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Abstract: Receptor–ligand interactions at cell interfaces initiate signaling cascades essential for
cellular communication and effector functions. Specifically, T cell receptor (TCR) interactions with
pathogen-derived peptides presented by the major histocompatibility complex (pMHC) molecules
on antigen-presenting cells are crucial for T cell activation. The binding duration, or dwell time,
of TCR–pMHC interactions correlates with downstream signaling efficacy, with strong agonists
exhibiting longer lifetimes compared to weak agonists. Traditional surface plasmon resonance (SPR)
methods quantify 3D affinity but lack cellular context and fail to account for factors like membrane
fluctuations. In the recent years, single-molecule Förster resonance energy transfer (smFRET) has
been applied to measure 2D binding kinetics of TCR–pMHC interactions in a cellular context. Here,
we introduce a rigorous mathematical model based on survival analysis to determine exponentially
distributed receptor–ligand interaction lifetimes, verified through simulated data. Additionally, we
developed a comprehensive analysis pipeline to extract interaction lifetimes from raw microscopy
images, demonstrating the model’s accuracy and robustness across multiple TCR–pMHC pairs.
Our new software suite automates data processing to enhance throughput and reduce bias. This
methodology provides a refined tool for investigating T cell activation mechanisms, offering insights
into immune response modulation.

Keywords: single-molecule FRET; single-molecule microscopy; receptor-ligand interaction;
T cell receptor; bond lifetime quantification; T cell activation; antigen sensitivity; simulation;
survival analysis

1. Introduction

A cell’s means of communicating with the outside world depends on the screening
and specific binding to molecular recognition patterns in order to react to or impact the
cellular environment. Hence, the molecular binding dynamics of receptor–ligand pairs
at the interface of cells are at the very beginning of many signaling cascades leading to
essential effector functions.

Receptor–ligand interactions can be discriminated into the interaction of soluble
ligands with their respective membrane-associated receptors (3D environment), or the inter-
action of ligands attached to a solid phase, be it another cellular membrane or extracellular
components (2D environment). The immune system has a variety of highly motile cells in
its arsenal in order to scan for sources of antigen. One of these prominent receptor–ligand
interactions are essential for the effector functions of T cells, a key player of the adaptive
immune system. Pathogen-derived peptides are presented by the major histocompatibility
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complex (pMHC) proteins at the surfaces of antigen-presenting cells, while T cells scan for
these complexes via their T cell receptors (TCRs).

The binding duration (or dwell time) of the pMHC complex to the TCR is a direct
reflection of its affinity and other physicochemical parameters. Affinity [1] as well as on-
and off-rates [2] are in line with quantitative parameters of the downstream signaling
cascades leading to T cell activation. Strong agonistic interactions often exhibit several
seconds to tens of seconds length, whereas weak agonists can feature lifetimes of less
than 100 ms, as shown for CD4+ [1] and CD8+ [3] T cells. The rates of unbinding are
therefore relevant read-out parameters at the state of signal initiation for a multitude
of immunological assays. This is especially important since the mere measurement of
3D affinity is often not enough to predict the stimulatory potency of antigenic peptides.
Additional aspects such as binding geometry [4], mechanical forces [5], and membrane
geometry and composition as well as binding cooperativity [6] need to be considered.

The standard approach for quantification of affinity and binding kinetics utilizes sur-
face plasmon resonance (SPR) to study the interaction of purified recombinant TCRs and
pMHCs of interest [4,6]. This method sensitively quantitates the 3D affinity of the inter-
action partners, but does not provide any cellular context and hence does not encompass
cellular interactions such as adhesion factors, co-stimulation, or coreceptor engagement. Es-
pecially, the impact of external forces, membrane fluctuation and protein flexibility cannot
be estimated by SPR [6]. An alternative approach for receptor–ligand interaction lifetime
quantification in 2D uses fluorescence microscopy and is based on single-molecule Förster
resonance energy transfer (smFRET) [7]. In this method, a functionalized glass-supported
lipid bilayer (SLB) is used as mimicry of the surface of an antigen-presenting cell. Besides
adhesion and co-stimulation factors, it contains MHCs loaded with fluorescently labeled
peptides that act as FRET acceptors; the corresponding TCRs of SLB-interacting T cells are
fluorescently labeled with a specific antibody fragment providing the FRET donor molecule.
Whenever the two binding partners engage, the donor molecule transfers its energy to
the acceptor molecule and a FRET signal can be observed. From multiple single-molecule
FRET signals the interaction lifetime of the receptor–ligand pair can be quantified. The
2D binding kinetics measured in such a way are in line with the downstream signaling
outcome [7,8].

This study introduces a rigorous mathematical model for determination of exponen-
tially distributed receptor–ligand interaction lifetimes based on the statistical framework of
survival analysis. The model is verified and characterized using simulated data. Addition-
ally, a comprehensive analysis pipeline to infer interaction lifetimes from raw microscopy
image data is presented and applied to experimental data from several TCR–pMHC pairs.

The new algorithm yields accurate and robust results and allows for determination
of TCR–pMHC interaction lifetimes across several orders of magnitude. Furthermore, we
created a new analysis software suite [9] which strives to rely on automated processing as
much as possible to optimize throughput and to minimize subjective criteria which could
lead to biased data presentation.

2. Materials and Methods
2.1. Animal Model

5c.c7 αβ TCR-transgenic mice (Tg(Tcra5CC7,Tcrb5CC7)IWep, PMID: 1328464) bred
onto the B10.A background were a kind gift from Michael Dustin (University of Oxford,
UK). The mice were housed in groups of 2–5 per cage in the pathogen-free facility at the
Medical University of Vienna, Austria. Spleens and lymph nodes were harvested from
12–16 weeks old gender-mixed mice.

Spleens of AND-TCR transgenic B10.BR animals (Tg(TcrAND)53Hed, PMID: 2571940)
were removed and sent in Dulbeccos’s Modified Eagle’s Medium (DMEM)/1% Bovine
serum albumin (BSA) to the Medical University of Vienna on ice. The mice were genotyped
by polymerase chain reaction (PCR) or by cytometry and housed in groups of 2–5 animals
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per cage in the specific pathogen-free Core Facility Animal Models at the Biomedical Center
of LMU Munich, Germany.

2.2. Tissue Culture

Splenocytes or lymphocytes of 5c.c7 and AND αβ TCR-transgenic mice were iso-
lated and pulsed with 2 µM C18 reverse-phase high-performance liquid chromatography
(HPLC)-purified moth cytochrome C (MCC) (88-103) peptide (sequence: ANERADLI-
AYLKQATK; Intavis, Tübingen, Germany) and 50 U mL−1 IL-2 (eBioscience, San Diego,
CA, USA) for 7 days to arrive at a transgenic T cell culture [10]. T cells were maintained at
37 °C in an atmosphere of 5% CO2 in RPMI 1640 media (Life technologies, Carlsbad, CA,
USA) supplemented with 100 µg mL−1 penicillin (Life technologies, Carlsbad, CA, USA),
100 µg mL−1 streptomycin (Life technologies, Carlsbad, CA, USA), 2 mM L-glutamine (Life
technologies, Carlsbad, CA, USA), 10% fetal calf serum (FCS; Biowest, Nuaillé, France),
0.1 mM non-essential amino acids (Lonza, Basel, Switzerland), 1 mM sodium pyruvate (Life
technologies, Carlsbad, CA, USA) and 50 µM β-mercaptoethanol (Life technologies, Carls-
bad, CA, USA). After expansion, debris and dead cells were removed by Histopaque-1119
(Merck KGaA, Darmstadt, Germany) density gradient centrifugation. Antigen-experienced
T cells were used for experiments from day eight to ten.

2.3. Formation of Functionalized Lipid Bilayers

Lipids dissolved in chloroform were mixed (98 mol-% POPC (1-palmitoyl-2-oleoyl-
glycero-3-phosphocholine) plus 2 mol-% DGS-NTA(Ni) (1,2-dioleoyl-sn-glycero-3-[(N-(5-
amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel salt)); Avanti Polar Lipids, Inc.,
Alabaster, AL, USA) and subsequently dried under a nitrogen stream for 20 min in a glass
test tube (Schott FIOLAX 12 × 75 mm, Carl Roth, Karlsruhe, Germany). After resuspension
in 1 mL Dulbecco’s Phosphate Buffered Saline (DPBS; Merck KGaA, Darmstadt, Germany),
they were sonicated for 10 min in an ultrasound water bath (USC500TH, VWR, Lutterworth,
UK) at room temperature. The resulting small unilamellar vesicle solution was diluted to
125 µM using DPBS.

The original cover slip of an eight-well chamber (Nunc Lab-Tek, Thermo Fisher
Scientific, Waltham, MA, USA) was replaced by attaching a plasma-treated (10 min; PDC-
002 Plasma Cleaner, Harrick Plasma Inc, Ithaca, NY, USA) microscopy cover slip (MENZEL-
Gläser Deckgläser 24 × 60 mm #1.5) using duplicating silicone (Twinsil soft 18, picodent,
Wipperfürth, Germany). 150 µL of vesicle solution was filled into each well and left
to incubate for 20 min at room temperature. Subsequent washing with DPBS removed
excess vesicles.

Into each well, 30 ng of histidine (his)-tagged murine intercellular adhesion molecule
(ICAM) 1, 50 ng of his-tagged murine B7-1, and 2 ng of his-tagged IEk-MCC-Alexa Fluor
647 (for experiments with murine T cells) were added and left for incubation for 75 min.
Unbound excess proteins were washed away using DPBS.

2.4. Protein Expression and Refolding

The TCR β-reactive H57 single-chain fragment (scFV) (J0, GenBank: MH045460.1)
and the fluorescently labelled H57 scFV (J1, GenBank: MH045461.1) were produced as
described [11]. In short, scFV constructs were expressed in Escherichia coli and inclusion
bodies were extracted. H57 scFVs were refolded in vitro, concentrated, and purified by gel
filtration. The monomeric H57 scFV (J1) was conjugated with Alexa Fluor 555 C2 Maleimide
(Thermo Fisher Scientific, Waltham, MA, USA). Protein-to-dye ratios of site-specifically
decorated H57 scFV-Alexa Fluor 555 were 1.0.

The murine MHC class II molecule IEk α subunits (with a 12× histidine-tag) and
the β subunits were expressed in E. coli as inclusion bodies and refolded in vitro with
a fluorescently labelled MCC peptide as described [11]. In short, his-tagged IEk/MCC
was refolded and purified via nickel–nitrilotriacetic acid (Ni-NTA)-based affinity chro-
matography followed by gel filtration. MCC peptides were site-specifically labelled via
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Alexa Fluor 647 C2 Maleimide (Thermo Fisher Scientific, Waltham, MA, USA) and purified
as described [11].

Murine recombinant ICAM-1-10xHis and B7-1-10xHis were purchased from Sino
Biological (Beijing, China).

2.5. Single-Molecule Fluorescence Microscopy

By means of an objective with high numerical aperture (α Plan-FLUAR 100×/1.45 oil
, Carl Zeiss GmbH, Oberkochen, Germany), objective-type total internal reflection (TIR)
illumination of fluorophores was realized. Donor fluorophores (Alexa Fluor 555, Life
technologies, Carlsbad, CA, USA) were excited with a 532 nm laser (LCX-532L with L1C-
AOM, Oxxius, Lannion, France), acceptor fluorophores (Alexa Fluor 647, Life technologies,
Carlsbad, CA, USA) with a 640 nm laser (OBIS 640, Coherent Inc., Saxonburg, PA, USA). A
quad-band dichroic mirror (Di01-R405/488/532/635-25 × 36, Semrock part of IDEX Health
& Science, LLC, Rochester, NY, USA) separated the emission beam from the excitation
light. With the help of a beam splitter device (Optosplit II, Cairn Research, Faversham, UK)
employing a dichroic mirror (FF640-FDi01-25 × 36, Semrock part of IDEX Health & Science,
LLC, Rochester, NY, USA) and bandpass filters (ET570/60m and ET675/50m, Chroma Tech-
nology Corp, Bellows Falls, VT, USA), donor and acceptor fluorophore emission images
were projected side by side onto the chip of an electron multiplying charge-coupled device
(EM-CCD) camera (Andor iXon Ultra 897, Andor Technology Ltd., Belfast, UK). The mi-
croscope and peripherals were controlled by using the SDT-control software (version 2.18,
developed in-house).

Stroboscopic illumination of fluorophores was synchronized with camera read-out.
For the main illumination sequence, the following operations were repeated a pre-defined
number of times: (a) read out of the camera chip to remove charges from stray light,
(b) excitation of donor fluorophores and simultaneous recording of donor and acceptor
emission, (c) pause for a pre-defined amount of time to achieve the desired recording rate.

The number of repeats was typically chosen to allow monitoring a single cell for
several minutes. Before and after this sequence, a single image upon acceptor excitation
was recorded to assess the integrity of the lipid bilayer.

TCRs were fluorescently labeled as follows: 106 cells in medium were centrifuged
for 3 min at 350 g. Consecutively, the supernatant was removed, leaving the cells in
roughly 60 µL of medium. 45 ng of unlabeled and 15 ng of fluorescently labeled H57-scFV
were added in 5 µL of DPBS and left for incubation on ice for 20 min. Excess scFV was
washed away by adding 5 mL of Hank’s Buffered Salt Solution (HBSS; Merck KGaA,
Darmstadt, Germany) + 2% fetal calf serum (FCS; Merck KGaA, Darmstadt, Germany) at
4 °C, centrifuging for 3 min at 350 g and 4 °C and removing the supernatant. Cells were
subsequently kept on ice.

Immediately before microscopy measurements, the buffer in the wells containing SLBs
was exchanged for HBSS + 2% FCS (pre-warmed to the temperature of interest). 105 T cells
were added and left to attach for 2–3 min.

2.6. Calcium Flux Measurements

T cell quality was monitored via calcium flux experiments in parallel to the single-
molecule FRET experiments. Intracellular calcium levels were measured with the ratio-
metric dye Fura-2-AM (Thermo Fisher Scientific, Waltham, MA, USA) as published [12].
1–2 × 106 T cells were incubated with 2 µM Fura-2-AM (Life technologies, Carlsbad, CA,
USA) in T cell growth medium for 15–20 min at room temperature and subsequently
washed with warm (room temperature) imaging buffer (1x HBSS (Life technologies, Carls-
bad, CA, USA) supplemented with 2% FCS (Biowest, Nuaillé, France), 2 mM CaCl2 and
2 mM MgCl2 (MerckKGaA, Darmstadt, Germany)). Immediately afterwards, T cells were
seeded onto functionalized SLBs featuring either unlabeled B7-1 and ICAM-1 (100 µm−2)
as negative control, or additionally unlabeled IEk/MCC (100 µm−2) as positive control.
Calcium response was recorded at room temperature. Fura-2 was excited with a monochro-
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matic light source (Polychrome V, TILL Photonics, Gräfelfing, Germany) coupled to a Zeiss
Axiovert 200 M equipped with a 10× objective (UPlanFL N 10×, NA = 0.3, Olympus, Tokyo,
Japan), a 1.6× tube lens, a long-pass filter (T400lp, Chroma Technology Corp, Bellows
Falls, VT, USA), an emission filter ET510/80 (Chroma Technology Corp, Bellows Falls,
VT, USA) and an EM-CCD camera (Andor iXon 897, Andor Technology Ltd., Belfast, UK).
Imaging was performed with excitation at 340 and 380 nm with illumination times of
50 and 10 ms, respectively. The total recording time was 10 min with one image per second.
Calcium image analysis was carried out with a custom software written in the MATLAB
(Mathworks, Inc., Natick, MA, USA) language [13].

2.7. Maximum Likelihood Estimation (MLE) of Apparent Lifetimes

For the inference of apparent lifetimes from single-molecule track lengths by means
of survival analysis, the lifelines Python package [14] was used. Maximizing the likeli-
hood derived in Section 3.1 is implemented in the lifelines.ExponentialFitter class via the
fit_interval_censoring method, which yields the maximum likelihood estimate and its
standard error.

To perform “conventional” MLE (i.e., no proper handling of traces continuing beyond
the observation window), we calculated the mean track length shifted by tmin. The result
was additionally shifted by half a recording interval to account for the fact that the signal
vanishes sometime between two recordings. This results in τapp = mean{ti − tmin}+ 0.5∆t
using the nomenclature from Section 3.1.

2.8. Fitting of the Characteristic Lifetime

Having inferred apparent lifetimes at different recording intervals, Equation (1) was fit
by means of a non-linear least squares method using the optimize.curve_fit function from
the SciPy Python package [15]. Apparent lifetimes’ standard errors were used as weights
for the fit. To estimate the uncertainty of the fit results, the square roots of the resulting
covariance matrix’s diagonal elements was computed. The lower and upper bound of
the uncertainty band in apparent lifetime vs. recording interval plots were computed via
Equation (1) by substituting fit results minus and plus standard errors, respectively.

2.9. Simulation of Single-Molecule FRET Time Traces

Generation of on- and off-state changes of the FRET signals proceeded in the same
manner as simulation of state transition trajectories described previously [16]. In short,
durations of on-state and off-state were randomly drawn from exponential distributions
with decay time parameters τapp and τoff. These durations were concatenated to form a
trajectory. τapp was set according to Equation (1) with cb = 30, which is in the typical range
of values determined from experiments, τlt = 10 s, and ∆t as indicated in Section 3.2. τoff
was fixed as 103 s.

Next, the trajectories were sampled at fixed intervals ∆t for a duration tobs (observation
window) to simulate stroboscopic illumination, starting after a predefined time (2000 s) to
allow for transients to subside. The number of consecutive samples in which a trajectory
was in the on-state, corresponding to the number of frames a FRET signal was visible in
an experiment (termed ni in Section 3.1), was used to test our method (Section 3.2). The
number of sampling points nsamp (see Supplementary Tables S1 and S2 for the respective
values), and thus the observation window tobs = nsamp∆t, was adjusted for each ∆t to yield
more trajectories present at the beginning or at the end of the measurement window, and
fewer that fully lie within the window than in a typical experiment (see Supplementary
Figures S1–S3) to further challenge our algorithm.

2.10. Microscopy Data Analysis

Extraction of single-molecule FRET time traces from raw microscopy images relied
heavily on methods provided by the sdt Python package [17]. The sdt.roi.ROI class allowed
for defining the emission channels within raw images. The single-molecule localization
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algorithm [18] implemented in the sdt.loc.cg module was used to detect fluorescent beads
for image registration as well as the single-molecule FRET signals. Signal intensities
were measured by summing pixel intensity values in a region around respective positions
via the sdt.brightness.from_raw_image function. Image registration was done using the
sdt.multicolor.Registrator class. The trackpy Python package [19] was utilized to perform
single-molecule tracking. Each track was extended by 5 frames before the first and after the
last frame by measuring the intensity at the first and last position of the track, respectively.
This permitted employing a changepoint detection algorithm (PELT [20] as implemented
in the sdt.changepoint module) for stepwise bleaching analysis of smFRET signals.

All analysis steps are integrated into our software GUI application, which leverages
functionality from the sdt.gui sub-package. Plots were created using the matplotlib Python
package [21].

3. Results

This study presents a new approach for extraction of average lifetime estimates from
single molecule FRET microscopy data. To exploit FRET for the determination of receptor–
ligand interaction lifetimes, receptors need to be fluorescently labeled with one constituent
of a FRET pair, while ligands need to carry the other constituent. Fluorophores, as well as
their attachment sites and -strategies, have to be chosen such that their spatial separation is
less than or roughly equal to the Förster radius R0 when receptor and ligand are bound.
Figure 1a illustrates this for TCR and pMHC as interaction partners, for which bond
lifetimes have been successfully measured [7]. If binding events are rare enough, they
appear as single-molecule FRET events (Figure 1b), which can be traced over time and
allow for measurement of their durations (Figure 1c).

Single-molecule tracks may, however, not only end because of receptor–ligand unbind-
ing, but also because of photobleaching of one of the fluorophores forming the FRET pair.
Since labeling density is high in both the donor and the acceptor channel (Figure 1b), it is
not possible to separate the causes directly e.g., by means of alternating laser excitation [22].
Instead, we rely on the observation that the interaction lifetime is independent of the fluo-
rophore illumination, while the photobleaching rate is not. Hence, the true characteristic
lifetime can be inferred from datasets recorded with different intervals between consecutive
frames [7].

In the following, we present

• a mathematical model for accurate determination of binding lifetimes from single-
molecule tracking data (Section 3.1),

• characterization of the model by evaluating simulated data and comparing the results
to the known ground truth (Section 3.2),

• an efficient data analysis pipeline (Section 3.3), which we implemented in an easy-to-
use, free and open source software application, and

• application of said analysis pipeline to experimental data from TCR–pMHC pairs with
lifetimes spanning several orders of magnitude (Section 3.4).

3.1. Mathematical Framework

We model the bond lifetimes Tlt as exponentially distributed random variables,
Tlt ∼ Exp(λlt) [7,23]. Fluorophore survival times with respect to photobleaching Tb are
also assumed to be exponentially distributed, Tb ∼ Exp(λb). Since these are compet-
ing processes, the apparent lifetimes Tapp measured in the experiment are exponentially
distributed as well, Tapp ∼ Exp(λlt + λb).
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Figure 1. Experimental method. (a) Measurement of TCR–pMHC interaction times. T cell receptors
are labeled using an H57 scFV carrying the FRET donor fluorophore (Alexa Fluor (AF) 555). A
functionalized SLB carrying adhesion proteins (ICAM-1), co-stimulatory molecules (B7-1, not shown),
and pMHC acts as an antigen presenting cell surrogate. The pMHC presents a stimulatory peptide
labeled with the FRET acceptor fluorophore (Alexa Fluor (AF) 647). Only when a ligand is bound to a
receptor, fluorophores are close enough (separated by about their Förster radius R0) to enable FRET.
(b) Resulting microscopy image data. Left: Emission of donor fluorophores (TCR labels) upon donor
excitation (beginning of the recording). Cell contours were determined via adaptive thresholding.
Center: Acceptor fluorophores labeling SLB-bound pMHC upon acceptor excitation (beginning of the
recording). Right: FRET signals (acceptor emission upon donor excitation), indicating TCR–pMHC
bond, are pointed out by the arrows (77th frame of the recording). (c) Exemplary single-molecule
FRET time trace. The time trace of the rightmost signal from (b) appears and vanishes in single,
discrete steps and exhibits a plateau, suggesting single-molecular origin.

When using stroboscopic illumination, i.e., fluorophores are only excited during the
image acquisitions, but not in between, the photobleaching rate λb is proportional to the
acquisition rate and therefore inversely proportional to the interval ∆t between images.
Mathematically, λb = 1

cb∆t for some constant cb. The characteristic apparent lifetime

τapp := 1
λlt+λb

is thus a function of ∆t,

τapp(∆t) =
1

1
τlt

+ 1
cb∆t

, (1)

where τlt := 1
λlt

is the characteristic bond lifetime. With apparent lifetimes τapp inferred
from tracking data recorded at various ∆t, τlt (and also cb) can therefore be determined by
fitting Equation (1).
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For fixed ∆t, the single-molecule FRET tracking experiment yields a set of frame counts
ni, which is defined as the number of frames the i-th bound ligand’s signal is counted
within the recording window. In order to accurately determine the characteristic apparent
lifetime τapp(∆t), the following aspects need to be considered:

1. The exact moment of unbinding is unknown. If a signal is detectable until the j-th
frame (j < last frame), whereafter it disappears, the unbinding / bleaching time point
lies between the j-th and the (j + 1)-th frame. A signal can also be still present at the
end of a recording.

2. The exact time of binding is unknown. If a signal first appears in the j-th frame (j > 1),
the time of binding lies between the (j − 1)-th and the j-th frame. A signal can also be
already present at the start of a recording.

3. To distinguish actual single-molecule FRET tracks from short-lived noise e.g., due to
cellular background fluctuations, one may wish to introduce a minimum length nmin
for tracks to analyze.

We employ survival analysis to take these issues into account. For a comprehensive
introduction to survival analysis, refer e.g., to Klein and Moeschberger [24]. In order to
infer the τapp, we perform maximum likelihood estimation. To this end, the log-likelihood

log ℓ(τ) = ∑
i

log ℓi(τ) (2)

is maximized with respect to τ, where ℓi(τ) is the likelihood contribution of the i-th single-
molecule track’s frame count ni. τ denotes the characteristic decay time (i.e., the inverse of
the rate parameter) of the exponential distribution.

Considering only the first aspect in the list above, a track detected for a time
ti := (ni − 1)∆t yields

ℓ
(1)
i (τ) = P(ti ≤ Tapp ≤ ti + ∆t; τ) (3)

if the signal ceased before the end of the observation window and

ℓ
(1)
i (τ) = P(ti ≤ Tapp; τ) (4)

otherwise.
Receptor and ligand generally start to interact an unknown time ti,pre before the first

exposure (aspect #2; see also Figure 2), which needs to be added to ti (i.e., ti 7→ ti + ti,pre) in
the equations above. The fact that the receptor–ligand pair would escape detection if its
binding duration was shorter than ti,pre needs to be accounted for by probabilities being
conditional on Tapp ≥ ti,pre. The i-th likelihood contribution accommodating both aspects
#1 and #2 is thus given by

ℓ
(1,2)
i (τ) = P(ti + ti,pre ≤ Tapp ≤ ti + ti,pre + ∆t | Tapp ≥ ti,pre; τ) (5)

for tracks disappearing during the measurement and

ℓ
(1,2)
i (τ) = P(ti + ti,pre ≤ Tapp | Tapp ≥ ti,pre; τ) (6)

for tracks still present at the end.
Since the exponential distribution is memory-less, i.e., P(T > x+ y | T > x) = P(T > y),

these expressions reduce to

ℓ
(1,2)
i (τ) = P(ti ≤ Tapp < ti + ∆t; τ) and ℓ

(1,2)
i (τ) = P(ti ≤ Tapp; τ), (7)

respectively.
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Figure 2. Illustration of variables defined for survival analysis. The green line indicates a potential
smFRET trace. Within the observation window, microscopy images are recorded repeatedly at
intervals ∆t, depicted by purple vertical lines. A binding event takes place some time ti,pre before
being recorded in a microscopy frame. After its apparent lifetime, which we interpret as a realization
of the (exponentially distributed) random variable Tapp, FRET is terminated as a result of unbinding
or photobleaching. The measured duration ti is derived from the number of frames ni in which the
smFRET signal was detectable.

The minimum frame count nmin (aspect #3) is taken into account by modifying the
expressions above to be conditional on Tapp ≥ tmin := (nmin − 1)∆t. The full expressions
for the i-th likelihood contribution are therefore as follows:

ℓi(τ) = P(ti ≤ Tapp < ti + ∆t | Tapp ≥ tmin; τ) =
P(ti ≤ Tapp < ti + ∆t; τ)

P(Tapp ≥ tmin; τ)
(8)

for tracks terminating before the end of the observation window and

ℓi(τ) = P(ti ≤ Tapp | Tapp ≥ tmin; τ) =
P(ti ≤ Tapp; τ)

P(Tapp ≥ tmin; τ)
(9)

for tracks outliving the observation window.
The exponential distribution’s cumulative distribution function (CDF)

F(ti; τ) = 1 − exp
(
− ti

τ

)
can be used together with the identity P(Tapp ≤ ti; τ) = F(ti; τ)

to arrive at the functional dependencies

ℓi(τ) =

(
exp

(
− ti

τ

)
− exp

(
− ti + ∆t

τ

))
exp

(
tmin

τ

)
(vanishing tracks) and (10)

ℓi(τ) = exp
(
− ti

τ

)
exp

(
tmin

τ

)
(surviving tracks). (11)

Performing experiments employing a recording interval ∆t yields a set of values ti
which, using the expressions above, define the (log) likelihood function
log ℓ(τ) = ∑i log ℓi(τ). Numerical methods (see Section 2.7) allow for maximizing this
likelihood with respect to τ, i.e., finding the value τMLE

app for which log ℓ(τ) is maximal. τMLE
app

is the maximum likelihood estimate of the characteristic apparent lifetime τapp. Repeating
this process for multiple values of ∆t yields pairs (∆t, τMLE

app (∆t)), which permit inference
of the interaction lifetime τlt by fitting Equation (1).

3.2. Characterization Using Simulated Data

In order to test and characterize our algorithm, we simulated smFRET time traces
and analyzed them as described in the previous section. The traces were generated by
switching molecules between dark and bright states with exponentially distributed lifetimes
characterized by τoff and τapp, respectively. The traces were sampled at a predefined number
of discrete time points separated by ∆t after an initial time to simulate the image acquisition
process. This process is depicted in Figure 3a. For further information as well as the
numerical parameter values used, refer to methods Section 2.9.
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As a proof of concept, we generated a large dataset (about 2500 FRET traces per
∆t, i.e., 25 times the size of a typical experimental dataset) to keep the influence of
random fluctuations low. Figure 3b shows a histogram of the track lengths at a single
∆t = 3 s. Employing survival analysis, we were indeed able to infer an accurate estimate
τapp = (8.97 ± 0.20) s of the true value τapp = 9.0 s. Notably, attempting to determine
the apparent lifetime solely from frame counts—i.e., disregarding the fact that traces may
live beyond the observation window (conventional MLE, see Section 2.7 for details)—can
lead to a bias towards shorter lifetimes (τapp = (7.46 ± 0.14) s). From datasets generated
at several different ∆t (Figure 3c), an accurate estimate for the characteristic interaction
lifetime τlt = 10 s could be obtained if apparent lifetimes τapp(∆t) were inferred using
survival analysis (τlt = (9.89 ± 0.19) s). Failure of properly handling traces exceeding the
observation window is cause for underestimation (τlt = (8.39 ± 0.14) s)).
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Figure 3. Proof of concept using simulated data. (a) Simulation of time traces (green). FRET signals
are switched on and off with exponentially distributed lifetimes. Microscopy image acquisitions
correspond to sampling the time trace at time points separated by an interval ∆t, illustrated by the
vertical lines. Possible scenarios taken into account via survival analysis (Section 3.1) are indicated by
the annotated arrows. (b) Inference of τapp. The histogram depicts simulated track lengths for fixed
∆t = 3 s for three scenarios: (i) signals are present at the start of the recording window, (ii) at the end
of the recording window, (iii) they lie fully within the recording window. The probability density
function (PDF) derived using survival analysis (green line) is virtually indistinguishable from the
true PDF (red dotted line). Analysis utilizing conventional maximum likelihood estimation (MLE,
see also Section 2.7) yields a clear deviation in the PDF (purple line) and a value for τapp which is too
low. (c) Determination of the binding lifetime τlt. Datasets as in (b) were simulated and analyzed for
different ∆t. Red crosses mark the simulated values for τapp, green dots indicate values determined
using survival analysis, and purple dots denote values inferred via conventional MLE. Equation (1)
was fit to the resulting τapp(∆t), of which results are shown as dotted red line, green line, and purple
line, respectively. The shaded areas indicate corresponding error margins.
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Next, we wanted to explore the impact of the choice of recording intervals ∆t with respect
to the a priori unknown interaction lifetime τlt. To this end, we simulated 500 experiments
with ground truth τlt = 10 s for each of three different sets of ∆t and evaluated their results
(Figure 4a). To resemble the typical experimental dataset size, around 100 FRET time traces
were generated for each ∆t. The following interval sets were investigated:

• short intervals: 0.05, 0.1, 0.15, 0.25, 0.4 s. These lie on the steep left part of the
τapp vs. ∆t curve given by Equation (1).

• medium intervals: 0.25, 0.5, 1.0, 2.0, 3.0 s, which cover the bend of the τapp vs. ∆t curve.
• long intervals: 2, 3, 4, 5, 6 s, which lie on the flat right part of the τapp vs. ∆t curve.
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Figure 4. Method robustness characterized using simulated data. (a) Choice of recording intervals
∆t. Three exemplary sets of recording intervals were chosen. Their location on the τapp vs. ∆t curve
(Equation (1)) is shown in the left panel. The boxplots in the right panel summarize the bond lifetimes
τlt as determined from 500 simulated experiments with respective ∆t sets. Analysis was performed
using both our survival analysis-based method and conventional MLE. The ground truth τlt = 10 s
is indicated by the dashed line. (b) Dataset size. Using the medium ∆t set from (a), experiments
yielding varying numbers of FRET time traces were simulated (500 experiments per size category).
The mean numbers of traces per recording interval are indicated in the left panel (error bars: standard
deviations). Bond lifetimes τlt inferred from the datasets are charted in the right panel. As in (a),
our new method is compared to conventional MLE. The ground truth τlt = 10 s is plotted as a
dashed line.

As shown in the right panel of Figure 4a, medium intervals yield the most precise
results (τlt = (9.9 ± 1.0) s mean ± std across the simulated experiments), followed by long
intervals (τlt = (10.2 ± 1.4) s). Short intervals also permit accurate results, however with
worse precision (τlt = (10.4 ± 2.9) s). Also note that the fit failed (i.e., did not converge,
yielded infinite covariance or a large negative value) for short intervals in two and for
long intervals in one of the simulated experiments. Analysis without proper consideration
of traces outliving the observation window (conventional MLE) leads to systematic bias
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towards lower values ((8.5 ± 2.0) s, (8.4 ± 0.7) s, and (9.5 ± 1.2) s mean ± std for the short,
medium, and long interval sets, respectively).

In order to determine the effect of the size of the experimental dataset on the results
(Figure 4b), we generated 500 experiments consisting of small (about 50 smFRET traces per
∆t), medium (around 100 traces; typical experiment), and large datasets (approximately
200 traces). Other parameters were the same as with medium intervals above. Increasing
the dataset size increases the precision (small: τlt = (9.8± 1.5) s, medium: τlt = (9.9± 1.0) s,
large: τlt = (10.0 ± 0.7) s). Notably, hardly any outliers occur in medium-sized and large
datasets. Especially for the larger datasets yielding higher-precision results, the necessity
of proper survival analysis becomes very evident. Without, the interaction lifetime is
substantially underestimated ((8.3 ± 1.1) s, (8.4 ± 0.7) s, and (8.4 ± 0.5) s for the small,
medium, and large datasets, respectively).

3.3. Data Analysis Pipeline

As a prerequisite to the determination of interaction lifetimes, smFRET tracking data
needs to be extracted from microscopy recordings. To this end, we developed an analysis
pipeline, which we implemented in an efficient and straightforward software application [9].
The software features permits input of the excitation sequence, definition of the emission
channels, optional image registration using fiducial markers, bleed-through correction, and
single-molecule localization and tracking. As a novum the single-molecule inspection is
assisted by automatic detection of photobleaching events and various filter settings. Fully
automated single-molecule analysis can yield false tracks due to cellular background, accu-
mulation of ligands by the cells, etc. We therefore found manual inspection in addition to
parametric filtering indispensable. The final filtered datasets are subjected to the presented
survival analysis. For further information and detailed instructions, please refer to the
software’s manual.

3.4. Experimental Application: TCR–pMHC Interaction Lifetimes

To challenge our analysis pipeline experimentally, we recorded datasets of two differ-
ent TCR–pMHC pairs (5c.c7–IEk/MCC, AND–IEk/MCC), for which previous studies [7,23]
have shown interaction lifetimes of different orders of magnitude.

As in aforementioned articles, we used functionalized glass-supported lipid bilayers
(SLB) in lieu of antigen-presenting cells (Section 2.3), which allowed for precise control of
protein composition and the use of total internal reflection fluorescence (TIRF) microscopy.
T cells with fluorescently labeled TCR seeded onto the SLB would attach and bind to the
pMHC (Figure 1). These interactions were monitored via smFRET.

The long-lived AND–IEk/MCC pairs entailed some experimental challenges. We
found a maximum usable recording interval of about 5 s. For longer ∆t, signals moved
further between frames than the tracking algorithm could cope. Additionally, many signals
migrated towards clusters so that they were not distinguishable until the end. Therefore,
despite the insights from Section 3.2, our measurements were restricted to the steep, left
part of the τapp vs. ∆t curve.

We determined characteristic lifetimes of (6.2 ± 0.6) s and (90 ± 24) s for 5c.c7–IEk/
MCC and AND–IEk/MCC, respectively (Figure 5). These are moderately longer than
previously published values ((5.0 ± 0.2) s and (80.6 ± 5.9) s) [23], which were derived by
measuring the duration of TCR-mediated pMHC immobilization. The difference may be
explained by the fact that immobilization data were not analyzed using survival analysis.
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Figure 5. Lifetime measurements for different TCR–pMHC pairs. Apparent lifetimes τapp for respective
recording intervals ∆t are displayed as dots (maximum likelihood estimate via survival analysis) with
error bars (standard error of the estimate). The solid line shows the result of fitting Equation (1), the shaded
area indicates the uncertainty. (left): 5c.c7 TCR, IEk/MCC pMHC; (right): AND TCR, IEk/MCC pMHC.

4. Discussion

Single-molecule FRET assays are a very sensitive tool for the investigation of receptor–
ligand interactions as they can capture fast and rare dynamics. In contrast to traditional
methods such as surface plasmon resonance and fluorescence cross-correlation spectroscopy
measurements, which permit the examination of 3D binding kinetics of dissolved interac-
tion partners, smFRET is used to report on the 2D interaction kinetics of bound receptors
and ligands in even the most complex cellular environments [25,26]. Failing to account
for side effects of the smFRET image recording process and the limited observation time
can lead, however, to a substantial underestimation of the average bond lifetime. We
here present an improved and robust statistical analysis tool for the lifetime estimation of
receptor–ligand interactions determined by smFRET assays. In order to show the accuracy
of the new analysis pipeline, we provide simulated and experimental data and compare
the results with the standardized algorithm currently in use by the community.

In particular, we created a new analysis algorithm which robustly estimates apparent
(i.e., uncorrected for photobleaching) lifetimes at different frame rates to accurately infer the
interaction lifetime. The new feature is based on the mathematical framework of survival
analysis. This approach outperforms the original, conventional MLE algorithm, which
utilizes solely the number of frames in which the individuals smFRET traces are visible,
resulting in better accuracy and robustness.

To test the limits of our method, we used simulated smFRET traces and compared the
analysis pipeline’s output to the ground truth. We show that the best results are obtained
with intermediate recording delays ∆t which cover the curved part of the graph of τapp(∆t).
If no a priori estimate of the interaction lifetime τlt is available, it is better to err on the long
side. However, there are some experimental challenges in this regard: If ∆t is greater than
τlt, few events will be present in more than one consecutive frame since the track lengths
are exponentially distributed. Additionally, for large ∆t smFRET signals may move by a
substantial distance between frames, which can go beyond the single-molecule tracking
algorithm’s capabilities. Furthermore, aggregation of molecules can also be a challenge,
e.g., during formation of an immunological synapse, in which case it becomes difficult to
identify the appearance and disappearance of individual signals. The latter may, to some
extent, be mitigated by labeling only a fraction of the receptors or ligands; on the other
hand, this reduces the overall dataset size. Comparing the results from simulated datasets
of different sizes revealed that in order to obtain reliable results, one should gather at least
50 smFRET traces for each ∆t.
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Our mathematical model (Section 3.1) relies on interaction lifetimes being exponen-
tially distributed. This implies exponential distribution of the apparent lifetimes, for
whose likelihood we can specify an analytic expression due to being memory-less. For
systems with non-exponentially distributed lifetimes, the situation would be more complex.
First, the distribution of apparent lifetimes and a relation between τapp, τlt, and ∆t akin to
Equation (1) needed to be derived. Additionally, the survival analysis of individual τapp(∆t)
may require an iterative approach (Section 5.2 of [24]).

An alternative strategy for the determination of interaction kinetics in a 2D cellular
context is to record receptor-mediated ligand immobilization [23]. While this approach
is simpler to implement than smFRET, it is limited to slow unbinding rates in relation to
the diffusional motion of the ligand. Note that the evaluation of ligand immobilization
entails the same challenges as the assessment of smFRET, i.e., a limited observation window
and relatively long recording intervals. Thus, it may be advantageous to apply a survival
analysis-based method there as well.

We chose to present our new approach using the TCR–pMHC interaction as an ex-
ample. However, other receptor–ligand pairs can be investigated as well. For instance,
integrin αVβ3-binding to fibronectin [27] as well as histone–DNA interactions [28] have
been characterized via smFRET. Our experimental and analytical pipeline can easily be
transferred to any receptor-ligand pair of interest if respective FRET binding pairs have
been established. The binding partners need to be site-specifically decorated with a FRET
donor and acceptor molecule within a distance of 10 nm (that means the actual molecular
distance needs to be in range of the Förster radius R0) in order to yield well-defined single-
molecule FRET signals. The fluorescent labels can either be introduced via bio-orthogonal
conjugation directly to the protein backbone or via antibody labeling (preferably with
smaller antibody fragments such as Fab fragments or single-chain fragments, scFV). The
distance of the fluorophores can be predicted either via utilizing existing crystal structures
of the target proteins or via experimental trial. We recommend the use of newer generation
fluorophores such as Alexa Fluor 647 and Alexa Fluor 555, as such FRET pairs allow the
tracking of longer FRET trajectories before photobleaching. The imaging system needs to
be capable of detecting and tracking single molecules on a planar surface over varying
exposure intervals.

To support the experimentalist in dealing with large data amounts, we created a soft-
ware suite for reproducible filtering of the trajectories as well as decreasing subjective bias
in choosing single molecule FRET events. The standard procedure so far was to manually
inspect the recorded video sequences for FRET signal appearance and disappearance and
noting down the number of frames. The chosen trajectories could not be reinspected and
shifting perspective and sensitivity of the analyst in choosing trajectories led to biased
data selection. Re-analyzing the data set by a second experimentalist often led to different
results. In the presented software, datasets and respective filters can now be reinspected
and all chosen and rejected data points can be used for subsequent evaluation. Addi-
tionally, basic parameters (such as average intensity of the signal, and background level)
associated with each trajectory can be used for automatic filtering. Intensity profiles of
the automatically detected single molecules are displayed for a less biased evaluation of
single arrival and departure steps of the signal (which are hallmarks of single-molecule
signals), disturbance within the track by other single molecules or intensity fluctuations
(which could indicate rebinding events), or the premature end of the trajectory because of
receptor clustering. Furthermore, the use of automated algorithms (localization, tracking,
intensity step detection, . . . ) drastically decreases the amount of time required for analysis.
The software is published under a permissive open-source license and thus freely avail-
able [9]. We anticipate that our software will facilitate and improve forthcoming interaction
lifetime measurements.

In the future, the software may be further improved by deep learning techniques. A
neural network could potentially be trained to carry out the final decision whether a smFRET
trajectory is accepted for further analysis or not, which is currently a time-consuming task.
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Datasets previously analyzed by humans could be used as training data. However, since
experimental outputs can vary greatly depending on the cells used, imaging conditions, etc.,
we expect that implementing a deep learning model will be a challenging undertaking.

The bond lifetime of a TCR–pMHC pair is a meaningful parameter for a multitude of
scientific questions and, therefore, of interest for a wide scientific community. The threshold
time an interaction needs to trigger productive downstream signaling is an important
optimization parameter for artificial T cell receptors and equivalents [29,30]. For a small
subset of mainly transgenic TCRs these interaction dynamics have been characterized and
are used as model systems for other biological questions, yet more and more researchers
inquire the binding dynamics of the natural occurring TCR repertoire as well. From lessons
from the kinetic proofreading model [31] we know that downstream cascades initiate
within a few seconds of pMHC ligation [1,32]. Consequently, the TCR decision process
for discrimination of varying ligand potencies happens within this small time window.
The direct observation of ligand binding events is, therefore, a very informative tool for
understanding T cell immune surveillance (i.e., scanning parameters, triggering thresholds,
as well as signaling consequences).

Receptor–ligand bonds in intercellular interactions are typically subjected to an abun-
dance of mechanical cues: tension, shear stress, stretching, compression, etc. [25], all of
which can influence the binding kinetics. Bond lifetime measurements therefore may
provide valuable information about underlying physical processes.
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Abbreviations
The following abbreviations are used in this manuscript:

APC antigen-presenting cell
FRET Förster resonance energy transfer
H57-scFV H57 antibody-derived single-chain fragment
MCC moth cytochrome C
MHC major histocompatibility complex
MLE maximum likelihood estimation
SLB supported lipid bilayer
SPR surface plasmon resonance
TCR T cell receptor
pMHC peptide-loaded major histocompatibility complex
smFRET single-molecule Förster Resonance Energy Transfer
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