metastatic classes, 85 samples). 
Testing the predictive power of MethyLYZR in this expanded model, 
we first retrained on CNS and metastasis samples and followed the 
above-outlined evaluation approach to generate synthetic, sparse data-
sets (Extended Data Fig. 3a). Notably, when including the metastatic 
classes, our model demonstrated the ability to differentiate between 
brain and metastatic tumor samples with 88.76% to 90% accuracy using 
randomly selected, synthetic subsets of 7,500 CpGs (Fig. 2d, Extended 
Data Fig. 5a and Supplementary Tables 6 and 7).

To further evaluate the adaptability of MethyLYZR, we expanded 
our training dataset to include sarcomas30 (64 classes represented by 
1,077 samples), increasing the total to 158 classes. We then assessed 
the model’s performance on the original CNS samples to determine if 
the expansion to CNS and metastasis or CNS, metastasis and sarcoma 
impacted the predictive reliability. The statistical analysis of F1 scores 
(Wilcoxon test P value: 0.8339 and 0.2314, respectively) indicated that 
accuracy was maintained despite the substantially broader scope of the 
expanded model (Fig. 2e, Extended Data Fig. 5a,b and Supplementary 
Tables 4 and 7–9).

To adapt our approach for intraoperative sequencing, we first opti-
mized the library preparation strategy for intraoperative applications 

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03435-3

(Fig. 3a and Supplementary Video). Specifically, we refined a com-
mercially available DNA preparation method to consistently extract 
DNA from brain tumor biopsies within 22 min. We next optimized a 
protocol for a transposase-based, rapid nanopore library prepara-
tion kit to obtain a sequencing library within 18 min. This protocol 
works with small tissue samples (10–15 mg) realistically obtainable 
during routine neurosurgical procedures, yielding sufficient DNA for 
nanopore sequencing (600–700 ng required for R9 and 100–150 ng 
for R10 pores, due to the increased sensitivity of R10) in parallel with 
biopsy retrieval for current clinical integrated diagnostic procedures. 
Furthermore, we adapted MethyLYZR into the standard Oxford Nano-
pore Technologies (ONT) basecalling workflow, establishing a live 
methylation processing pipeline. This end-to-end integration enables 
immediate POC diagnostic cancer prediction from CpG methylation 
data directly from the sequencer, without internet reliance. We can 
obtain sufficient methylation measurements from approximately 
15–20 min of sequencing using our optimized workflow. This allows 
us to complete the process from biopsy acquisition to prediction in 
under 1 h (Fig. 3a).

Using our optimized strategy, which takes approximately 40 min 
for library preparation, we generated 75 nanopore separate sequenc-
ing experiments using a MinION sequencer and R9 flow cells from  
51 patient biopsies (Fig. 3b and Supplementary Table 10). For this 
sample set, postoperative diagnoses were based on molecular mark-
ers and histopathological assessments by a university center neuro-
pathologist. In line with previous classification studies, we grouped 
our samples into MZ CNS classes in view of the intraoperative practical 
application (Extended Data Fig. 2a). Our nanopore reference samples 
span 10 different brain tumor classes. For validation, we expanded the 
dataset by matching Illumina EPIC methylation arrays for 22 samples 
(Supplementary Table 11).

Overall, nanopore sequencing of these samples indicates a 
near-linear correlation between sequencing time and coverage of 
model features in the first hours, with saturation after approximately 
24 h (Fig. 3c). Within the 15 min that our workflow allows for sequenc-
ing, we obtain 1,878–12,487 CpGs with a mean of approximately 7,500 
CpGs (Supplementary Table 12). Given the results of the synthetic data 
above, we expect our protocol to enable robust and reliable live tumor 
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Fig. 2 | Highly accurate tumor class prediction from sparse, binary DNA 
methylation profiles based on 450k methylation arrays. a, Evaluation of 
prediction accuracy for the synthetic samples using a random subset of 1,000, 
2,500, 5,000, 7,500, 10,000, 15,000 or 20,000 CpGs. In silico simulation 
of 100 × 2,801 samples mirroring low-coverage Nanopore sequencing was 
performed from 450k arrays of 2,801 biologically independent samples 
representing 91 CNS cancer and control methylation classes. Box plots display 
the median as the central line, the IQR (25th–75th percentile) as the box and 
outliers (points beyond 1.5× the IQR) as dots outside the whiskers. b, Confusion 
matrix depicting the prediction outcomes for all imputed samples using  
7,500 CpGs, yielding an overall accuracy of 94.52% for CNS classes and 97.72% 
for MZ CNS classes. Colors indicate relative frequencies that are normalized 
to the number of samples in each reference class. Misclassification errors are 
represented by deviations from the bisecting line, and clinically relevant groups 
(MZ CNS classes) are highlighted by colored squares. F1 scores are provided on 

the right. c, Zoom into the confusion matrix for groups of CNS tumor classes 
with slightly lower F1 scores than the average. d, Confusion matrix illustrating 
predictions on an extended dataset, including CNS tumors, breast cancer, lung 
cancer and melanoma CNS metastases (91 CNS classes and 2,801 samples; three 
metastatic classes and 85 samples). Using 7,500 CpGs, MethyLYZR achieves an 
accuracy of 90.31%, 89.39%, 88.76% and 99.99% in distinguishing among breast, 
lung, melanoma and CNS samples, respectively. e, Distribution of F1 scores per 
class resulting from the prediction of 280,100 simulated CNS samples across 
three models with increasing complexity. The three models include 91 CNS 
classes (top), 91 CNS + 3 metastasis classes (middle) and 91 CNS + 3 metastasis + 
64 sarcoma classes (bottom). F1 scores per model are represented as dots and 
summarized through box and density plots. Box plots display the median as the 
central line, the IQR (25th–75th percentile) as the box and outliers (points beyond 
1.5× the IQR) as dots outside the whiskers.
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diagnosis from sparse CpG methylation data. Because the tumor class 
prediction will run in parallel to an ongoing nanopore sequencing 
run, we additionally evaluated the time and memory requirements 
for prediction on an increasing number of CpGs (Fig. 3d). Notably, 
the computational costs, specifically in terms of time and memory, 
remain negligible even for full 72-h runs—on average requiring less 
than 1 min and less than 3 GB of RAM with more than 200,000 unique 
CpGs covered.

For a subset of 10 samples, the entire workflow was run in an intra-
operative setup (Supplementary Video). Given the stringent timeline 
of less than 1 h for clinical validation, each step—from surgical planning 
and biopsy handling to DNA extraction, nanopore sequencing and 
bioinformatics analysis—is tightly interconnected. The intraoperative 
process was preceded by setting up a tailored laboratory, the establish-
ment of ethical, legal and scientific frameworks and specific surgical 
planning (see Methods ‘Clinical Demonstrator experimental workflow’ 
subsection). Time-critical intraoperative steps include the rapid extrac-
tion and sequencing of DNA from tumor biopsies, followed by the live 
application of the MethyLYZR algorithm, confirming our turnaround 
times of approximately 22 + 18 min until sequencing in the clinical 
environment (Extended Data Fig. 6a and Supplementary Table 10).

Having established that our optimized workflow enables tumor 
class prediction within 1 h of sample receival, we next assessed the 

performance of MethyLYZR on our 75 samples. For 73 of the samples, 
we obtained high-confidence calls with a posterior probability greater 
than 0.6 from sequencing data obtained within the first 15 min and 
delivered diagnoses with an accuracy of 94.52% (Fig. 4a, Extended 
Data Fig. 6b and Supplementary Table 13). For those 22 biopsies with 
both rapid nanopore sequencing and EPIC methylation arrays avail-
able, we observed a high concordance in the diagnostic outcomes, 
underscoring the potential reliability and accuracy of our nanopore- 
based approach in a clinical setting (100% MZ CNS concordance;  
Extended Data Fig. 6c and Supplementary Tables 11 and 13).

To assess if the predictive power of our classifier would improve 
with prolonged sequencing time, we sampled all reads obtained along 
a detailed time grid from 5 min to 72 h for prediction. The most sub-
stantial increase in prediction accuracy was notable between 5 min 
and 15 min of sequencing. Beyond this interval, extended sequenc-
ing times resulted in only marginal accuracy improvement—94.52% 
versus 97.22%—highlighting the model’s efficiency in scenarios with 
limited information availability (Fig. 4b, Extended Data Fig. 6d and 
Supplementary Table 14). However, although current methods do not 
allow for copy number variation profiles from only 15 min of nanopore 
sequencing, extended analyses can be performed on the full 72 runs 
to obtain genome-wide copy number changes for a comprehensive 
neuropathologic assessment31 (Supplementary Figs. 2 and 3).

a
Tumor biopsy Nanopore validation cohort

gDNA
extraction
(~22 min)

• Tissue disruption
• DNA purification
• Quality control
• Quantification

• Cleavage
• MuA adapter addition
• RAD addition

• Boot MinION
• Library loading
• Sequencing

Library
preparation
(~18 min)

Sequencing
(~15 min)

1

2

3

b

d

Classification

c

U
ni

qu
e 

C
pG

s 
se

qu
en

ce
d 

×1
03

(p
re

se
nt

 in
 tr

ai
ni

ng
 s

et
)

0

5

10

15

20

0 5 10 15 20 25 30

Sequencing time (min)

0

200

400

100

300

0 12 24 36 48 60 72

Sequencing time (h)

0

0.5

1.0

1.5

1.0 2.7 4.5 10
.1

16
.0

21.
9

63.9
95.4

126
.6

20
5.7

218
.9

219
.2

No. of
CpGs × 103

5 m
in

10
 m

in

15
 m

in

30 m
in

45 m
in 1 h 3 h 5 h 12 

h
24

 h
48 h

72
 h

Sequencing time

Pr
ed

ic
tio

n 
ru

nt
im

e 
(m

in
)

PA
PXA
MNG
LYMPHO
EPN
MB
GBM
PLEX
A IDH
O IDH

MZ CNS class
n = 75n = 51 n = 22

RunsPatients Matched 450k
0

35

70

C
ou

nt
Fig. 3 | Workflow for intraoperative shallow Nanopore sequencing.  
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a rapid turnaround time of just 1 h from tumor biopsy reception. The process 
involves genomic DNA extraction (approximately 22 min), Nanopore library 
preparation (approximately 18 min) and loading of the library with subsequent 
sequencing (15–20 min). b, Description of the Nanopore and 450k methylation 
array cohort derived from patients with CNS cancer in this study. A total of  
75 Nanopore runs were conducted using samples from 51 patients, and, for a 
subset of 22 patients, 450k methylation arrays were generated from matched 
tumor biopsies. c, Relationship between sequencing time and the number of 
CpGs sequenced at least once, derived from our cohort of 75 Nanopore runs.  
In the initial 24 h of sequencing, the count of newly observed CpGs rises with  

sequencing time, saturating into enhanced coverage per CpG thereafter (left). 
Within 15 min of sequencing, approximately 7,500 CpGs are covered on average 
(right). Data are presented as mean ± s.d. d, Benchmarking analysis of MethyLYZR 
prediction time on our Nanopore runs using the model trained on the 91 CNS  
and three metastasis tumor classes executed on an Apple iMac Pro (3 GHz 10-Core  
Intel Xeon W, 64 GB 2,666 MHz DDR4 RAM, 1 TB APFS SSD, Radeon Pro Vega 
56 GPU with 8 GB VRAM, macOS 13.2.1). For data acquired from 15 min of 
sequencing, the runtime is negligibly small (on average less than 1 s), and, even 
with full 72-h runs, the prediction time remains well below 4 min, even in the 
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number of CpGs for each time benchmarked. The bar represents the median, and 
the error bar is the s.d. gDNA, genomic DNA.
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Although our strategy requires library preparation and sequenc-
ing on a single-patient-per-one-flow-cell basis, we scaled our bench-
marking to a higher throughput scenario. We sequenced 180 brain 
tumor biopsies covering 14 CNS tumor classes using rapid, multiplexed 
barcoded library preparation on PromethION R10 flow cells on P2 Solo 
and P24 systems (ONT), maintaining the same library preparation 
times per sample (180 nanopore libraries from 154 patients). Methy-
LYZR reported classifications for 147 samples with an overall MZ CNS 
class accuracy of 91.78% using CpGs obtained from read sampling 
resembling 15 min of sequencing (34 below threshold; Extended Data 
Fig. 7a,b and Supplementary Table 15). The model accurately identi-
fied prevalent classes (glioblastoma, astrocytoma and oligodendro-
glioma) as well as less common tumors, such as plexus tumor, atypical 
teratoid/rhabdoid tumor (AT/RT) and diffuse midline glioma with 
H3K27M mutation, demonstrating its effectiveness in a multiplexed, 
high-throughput setting.

To assess the clinical utility of MethyLYZR against conventional 
intraoperative frozen section neuropathology, we analyzed a subset 
of 26 brain tumor biopsies from our retrospective high-throughput 
cohort with available frozen section diagnoses. The results of Methy
LYZR showed 100% categorial agreement with the broader rapid frozen 
section categories while providing nuanced feedback. This enhanced 
diagnostic precision, aligning better with integrated WHO diagnostic 
groups, could offer neurosurgeons more detailed insights than tradi-
tional intraoperative histopathological assessment (Extended Data 
Fig. 7c and Supplementary Table 15).

We extended our validation analysis to a cohort of 27 brain metas-
tases from 20 patients, primarily from lung, breast and melanoma ori-
gins, with additional cases from colon cancer and endometrial cancer. 
Our training dataset for these metastases was limited, lacking data for 
colon and endometrial metastases and showing high kernel correla-
tions (>0.93) among other metastasis types (Extended Data Fig. 7d). 
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Fig. 4 | MethyLYZR predicts cancer classes from CNS cancer as well as spinal 
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15 min of sequencing, resulting in an overall accuracy of 94.52% for MZ CNS 
classes. Misclassification errors are depicted by deviations from the bisecting 
line, and F1 scores per class are presented on the right. b, Evaluation of predictive 
power across sequencing times ranging from 5 min to 72 h. The largest increase 
in prediction accuracy was observed between 5 min and 15 min of sequencing 
(89.06% versus 94.52%). Beyond this interval, extended sequencing times 
yielded only small improvements in accuracy (94.52% versus 97.22% for 15 min 
versus 72 h). c, Tumor class predictions for 96 Nanopore-sequenced CNS tumors 
based on 7,500 CpGs to simulate 15 min of sequencing, stratified by estimated 

purity (ACE). As purity increases, the accuracy of MethyLYZR demonstrates an 
upward trend, reaching consistently high levels of diagnostic accuracy from 
approximately 60% tumor purity onward. Accuracy (%) left to right: 82.2, 84.8, 
87.5, 87.3, 90.6, 92.6, 96.9, 100.0, 100.0 and 100.0. d, Tumor class predictions for 
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Given that the primary clinical concern is distinguishing metastases 
from primary brain tumors, we focused on classifying samples as either 
CNS tumors or non-CNS tumors (hematopoietic cancers, control group 
or metastases). MethyLYZR provided classifications for 81% of these 
samples, with most identified as metastases and none as CNS tumors 
(22 non-CNS: 15 metastases and seven control or hematopoietic cancer; 
Extended Data Fig. 7d–f and Supplementary Table 15).

We further evaluated the performance of MethyLYZR across dif-
ferent methylation profiling technologies by analyzing 16 samples 
using PacBio HiFi, Illumina EPIC arrays and both R9 rapid and R10 rapid 
barcoding nanopore protocols. This multi-platform approach allowed 
us to compare technology-specific error models and their impact on 
prediction accuracy. Due to the high accuracy of HiFi reads, we applied 
no posterior filtering to the PacBio data. In this limited sample set, 
MethyLYZR achieved a correct classification in 16 of 16 samples using 
the full PacBio dataset (no posterior filtering, similar to EPIC arrays), 
potentially surpassing both nanopore versions and the array-optimized 
DKFZ classifier (Extended Data Fig. 7g,h and Supplementary Table 16). 
This becomes specifically evident at lower numbers of CpGs, where 
tumors are characterized with higher accuracy and sensitivity by PacBio 
sequencing compared to nanopore sequencing (Extended Data Fig. 7i 
and Supplementary Table 17). However, the technology does not sup-
port real-time sequencing and is, therefore, infeasible for intraopera-
tive classification.

Previous studies emphasized the critical role of tumor purity in 
robust CNS tumor classification13–15. Analyzing a nanopore dataset of 94 
brain tumor samples matched with Illumina EPIC array data13, we noted 
a positive correlation between purity and MethyLYZR’s diagnostic 
accuracy. Enhanced correctness in classifications and fewer misclassi-
fications were evident when purity exceeded 60%, with no errors above 
70% (Fig. 4c and Supplementary Table 18). These findings underscore 
the importance of effective neurosurgical sampling and highlight the 
challenges of confidently diagnosing tumors, particularly for tumors 
with infiltrative growth or low cellularity (Extended Data Fig. 8a).

DNA methylation-based classification from cerebrospinal fluid 
(CSF) liquid biopsies offers a promising diagnostic tool, particularly 
for brainstem tumors, combining minimally invasive sampling with 
molecular insights32. We analyzed cell-free DNA (cfDNA) from 17 CSF 
samples32, selected for their typical histone-associated fragment size 
(50–700 bp in CSF33 and sample purity greater than 0.1). The complete 
analysis of the full cohort encompassing 41 samples with low CpG num-
ber and purity lower than 0.1 is presented in Extended Data Fig. 8b,c 
(Supplementary Table 19). This selection aimed to validate the ability 
of MethyLYZR to classify tumors based on authentic cfDNA, following 
its proven efficacy with cell-derived DNA. Although this experiment 
centered on cfDNA-specific analysis for liquid biopsy diagnostics, in 
clinical application MethyLYZR will be used to process methylation 
patterns from any DNA in clinical CSF samples. MethyLYZR accu-
rately classified 15 of 16 samples that met the prediction threshold, 
including correctly identifying one metastasis as a non-CNS tumor, 
demonstrating its effectiveness in cfDNA-based tumor classification 
from CSF (Fig. 4d).

Finally, in a comparative analysis using our synthetic dataset, 
simulating 15 min of sequencing, MethyLYZR demonstrated superior 
performance with limited data compared to neural networks (Stur-
geon) and random forest–based (nanoDx) predictions (5,000, 7,500 
and 10,000 CpGs; Extended Data Fig. 9a and Supplementary Table 20). 
Corroborating these findings, the performance of MethyLYZR using 
actual nanopore data obtained within 15 min (7,500 CpGs in the case 
of tumor purity stratified data) surpassed the performance of both 
(Extended Data Fig. 9b,c and Supplementary Tables 13 and 21).

Discussion
Our study suggests the potential applicability of MethyLYZR, a proba-
bilistic naive Bayes classifier, for live molecular classification of nervous 

system malignancies using nanopore sequencing. Although further 
validation is needed, these initial results are promising and indicate 
the classifier’s capability in this context. The comprehensive evalu-
ation across simulations, metastases, sarcomas and intraoperative 
clinical scenarios, along with its potential applicability in cfDNA-based 
diagnostics, underscores its versatility. Furthermore, the high concord-
ance between our test cohorts’ predicted and actual tumor classes 
supports the model’s capability to deliver clinically relevant diagnoses. 
With the capability of MethyLYZR for live tumor prediction alongside 
nanopore sequencing, only DNA extraction time, library preparation 
and sequencer throughput are constraints for faster intraoperative 
results. Nevertheless, validation through multicentered clinical trials 
and prospective studies is still needed to ensure the model’s robustness 
across large and diverse sample cohorts and sequencing conditions, 
ultimately establishing its reliability and utility for clinical applications.

The results of this study also highlight a central use case for intra-
operative neuropathology where all currently available intraoperative 
sequencing workflows fail, irrespective of the algorithm employed: 
identifying residual malignant cells at the tumor margins or distin-
guishing between active tumor and treatment effects upon suspected 
recurrence. Currently, high tumor cell purity is critical for obtaining 
reliable intraoperative sequencing classifications. As identifying epige-
netic signatures of brain tumors with low tumor cell content from bulk 
sequencing data is essentially impossible regardless of the algorithm 
employed, we posit that this will be one of the next frontiers in live 
artificial intelligence (AI) algorithm development.

Notably, the accuracy of tumor class predictions using Methy
LYZR, along with ad hoc random forest classifiers and neural 
networks13–15, reaches a similar plateau, indicating that these diverse 
methylation-based algorithms may have a similar upper limit in their 
ability to discern and interpret biological signals for cancer clas-
sification. However, although Sturgeon reports requiring approxi-
mately 1.25 h for the majority of tumor samples for extracting DNA 
from a biopsy to entity prediction15, MethyLYZR stays within the 1-h 
limit, aligning better with surgical timelines. In comparative analyses, 
MethyLYZR demonstrated superior accuracy compared to Sturgeon 
and nanoDx when evaluated under the constraints of this extremely 
short timeframe. This result is surprising, given that naive Bayes algo-
rithms operate under the counterintuitive assumptions of feature 
independence (Methods) and simplicity, whereas neural networks 
excel at modeling complex interactions and dependencies between 
features. However, the sparsity and stochastic nature of data obtained 
intraoperatively may diminish the effectiveness of highly expressive 
AI systems. Additionally, ad hoc random forest classifiers face chal-
lenges in this context, as they require retraining for each sparse data-
set, resulting in higher runtimes—more than 20 min for 7,500 CpGs  
with nanoDx compared to less than 1 min for MethyLYZR on the  
same system—which also aligns better with the concept of ‘model 
parsimony’ in clinical applications.

Model parsimony emphasizes the simplicity, effectiveness, tracta-
bility and transparency of diagnostic models. This principle advocates 
for the simplest yet effective explainable methods while acknowledging 
the well-documented limitations and consequences of traditional cor-
relative analysis34,35. The approach does not negate the use of advanced 
machine learning technologies36 but, instead, suggests their applica-
tion in scenarios where simpler models are insufficient. Looking ahead, 
integrating heterogeneous signals—such as DNA methylation, muta-
tion signatures, copy number variations, breakpoint determinations 
and tumor purity with other modalities such as patient characteristics, 
magnetic resonance imaging (MRI) and Raman histology—into non-
linear neural network models will be the next challenge in molecu-
lar neuropathology. Leveraging simple probabilistic models such as 
MethyLYZR to inform and complement advanced AI systems promises 
substantial advancements in personalized diagnostics and treatment 
strategies aligned with transparency and explainability in medical care.
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However, realizing the full potential of these technologies faces 
practical hurdles. Although the most comprehensive CNS tumor clas-
sifier to date was trained on more than 100,000 methylation arrays, 
a foundational dataset published in 2018 (ref. 5) used in this and 
other studies13–15 remains the only publicly available comprehensive 
resource for algorithm and clinical model development. Neverthe-
less, the most important limitation is the scarcity of publicly available, 
sequencing-based DNA methylation training and testing data. The 
lack of sufficient data not only constrains model development but 
also limits the validation and refinement of algorithms to integrate 
the vastly more informative data from all 32 million CpGs present in 
the human genome37.

Going forward, the advent of intraoperative diagnostics chal-
lenges the traditional healthcare system structure. An accurate diag-
nosis of CNS tumors achievable in under 1 h represents a paradigm 
shift, necessitating integrated workflows that span neurosurgery, 
neuropathology and neuro-oncology. The preclinical development 
of intraoperative tumor classification systems not only opens avenues 
for prospective clinical trials comparing different resection strategies9 
and various other therapeutic modalities but also calls for a systemic 
change in personalized oncology to accommodate highly integrated, 
live diagnostic processes at the POC.
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Methods
Patient material
Overview. Patient material and clinical data were collected from 
the Department of Neurosurgery of the University Medical Center 
Schleswig-Holstein (UKSH) in Kiel, Germany; from the Division of 
Neurosurgery of Vancouver General Hospital in Vancouver, Canada; 
and from the Department of Neurosurgery, University Medical 
Center Regensburg in Regensburg, Germany, after obtaining written 
informed consent of the donors for diagnostic procedures, compris-
ing molecular testing including methylation profiling. The study was 
approved by and adhered to the Ethics Committee of the University 
of Kiel (D443/20); the University of British Columbia Research Ethics 
Committee (REB no. H08-02838); and the Ethics Committee of the 
University of Regensburg (20-1799-101) and is in accordance with the 
1975 Declaration of Helsinki and its further amendments. All samples 
included were, moreover, routinely classified according to the current 
WHO classification4 by the Department of Neuropathology, University 
Medical Center Eppendorf, in Hamburg, Germany; the Department of 
Pathology & Laboratory Medicine, Faculty of Medicine, University of 
British Columbia, in Vancouver, Canada; or the Department of Neuro-
pathology or University Medical Center Regensburg, in Regensburg, 
Germany, respectively. An overview of the clinical data is given in 
Supplementary Table 10.

Population characteristics. Patients with a radiologically suspected 
primary brain tumor or brain metastasis undergoing surgery at the 
UKSH, Campus Kiel, Department of Neurosurgery, without any age 
restrictions, were asked to participate in the study. As the classifier 
was trained on a publicly available microarray dataset, only post hoc 
analysis of the classifier results was performed without any further 
patient characteristics stratification. Biopsies of gliomas, including 
glioblastomas, astrocytomas and oligodendrogliomas, were sourced 
from archive collections at the Brain Tumor Center, University Medical 
Center Regensburg, and the Department of Pathology & Laboratory 
Medicine, Faculty of Medicine, University of British Columbia. Our 
research findings do not apply to only one sex or gender; no sex-based 
and gender-based analyses were performed; and sex and gender are 
not relevant to our research findings.

Recruitment. Patients scheduled for an open craniotomy due to a 
suspected primary brain tumor or brain metastasis were consecu-
tively identified at the Department of Neurosurgery, UKSH, Campus 
Kiel. Patients were contacted and asked to participate. Patients 
initially agreeing to participate were assigned a study ID (IEGXXX). 
Depending on age and legal status, patients, their parents or their 
legal guardians signed an informed consent for using their tissue and 
clinical data in research (opt-in procedure). Patients who did not sign 
the informed consent documents, whose legal capacity to consent 
was unclear or whose ability to consent was questionable due to, for 
example, neurocognitive deficits, were excluded from the study. 
However, their IEGXXX designation was retained. Samples from 
Vancouver and Regensburg were assigned a consecutive IEGXXX 
number on the day they were sequenced. No patient compensation 
was provided.

Ethics oversight. The study protocol was approved by and adhered 
to the Clinical Ethics Committee of the Medical Faculty of Kiel Univer-
sity (D443/20). All included patients or their legal guardians/parents 
provided written informed consent for participation in the study. 
The results were not shared with treating physicians or caregivers 
and, therefore, not used to alter patient treatment or diagnosis. The 
study was approved by and adhered to the University of British Colum-
bia Research Ethics Committee (REB no. H08-02838). The study was 
approved by and adhered to the Clinical Ethics Committee of the  
Medical Faculty of Regensburg University (20-1799-101).

Clinical Demonstrator video. Consent to publish the video, including 
the depiction of the individual researcher, was obtained in accordance 
with the General Data Protection Regulation (GDPR).

DNA extraction of fresh brain biopsies
DNA extraction was performed using the QIAamp Fast DNA Tissue Kit 
(Qiagen) following the manufacturer’s protocol with minor modifica-
tions. In brief, 15 mg of brain tissue was weighed and transferred into a 
tissue disruption tube. Tissue lysis was done by adding 265 µl of diges-
tion buffer mix, followed by sample homogenization at 45 Hz for 2 min 
using the TissueLyser LT (Qiagen). Protein and RNase digestion was 
subsequently carried out at 56 °C for 7 min and 1,000 rpm in a thermo-
mixer (Eppendorf). The digested sample was supplemented with 265 µl 
of buffer MVL and homogenized by pipetting. The precipitated DNA 
mixture was loaded onto a QIAamp mini spin column and centrifuged 
at 20,000g for 1 min, followed by two wash steps with 500 µl of buffer 
AW1 and AW2 at 20,000g for 30 s. Residual ethanol was removed by 
centrifugation at 20,000g for 2 min. Elution of DNA was done using 
50 µl of pre-heated (56 °C) nuclease-free water for 1 min, following a 
centrifugation step at 20,000g for 1 min. DNA quantification was car-
ried out using a NanoDrop One (Thermo Fisher Scientific).

Preparation of ONT sequencing libraries
The SQK-RAD004 sequencing kit (ONT) was used following the 
manufacturer’s recommendation with minor modifications to pre-
pare low-throughput rapid libraries. In brief, 600–700 ng of QIAamp 
extracted DNA was transferred into a 0.2-ml PCR tube and adjusted 
to a total volume of 7.5 µl with nuclease-free water. The sample was 
supplemented with 2.5 µl of fragmentation mix (FRA) and placed into 
a pre-heated (30 °C) thermocycler (VWR, Doppio). Fragmentation was 
immediately performed at 30 °C for 1 min, following a heat inactivation 
step for 1 min at 80 °C. Attachment of the rapid sequencing adapter 
(RAP) was carried out for 10 min at room temperature (RT). Meanwhile, 
RT equilibrated MinION flow cells (ONT, FLO-MIN106D R9.4.1) were 
primed following the manufacturer’s protocol using RT equilibrated 
priming mix. Final libraries were supplemented with 34 µl of sequenc-
ing buffer (SQB), 25.5 µl of loading beads and 4.5 µl of nuclease-free 
water, and samples were immediately loaded onto R9.4.1 flow cells via 
the SpotON port.

Barcoded sequencing libraries for R10.4.1 flow cells were prepared 
using the rapid barcoding kit 24 V14 (ONT, SQK-RBK114.24) with minor 
modifications to the manufacturer’s protocol. For each library, up to 
12 DNA samples (50–100 ng per sample) extracted with the QIAamp 
Fast DNA Tissue Kit (Qiagen) were used without the AMPure XP bead 
clean-up step. A total of 150 ng of barcoded library was loaded onto 
a primed R10.4.1 PromethION flow cell and sequenced for 48–72 h 
on either a P2 Solo or a P24 PromethION device. For intraoperative 
sequencing, a single freshly extracted tumor DNA sample was pro-
cessed using the same kit, allowing for DNA extraction and library 
preparation within 35–40 min. The barcoded sample (100–150 ng) 
underwent sequencing adapter ligation and was loaded onto a primed 
R10.4.1 flow cell. Sequencing was continued for up to 72 h.

Preparation of PacBio HiFi sequencing libraries
DNA samples were prepared for PacBio HiFi sequencing as follows: 
3 µg of DNA per sample, extracted using the QIAamp Fast DNA Tis-
sue Kit, was diluted in 100 µl of Tris-EDTA (TE) buffer and subjected 
to one cycle of Hydropore shearing on a Megaruptor 3 instrument  
(Diagenode) at speed 31. The sheared DNA was quantified using 
the Qubit dsDNA BR Kit and analyzed on a Fragment Analyzer 5200  
(Agilent) with the HS Large Fragment 50 kb Kit to confirm proper 
fragmentation. Subsequently, each sample was processed using the 
SMRTbell prep kit 3.0 (PacBio, PN:102-182-700) according to the manu-
facturer’s protocol. The resulting barcoded libraries were divided 
into two pools and pooled equimolar. Three SMRT cells 25 M were 
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sequenced on a PacBio Revio instrument with 24-h movies and SMRT 
Link software version 13.1.

Illumina Infinium MethylationEPIC BeadChIP array generation
A subset of samples was analyzed using Illumina Infinium Methyla-
tionEPIC BeadChip (850,000) arrays (n = 22 Kiel, n = 2 Vancouver; 
Supplementary Table 2). In brief, the EZ DNA Methylation Kit (Zymo 
Research) was used according to the manufacturer’s instructions to 
perform bisulfite conversion of genomic DNA. Converted DNA was 
processed and subsequently hybridized to Infinium MethylationEPIC 
BeadChips (Illumina) following Illumina’s standard procedure. Scan-
ning of Infinium MethylationEPIC BeadChips was performed using 
an Illumina NextSeq 550 system on default settings. Subsequent data 
analysis was performed using the minfi R package (version 1.32.0).  
For further analysis, loci showing detection P > 0.01 were excluded.

Illumina Infinium MethylationEPIC BeadChIP array 
pre-processing
DNA methylation profiles based on methylation arrays for the model 
training were obtained from Capper et al.5 (CNS tumors GSE90496), 
Orozco et al.29 (metastases GSE108576) and Koelsche et al.30 (sarcomas 
GSE140686).

Our pre-processing and normalization workflow closely followed 
the procedures described by Capper et al.5. In brief, we first merged 
all samples from different sources into a unified dataset for further 
analysis. Then, the standardized Illumina normalization procedure 
was applied for both color channels to all samples independently 
by performing a background correction and a dye bias correction  
(the mean of control probe intensities scaled to 10,000).

Then, the following ambiguous or problematic probes were 
filtered: removal of probes targeting the X and Y chromosomes 
(n = 11,551); removal of probes containing a single-nucleotide poly-
morphism (dbSNP132 common) within five base pairs of and includ-
ing the targeted CpG site (n = 7,998); removal of probes not mapping 
uniquely to the human reference genome (hg19 or hg38) allowing for 
one mismatch (n = 3,965); and removal of probes not included on the 
Illumina EPIC array (n = 32,260). In total, 428,201 probes targeting CpG 
sites were kept for further analysis. Batch effects caused by the material 
tissue type (formalin-fixed paraffin-embedded (FFPE) or frozen) were 
removed using a univariate linear model, separately for methylated 
and unmethylated signals.

Nanopore data pre-processing
Validation cohort. The raw nanopore signals were processed into 
bases using the Dorado basecall server (version v7.0.9+1d91537ff from 
ONT) (https://github.com/nanoporetech/dorado/) implemented in the 
sequencing software MinKnow, using the high-accuracy basecalling 
model with 5mC modifications (dna_r9.4.1_450bps_modbases_5mc_
cg_hac.cfg). The obtained reads were mapped to the human reference 
genome GRCH38.p13 (obtained from the UCSC Genome Browser) 
using minimap2 (ref. 38) (version v2.24-r1122) and saved into BAM files. 
Information on modified bases uses the MM and ML tags defined in the 
Sequence Alignment/Map Optional Fields Specification.

The extraction of the methylation values from the BAM files was 
done using a custom Python script (bam2feather.py). In short, the 
script first filters for primary alignments with a minimal mapping 
quality of 10, as reported by minimap2. Positions are further filtered 
on loci corresponding to a genomic position on the Illumina Infinium 
Human Methylation 450K BeadChip. The per-read and CpG methyla-
tion probability was calculated using the SAM MM and ML tags. The 
output is either directly streamed to MethyLYZR for prediction or writ-
ten to disk as a feather file with the following information: epic_id (ID of 
the CpG position), methylation (probability of methylated position), 
scores_per_read (number of used CpG tags on the read), binary_meth-
ylation (methylation as a binary information), read_id (ID of the read), 

sfv azZSQtart_time (time in seconds form start of the sequencing run), 
run_id (ID of the sequencing run), QS (quality score, as reported by the 
basecaller) and read_length map_qs (mapping quality score, as reported 
by minimap2). For the pre-processing, Python v.3.8.10 was further used.

External cohort (purity analysis). The available raw nanopore signals13 
were processed into bases using the guppy basecall server (version 
6.2.7+e9cbf95) from ONT using the high-accuracy basecalling model 
(version 2021-05-17_dna_r9.4.1_minion_384_d37a2ab9). The methyla-
tion information was extracted using megalodon from ONT (https://
github.com/nanoporetech/megalodon; version 2.5.0), which uses 
the remora methylation calling algorithm. Mapping to the human 
reference genome GRCH38.p13 was done within megalodon with a 
version of minimap2. Results were then saved in an SQLite-Database 
(per_read_modified_base_calls.db). After extracting the per-read meth-
ylation information using the integrated megalodon command ‘mega-
lodon_extras per_read_text modified_bases’ into a tab-separated text 
file, the methylation values were extracted using a modified version 
of bam2feather.py.

Naive Bayes model for tumor classification
Objective. We use a naive Bayesian framework to allow tumor classi-
fication from sparse, shallow-coverage sequencing data. This model 
uniquely assumes conditional independence between features, which 
constitutes the here-required flexibility for the probabilistic classifier 
by focusing solely on the observed features.

The model calculates the probability of the tumor belonging to a 
certain class based on the observed methylation data. Mathematically, 
this involves integrating our prior knowledge about the probability 
of a tumor being of a certain type with the likelihood of the specific 
methylation pattern in the observed data (Fig. 1b, bottom).

Another key advantage of the naive Bayesian approach is its 
capacity to directly incorporate previous clinical knowledge into the 
predictions. Using population-wide tumor prevalence for the prior 
class distribution is a reasonable baseline assumption. Alternatively, 
if certain methylation patterns are known to be limited to particular 
clinical presentations, anatomical locations or age groups, this infor-
mation could be factored into the predictions. This integration of 
experimental data with prior medical knowledge may further refine 
the model’s predictive accuracy in tumor classification.

Naive Bayes model. Let X = (x1, x2, … , xp), the tumor sample to be clas-
sified, be described by methylation rates xi of p observed CpG loci. 
According to Bayes’ theorem, we update prior beliefs about the 
patient’s tumor type P(Cj) in light of new evidence X  and model the 
probability of a tumor sample to be from class Cj a posteriori as

P(Cj|X) =
P(X|Cj)P(Cj)

P(X) .

The denominator normalizes by the probability of observation X , 
which is defined as

P(X) =
m

∑
j=1

P(X|Cj)P(Cj),

dependent only on X—hence, a constant scaling factor independent 
of tumor class Cj, ensuring that the sum of conditional probabilities 
over all m classes equals 1. Here, we implement the calculation of the 
denominator using the log-sum-exp trick, where

logP(X) = log
m

∑
j=1

exp(lj) = lmax + log
m

∑
j=1

exp(lj − lmax),

with lj = logP(X|Cj)P(Cj) and lmax = max
j∈{1,…,m}

lj

is applied to avoid numerical underflow.
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Notably, the prior P(Cj) provides the basis for the direct integration 
of previous clinical information into the prediction.

In the naive Bayes classifier, the likelihood P(X|Cj)  is calculated 
under the assumption of conditional independence between the fea-
tures in X :

P(X|Cj) = P(x1,… , xp|Cj) =
p

∏
i=1

P(xi|Cj).

This makes the model insensitive to missing data, as the likelihood 
can be calculated based solely on observed attributes. In our case, 
this central property allows for classification from shallow nanopore 
sequencing, where only a subset of features is available.

As we are dealing with binary feature values xi ∈ {0, 1}  from the 
observation of methylation events, the feature-specific likelihoods 
P (xi|Cj) are derived using a Bernoulli distribution

P (xi|Cj) = μxi
i,j(1 − μi,j)

(1−xi),

where μi,j = P (xi = 1|Cj) are corresponding pre-trained, class-specific 
methylation probabilities.

Such that the posterior probability of a tumor sample, observed 
by X = (x1, x2, … , xp), belonging to class Cj, is calculated by

P (Cj|X) =
∏p

i=1 P (xi|Cj)P(Cj)
P (X) =

∏p

i=1 μ
xi
i,j(1 − μi,j)

(1−xi)P (Cj)
P (X) .

To avoid numerical underflow when multiplying a substantial 
number of probabilities, we use the logarithmic form for the calcula-
tion of posterior probabilities:

logP (Cj|X) = logP(Cj) +
p

∑
i=1

logP (xi|Cj)– logP (X) ,

where

logP (xi|Cj) = xi ⋅ log (μi,j) + (1 − xi) ⋅ log (1 − μi,j) .

Decision rule. Finally, our classifier infers the class label Ĉ of a tumor 
with feature vector X  by assignment to the class with highest posterior 
probability:

Ĉ(X) = argmax
j∈{1, 2,…,m}

P(Cj|X),

thereby minimizing the expected number of classification errors.
To ensure high precision of the classifier—at the cost of potentially 

lower recall—we return only high-certainty predictions, by introducing 
a posterior probability threshold τ ∈ {0, 1}. A prediction with a posterior 
probability P (Cj|X) is deemed to be of low certainty if P (Cj|X) < τ  and of 
high certainty if P (Cj|X) ≥ τ .

Training. Training of the naive Bayes model comprises derivation of 
class prior probabilities and conditional probabilities for each feature 
across all classes. The prior probabilities P (Cj) are estimated based on 
the empirical distribution of tumor classes within the respective train-
ing dataset. Due to the continuous nature of methylation rates in the 
training data—diverging from the assumption of binary variables in 
the Bernoulli naive Bayes—we infer the conditional probabilities 
P (xi = 1|Cj) directly from class centroids, calculated as the mean meth-
ylation rates, μi,j, for each CpG across samples within each tumor class 
(Fig. 1b, top).

Weighting. The two strong assumptions made by the naive Bayes 
model—conditional independence between features and equal 

contribution of features to the outcome—notably simplify computa-
tion but may not always hold true for real-world data, such as CpG 
methylation in cancer tissue. Individual cancer epigenomes display a 
highly correlated structure (Extended Data Fig. 1a), and not all CpGs 
carry the same information weight for each cancer class5, violating 
these assumptions. Nonetheless, information-theoretic work has 
shown that naive Bayes classifiers are also remarkably accurate if the 
features being modeled are functionally highly dependent39,40. Vari-
ous feature-weighting approaches have been proposed to enhance  
performance of the naive Bayes, mainly by relaxing the naive inde-
pendence assumption23–25. Here, we alleviate the caveat of attribute 
independence via feature weights, taking into account inter-class and 
inter-feature relationships.

Class-specific feature weights wi, j  are integrated into the naive 
Bayes model when calculating the likelihoods P (xi|Cj) as follows:

P (xi|Cj)
wi,j = [μxi

i,j(1 − μi,j)
(1−xi)]

wi,j
.

It follows for the calculation in log space:

logP(xi|Cj)
wi, j = log [μxi

i, j(1 − μi, j)
(1−xi)]

wi, j

= wi, j(xi ⋅ log(μi, j)) +wi, j((1 − xi) ⋅ log(1 − μi, j)).

When applying class-specific attribute weighting, the likelihoods 
P(X|Cj)P(Cj) in the denominator of Bayes’ rule need to be adjusted per 
class to account for class-specific differences in the sum of feature 
weights.

ReliefF-based algorithm for feature weighting. To enhance the 
model’s ability to discern classes often confused due to highly similar 
or correlated profiles, we employed an adapted version of the ReliefF 
algorithm21,22 for quantification of tumor-class-specific informative-
ness of each feature (Extended Data Fig. 1b).

First, pairwise distances between all samples and class centroids 
are calculated. To derive weight ωi,j  for a specific feature with index i 
and class Cj, the algorithm performs the following steps for each sample 
in class Cj:

1.	 Calculate the mean distance to the remaining samples in class 
Cj (referred to as ‘hits’, denoted as h).

2.	 Identify the k-nearest centroids, which are not class Cj  
(these are the ‘misses’, denoted as m), and calculate the mean 
miss distance.

3.	 Subtract the mean hit distance from the mean miss distance.

Then, feature weight ωi, j is derived by summing the resulting values 
from all samples in class Cj, such that

ωi, j = ∑
x∈Cj

⎧⎪
⎨⎪
⎩

∑
m∈KNN (x)
l(m)≠Cj

|xi −mi|

k
−

∑
h≠x

h∈Cj

|xi − hi|

|Cj| − 1

⎫⎪
⎬⎪
⎭

,

where KNN (x): k-nearest centroids of x  and l ∶ X → C  maps centroids 
to classes, such that for informative features ωi, j > 0 and for uninforma-
tive features ωi, j < 0. Here, we use k = 5 for the number of considered 
nearest centroids.

According to Foo et al.41, the derived feature weights ωi,j∈ℝ   
are transformed by

wi, j = e−ωi, j

before being used in the naive Bayes model.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03435-3

Complexity analysis of MethyLYZR training
1 Aim
Evaluating how training of our ReliefF-weighted naive Bayes classifier 
scales with

•	 number of features
•	 number of classes
•	 sample size

For this, evaluating the time complexity of

•	 calculation of centroids
•	 calculation of feature weights

with respect to the above parameters.

Variables

•	 p: number of features—that is, CpGs
•	 m: number of classes
•	 nj: number of samples in class Cj ( j ∈ {1, … , m})

→ such that N = ∑j nj  is the number of all samples

2 Calculation of centroids
For each class Cj

→ there is a total of m classes

•	 for each sample in that class 
→ there is a total of nj samples in class Cj 
•  iterate over all p features ∈ 𝒪𝒪𝒪p)

•	 ∈ 𝒪𝒪𝒪nj ⋅ p)
such that this adds up to a time complexity over all m classes of:

𝒪𝒪𝒪p ⋅ (n1 + n2 +…+ nm))

Because N = ∑jnj , the time complexity for calculating the class cen-
troids can be specified as:

𝒪𝒪𝒪p ⋅ N)

3 Calculation of feature weights
3.1 Pre-calculating pairwise distances
For each class Cj

→  there is a total of m classes

•	 comparing the mean profile with each sample 
→  there is a total of N  samples across all classes 
• � for each comparison iterating over all p features to 

calculate distance ∈ 𝒪𝒪𝒪p)
•	 ∈ 𝒪𝒪𝒪N ⋅ p)

such that this adds up to a time complexity over all m classes of:

𝒪𝒪𝒪m ⋅ N ⋅ p)

3.2 ReliefF-like algorithm
Here, we are iterating over the classes, but, practically, we are doing 
the same for each sample, so, for complexity, considering cost per 
sample.

3.2.1 Identifying kkk  nearest misses
For each sample

→ there is a total of N  samples

•	 sorting the pre-calculated distances to the m average class 
profiles to identify k  nearest misses ∈ 𝒪𝒪𝒪m logm)

such that this adds up to a time complexity over all samples of:

𝒪𝒪𝒪N ⋅m logm)

3.2.2 Calculating mean miss distance
For each sample

→ there is a total of N  samples

•	 calculating the absolute difference between the sample and 
its k  nearest misses 
• for each instance iterating over all p features to calculate 
distance ∈ 𝒪𝒪𝒪p)

•	 ∈ 𝒪𝒪𝒪k ⋅ p)
such that this adds up to a time complexity of 𝒪𝒪(N⋅k⋅p) over all samples, 
which can be simplified assuming a constant number k = 5  when  
considering the k  classes as misses to:

𝒪𝒪(N⋅p)

3.2.3 Calculating mean hit distance
For each sample in class Cj

→ there is a total of nj samples

•	 calculating the absolute difference between the sample and 
the remaining nj − 1 samples of the same class 
• �for each instance iterating over all p features to calculate 

distance ∈ 𝒪𝒪𝒪p)
•	 ∈ 𝒪𝒪𝒪𝒪nj − 1) ⋅ p) ∈ 𝒪𝒪𝒪nj ⋅ p)

such that this adds up to a time complexity of 𝒪𝒪𝒪n2
j
⋅ p) over all nj samples 

in one class Cj.
Summing this over all m classes adds up to:

𝒪𝒪𝒪p ⋅ (n2
1 + n2

2 +…+ n2
m))

3.3 Summarized time complexity of ReliefF-like feature weight 
calculation
Combining all the above steps, including pre-calculating the pairwise 
distances and the ReliefF-like algorithm, the time complexity is

𝒪𝒪𝒪m ⋅ N ⋅ p) + 𝒪𝒪𝒪N ⋅m logm) + 𝒪𝒪𝒪N ⋅ p) + 𝒪𝒪𝒪p ⋅ (n2
1 + n2

2 +…+ n2
m))

and because 𝒪𝒪𝒪N ⋅ p) is bounded above by 𝒪𝒪𝒪m ⋅ N ⋅ p), it follows that this 
is in

𝒪𝒪𝒪m ⋅ N ⋅ p) + 𝒪𝒪𝒪N ⋅m logm) + 𝒪𝒪𝒪p ⋅ (n2
1 + n2

2 +…+ n2
m)).

Furthermore, in the case of a high-dimensional data space, we can 
assume that the number of features p is considerably larger than the 
number of classes m (p ≫ m). Following this, when considering 𝒪𝒪𝒪m⋅N⋅p) 
and 𝒪𝒪𝒪N⋅m logm), the logm part grows much slower than p, such that 
𝒪𝒪𝒪m ⋅ N ⋅ p) can be assumed to dominate the term, and the upper-bound 
complexity can be approximated as

𝒪𝒪𝒪m ⋅ N ⋅ p) + 𝒪𝒪𝒪p ⋅ (n2
1 + n2

2 +…+ n2
m)).

4 Total time complexity of MethyLYZR training
Combining the above-derived complexity for
1.	 calculation of centroids

→ 𝒪𝒪𝒪p ⋅ N)
2.	 calculation of feature weights

→ 𝒪𝒪𝒪m ⋅ N ⋅ p) + 𝒪𝒪𝒪p ⋅ (n2
1 + n2

2 +…+ n2
m))

it can be seen that, with 𝒪𝒪𝒪N ⋅ p) ∈ 𝒪𝒪𝒪m ⋅ N ⋅ p), the upper-bound com-
plexity of MethyLYZR training can be described by

𝒪𝒪𝒪m ⋅ N ⋅ p) + 𝒪𝒪𝒪p ⋅ (n2
1 + n2

2 +…+ n2
m))
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5 Interpretation

•	 As assumed, the number of classes m alone does not dominate 
the complexity. It appears only linearly in the first term, 
making it relatively efficient as m becomes larger.

•	 However, the complexity is more dependent on the actual 
number of samples N  and the number of features p that the 
model is trained on.

•	 Notably, all terms scale only linearly with the number of 
features p.

•	 The quadratic sum in the last term shows that the distribution 
of the samples across the classes is also essential. If one or 
more classes exhibit a substantially higher number of samples, 
then the last step in the ReliefF-based method can get more 
computationally heavy. In the most extreme dysbalanced  
case, where some class Cj holds almost all samples (Nj ≈ N),  
the computational complexity can be described by 
𝒪𝒪𝒪p ⋅ (n2

1 + n2
2 +…+ n2

m)) ∈ 𝒪𝒪𝒪p ⋅ N2). Taken together, the upper 
bound complexity is quadratic in the number of samples.

Feature independence. The naive Bayes classifier relies on the feature 
independence assumption, which is violated both for methylation 
rates obtained from an array and for methylation values obtained 
from Oxford Nanopore Technologies. Supplementary Fig. 1 shows 
the Pearson correlation and respective weights per class among those 
CpGs that were sequenced by the nanopore runs IEG4, 5 and 6 within 
the first 15 min as well as a summary across correlations and feature 
weights from all R9 runs. The strong correlation between the single 
CpGs leads to a highly correlated structure of the centroids, as shown 
in Extended Data Fig. 1a.

Nonetheless, several works in information theory have shown 
that naive Bayes classifiers are also remarkably accurate if the features 
being modeled are functionally highly dependent39,40. The literature 
has proposed various strategies that relax the naive independence 
assumption of the Bayes classifier24,25,42.

To address the potential dependence of features (for example, 
CpGs), we incorporated a feature-weighting scheme in MethyLYZR 
using the ReliefF algorithm21,22 that considers both inter-class and 
inter-feature relationships. In short, the ReliefF weighting algorithm 
assesses tumor-class-specific informativeness of each feature by the 
comparison of inter-class and inter-feature distances (see the Methods 
‘ReliefF-based algorithm for feature weighting’ subsection).  
The calculation of these weights needs to be done only once during 
model training, and its complexity can be approximated by 
𝒪𝒪𝒪m ⋅ N ⋅ p) + 𝒪𝒪𝒪p(n2

1 + n2
2 +…+ n2

m)), with number of classes m, number 
of samples in class i  ni, number of features p and total number of 
samples N  (see complexity analysis section above).

Prediction
Read filtering and read weighting. In case of highly correlated fea-
tures, the model’s predictions can be skewed, as they might overly rely 
on the correlated features at the expense of other potentially informa-
tive, independent features (Supplementary Fig. 1a,b and Methods 
above). To ensure that reads covering a high number of feature CpGs 
do not disproportionately influence the prediction, we implemented 
a read-filtering and read-weighting approach.

Initially, CpG methylation calls stemming from reads that cover 
more than 10 of the pre-defined feature CpGs are excluded from the 

prediction. Subsequently, we assign a read weight ri =
1

no.of features on same read
 

to each measured feature in a sample, which downweights the influence 
of reads with a high density of features that are more likely to be cor-
related, thus reducing their impact in the model. Then, resulting class 

log-likelihoods are scaled by the factor 300
∑ ri

, where 300 is a base count 

of the number of reads that we standardize to.

Methylation calling. Features for prediction are filtered and converted 
to binary methylation calls by the methylation probability (see above: 
bam2feather.py). CpGs with methylation probabilities of 0.2 or below 
are considered unmethylated (0); features with methylation prob-
abilities of 0.8 or above are considered methylated (1); and all calls with 
intermediate probabilities are discarded (0.3–0.7 for R10).

For each feature of a sample, noise terms ηi that quantify the uncer-
tainty of methylation calls with probability mi  are calculated using 
ηi = 0.5 − |mi − 0.5|; values below 0.05 are set to this minimum thresh-
old. For prediction of a specific sample, its noise terms ηi are integrated 
into the model’s centroids by setting μ′i,j = μi,j – μi,j⋅ 2ηi + ηi.

Threshold analysis. The model’s performance was systematically 
evaluated at posterior probability decision thresholds between 0 and 
1 with increments of 0.1. The optimal cutoff τ = 0.6 was chosen as the 
point that provided the optimal balance between sensitivity and speci-
ficity (precision and recall), ensuring high precision of the returned 
predictions (Extended Data Fig. 6b).

Model evaluation
Evaluation metrics. The performance of the models was assessed by 

considering the accuracy ( TP+TN
TP+TN+FP+FN

), where TP: true positives, TN: 

true negatives, FP: false positives and FN: false negatives) across all 

samples and per class, as well as the F1 score (2⋅precision⋅recall
precision+recall

) per class.

Models. The CNS MethyLYZR model was trained on 2,801 samples 
from 91 CNS tumor and control classes5, covering the above-described 
428,201 CpGs as features.

To validate the homogeneity of the CNS tumor classes defined 
by Capper et al., we used the gap statistic, a formalized procedure of 
the heuristic elbow method for cluster number estimation43. For each 
pre-defined tumor class, we employed the gap statistic method with 
k-means clustering to identify potential intra-class clusters. As the 
maximum gap statistic value indicates the optimal number of clusters 
k, all homogenous classes are expected to show a maximum at k = 1 
(Supplementary Fig. 4).

The extended CNS and metastasis model was trained on the 2,801 
CNS samples plus 85 samples from three metastatic classes. Likewise, 
the extended CNS, metastasis and sarcoma model was trained on 2,801 
CNS samples plus 85 metastasis samples plus 1,077 samples from 64 
sarcoma classes.

Tiered class evaluation. In the evaluation of our machine learning 
model, we employed a multi-tiered accuracy assessment approach. 
Initially, accuracies were calculated for each CNS class predicted by 
the model, providing a granular view of its performance. Subsequently, 
we introduced an additional layer of evaluation by aggregating the 91 
CNS classes into 44 broader MZ CNS classes of high clinical relevance, 
allowing an assessment of the model’s impact on clinical considera-
tions. Additionally, we also evaluate the model’s performance on the 
level of eight broad MCFs, summarizing histologically and biologically 
closely related tumors as described by Capper et al.5.

Synthetic data. To comprehensively evaluate the model’s perfor-
mance, synthetic datasets mirroring methylation patterns obtained 
by shallow nanopore sequencing were created by sampling from 
an underlying distribution of methylation events. Specifically, for 
each sample in the reference datasets, 100 binary replicates cover-
ing all CpGs were sampled using a Bernoulli distribution, where 
methylation event probabilities were derived from methylation 
rates as observed by corresponding 450k methylation arrays. Then, 
to simulate various coverage levels, we randomly selected subsets 
of 1,000, 2,500, 5,000, 7,500, 10,000, 15,000 or 20,000 CpGs per 
synthetic nanopore profile.
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In the prediction of synthetic profiles, read weights were set to 
a constant value, thus having no impact, and noise was uniformly set 
to 0.05 for all features. Furthermore, no posterior thresholds were 
applied.

Time-course analysis (ONT validation cohort). To evaluate the accu-
racy of the predictions in a real-time scenario, we post hoc filtered 
reads by their timestamps to obtain CpG methylation calls obtained 
after 5 min, 10 min, 15 min, 30 min, 45 min, 1 h, 3 h, 5 h, 12 h, 24 h, 48 h 
and 72 h of sequencing.

Benchmarking. For evaluation of our model’s training time and 
resource utilization, we used the CNS tumor methylation array dataset, 
encompassing a total of 2,801 samples across 91 tumor classes, each 
with 428,201 features. To measure training time and memory usage 
of the algorithm, we employed Python’s time and memory_profiler 
packages. Benchmarking was performed in two computing environ-
ments: a high-performance server (Dell PowerEdge R7525, 3 GHz AMD 
64-Core Processor, 256 CPUs, 1,031.3 GB DDR4 RAM, Linux distribution) 
and a 2017 Apple iMac (3 GHz 10-Core Intel Xeon W, 64 GB 2,666 MHz 
DDR4 RAM, 1 TB APFS SSD, Radeon Pro Vega 56 GPU with 8 GB VRAM, 
macOS v.13.2.1).

Additionally, for each of the 75 nanopore sequencing runs, we 
evaluated the model’s prediction latency at various sequencing dura-
tions, by extracting data from 5 min up to 72 h (5 min, 10 min, 15 min, 
30 min, 45 min, 1 h, 3 h, 5 h, 12 h, 24 h, 48 h and 72 h). These prediction 
benchmarks were conducted on the Apple iMac (above).

Post hoc simulation of low-coverage sequencing. To simulate short, 
low-coverage sequencing from full sequencing runs (R10 barcoded, 
PacBio HiFi, external purity cohort), we employed a read sampling 
method to preserve the sequencing read context of the CpG methyla-
tion calls. This was achieved by randomly sampling reads from the data 
until the number of covered CpG sites reached the target number—for 
example, 7,500 to imitate 15 min of nanopore sequencing. The meas-
ured methylation states for each CpG site within the selected reads 
were used as input for classification. To assess the impact of various 
coverage levels, datasets with 2,500, 5,000 and 7,500 CpGs were gen-
erated and subsequently evaluated, with 10 replicates produced for 
each sample and CpG count.

Tumor purity analysis. To evaluate the model’s sensitivity to tis-
sue sample impurity, we integrated a dataset of 95 ONT-sequenced 
brain tumor samples with estimated tumor purities via absolute copy 
number estimation (ACE) as described by Djirackor et al.13. We then 
assessed the predictive performance at purity thresholds ranging 
from 0% to 90%, in 10% increments. For the analysis, we mimicked the 
intraoperative case and considered only 7,500 CpGs obtained by the 
above-described read sampling.

Liquid biopsies. cfDNA shows a typical fragment length distribu-
tion (120–220 bp), peaking at 167 bp, corresponding to the length 
of DNA wrapped around one, two or three histones. In CSF samples 
from patients with brain tumors, cfDNA fragments were observed 
to be slightly shorter, enriching at 145 bp33. However, liquid biopsies 
from CSF are likely contaminated by intact cells taken up during the 
needle biopsy. To mitigate the potential interference from non-cfDNA 
contaminants, such as cellular genomic DNA, on our benchmarking, 
we implemented a rigorous filtering strategy based on fragment size 
distribution analysis.

In 2024, Afflerbach et al.32 published a set of nanopore brain 
cancer samples for which cfDNA was derived from CSF. From their 
initially obtained samples, 85% (129/178) contained at least 5 ng of 
DNA, which was their threshold for preparing a nanopore sequencing 
run. In 39% (50/129) of the cases, cfDNA was successfully sequenced, 

and, of those, 41 were available to us. Clinical specifics of these data 
are provided in Supplementary Table 19. In brief, 16 samples were 
collected pre-operation, 11 early post-operation and 14 later post- 
operation (>14 d).

1.	 In the initial step, we excluded reads with a length profile 
outside of what is considered cfDNA and kept only reads with a 
length of 50–700 nucleotides.

2.	 Subsequently, we split the cohort by the number of covered 
CpGs, where a very low number (n = 8 samples) indicates that 
problems with the library might have occurred or that a high 
fraction of bacterial contamination was present.

3.	 We then ordered the samples by estimated tumor fraction 
and used only those with a fraction of at least 0.1 (n = 17) for 
validation.

Comparative analysis with Sturgeon. Sturgeon15 was applied to 
the same synthetic dataset described above, encompassing 280,100 
samples from CNS classes. For this, BED files with binary methylation 
information were generated with the same CpG probes used for Methy-
LYZR input—covering 5,000, 7,500 and 10,000 CpGs randomly drawn 
to simulate sparse nanopore sequencing. Additionally, Sturgeon was 
used for classification of data from 15 min of sequencing from the 75 R9 
nanopore CNS tumor samples. For this, BED files with binary methyla-
tion information were generated with the same CpG probes used for 
MethyLYZR input—filtered for methylation probabilities below 0.2 or 
above 0.8. Similarly, Sturgeon was used for classification of the external 
cohort for purity analysis, where BED files were generated with binary 
methylation information from 7,500 CpG probes obtained by read sam-
pling. The Sturgeon classifier (https://github.com/marcpaga/sturgeon, 
commit hash: b9f1cf565ce17eb43957b9c1acb5ea15a480e23e) was 
executed using the provided general model (https://www.dropbox.
com/s/yzca4exl40x9ukw/general.zip?dl=0). Results with scores lower 
than 0.8 were considered inconclusive. Comparative evaluation of 
predictive accuracy across MethyLYZR and Sturgeon was done based 
on 87 merged classes predicted by Sturgeon, where ‘MB SHH – CHL AD 
INF’ summarizes ‘MB, SHH CHL AD’ and ‘MB, SHH INF’; ‘SUBEPN – ALL’ 
summarizes ‘SUBEPN – PF’, ‘SUBEPN – SPINE’ and ‘SUBEPN – ST’; and 
‘LGG PA’ summarizes ‘LGG, PA MID’ and ‘LGG, PA.’

Comparative analysis with nanoDx. Analogously to Sturgeon, nan-
oDx14 was applied to the synthetic datasets, the 15-min R9 nanopore 
CNS samples and the tumor purity cohort. CSV files with EPIC probe 
IDs and corresponding methylation levels were prepared as the input 
for nanoDx. Modules from the nanoDx classifier version 0.6.2 (https://
gitlab.com/pesk/nanoDx, commit hash: b31d30fd690bb10d18c45ab-
c3d8934ff0b0b6062), including ‘readCpGs.R’, ‘transform_Rdata.R’, 
‘feature_selection_tfidf.py’ and ‘pyRF5xCVrecal.py’, were executed 
using Snakemake44 (version 8.14.0) with parameters ‘—cores 1’. For ad 
hoc model training, the Heidelberg brain tumor classifier version 11b4 
reference set5, which was downloaded from https://gitlab.com/pesk/
nanoDx, was used as the training dataset. Results with scores lower 
than 0.15 were considered inconclusive.

Statistical analysis and reproducibility
All statistical analyses were performed in R version 4.2.2 (ggpubr  
version 0.5.0, RColorBrewer version 1.1-3, arrow version 10.0.1, rtrack-
layer version 1.58.0, GenomicRanges version 1.50.2, ggsci version 2.9, 
circlize version 0.4.15 and tidyverse version 1.3.2) and Python version 
3.11.7 (arrow version 1.3.0, contourpy version 1.2.0, cycler version 0.12.1, 
Cython version 0.29.36, fonttools version 4.47.2, importlib-resources 
version 6.1.0, kiwisolver version 1.4.5, mappy version 2.26, matplotlib 
version 3.8.2, memory-profiler version 0.61.0, natsort version 8.4.0, 
numpy version 1.26.3, packaging version 23.2, pandas version 2.2.0, 
pillow version 10.2.0, pyarrow version 15.0.0, pyparsing version 3.1.1, 
pysam version 0.22.0 with SAMtools version 1.16.1 and htslib version 
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1.16, python-dateutil version 2.8.2, pytz version 2024.1, scipy version 
1.12.0, setuptools version 44.0.0, six version 1.16.0, tabulate version 
0.9.0, types-python-dateutil version 2.8.19.20240106, tzdata version 
2023.4, watchdog version 3.0.0 and zipp version 3.17.0). Confusion 
matrices and heatmaps were plotted using the ComplexHeatmap 
package (version 2.14.0). All other plots were generated using the 
ggplot2 package (version 3.4.3). Sankey plots were generated using 
the ggsankey package (version 0.0.99999). All boxplots display the 
median as the central line, the interquartile range (IQR; 25th to 75th 
percentile) as the box and outliers (points beyond 1.5 times the IQR) 
as dots outside the whiskers. Both line plots with error bands and bar 
plots with error bars display mean values, with the error bands and 
error bars representing the standard deviation above and below the 
means. To test for a statistically significant difference in F1 scores of 
CNS classes across core and expanded models, two-sided Wilcoxon 
signed-rank tests were used. Accuracies and F1 scores were calculated 
using the caret package (version 6.0-93). Gap statistics were calculated 
using the clusGap function from the cluster package (version 2.1.4), 
initialized with five configurations, considering up to five clusters and 
using ten bootstrap samples. No statistical methods were used to pre-
determine the sample size. The experiments were not randomized, and 
the investigators were not blinded to allocation during experiments 
and outcome assessment. However, our analytical pipeline followed 
uniform criteria applied to all samples, allowing analysis of our data in 
an unbiased manner. Patients who did not sign the informed consent 
documents, whose legal capacity to consent was unclear or whose abil-
ity to consent was questionable due to, for example, neurocognitive 
deficits, were excluded from the study.

Color coding
CNS tumor classes were colored according to Capper et al.5, where 
methylation classes were grouped by histology and colored accord-
ingly in similar shades. MZ CNS classes were colored using a shade 
representative of the constituting CNS tumor classes.

MZ CNS classes—a dynamic approach to brain tumor 
classification
Brain tumors require a precise classification for effective treatment, a 
challenge given their heterogeneity. DNA methylation profiling offers a 
solution and has become a part of the WHO 2021 CNS tumor classifica-
tion4. The initial system by Capper et al. (2018), analyzing 2,801 CNS 
tumor and control biopsies, is comprehensive yet limited to 91 methyla-
tion classes5. These classes combine various tumor types, grading and 
molecular data; sometimes, they are based solely on epigenetic analysis 
and have unclear relationships to existing diagnostic categories. The 
authors also identified eight larger groups of histologically and biologi-
cally closely related tumor classes within the 91 methylation classes in 
which most misclassification errors occurred and termed these groups 
‘Methylation Class Families’ (MCFs).

Hollon et al.3 proposed a hierarchical diagnostic model tailored 
for intraoperative use, focusing on real-time differentiation of intra-
operatively obtained biopsies via stimulated Raman histology3. This 
model prioritizes key distinctions, such as tumoral versus. non-tumoral 
tissue, for surgical decisions by employing a tree-like structure for 
classification. It focuses on diagnostic relevance and surgical need, 
covering 13 CNS tumor and control groups rather than aligning with 
the WHO classification.

Since 2018, methylation classification for CNS tumors has 
advanced—with the Heidelberg classifier (DKFZ Brain Classifier 12.8), 
trained on over 100,000 Illumina Methylation microarrays, now iden-
tifying 184 classes. However, due to inaccessible training data, recent 
developments still depend on the foundational dataset released by 
Capper et al.5.

Therefore, MethyLYZR introduces a flexible classification 
approach, anticipating that future intraoperative systems will 

incorporate a broader dataset spectrum, adhering to a hierarchical 
taxonomy for precise and tailored intraoperative decisions. It combines 
granular methylation classes, MethyLYZR classes (MZ classes) and a 
therapeutical decision-driven hierarchy. MZ classes offer simplified 
classification by consolidating groups with common origins or molecu-
lar profiles (Supplementary Table 1). The structure begins with binary 
distinctions (non-diagnostic versus diagnostic tissue) and progresses 
to detailed classifications based on cell type and molecular features, 
represented as leaves in a hierarchical tree. Methylation classes are 
systematically organized by cell type and molecular characteristics, cul-
minating in representing all 91 classes as leaves in the tree. MZ classes 
are defined as either hierarchical nodes or, when clinically pertinent, 
as specific methylation classes (CNS classes).

In such a dynamic system, individual diagnostic decisions—for 
example, proposed by prospective clinical studies—could be spe-
cifically encoded. For example, a prospective clinical study by Drexler 
et al.9 based on methylation array profiling suggested that a maximized 
extent of resection (EOR) provides some survival benefits to patients 
with GBM RTK I and RTK II methylation subclasses but not to those 
with a GBM MES subclass. Therefore, an adapted MZ class system 
could guide prospective intraoperative clinical studies by assigning 
the clinical treatment node ‘maximal EOR’ to the GBM RTK I and GBM 
RTK II classes and ‘minimal EOR’ to GBM MES.

This hierarchical classification system, at this stage, is a purely 
conceptual model that demonstrates how a dynamic classification 
system could be adapted to specific clinical and translational needs 
while acknowledging the limitations of the current methylation-based 
classification system based on a limited training dataset (Supplemen-
tary Fig. 5). Similarly, in the context of the present study, the MZ classes 
represent pragmatic reference points for the evaluation of the per-
formance of the Bernoulli naive Bayes framework with simulated and 
actual nanopore data and the comparison of results across different 
classification algorithms—for example, Bayesian classification versus 
deep neural networks.

Notably, the MZ classes are not intended to replace or contradict 
the existing neuropathological systems, such as the WHO 2021 classi-
fication system, but, rather, to complement and enhance them. Future 
iterations of MZ classes will require refinement and validation with 
emerging methylation classes and datasets, aligning them with clinical 
trials and evolving treatment strategies. Such systems, including those 
by Hollon et al.3 and MethyLYZR, will leverage healthcare opportunities 
and expert consensus to determine the best treatment approaches 
for specific cancers. We expect similar taxonomic approaches to 
become part of clinical practice guidelines, integrating diagnosis and 
treatment decisions to aid neurosurgeons, neuropathologists and 
neuro-oncologists.

Clinical Demonstrator experimental workflow
Overview. Developing and implementing highly integrated workflows 
such as the Clinical Demonstrator experiments is an interdisciplinary 
challenge in translational medicine. Given the less than 1-h timeline for 
the clinical validation effort, every step is tightly coupled, necessitating 
close collaboration among neurosurgical teams, molecular biologists, 
bioinformaticians and neuropathologists. In this tightly coupled pro-
cess, each step depends heavily on the previous one, and deviations or 
delays can disrupt the entire process (Supplementary Fig. 6).

This includes:

1.	 Laboratory setup: ensuring the laboratory is specifically  
tailored and equipped for the required tasks, including  
necessary equipment and reagents.

2.	 Ethical, legal and scientific framework: establishing a  
rigorous framework to ensure that all procedures comply with 
ethical standards, legal requirements and scientific integrity, 
including obtaining informed consent from patients.
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3.	 Multidisciplinary integration: Coordinating among different 
professional teams, ensuring that everyone is well informed 
and aligned with the project goals and timelines.

4.	 Surgical planning: planning of the surgical procedure to  
ensure the timely and targeted collection of brain tumor biop-
sies from regions of the cancer with high tumor cell content. 
The overview then outlines the sequentially dependent 
intraoperative MethyLYZR process, illustrating the following 
critical steps to be performed within less than 1 h.

5.	 Operation: the actual surgical procedure where neurosur-
geons obtain fresh brain tumor biopsies.

6.	 Biopsy handling: proper handling of the biopsy samples 
immediately after surgery to ensure their integrity, involving 
preparing the samples for DNA extraction and the separation 
of samples for the experimental workflow as well as for the 
routine clinicopathological workup.

7.	 DNA extraction and library preparation: DNA must be 
extracted from biopsy samples efficiently and in the shortest 
possible timeframe. Preparing nanopore sequencing libraries 
from the extracted DNA with optimized sequencing proto-
cols for high pore occupancy is crucial for rapid, high-quality 
sequencing results.

8.	 DNA sequencing: using nanopore technology to sequence the 
DNA and identify methylation marks.

9.	 Classification: applying the MethyLYZR algorithm to the 
sequencing data for brain cancer classification, involving com-
plex bioinformatics analyses to interpret the data and provide 
a diagnosis. 
Finally, contextualization and data integration as the final step 
after the experiment was performed for the scientific analysis 
of the results obtained in a clinical demonstrator experiment, 
which can take up to several weeks due to the currently still 
protracted nature of multi-modal routine clinical workup:

10.	Data integration: integrating various data types obtained 
from patient characteristics, clinical information systems, 
conventional molecular assays, neuropathology and other 
analyses, which often depend on the tumor type identified in 
the integrated clinical neuropathological workup.

In the following, we share and contextualize, based on our expe-
rience with this study, each of the numbered steps to foster replica-
tion and improvement of the set of methods that we developed and 
described.

Laboratory setup
The laboratory was set up in the surgical tract of the UKSH Neurozen-
trum at Campus Kiel, only two hallways from the operating rooms. 
The room was previously used for intraoperative rapid frozen section 
neuropathology. As this intraoperative service cannot currently be 
offered at the UKSH in Kiel, we set up the intraoperative sequencing 
laboratory there. Two desks or working areas are necessary—one for the 
molecular workflow and one for the computer setup (Supplementary 
Figs. 7 and 8).

Equipment for the molecular workflow

1.	 TissueLyzer LT (Qiagen, cat. no. 85600)
2.	 TissueLyzer LT Adapter (Qiagen, cat. no. 69980)
3.	 ThermoMixer C (Eppendorf, cat. no. 5382000015)
4.	 NanoDrop One (Thermo Fisher Scientific, cat. no. ND-ONE-W)
5.	 Precision scale, for example, Steinberg SBS-LW-300A  

(Expondo, cat. no. EX10030053)
6.	 Thermocycler, for example, Biometra TAdvanced Twin 48 

(Analytik Jena, cat. no. 846-2-070-212)
7.	 Centrifuge capable of 20,000g, for example, Eppendorf centri-

fuge 5425 (Eppendorf, cat. no. 5405000719)

8.	 P1000, P200 and P10 pipettes, for example Eppendorf  
Research Plus (Eppendorf, cat. no. 3124000121, -083, -016)

9.	 Tabletop centrifuge, for example Greiner Bio-One Mini  
centrifuge (Greiner Bio-One, cat. no. 843070)

10.  Fridge (4 °C)
11.  Freezer (−20 °C)

Note: the equipment chosen, except the nanopore sequencers, can 
be replaced with equally functional equipment from other vendors. The 
list only describes the exact setup used in this study and is not intended 
to suggest specific vendors or equipment manufacturers.

Equipment for the bioinformatic workflow

1.	 Computer with monitor, RTX4090 or higher GPU, minimum 
12 GB GPU RAM, 64 GB RAM Multicore CPU (12-core/24-thread 
Intel i7/i9 10th generation or newer processor / AMD Ryzen 
processor recommended), 2 TB of internal SSD storage + 6 TB 
external SSD storage and USB-C interface

2.	 Internet connection, as ONT sequencing devices in default 
settings need to contact ONT servers before a sequencing 
experiment can be started

3.	 MinION/P2 Solo sequencer (ONT, cat. no. MIN-101B/
PRO-SEQ002)

Note: internet access can be problematic due to the operation of 
non-clinical computer hardware connected to the nanopore sequencer 
in a highly regulated and protected clinical environment. ONT can be 
contacted to enable the operation of nanopore sequencers without 
an internet connection.

Framework
Ethics approval. Obtaining ethics approval was dependent on pro-
totypical data and a well-defined setup. The study was approved by 
the local ethics committee of Kiel University (D443/20) and complies 
with the 1975 Declaration of Helsinki and its subsequent amendments.

Patients for the study were recruited from UKSH, Department of 
Neurosurgery in Kiel, Germany. Eligibility criteria included patients 
with radiologically suspected or probable relapsed brain tumors 
(including primary brain tumors and metastases) scheduled for 
cytoreductive surgery as recommended by the interdisciplinary tumor 
board. Amendments were obtained to subsequently include pediatric 
patients and also patients suffering from suspected brain metastases, 
as the capabilities of MethyLYZR expanded. Exclusion criteria were 
established to omit patients with small tumors or those located in 
eloquently sensitive brain regions that precluded adequate tissue 
collection for analysis.

Critical: adhering to applicable national laws and institutional 
regulatory board guidelines is essential when using human biologi-
cal material. Obtaining informed consent from human subjects is 
mandatory. At UKSH, since 2017, all patients have been asked to grant 
permission for the future use of their data and biological materials for 
scientific research through a ‘broad consent’ framework, which ensures 
that patients receive adequate information and can give informed 
consent. Given the unique nature of our study, we opted not only to rely 
on the broad consent ethics approval but also to seek specific ethics 
approval for this particular study.

Critical: compliance with the GDPR, which became law in 2018, has 
become a fundamental regulatory requirement for all studies involving 
the collection and distribution of large datasets, including genome 
sequencing data, among research institutions in Europe. The GDPR 
ensures the protection of personal data and privacy for individuals 
within the European Union. For our study, this means implementing 
stringent data protection measures, obtaining explicit consent from 
participants and ensuring transparency about how their data will be 
used and shared. Additionally, it has become standard practice to 
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establish data-sharing and processing agreements that adhere to the 
rules set out by the GDPR. Data anonymization and secure data transfer 
protocols are essential to comply with these standards. Although laws 
and regulations may vary globally, the GDPR has also become relevant 
for global consortia when European partners are involved.

Note: managing patients’ expectations after going through the 
informed consent information was sometimes difficult, given the 
potential and tangible impact of a diagnostic tool with more rapid 
diagnostic feedback compared to conventional, integrative diagnostic 
workflows. However, at the preclinical and experimental stage, more 
consideration and care must be exerted when using results to inform 
clinical decisions or when the individual results are communicated to 
the patients outside a clinical trial.

Caution: obtaining informed consent from neurocognitively 
impaired patients who do not yet have established legal guardians 
was sometimes challenging. To address this, we worked with psychiatric 
consultation services to evaluate whether informed consent could be 
obtained despite the neurocognitive impairment, which is common 
among patients with brain tumors. This collaboration proved to be 
very helpful.

Legal. ONT equipment, software such as MinKNOW, consumables such 
as flow cells and reagents such as library kits are currently designated 
for research use only. ONT products are currently not intended for 
health assessments or for diagnosing, treating, mitigating, curing or 
preventing any disease or condition. As of this writing, clinical-use, 
CE-IVD-marked consumables and equipment have been announced 
by ONT but are not yet commercially available. Using ONT materials 
in a clinical setting currently violates the terms and agreements with 
ONT, which are required for obtaining these products. Additionally, any 
software associated with the described workflow in a routine clinical 
setting must be evaluated based on local laws and regulations before 
its use in the clinic.

Note: MethyLYZR, if applied in routine clinical care, would likely 
be classified in Europe as a Medical Device Software (MDSW) under the 
MDCG 2019-11 guidance on qualification and classification of software 
according to Regulation (EU) 2017/745 (MDR) and Regulation (EU) 
2017/746 (IVDR). This guidance specifies that software intended for a 
medical purpose, such as diagnosing or predicting disease, is consid-
ered a medical device.

Under the MDCG 2019-11 guidelines, software qualifies as a medi-
cal device if it is intended to be used for medical purposes as defined by 
the MDR or IVDR. This includes software that either drives or influences 
a medical device or operates independently with its own medical pur-
pose, such as diagnosis, monitoring or treatment of diseases. Because 
MethyLYZR is used for brain cancer classification through methylation 
analysis, it meets the criteria for being classified as in vitro diagnostic 
(IVD) medical device software.

Moreover, according to Rule 11 of the MDR, which specifically 
addresses the classification of MDSW, nearly all MDSW is classified as 
at least Class IIa, depending on the risk associated with the informa-
tion it provides and the potential impact on patient care. Therefore, 
MethyLYZR would likely fall under this classification due to its role in 
providing critical diagnostic information that could influence clinical 
decisions. However, it is important to note that definitive classifica-
tion would require a more detailed review by regulatory experts and 
discussions with regulatory authorities.

Consequently, this study is a purely preclinical scientific study; 
no information from the MethyLYZR results could be shared with the 
clinical teams, patients or caregivers.

Note: this sometimes posed ethical and also psychological chal-
lenges for the clinical teams, who all deeply care for the well-being of 
their patients. Getting apparently accurate results from MethyLYZR 
within such a short timeframe while having to wait for the conventional 
results for days and sometimes weeks could lead to ethical and also 

psychological conflicts because of the perceived ‘red tape’ associated 
with the outlined legal boundaries, in which the scientific study has to 
operate necessarily. Here, leadership and open communication with all 
involved in such patient-centric preclinical research was key to ensuring 
acceptance of the current situation.

Scientific. Clear goals and hypotheses must be established for the 
future scientific exploration of intraoperative sequencing. In this 
case, Clinical Demonstrator experiments were designed to explore 
the feasibility of this approach even with shorter timeframes enabled 
by novel bioinformatic methods of live tumor diagnosis from sparse 
epigenomic data.

Intraoperative methylation classification is an enormously power-
ful technology capable of providing differential diagnostic information 
for potentially several hundred cancer entities. Future prospective and 
rigorous studies will be needed to validate the combination of intraop-
erative methylation classification as a potential means to choose dif-
ferential treatment modalities. Currently, no firm prospective evidence 
is established that different surgical approaches to certain brain tumor 
entities diagnosed based on methylation profiles are beneficial to the 
patient, although suggestive evidence has emerged9.

Multiprofessional integration
Experience from the Kiel site. Effective communication and coordina-
tion among the diverse multiprofessional groups involved in the Clini-
cal Demonstrator experiments were crucial for the project’s success, 
particularly in Kiel, where no intraoperative frozen rapid section diag-
nostics were available at the start of the project. The multidisciplinary 
project development required close interaction among neurosurgeons, 
nurses, technicians, molecular biologists and bioinformaticians. A key 
strategy was informing the surgical team about the planned experi-
ments during the early morning surgery conference. This ensured 
timely biopsy retrieval and aligned the surgical procedures with the 
experimental needs.

To initiate this workflow in the setup phase, having a dedicated 
neurosurgeon who was not performing the surgery and managing 
the experiment was helpful. This neurosurgeon coordinated among 
stakeholders and ensured that the workflow could be implemented fric-
tionlessly. This role included overseeing the biopsy retrieval process, 
coordinating with the laboratory team and ensuring that the samples 
were processed without delay.

Note: given the dynamic nature of surgical scheduling, frequent 
rescheduling of surgeries was common, especially when emer-
gency trauma patients required the same operating rooms as the 
neuro-oncologic surgeries. To mitigate the impact of these resched-
uling events, having initially the molecular and bioinformatic scien-
tists on standby was helpful. This approach provided the flexibility to 
accommodate unexpected changes and ensured that the experiments 
proceeded without interruptions.

Experience from the Oslo site. Samples harvested for intraopera-
tive frozen section analysis were split in two. One sample followed the 
routine frozen-section workflow, whereas the other part was placed 
in lysis buffer (Qiagen) in the operating room before transport to the 
analytical laboratory, typical transport time being 5–24 min. No other 
adaption or preparation was needed for the surgical team, except for 
the operating room nurse to split samples.

Overall, the success of the Clinical Demonstrator experiments 
depended on multiprofessional planning, clear communication and 
the dedicated efforts of all involved professionals. This collaborative 
approach allowed the teams to navigate the complexities of the clini-
cal environment.

Perspective: We expect that, for a more routinely conducted 
intraoperative sequencing workflow, a single technician will suffice 
to enable POC intraoperative sequencing for two neuro-oncology 
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operating rooms during a shift. Automation will further increase the 
throughput of this method and scalability in the clinical setting.

Surgical planning
Experience from the Kiel site. A histologic diagnosis is required for 
optimal treatment of patients with brain tumors. This can be accom-
plished either at the time of surgical resection or with a stereotactic 
biopsy. Biopsy alone is used when the lesion is not amenable to resec-
tion, a meaningful amount of tumor tissue cannot be removed or the 
patient’s overall clinical condition will not permit surgery. The favored 
initial treatment for brain tumors within accessible locations is resec-
tion. Maximal resection with preservation of neurologic function is an 
important goal in the initial management of patients with brain tumors, 
and the extent of surgery must be balanced with the preservation of 
neurologic function.

Preoperative imaging. MRI with contrast is the optimal study for the 
evaluation of brain tumors. Standard sequences at the Kiel site included 
to characterize brain tumors include T1 and T2, fluid-attenuated inver-
sion recovery (FLAIR), gradient-echo/susceptibility, diffusion-weighted 
imaging and post-contrast T1-weighted images. On MRI, high-grade 
gliomas are typically hypointense on T1-weighted images and enhance 
heterogeneously after contrast administration.

Note: MRI sequences for the characterization of brain tumors vary 
among sites and neurosurgical departments.

Note: preoperative functional MRI and diffusion tractography may 
be used to optimize tumor volume definition and minimize operative 
injury to eloquent areas by allowing preoperative definition of affected 
and normal brain areas and functional mapping of brain tissue. In addi-
tion to localization of functional cortical areas such as motor cortex via 
functional MRI, diffusion tensor imaging (DTI) enables the visualization 
of subcortical tracts that carry eloquent task information from speech, 
motor and visual pathways.

For neurosurgical biopsy procedures, precise planning and exe-
cution are essential for the classification of brain tumors. Biopsies 
were strategically collected using image-guided neurosurgery with 
the Brainlab system. This technology enables surgeons to target the 
parts of the brain tumor directly, which is most likely to yield optimal 
diagnostic evaluation. This is often in regions at the border of contrast 
enhancement or areas of decreased diffusion. Optimal sampling is 
critical for obtaining the high tumor cell content necessary for effec-
tive methylation classification45. This planning ensures that the biopsy 
process is the initial step immediately after reaching the CNS neoplasm 
in an open craniotomy procedure, aiming to achieve a classification 
result within 1 h.

Surgery
Intraoperative techniques. For deep-seated or multifocal tumors, the 
combined use of computerized imaging and stereotactic devices has 
allowed neurosurgeons to perform deep brain biopsies with accurate 
tumor localization. Frameless stereotaxy establishes a computerized 
link between the preoperative three-dimensional tumor volume and 
the surface landmarks of the patient. This link permits the neuro-
surgeon to be aware of the three-dimensional position of surgical 
instruments within the intracranial space during the biopsy based on 
preoperative imaging. For brain tumors that contain both enhancing 
and non-enhancing components, tumor biopsy should target the 
enhancing areas to obtain diagnostic tissue that is representative of 
the highest-grade portion of the tumor (Supplementary Fig. 10).

Preoperative magnetic resonance DTI data are loaded into a 
neuro-navigation system. This system aligns the patient’s anatomy 
with the imaging data, allowing the surgeon to navigate accurately. 
Augmented reality (AR) technology overlays digital information, such 
as tumor boundaries and fiber tracts, onto the surgeon’s field of view 
(Supplementary Fig. 10). This can be achieved through AR screens on 

the microscope field, providing a real-time, immersive visualization. 
The surgeon begins the tumor resection, guided by the navigation 
system and AR overlays. The AR displays the tumor and critical brain 
structures, helping the surgeon avoid vital areas. The navigation system 
continuously updates, showing the precise location of surgical instru-
ments relative to the malignancy and important fiber tracts.

Note: several further intraoperative techniques (awake craniotomy 
and intensity-modulated radiation therapy) are frequently used to 
improve the extent of surgical resection while minimizing collateral 
damage to the normal brain. Despite these advances in surgical tech-
niques, local recurrences are frequent, even in patients undergoing an 
apparently complete removal of the tumor. High-grade gliomas are 
characterized by poorly defined tumor margins with infiltration of neo-
plastic cells along white matter fibers and the perivascular spaces, which 
can extend well beyond the tumor margin as defined by the surgeon or 
by radiographic studies. Unfortunately, methylation-based classifiers 
perform poorly at this stage with biopsies with low tumor cell content.

Biopsy handling
The transfer process of biopsies to the intraoperative sequencing 
laboratory in Kiel was considered crucial and has been optimized by 
establishing a POC laboratory adjacent to the operating room. The 
daily surgical planning meeting plays a pivotal role in this process, 
involving neurosurgeons, nursing staff and laboratory technicians, 
all briefed about the fresh biopsy collection to ensure its immediate 
handling and transfer. The sample for molecular analysis is placed in 
sterile Ringer’s lactate solution to maintain tissue viability and avoid 
degradation in the short timeframe for intraoperative sequencing. This 
handling ensured the integrity of the biopsies for sequencing, although 
we observed substantial degradation of DNA after 6–8 h in this solution.

Caution: in our experience, placing the biopsy in formaldehyde 
solutions is incompatible with the rapid sequencing adaptor chemistry 
required for intraoperative methylation classification. Even though 
workflows for nanopore sequencing of formaldehyde-fixed brain 
tumor biopsies have been reported32, these rely on ligation library 
chemistries, which more effectively remove the enzyme-degrading 
formaldehyde molecules.

Molecular workflow
The following molecular workflow describes the steps in setting up an 
intraoperative sequencing workflow. Moreover, it contains a detailed 
list of reagents and consumables at a clinical site. To enable fast process-
ing of sample material, we highly suggest that users focus their special 
attention on the pre-processing section for optimal results.

1.	 DNA extraction of fresh brain tumor specimens usually  
obtained from a standard craniotomy

2.	 DNA quantification and quality assessment using a NanoDrop 
instrument

3.	 Preparation of a rapid sequencing library to be used in  
conjunction with PromethION P2 Solo sequencer

4.	 Priming of a PromethION flow cell for sequencing

Consumables

•	 1.5 ml of DNA LoBind tubes (Eppendorf, cat. no. 30108051)
•	 Petri dish 150 × 20 mm (Sarstedt, cat. no. 82.1184.500)
•	 Scalpel, for example Feather disposable scalpel no. 21  

(Feather, cat. no. 02.001.30.021)
•	 1,000-µl pipette tip, for example Sarstedt filter tip 1,000 µl 

(Sarstedt, cat. no. 70.3050.255)
•	 0.2-ml PCR tubes, for example Biozym PCR SoftTubes  

(Biozym Scientific, cat. no. 711080)
•	 300-µl, 10-µl pipette tips, for example SurPhob 300/10 µl of XL 

(Biozym Scientific, cat. no. VT0250/VT0200)
•	 PromethION or MinION flow cell (ONT, cat. no. FLO-MIN114/

FLO-PRO114M)
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Reagents

•	 Ringerʼs solution (133 mmol l−1 sodium chloride (NaCl), 
1.34 mmol l−1 potassium chloride (KCl), 2.76 mmol l−1 sodium 
hydrogen carbonate (NaHCO3) and 1.25 mmol l−1 calcium  
chloride (CaCl2))

•	 QIAamp Fast DNA Tissue Kit (Qiagen, cat. no. 51404)
•	 Dulbecco’s PBS, DPBS 1× (Life Technologies, cat no. 14190144)
•	 Nuclease-free water (Life Technologies, cat. no. 10977035)
•	 Molecular-grade ethanol (non-denatured) (96–100%; 

Sigma-Aldrich, cat. no. 1.07017.2511)
•	 2-Propanol (≥100%; Carl Roth, cat. no. 6752.3)
•	 Rapid Sequencing Kit V14 (ONT, cat. no. SQK-RAD114)

Pre-processing steps. 

•	 Set a thermomixer to 56 °C.
•	 Supplement wash buffer AW1 and AW2 of the QIAamp Fast  

DNA Tissue Kit with 96–100% molecular-grade ethanol  
(Supplementary Table 22).

•	 Supplement wash buffer MVL of the QIAamp Fast DNA Tissue 
Kit with ≥99.8% molecular-grade 2-propanol (Supplementary 
Table 22).

•	 Prepare a master digestion buffer mix in a 1.5-ml Eppendorf 
tube for three reactions (MMX 3) and mix by pipetting  
(Supplementary Table 23).

•	 Transfer 265 µl of digestion buffer mix into an empty tissue  
disruption tube. Repeat the previous step to obtain two 
pre-filled tissue disruption tubes.

•	 Tare the scale using an empty blue cap of a tissue disruption 
tube provided with the QIAamp Fast DNA Tissue Kit.

•	 Set the centrifuge to 20,000g and 1 min at RT.
•	 Program a thermalcycler: 30 °C for 2 min 15 s and then 80 °C 

for 1 min.
•	 Place the reagents of the rapid sequencing kit (SQK-RAD114) 

on ice.
•	 Program a TissueLyser LT: 45 Hz, 2 min.
•	 Add 200 µl of nuclease-free water to a fresh 1.5-ml Eppendorf 

tube and place on a thermomixer at 56 °C.
•	 Remove a PromethION flow cell from the fridge and equilibrate 

to RT for 20–30 min.
•	 Boot a sequencing computer, attach the P2 Solo and open the 

MinKNOW software.
•	 Open a terminal and source the virtual environment.
•	 Set up the MethyLYZR command with the appropriate argu-

ments and take the same sample name (-s Parameter) as the 
Sample ID in MinKNOW.

Note: we recommend performing a flow cell quality check (QC) 
before use. PromethION flow cells that show fewer than 5,000 active 
pores do not pass ONT’s quality standards and will be replaced.

DNA extraction. 

•	 The obtained brain biopsy should be provided in Ringerʼs 
solution, creating an isotonic environment for proper cellular 
stability.

•	 Place the specimen into a Petri dish and cut pinhead-sized  
fragments of vital tumor tissue (Supplementary Fig. 11).

•	 Weigh an empty cap of a tissue disruption tube by using a 
precision scale and press the tare button.

•	 Remove the empty cap of a tissue disruption tube from the 
scale and place the tissue fragment into the cap.

•	 Repeat the previous step to obtain a total of two reactions.
•	 Weigh the samples and adjust the tissue weight to 10–15 mg.

Note: the Qiagen Fast DNA Tissue Kit enables DNA extraction 
from up to 25 mg of fresh, frozen or stabilized tissue material using a 

combined mechanical, chemical and enzymatic lysis. Most importantly, 
the kit also allows for high-quality DNA extraction of challenging sam-
ples, such as brain tissue, within a short time. The outlined protocol 
has extensively been tested with 5–25 mg of brain tissue material from 
fresh, snap-frozen and preserved (Biomatrica, DNAgard Tissues and 
Cells) samples. However, we found that 10–15 mg of vital tumor tissue 
generally yields sufficient DNA for the ONT’s rapid library preparation 
protocol. Note that, additionally, the incubation time for the lysis 
reaction can be reduced from 10 min at 56 °C to 7 min if less tissue 
material is used.

•	 Remove the cap from the precision scale and screw it on top of 
a pre-filled tissue disruption tube.

•	 Quickly spin the tubes by using a tabletop centrifuge.
•	 Place the tubes in a TissueLyser LT instrument and disrupt the 

samples at 45 Hz for 2 min at RT.
•	 Quickly spin the tubes using a tabletop centrifuge.
•	 Place the samples in a thermomixer and incubate for 7 min at 

56 °C with 1,000 rpm.
•	 Add 265 µl of buffer MVL (containing isopropanol) to each of 

the tissue disruption tubes and mix 10× by pipetting.

Note: adding buffer MVL to the lysate combined with pipette 
mixing results in DNA precipitation that can be visually monitored. 
Samples containing large amounts of DNA can even form a slightly vis-
cous solution, indicating sufficient extraction with high DNA content.

•	 Apply the lysate to a fresh QIAamp mini spin column.
•	 Centrifuge the samples for 1 min at 20,000g for 1 min at RT.
•	 Replace the collection tube and add 500 µl of buffer AW1.
•	 Centrifuge the samples at 20,000g for 30 s at RT.
•	 Replace the collection tube and add 500 µl of buffer AW2.
•	 Centrifuge the samples at 20,000g for 30 s at RT.
•	 Replace the collection tube and centrifuge at 20,000g for 

2 min at RT.
•	 Meanwhile, blank a NanoDrop device using 2 µl of 

nuclease-free water.
•	 Place the spin column into a 1.5-ml DNA LoBind tube.
•	 Apply 50 µl of pre-heated (56 °C) nuclease-free water to the 

spin column.
•	 Incubate the samples for 1 min at RT.
•	 Centrifuge the tube at 20,000g for 1 min at RT to elute  

the DNA.

Note: elution buffers, such as TE, usually contain 10 mM EDTA and 
can have detrimental effects on both the rapid library preparation and 
sequencing performance. We recommend using nuclease-free water 
(pH 7–8) instead for optimal results. However, once intraoperative 
sequencing has been performed, it is highly advised to supplement 
the remaining DNA sample with TE to prevent DNA degradation from 
hydrolysis and to allow long-term storage.

DNA quantification and quality assessment. 

•	 Quantify 2 µl of each eluate on a NanoDrop instrument.
•	 Select one of the samples based on DNA quality (A260/A230 

and A260/A280) and quantity.
•	 Transfer 100–150 ng of the DNA sample into a fresh 0.2-ml  

PCR tube.
•	 Adjust the volume to 10 µl with nuclease-free water and  

proceed with the rapid sequencing protocol.

Note: rapid DNA quantification and quality assessment are piv-
otal in an intraoperative sequencing setup. A spectrophotometer, 
such as the NanoDrop One, enables DNA quantification within 10 s 
and provides valuable information about the DNA quality based on 
absorbance maxima at 230 nm, 260 nm and 280 nm. The QIAamp 
Fast DNA Tissue Kit results in high-quality DNA samples based on 
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a characteristic A260/A280 ratio of 1.8–1.85 for almost all samples 
investigated in this study. However, it should be noted that we 
observed some variability in the A260/A230 ratio among brain tumor 
samples, especially if poor sample material, such as necrotic tissue, 
was used. Using fresh or immediately snap-frozen tissue material is, 
therefore, highly recommended.

Preparation of the sequencing library. Note: we recommend using the 
rapid sequencing kit (SQK-RAD114; Supplementary Table 24) to prepare 
sequencing libraries in an intraoperative setting to obtain the best 
results. Besides providing a simple and rapid protocol with minimal 
hands-on time, it maximizes the number of sequencing reads that can 
be used for bioinformatic analysis, leading to the fastest turnaround 
time for tumor prediction using MethyLYZR. Equally, the rapid barcod-
ing kit (SQK-RAD114.24) can also be used if scaling out throughput is of 
particular interest. It provides the same rapid turnaround time while 
allowing multiple samples to be processed simultaneously. However, 
the barcoding protocol generally tends to result in lower amounts 
of sequencing reads usable for brain tumor classification due to a 
fraction of unclassified reads due to failed barcode assignment. The 
protocol described below outlines the rapid sequencing approach 
without barcoding.

•	 Add 1 µl of FRA to the diluted DNA sample.
•	 Start the PCR program.
•	 Thoroughly pipette mix the sample and place it into the 

thermalcycler.
•	 Meanwhile, place the PromethION flow cell into the P2 Solo.
•	 Rotate the inlet valve of the PromethION clockwise to expose 

the inlet port.
•	 Draw back 30 µl of flow cell storage buffer from the inlet port.
•	 Prepare the priming mix by adding 30 µl of FCT to 1,170 µl  

of FCF.
•	 Resuspend the priming mix using a P1000 and apply 500 µl of 

priming mix to the inlet port.
•	 Incubate the flow cell for 5 min at RT.
•	 Proceed with the library preparation and aliquot 3.5 µl of ADB 

into a fresh 0.2-ml PCR tube.
•	 Add 1.5 µl of the RA to the adapter dilution buffer and mix 

thoroughly by pipetting.
•	 Remove the tagmented sample from the PCR cycler and place 

it on wet ice for 10 s.
•	 Add 1 µl of the diluted RA to the tagmented sample and  

thoroughly mix by pipetting.
•	 Incubate the sample for 5 min at RT for the attachment of the 

sequencing adapter.
•	 Complete the flow cell priming by adding 500 µl of priming 

mix to the inlet port.

Caution: the flow cell storage buffer contains tripotassium hexa-
cyanoferrate and is incompatible with acids. Always wear gloves and 
safety goggles when handling flow cells containing storage buffer.

Critical: avoid introducing air bubbles to the sensor array, as this 
would damage the nanopores. Always ensure that the inlet port is 
filled with buffer.

•	 Finalize the sequencing library according to the table below 
(Supplementary Table 25).

•	 Load 200 µl of final library via the inlet port.
•	 Turn the valve to close the port and apply a light shield  

(supplied with flow cells) to protect the sensor array.
•	 Ensure that all sequencing parameters have been selected  

correctly, and hit the start button to initialize sequencing.

Caution: optimal flow cell loading requires training and pipetting 
skills. Prepare by training on spent flow cells after watching instruc-
tion videos.

DNA sequencing
Loading of the nanopore flow cell and start of the nanopore 
sequencing device. MinKNOW parameter set:

1.	 Sample ID: must match the sample name given in the live_ 
classifier.py command.

2.	 Sequencing kit: select the appropriate kit.
3.	 Basecalling: basecalling with the high-accuracy model needs 

to be enabled.
4.	 Modified basecalling: modified basecalling needs to be 

enabled.
5.	 Modified base context: this needs to be set to 5mC and 5hmC.
6.	 Alignment: alignment needs to be enabled. Ensure that the 

alignment reference genome file matches the reference stated 
in the live_classifier.py parameters.

7.	 Basecalled reads: ensure that BAM files are written to disk 
every minute.

8.	 Template: all settings can be saved as a template for future use.
9.	 Start sequencing run: start the sequencing run after proper 

flow cell priming and loading the library.

Classification
Hardware (computer). For optimal performance during live classi-
fication, a suitable hardware setup is essential. MinKNOW, designed 
by ONT, handles live base and methylation calling on large datasets, 
which can be computationally intensive. Meeting specific hardware 
requirements is important for efficient operation.

This section provides the recommended hardware specifications 
from ONT and alternative configurations that we found to work. Adher-
ing to these recommendations ensures live cancer classification results 
with live_classifier.py using MethyLYZR.

Caution: the following descriptions of computer setups and soft-
ware configurations all represent only a snapshot of systems that have 
worked well for this task in 2023/2024. Specifically, as ONT software still 
undergoes further refinement, we expect the following recommenda-
tions and experiences to become outdated in the foreseeable future. We 
still think that this section will provide important information for any 
laboratory that wants to set up intraoperative live sequencing analysis 
in the years to come as a conceptual framework.

Recommendations from ONT. To achieve optimal performance for 
high-accuracy base and methylation calling:

•	 GPU: Nvidia RTX 4090 or higher
•	 Minimum 12 GB GPU RAM

•	 RAM: 64 GB
•	 CPU: Multicore processor

•	 12-core/24-thread Intel i7/i9 10th generation or newer or 
AMD Ryzen processor

•	 Storage:

•	 2 TB internal SSD
•	 6 TB external SSD

•	 Interfaces:

•	 USB-C interface for P2 Solo
•	 USB-A 3.0 interface for MinION

Known working configurations. In addition to the recom-
mended specifications, the following configurations are also known 
to work:

•	 Nvidia RTX 3090 Desktop GPU
•	 Nvidia RTX 4090 Mobile GPU

Caution: meeting these hardware requirements can ensure 
that your system can handle the computational demands of online 
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high-accuracy base and methylation calling and running live clas-
sification. However, as many hardware components can affect the 
overall performance of such a system, online base and methylation 
calling cannot be guaranteed and requires thorough testing of the 
intraoperative compute system.

Hardware (sequencing devices). MinION. The MinION is a mid- 
range sequencing device by ONT that can read DNA with up to 512 
pores in parallel. The device cost is currently approximately €1,000  
( June 2024).

PromethION 2 Solo (P2 Solo). The P2 Solo sequencing device by ONT is 
a portable platform that can read DNA with up to (theoretically) 3,000 
pores in parallel. The device cost is currently approximately €10,000 
plus €1,000 yearly software and license fee ( June 2024).

Note: PromethION flow cells do not currently offer an advantage 
over MinION flow cells for intraoperative sequencing workflows tar-
geting results within 1 h after biopsy. Due to their different geometry, 
PromethION flow cells take considerably longer to reach maximum 
throughput compared to MinION flow cells. However, PromethION 
flow cells provide a 3–4-fold increase in overall sequencing yield after 
a complete run over several days.

Software. MinKNOW. MinKNOW is a software developed by ONT for 
controlling and managing sequencing devices such as MinION, GridION 
and PromethION. It handles device operation, data acquisition and 
preliminary analysis for sequencing workflows.

Key features

•	 Device control: allows starting, monitoring and controlling 
sequencing runs with real-time feedback.

•	 Data acquisition: streams data directly from the sequencing 
device, providing immediate access to raw reads.

•	 Real-time analysis: includes tools for real-time basecalling.
•	 Quality control: provides built-in metrics and monitoring to 

ensure data integrity.

Technical specifications

•	 Compatibility: it works with MinION, GridION and PromethION 
devices, although device-specific versions exist and are some-
times not identical in features.

•	 Operating systems: available for Windows, macOS and Linux.
•	 Integration: it integrates with other bioinformatics tools and 

pipelines for downstream data analysis.

Note: MinKNOW v.24.02.6 (OSX and Windows) and v.24.02.10 
(Ubuntu) are not suitable for live classification, as they save the nec-
essary data to disk at a minimum interval of 10 min. Earlier versions 
save data based on the number of reads rather than time. Subsequent 
versions offer an option to save data to disk every minute.

Caution: MinKNOW still regularly undergoes changes that affect 
compatibility with custom scripts and workflows. We test any update 
thoroughly for compatibility before live usage.

Installation. Windows installation.

1.	 System requirements:
•	 Ensure that your system meets the hardware requirements, 

including an Nvidia GPU (RTX 4090 or higher recom-
mended) with a minimum of 12 GB GPU RAM.

•	 Ensure that you have administrative rights to install  
the software.

2.	 Download MinKNOW:
•	 Visit the ONT website and download the latest MinKNOW 

installer for Windows.

3.	 Install Nvidia drivers:
•	 Download and install the latest Nvidia drivers for your GPU 

from the Nvidia website.

4.	 Install CUDA Toolkit:
•	 Download and install the CUDA Toolkit from the Nvidia  

website. Ensure that you select the version compatible with 
your GPU and operating system.

5.	 Run the MinKNOW installer:

•	 Double-click the downloaded MinKNOW installer to start 
the installation process.

•	 Follow the on-screen instructions to complete the 
installation.

6.	 Verify installation:

•	 Start a test sequencing run to ensure that MinKNOW is using 
the GPU for basecalling and other computational tasks.

Linux installation.

1.	 System requirements:

•	 Ensure that your system meets the hardware requirements, 
including an Nvidia GPU (RTX 4090 or higher recom-
mended) with a minimum of 12 GB GPU RAM.

•	 Ensure that you have administrative rights to install the 
software.

2.	 Update system packages:

•	 Open a terminal and update your system packages:
sudo apt-get update 
sudo apt-get upgrade

3.	 Install Nvidia drivers:

•	 Install the latest Nvidia drivers: 
sudo add-apt-repository ppa:graphics-drivers/ppa 
sudo apt-get update 
sudo apt-get install nvidia-driver-460 
sudo reboot

4.	 Install CUDA Toolkit:
•	 Download and install the CUDA Toolkit from the Nvidia 

website. Follow the installation instructions specific to your 
Linux distribution.

5.	 Install MinKNOW:

•	 Add the ONT apt repository
i. ��For Ubuntu 22:

sudo apt update 
sudo apt install wget 
wget -O- https://cdn.oxfordnanoportal.com/
apt/ont-repo.pub| sudo apt-key add -echo 
‘deb http://cdn.oxfordnanoportal.com/apt 
jammy-stable non-free’ | sudo tee /etc/apt/
sources.list.d/nanoporetech.sources.list

ii. For Ubuntu 20:
sudo apt update 
sudo apt install wget 
wget -O- https://cdn.oxfordnanoportal.com/
apt/ont-repo.pub | sudo apt-key add -echo 
‘deb http://cdn.oxfordnanoportal.com/apt 
focal-stable non-free’ | sudo tee /etc/apt/
sources.list.d/nanoporetech.sources.list

•	 Install GPU Version:
sudo apt update 
sudo apt install ont-standalone-minknow- 
gpu-release
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6.	 Verify installation:

•	 Start a test sequencing run to ensure that MinKNOW is using 
the GPU for basecalling and other computational tasks.

Following these steps, you can successfully install MinKNOW with 
GPU support on Windows and Linux systems.

Live classifier. Installation
This section provides a guide for setting up a Python virtual environ-
ment with the necessary dependencies for the live classification on 
Ubuntu Linux. It covers both native Ubuntu installations and Ubuntu 
running inside Windows Subsystem for Linux (WSL).

Ubuntu is the recommended distribution used by ONT. WSL allows 
Windows users to run an Ubuntu environment within Windows, ena-
bling seamless integration between the two operating systems. Setting 
up workflows in these environments allows researchers and developers 
to leverage Linux tools and libraries while maintaining compatibility 
with Windows workflows.

This guide includes steps to install Python v.3.10, set up a virtual 
environment and install all required dependencies. It is applicable for 
both native Ubuntu systems and WSL.

Prerequisites
Before proceeding, ensure that you have administrative access to 

your system, as some commands require elevated privileges. Addition-
ally, if you are using WSL, ensure that you have WSL installed and an 
Ubuntu distribution set up. If you have not installed WSL yet, follow the 
official Microsoft documentation to get started (Install WSL).

Step-by-step guide to install dependencies:

•	 Update package list: 
sudo apt update

•	 Install Python v.3.10: 
sudo add-apt-repository ppa:deadsnakes/ppa 
sudo apt update 
sudo apt install python3.10 python3.10-venv 
python3.10-dev

•	 Ensure that you have the latest version of pip for Python v.3.10: 
curl -sS https://bootstrap.pypa.io/get-pip.py | 
sudo python3.10

•	 Use the venv module to create a virtual environment: 
python3.10 -m venv liveclassifier

•	 Activate the virtual environment: 
source liveclassifier /bin/activate

•	 Ensure that pip is up to date inside the virtual environment: 
pip install–upgrade pip

•	 Install the necessary dependencies for the live classification script: 
pip install -r requirements.txt

This setup ensures that your Python environment is isolated, 
avoiding conflicts with other projects and system-wide packages.

Usage
The main script initializes directories, sets up file watchers and pro-
cesses BAM files for methylation analysis. It uses multiprocessing to 
handle large datasets efficiently. The key steps include reading BAM 
files, processing methylation data and predicting methylation classes. 
Results are aggregated, shown and saved for further analysis.
To run the live classifier, use the following command (be aware that the 
virtual environment needs to be activated first):
live_classifier.py --inputs /path/to/bam 
--output /path/to/output
--sample SampleID --reference hg38
This command specifies the input directory containing BAM files, the 
output directory for results, the sample ID and the EPIC ID reference 
(T2T or HG38).

Required arguments
--inputs (-i): filepath of BAM files. If MinKNOW is used, the path 
to the output directory will be used.
--sample (-s): name of the Sample. Needs to be the same as Sample 
ID in MinKNOW.
--output (-o): path to the output folder. A subfolder with the sample 
name will be created.

Optional arguments
--min_entries: minimum number of new CpG entries for methylation 
classification. The default is 1,000.
--methylation_qsore: minimum Q-Score of basecalled read to be 
considered in methylation classification. The default is 9.
--recursive (-r): recursively monitor subdirectories for BAM files.
--offline: run classification offline. No MinKNOW connection  
is needed.
--methylation_threads: number of threads used for methylation 
data extraction. The default is 8.
--io_threads: number of threads used for io-handling. The default is 2.
--reference: the reference for array probes (BED file linking an EPIC 
ID to a genomic position)—that is, ‘T2T’ or ‘HG38’.
--dev-key: developer Key for MinKNOW API. Only needed if Min-
KNOW is not running on the same machine—for example, WSL.
--filter: string that needs to be present in the path. Useful for filter-
ing on barcodes. If barcode filtering is used, the filter phrase needs to 
be like in the MinKNOW output directory—for example, barcode01.

Usage notes

•	 Ensure that all dependencies are installed.
•	 Customize parameters such as --min_entries, 

--methylation_threads and --io_threads based on your 
computational resources and dataset size.

•	 For real-time analysis, the script can interface with MinKNOW 
API to process data as they are generated.

Starting a live classification
The command to run live_classifier.py is as follows:
live_classifier.py -i <input_directory>
--methylation_qsore <score> -r -s <sample_id>
-o <output_directory> --io_threads <num_io_threads>
--methylation_threads <num_methylation_threads>
--dev_key <device_key> --reference <HG38/T2T>

Important considerations:
1.	 Sample ID (-s parameter):

•	 The -s parameter specifies the sample ID and must match the 
Sample ID used in MinKNOW. This ensures consistency and 
proper identification of the sample throughout the analysis.

2.	 Device key (--dev_key parameter):
•	 If you are running the script in a WSL environment, you need 

to provide a device key using the --dev_key parameter.
•	 On a native Linux system, the script should connect directly 

to the MinKNOW software without requiring a device key.

3.	 Output directory (-o parameter):
•	 Change the -o parameter to an output directory to save pre-

diction and methylation data. For example, -o /path/to/
output_directory.

4.	 Input directory (-i parameter):

•	 The -i parameter specifies the input directory where the 
data are located.

•	 On WSL, this might be /mnt/c/data.
•	 On a native Linux system, this is usually /var/lib/
minknow/data.

•	 The input path is a fallback directory if a connection to  
MinKNOW cannot be established.
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Steps to run the command:
1.	 Prepare the environment:

•	 Open a terminal and activate the virtual environment.

2.	 Run the command:
•	 Execute the live_classifier.py command with the 

appropriate parameters.
3.	 Monitor the run:

•	 Monitor the output and logs to ensure that the script is pro-
cessing data correctly.

4.	 Post-run:
•	 After the sequencing run is stopped, live_classifier.py 

will finish the analysis and write the final methylation data 
and predictions to disk.

Output. The script will generate the following output files in the speci-
fied output directory in a subdirectory named after the Sample ID:

•	 A log file containing the logs of the analysis
•	 A results CSV file containing the methylation prediction results
•	 A methylation data file with the .feather extension containing 

the processed methylation data

Processed methylation data in Apache Arrow Feather format
•	 epic_id: the ID of the epigenetic marker corresponding to the 

Bead-Array
•	 methylation: the probability of methylation
•	 scores_per_read: the amount of CpGs with an epic_id  

on one read
•	 binary_methylation: binary value of methylation with a 

threshold of 0.8 being methylated (not further used)
•	 read_id: the ID of the read
•	 start_time: the start time of the read in seconds since the 

experiment start
•	 run_id: the ID of the run
•	 QS: quality score as reported by the basecaller
•	 read_length: the length of the read
•	 map_qs: the mapping quality score coming from minimap2

The data are sorted by start_time and then written into a feather 
file. Feather (https://arrow.apache.org/docs/python/feather.html) 
is a binary file format that is designed for efficient storage of pandas 
DataFrames. It allows for fast read and write speeds while maintaining 
complete data integrity.

Note: depending on the size of the input data and the number of 
threads specified, the script may require considerable computational 
resources.

Note: the tool is designed to work with specific reference genome 
versions (T2T or HG38). Ensure that the reference specified matches 
the reference used for alignment in the BAM files.

Data integration
At the Kiel site, age, gender, tumor location from patient records and 
imaging and the integrated tumor diagnosis, including WHO grade and 
molecular markers, determined by the Department of Neuropathol-
ogy, University Medical Center Eppendorf, were collected from the 
medical files of all included patients. All patient-identifying data were 
pseudonymized before further use for scientific purposes. If available, 
EPIC methylation results were collected from selected biopsies.

Note: although unfeasible in the intraoperative use case, 
copy number variant calling and tumor purity estimation through 
ichorCNA46 as implemented in the GLIMMERS pipeline31 provided 
valuable additional information.

Caution: sample mix-ups can affect a considerablet portion 
of the datasets. The incidence of sample mix-ups and mislabeled 
specimens in clinical studies varies significantly across different set-
tings, with reported rates ranging from 0.39 per 1,000 to over 1%, 

5.	 If using the rapid barcoding kit (optional):
•	 The --filter parameter may be given to only analyze reads 

that correspond to the specific barcode.
•	 It must match the MinKNOW output subdirectory name—for 

example, barcode01.

Steps to run the command:
1.	 Setup MinKNOW and start sequencing run:

•	 Start MinKNOW and ensure that it is properly configured 
with the Sample ID matching the -s parameter.

•	 Wait until the target temperature is reached.

2.	 Run the command:

•	 Open a terminal and activate the virtual environment.
•	 Start the live classifier command.

3.	 Monitor the run:

•	 Monitor the output and logs to ensure that the script is pro-
cessing data correctly.

•	 The prediction results are also output into the ‘System mes-
sages’ of MinKNOW, so it may be saved alongside the run 
report.

4.	 Post-run:

•	 After the sequencing run is stopped, the live classification 
script will finish the analysis and write the final methylation 
data and predictions to disk.

Offline classification
Below are the instructions for running an offline classification using 
the live_classifier.py script. Note that, in offline mode, the 
--dev_key parameter is not needed, and the --offline parameter 
must be provided.
live_classifier.py -i <input_directory>
--methylation_qsore <score> -r -s <sample_id>
-o <output_directory> --io_threads <num_io_threads>
--methylation_threads <num_methylation_threads>
--offline --reference <HG38/T2T>

Important considerations:
Sample ID (-s parameter):

•	 The -s parameter specifies the Sample ID.
Output directory (-o parameter):

•	 Use the -o parameter to specify an output directory where the 
prediction and methylation data will be saved. 
For example, -o /path/to/output_directory

Input directory (-i parameter):
•	 The -i parameter specifies the input directory where the data 

are located.
•	 On WSL, this might be /mnt/c/data.
•	 On a native Linux system, this is usually /var/lib/minknow/
data.

•	 The input path acts as a fallback directory if a connection to 
MinKNOW cannot be established.

Offline mode (--offline Parameter):
•	 The --offline parameter must be given to indicate that the 

classification is being run in offline mode.
BAM files handling:

•	 BAM files will be read in chronological order.
•	 BAM files may come from different runs (with different run IDs). 

The start times in the output will be logged individually for 
different runs.

•	 Note: there is a known issue in ONT Dorado software where 
experiment start time offsets may be introduced based on the 
system locale. Be aware that start times might be incorrect in 
these cases.
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depending on the specific type of specimen and the clinical environment.  
For instance, the College of American Pathologists documented  
mislabeling rates in various studies, showing a rate of 0.39 per 1,000 in 
120 institutions47, 0.92 per 1,000 in 147 clinical laboratories48 and 1.12% 
in blood bank specimens from 122 clinical laboratories49. In terms of 
the cancer research setting, one study highlighted that sample mix-ups 
can occur in up to 3% of sequencing workflows50.

Note: as the sequencing results were immediately available, con-
sistency checks between nanopore CNV results and expected CNV 
patterns (for example, 1p19q-deletions in oligodendroglioma) proved 
to be very helpful.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data obtained via Nanopore or PacBio sequencing 
have been deposited in the European Genome-Phenome Archive 
(study accession no. EGAS50000000559, Nanopore R9 dataset 
accession no. EGAD50000000832, Nanopore R10 dataset acces-
sion no. EGAD50000000791 and PacBio dataset accession no. 
EGAD50000000798). The methylation values have been depos-
ited in feather format at https://doi.org/10.5281/zenodo.13236096  
(ref. 51). The Supplementary Video has been deposited at https://doi.
org/10.5281/zenodo.13324497 (ref. 52). Previously published 450k 
or EPIC arrays were used for classifier training and evaluation: brain 
normal and cancer data (GSE90496 and GSE109379), metastasis data 
(GSE108576) and sarcoma data (GSE140686). DNA methylation data for 
purity analysis were previously published by Djirackor et al.13 and were 
reprocessed for this study as described above. DNA methylation data 
for the liquid biopsy analysis were directly obtained from the authors 
of the original study32 upon personal communication.

Code availability
MethyLYZR code with a pre-trained model and test data, as well as 
documentation, is available at the following link: https://github.com/
marasteiger/MethyLYZR.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Training of weights for Naïve Bayes classifier.  
a) Correlation matrix of centroids derived from the training of MethyLYZR on 
2,801 CNS 450k methylation arrays, segregated into 91 classes. Utilizing all  
CpGs post-quality control, the majority of centroids exhibit high correlation.  
b) Schematic of ReliefF-algorithm-based calculation of feature weights. Weights 
ωij are calculated for each feature (CpG) and class with index i and j. In brief, for 
every sample within a class Cj, the mean distance to its k-nearest foreign 

centroids (misses: inter-class) is calculated and subtracted by the mean distance 
to all other samples within the same class (hits: inter-class). The proximity of 
samples and centroids is pre-calculated on the full, p-dimensional information. 
CpGs that serve as good and precise predictors for a class will exhibit a smaller 
intra-class than inter-class distance, resulting in a positive weight, and vice versa 
for non-specific CpGs.
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Extended Data Fig. 2 | Grouping of 91 CNS classes into 44 clinically relevant MZ CNS classes. a) 91 CNS tumor classes are consolidated into 44 MZ CNS classes, 
preserving clinically relevant distinctions. Larger fusions are particularly impactful on Low-grade glioma, Pituitary Adenoma, Ependymoma, IDH wild-type 
Glioblastoma, and non-diagnostic control classes.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Evaluation of prediction accuracy per CNS tumor class. 
a) Schematic illustrating the simulation strategy for obtaining in silico converted 
binary methylation events from 450k arrays. Methylation rates per sample serve 
as the probability for a CpG to be methylated on a single molecule. Employing 
a Bernoulli distribution, the methylation rates of 100 molecules are simulated 
for each CpG, resulting in 100 sampled replicates from each 450k methylation 
array. Subsequently, a subset of CpGs (n = 1k, 2.5k, 5k, 7.5k, 10k, 15k, and 20k) is 
randomly sampled and utilized for class prediction of each synthetic replicate. 
b) Accuracy of predictions per CNS class as a function of the number of sampled 
CpGs. The 91 CNS classes are grouped by clinical relevance MZ CNS class.  

In the majority of classes, predictions exhibit improvement with an increasing 
number of CpGs, plateauing at around 5 to 7.5k CpGs. Beyond this threshold, 
further increments in the number of CpGs yield only marginal improvements  
in predictions. Black lines indicate the average accuracy of the MZ CNS class.  
c) Accuracy of predictions per MZ CNS class (n = 44) for different levels of error. 
The error rate indicates the frequency with which a CpG methylation status was 
inverted. The average accuracy is 97.89%, 98.01%, 98.10%, 98.08%, and 97.30% for 
error levels of 0%, 1%, 2.5%, 5%, and 10%, respectively. Boxplots display the median 
as the central line, the interquartile range (IQR; 25th to 75th percentile) as the box, 
and outliers (points beyond 1.5 times the IQR) as dots outside the whiskers.
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Extended Data Fig. 4 | Evaluation of prediction accuracy per CNS tumor class. 
a) Confusion matrix depicting the prediction outcomes for all imputed samples 
using 1k, 2.5k, 5k, 7.5k, 10k, 15k, and 20k CpGs, yielding an overall accuracy of 
86.83% to 95.03% for CNS classes and 92.42% to 97.99% for MZ CNS classes.  

Color key indicates relative frequencies that are normalized to the number of 
samples in each reference class. Misclassification errors are represented by 
deviations from the bisecting line and F1 scores per class are provided on  
the right.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Evaluation of MethyLYZR on models with increased 
complexity. a) F1 scores per MZ CNS class resulting from the prediction of  
100 ×2,801 simulated CNS samples across three models with increasing 
complexity. The F1 scores per MZ CNS class demonstrate no decline of F1 scores 
across the models, suggesting sustained accuracy even with substantially 
expanded model scopes. The three models include 91 CNS classes (light grey),  
91 CNS + 3 metastasis classes (grey), and 91 CNS + 3 metastases + 64 sarcoma 

classes (dark grey). b) F1 scores for each sarcoma or metastases class derived 
from the prediction of 100 ×1,162 simulated samples using a model trained on  
91 CNS, 3 metastases, and 64 sarcoma classes. All F1 scores surpass 0.83, with the 
majority approaching almost 1 (mean: 0.96). Classes that were present in more 
than one reference dataset were fused, labeled as ambiguous, and appropriately 
accounted for.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Evaluation of prediction accuracy on Nanopore 
samples. a) Comparison of times for (1) DNA isolation, (2) library preparation, 
and (3) sequencing for 10 samples run in interoperative settings in the clinics 
(‘Clinical Demonstrators’) with corresponding videos (see Supplementary 
Video). The median times are 22:15 minutes for DNA extraction, 17:10 minutes 
for library preparation, and predictions after 15 minutes of sequencing, resulting 
in the correct diagnosis in all runs (2-4 sequencing runs per sample to validate 
consistency in results, Supplementary Table 10). b) Assessment of a posterior 
probability cutoff for Nanopore samples. The graph illustrates the percentage 
of samples exceeding the threshold for each posterior probability, along with 
the corresponding accuracy based on these samples. Notably, a posterior 

probability of 0.6 or higher resulted in a high percentage of correctly predicted 
samples. c) Comparative analysis of predicted classes derived from Nanopore 
data using MethyLYZR and matching 450k methylation arrays employing the 
Capper classifier version 11b4. At the CNS class level, predictions align in 74.07% 
of cases, while 100% of predictions are in agreement at the clinically relevant MZ 
CNS levels. d) Assessment of predictive power across sequencing times ranging 
from 5 minutes to 72 hours, analyzed individually by runs. The most substantial 
increase in prediction power was observed between 5 and 15 minutes of 
sequencing, with three samples exhibiting either no correct predictions or none 
at all. The color bar on the side depicts the reference class.
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Extended Data Fig. 7 | Evaluation of the barcoded Nanopore cohort and 
technology comparison. a) Barplot visualizing prediction outcome of the 
180 brain cancer biopsies of 13 CNS cancer classes sequenced using barcoding 
on a PromethION R10 flow cell. For 80% of the 180 samples a classification 
was returned with an accuracy of 91.78%. b) Confusion matrix illustrating the 
prediction outcomes for all 180 barcoded Nanopore samples using 7.5k CpGs, 
resulting in an overall accuracy of 91.78% for MZ CNS classes. Misclassification 
errors are depicted by deviations from the bisecting line. c) For a subset of 26 
samples with available intraoperative frozen section neuropathology (left) and 
matching Nanopore sequencing experiments (middle), MethyLYZR’s results 
showed full agreement with the broader rapid frozen section categories and 
more nuanced feedback aligned with current diagnostic groups (right).  
d) Correlation heatmap of the metastasis class kernels (breast cancer, lung 
cancer, and melanoma), showing correlations of >0.93. e) Barplot visualizing 
the 27 brain metastases mainly from lung, colon, and breast. 22 of these were 

predicted with a posterior above 0.6 (7.5k CpGs). 15 of the 22 were identified 
as metastasis and the 7 misclassifications were correctly identified as non-
CNS cancer and assigned to control (n = 4) or hematopoietic (n = 3) groups. 
f) Confusion matrix illustrating the prediction outcomes for all 22 metastasis 
samples using 7.5k CpGs. 15 of the 22 were identified as metastasis and the  
7 misclassifications were correctly identified as non-CNS cancer and assigned  
to control (n = 4) or hematopoietic (n = 3) groups. g) Barplot visualizing  
the prediction outcome of the 16 samples sequenced with Nanopore  
(first 15 minutes, rapid kit, R9) and PacBio HiFi (no posterior threshold due to 
high sequencing quality). h) Heatmap comparing the prediction accuracy of 
different sequencing technologies (EPIC with Capper classifier, PacBio HiFi, 
Nanopore R9 rapid, and R10 barcoded) for 16 samples from 8 different CNS 
classes. i) Visualization of prediction outcomes when using a limited number of 
CpGs (n = 2.5k, 5k, 7.5k, and 10k). All data were down-sampled 10 times to the CpG 
numbers on a per-read sampling basis.
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Extended Data Fig. 8 | Tumor purity affects prediction accuracy. a) Proportions 
of tumor classes of tumor purity (ACE) stratified samples. b) Classification results 
of cell-free DNA from cerebrospinal fluid sequenced with Nanopore sequencing. 
8 samples with limited quality showed less than 2.5k CpGs covered after filtering 
for reads within the expected length for cfDNA of 50-700nt. Annotations on top 
state the age of the donor, the time to/from operation, the estimated tumor cell 
content, and the number of CpGs. c) Classification results of cell-free DNA from 

cerebrospinal fluid sequenced with Nanopore sequencing. 33 samples with more 
than 2.5k CpGs covered after filtering for reads within the expected length for 
cfDNA of 50–700nt are shown. 17 had a tumor fraction above 0.1: one sample 
did not reach the posterior threshold; 15 of 16 were correctly predicted (93%), 
including a metastasis predicted as metastatic (instead of CNS). Annotations on 
top state the age of the donor, the time to/from operation, the estimated tumor 
cell content, and the number of CpGs.
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Extended Data Fig. 9 | MethyLYZR predictions are more accurate than 
Sturgeon on shallow coverage, low CpG methylation information.  
a) Comparative analysis of MethyLYZR, Sturgeon, and nanoDx on the 100 ×2,801 
simulated CNS samples based on 450k methylation array data. Predictions 
were conducted for 5k, 7.5k, and 10k CpGs. MethyLYZR predicts a class in >99% 
of samples with an average accuracy of 94.43%, 95.15%, and 95.25%, whereas 
Sturgeon reports for 89% of the samples a class with an accuracy of 92.61%  
(7.5k CpGs) and nanoDx in 42% with 98.69% (7.5k CpGs) accuracy (correct class,  
but below default reporting threshold indicated by blue diagonal lines). Of note, 
nanoDx has to re-train and thus requires more than 20 minutes per sample.  
b) Comparative analysis of MethyLYZR, Sturgeon and nanoDx on our 75 
Nanopore runs. Predictions were conducted for CpGs that were sequenced 

within the first 15 minutes. MethyLYZR predicts a correct class in 94.52% out of 
97.33% of samples, while Sturgeon only predicts 91.94% out of 82.67% of samples 
correctly and nanoDx predicts 98.69% out of 42% of samples correctly (correct 
class, but below default reporting threshold indicated by blue diagonal lines).  
c) Comparative analysis of Sturgeon and nanoDx matching the MethyLYZR 
analysis in Fig. 4c (Nanopore samples stratified by tumor purity, 73 of 94 
predicted in full dataset, 82.19% accuracy). Of note, the predictions are based 
on only 7.5k CpGs to simulate 15 minutes of sequencing. While Sturgeon shows 
an accuracy of 75.95% (79/94 samples predicted), nanoDx shows an accuracy 
of 100% but low number of above-threshold classifications (43/94 samples 
predicted) and also 100% without the default threshold (correct class, but below 
default reporting threshold indicated by blue diagonal lines).
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