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Summary 

Neoadjuvant chemoradiation therapy (RCT) is a frequently used treatment regimen for 

esophageal adenocarcinoma (EAC); however, the response varies dramatically, and 

resistance is a clinical challenge. We aimed to identify the molecular mechanisms underlying 

RCT resistance. We established a mouse xenograft RCT model with human EAC cell lines 

representing different response groups, and tested enhanced genomic instability as a 

potential evolutionary modulator by reducing BRCA2 function. Xenografts that relapsed after 

RCT displayed upregulation of stress response keratins, including KRT6 and KRT16 

connected with a basal-like transcriptomic/ proteomic phenotype. We screened our cohort of 

728 patients with EAC and found significantly shorter overall survival for patients with KRT6-

high tumors, driven by patients receiving neoadjuvant treatment. Overall, we identified a 

basal-like cell state in EAC that reflects RCT relapse. The basal-like subtype is a marker of 

treatment failure, providing a new avenue for translational research to overcome RCT 

resistance.  
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Introduction 

Esophageal cancer is the seventh most common cause of cancer-related deaths world wide 1 

with esophageal adenocarcinoma (EAC) being the most prevalent subtype in Western 

countries. The age-adjusted incidence rate of EAC increased by more than 75% among non-

Hispanic whites in the United States from 1992 to 2016 2. EAC has an overall five-year 

survival rate of only 20% and a median overall survival of less than a year 3. The poor 

prognosis is due to the detection of the disease usually at a late stage and the lack of 

targeted therapies. Therefore, perioperative chemotherapy or neoadjuvant chemoradiation 

therapy (RCT) is the standard of care for locally advanced EAC and is used in the majority of 

patients with locally advanced disease 4. The response to treatment varies substantially, 

ranging from a complete pathological response to a minor or no response. Furthermore, 

disease recurrence with local or distal metastases ranges from 30% to >50% 5,6, indicating 

that primary and emerging resistance are major problems in the clinical care of patients with 
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EAC. Approximately one-third of patients with EAC can be classified as minor responders to 

RCT and suffer from side effects of the treatment without desired clinical improvement 7. 

Therefore, biomarkers are urgently needed to spare these patients from adverse effects, 

underscoring the need for a better understanding of the resistance mechanisms, and to 

implement new treatment strategies for non-responding/early relapsing patients.  

At the genomic level, EAC is a tumor type with the highest burden of small somatic mutations 

(single nucleotide variants [SNVs], double base substitutions, short insertions/deletions 

[indels], 8). It has the highest rate of mobile element insertions in solid tumors 9 and is 

characterized by a high level of somatic copy number alterations (SCNAs, 10). With these 

features, EAC is a prime example for cancers with extremely altered genomes. While a 

mutation signature associated with DNA damage response, also described as BRCAness, 

has been identified as the dominant signature in 20% of EAC 10, mutations in DNA double-

strand break response genes are infrequent 11. However, the high level of genomic 

rearrangement indicates that genomic instability is an important factor in the tumor evolution 

of EAC. Based on the high mutation and rearrangement rates, most tumors have 

genomically altered cancer driver genes, including receptor tyrosine kinases such as ERBB2, 

EGFR, MET, and genes of the MAPK and PI3K pathway 10-13 but the response rates in 

clinical trials are low 14-17. Most likely, the low response rate is due to the complex nature of 

the tumor genomes, where multiple cancer driver events co-exist 10,18. TP53 is the most 

frequently mutated gene in EAC, with a mutation frequency of 72% in the largest genome-

wide analysis 11 underscoring genomic instability is a key feature of EAC. 

In the present study, we aimed to identify the molecular characteristics of RCT resistance in 

EAC. We hypothesized that relapsed EAC after the initial response to RCT treatment 

contains features of resistance and that these features can be identified when comparing 

post-RCT (relapsed) tumors with those before or without RCT. Therefore, we established a 

xenograft mouse model using human EAC cell lines mimicking the RCT protocol for patients 

with EAC according to the CROSS trial 19. We used human EAC cell lines with TP53 

mutations to reflect genomically instable EAC. To futher increase genomic instability, the 

putative engine of evolution towards resistance, we genomically edited BRCA2 to reduce the 

rate of homology-based DNA double strand repair in a parallel series of experiments. 

Comparison of sensitive vs. resistant xenograft models before and after RCT led to a 

transcriptomic signature of RCT resistance with remarkable similarity to induced BRCA2 

dysfunction. Systematic transcriptomic and proteomic analyses have revealed a basal-like 

subtype of resistant/ post RCT tumors. Using KRT6 as a marker for the basal-like phenotype 

in our cohort of 728 EAC patients, we found a striking association between high expression 
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of KRT6 and short overall survival suggesting that a basal-like subtype in EAC is a predictor, 

and potentially a contributing factor, for RCT resistance.  

Results 
Three EAC models show response to RCT treatment protocol 

To determine the impact of RCT treatment on the genomic evolution of EAC tumors, we 

chose three representative EAC cell lines, Eso26, OE19, and OE33x (OE33 recultured after 

subcutaneous xenograft), which have been reported to form tumors in mice 20. We 

established an RCT protocol to mimic the treatment regime applied to patients with EAC 

according to the CROSS protocol 21. First, we tested the sensitivity of these cell lines to RCT 

treatment in vitro. The RCT treatment involved varying concentrations of two 

chemotherapeutic agents, Carboplatin and Paclitaxel, combined with a 2 Gy radiation dose. 

The three cell lines showed different responses to the RCT treatment. OE19 exhibited the 

least sensitivity, necessitating a 100 nM of Carboplatin and 10 nM of Paclitaxel IC50 dose, 

while OE33x displayed a higher sensitivity with 1 nM of Carboplatin and 0.1 nM of Paclitaxel 

IC50 dose. Notably, Eso26 emerged as the most responsive cell line, showing remarkable 

sensitivity at low dose of 0.1 nM Carboplatin and 0.01 nM Paclitaxel (Fig. 1A). Second, the 

tumor growth potential of the three models was observed in vivo as the cell lines were 

injected into immunocompromised nude mice, and the growth rates of xenograft tumors were 

monitored (Fig. 1B-D and Supplementary Fig. 1A-C). Remarkably, Eso26 exhibited the 

fastest pretreatment growth rate, reaching tumor sizes greater than 500 mm³ in 20 days, 

followed by OE19, which reached approximately 200 mm³ in the same period. In contrast, 

OE33x displayed slower growth, requiring twice the time (up to 40 days) to reach 

approximately 100 mm³ (Fig. 1D, and Supplementary Fig. 1A-C). This divergence in 

sensitivity and growth behavior across the three EAC cell lines allowed us to explore the 

nuanced evolution of genomic dynamics under the effect of RCT treatment. In summary, 

three EAC cell lines with different RCT sensitivity were established as xenograft models. 

RCT treatment induces differential patterns of tumor progression in vivo 

The in vivo experimental workflow followed the scheme outlined in (Fig. 1B, C). We 

examined the treatment responses of the selected models to the CROSS protocol. RCT 

treatment was ideally initiated at 500 mm³ (day 0), but the differences in the tumor sizes at 

treatment initiation (500 mm³ for Eso26, 200 mm³ for OE19, and 100 mm³ for OE33) were 

due to distinct initial growth rates between the models. The three tumor models underwent 

RCT treatment for three consecutive weeks, concluding on day 21. Radiation was applied 

locally to the tumor regions in two fractions of 11.5 Gy each with 10 MeV electrons (week 

one and week two) resulting in an equivalent dose in 2 Gy fractions of 41.2 Gy (assuming α/β 
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= 10). Subsequently, the progression patterns of the treated tumors were monitored for an 

additional 3-6 weeks (in total 42-63 days from start of the treatment). Our data revealed that 

tumors progressed after the termination of RCT treatment, and most of them reached a 

sufficient size, enabling subsequent omics analysis. Interestingly, OE19 tumors showed a 

higher progression rate post-RCT than Eso26, reaching ~1000 mm³ on day 63, after 

treatment termination, in agreement with the poor response in vitro. Eso26 tumors exhibited 

a growth rate half as fast as OE19, reaching ~500 mm³ after 63 days, indicating that RCT 

enhanced potential resistance in fast-growing OE19 tumors (Fig. 1D). The growth rate of 

Eso26 xenografts slowed down significantly after RCT (P = 0.0002, T-test, Fig. 1E), 

suggesting a substantial adaptation to therapy to reach resistance. As anticipated, the slow-

growing OE33x tumors showed the slowest recovery, as the growth rate further decelerated 

after RCT treatment. It is important to highlight that the individual tumor growth curves 

demonstrated a prevalent pattern of progression (i.e., tumor regrowth after regression), as 

observed in 6 out of 8 tumors in the Eso26 model and similar patterns in OE19 and OE33x 

(Supplementary Fig. 1A-C). Overall, the in vivo RCT responses were in agreement with the 

in vitro behavior, reflecting different EAC response types.  

BRCA2 is essential for EAC models and reduced levels lead to slow tumor growth 

Since EAC is characterized by genomic instability measured by a large number of somatic 

copy number alterations (SCNAs) 13, and extreme genomic instability in EAC can be driven 

by somatic BRCA2 mutations 10, we investigated whether the reduced function of BRCA2 

could accelerate genomic changes leading to RCT resistance. We used CRISPR/Cas9 to 

knockout BRCA2 and analyzed 120 clones across the three EAC cell models. While almost 

all clones showed genomic editing of BRCA2, none of the clones showed frameshift 

mutations of all alleles (the Eso26 cell line has three copies, OE33 >5 copies 22, OE19 three 

copies [own data] of the BRCA2 locus, Fig. 2A and Methods). We concluded that BRCA2 

knockout is lethal in the three EAC cell models, underscoring the pivotal molecular role of 

BRCA2 in EAC cells. Instead, we opted for clones with a knockout of all but one allele (e.g., 

knockout of two out of three alleles), referred to hereafter as BRCA2 knockdown (BRCA2kd). 

As a result of the reduction in BRCA2 expression, the protein level of BRCA2 was 

significantly downregulated in BRCA2kd cells compared with their parental counterparts (Fig. 

2B).  

Next, we investigated the effect of the reduction in BRCA2 function on EAC cells. BRCA2kd 

cells exhibited significant gains in migration capabilities compared to the parental cells 

across the three cell lines (Fig. 2C and Supplementary Fig. 1D and E). Additionally, we 

observed a notable increase in the expression of the DNA damage marker γH2AX in Eso26 

BRCA2kd cells treated with Carboplatin (Fig. 2D), underscoring the impact of the BRCA2kd 
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phenotype on DNA damage response in EAC cells. Furthermore, we explored the influence 

of BRCA2kd on tumor growth and development in vivo. The results revealed that BRCA2kd 

led to a lower tumor growth rate than the parental cell line xenografts in all three tumor 

models (Fig. 2E), reaching significance for Eso26 and OE33x (P = 0.033 and P = 0.002, 

respectively; T-test, Fig. 2F). Notably, in the OE33x model, we observed a substantial 

decrease in BRCA2kd tumor size over 35 days post-implantation, and no tumors were 

observed afterwards. Moreover, we investigated the response of BRCA2kd tumors to RCT 

treatment. Eso26 BRCA2kd tumors exhibited distinctly smaller tumor volumes than OE19 

BRCA2kd tumors, which displayed greater tolerance to such alterations at the start of RCT 

treatment. Notably, OE19 BRCA2kd tumors regrew at a fast rate comparable to their BRCA2 

proficient counterparts, reflecting rapid recovery (Supplementary Fig. 1F). In contrast, 

Eso26 BRCA2kd tumors showed consistently low tumor growth rates, indicating more 

pronounced suppression of progression (Supplementary Fig. 1G).These data highlight the 

critical role of BRCA2 in DNA repair, cell proliferation, and EAC tumor growth. 

BRCA2kd and RCT treatment induce marked genomic changes in EAC tumors 

Next, we investigated whether genomic changes induced by BRCA2kd alone could lead to 

genomic instability, how instability compared with changes induced by RCT treatment, and 

whether BRCA2kd accelerates RCT-induced changes. Accordingly, we performed whole 

exome sequencing (WES) and examined the difference in the genomic instability index (GII) 

between the Eso26 and OE19 parental/BRCA2kd tumor models that underwent RCT (no 

tumor growth for OE33 BRCA2kd). GII was induced at a higher level in BRCA2kd tumors 

compared to RCT treatment in the parental, BRCA2 proficient counterparts (Fig. 3A; 

Supplementary Fig. 2A; Supplementary Table 1). Notably, RCT treatment of BRCA2kd 

tumors did not result in additional increases, but rather equal GII compared to non-treated 

BRCA2kd tumors in both Eso26 and OE19 models, suggesting that a maximum tolerable 

genomic instability was reached. In addition, we investigated the characteristics of acquired 

SNVs and indels. When comparing post-RCT and BRCA2kd xenografts with their parental 

non-treated, non-edited counterparts, we observed no statistically significant differences in 

mutation numbers when comparing the effect. Furthermore, we conducted mutational 

signature analysis in response to RCT and BRCA2kd. We identified mutation signatures 

SBS1 (aging), SBS3 (BRCA deficiency), and SBS5 (unknown etiology, clock-like, increased 

in bladder cancer with ERCC2 mutations, and in cancers due to tobacco smoking; Fig. 3B). 

RCT, BRCA2kd, and BRCA2kd+RCT did not show consistent differences across xenograft 

models with regard to the contribution of individual signatures (Supplementary Fig. 2B). 

Overall, the genomic profiles may indicate that reduced BRCA2 function results in a 

maximum of tolerable genomic instability.    
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Next, we aimed to identify recurrent genomic events that could explain the development of 

resistance after RCT. At the level of acquired SNVs and indels during the experiments, we 

found that non-silent mutations were enriched in genes listed in the Cancer Gene Census 23 

or OncoKB 24 (p < 0.0001, χ2 Test, both gene categories), including non-silent mutations in 

ATM, BRCA1, KDM5C, MUC4, NOTCH1, TERT, and MAP3K13 (Supplementary Table 2). 

However, many of these mutations showed low allelic fractions, and none of them were 

classical cancer driver mutations that could explain relapse after RCT. This implies that the 

accumulation of small effects, rather than a single strong mechanism, might contribute to 

relapse. Interestingly, somatic copy number alteration (SCNA) data analysis identified a copy 

number gain on chromosome 19q in all six Eso26 RCT-treated compared to treatment-naive 

tumors, highlighting the presence of potential candidate genes for a post-RCT phenotype or 

the development of resistance (Fig. 3C). The genomic region contains oncogenes AKT2, 

AXL, BCL2L12, BCL3, CBLC, CIC, CD79A, POU2F2, RRAS, and ARHGAP35 as potential 

supporters of RCT resistance. Of note, BCL2L12 was the only oncogene within the copy gain 

region of xenografts Eso26-RCT-42 and -18, with the smallest common copy gain regions 

(Fig. 3C). 

Overall, BRCA2kd results in expected genomic instability and RCT does not lead to the 

emergence of small mutations in recurrent driver genes, and 19q copy gain in the sensitive 

Eso26 model correlates with relapse.  

Transcriptomic and proteomic profile changes in BRCA2kd tumor models exceed 

changes in tumors after RCT treatment 

To understand the nature of biological changes induced by BRCA2kd and RCT, we 

performed transcriptomic and proteomic analyses. First, we examined sample similarity 

across the three chosen tumor models by employing the Euclidean distance matrix based on 

both omics approaches. The results indicated that the molecular signatures were dominated 

by EAC cell line types, reflecting the importance of inter-patient differences (Fig. 4, 

Supplementary Tables 3, 4). The second strongest factor influencing overall transcriptomic 

and proteomic profiles was BRCA2kd. Unexpectedly, the BRCA2kd signature was more 

dominant than the RCT signature, defined by shorter Euclidean distances. However, RCT 

also resulted, although to a lesser extent, in transcriptomic and proteomic signatures that led 

to the separation of RCT and non-RCT tumors in most samples.  

BRCA2kd and RCT treatment induce overlapping transcriptomic changes in EAC 

tumor models 

We conducted an extensive analysis of the transcriptomic profile changes after BRCA2kd 

and RCT treatment. Our data revealed that the highest number of differentially expressed 
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genes (DEGs) was induced in BRCA2kd of the Eso26 tumor model, with 2,986 DEGs 

compared to parental tumors (Fig. 5A, Supplementary Fig. 3). We also observed a 

substantial change in 586 DEGs in Eso26 RCT-treated tumors compared to their non-treated 

parental counterparts. In contrast, the transcriptomic analysis of OE19 RCT-treated tumors 

displayed the least changes, with only 10 DEGs compared to their parental counterparts, 

whereas OE33 showed an intermediate number of DEG in the RCT/parental comparison 

(Fig. 5A). To investigate whether the RCT-induced expression changes in parental Eso26 

(model with the strongest RCT expression differences) showed similarities with the 

expression differences between parental Eso26 and OE19 (least RCT expression differences 

and most primary resistant model), we systematically compared the expression differences 

between the two comparisons. We observed a significant correlation between the fold-

expression changes across the two comparisons (r = 0.3799, p < 0.0001, Pearson 

correlation test, Fig. 5B), supporting the assumption that the gene set is resistance-

associated. Since the Eso26 BRCA2kd model showed fewer transcriptomic changes upon 

RCT than the parental Eso26 (Fig. 5A), it seems possible that BRCA2kd shifted EAC to a 

more resistant phenotype. Therefore, we tested for correlation between RCT- and BRCA2kd-

induced changes in expression. Indeed, we observed a strong correlation between the 

expression changes in the parental Eso26 / RCT and parental Eso26 / BRCA2kd 

comparisons (r = 0.6407, p < 0.0001, Pearson correlation test, Fig. 5C), suggesting that 

BRCA2kd induces similar changes as RCT resistance.  

To derive a robust EAC expression gene set for RCT resistance, we extracted overlapping 

DEGs from the two comparisons with resistant xenografts (Eso26 RCT vs. Eso26 Ctrl. and 

OE19 Ctrl. vs. Eso26 Ctrl.), excluded weakly expressed genes, and focused on genes with 

RefSeq IDs (Supplementary Table 5). The filter resulted in 48 genes (DEGs) as RCT 

resistance signature including upregulation of several keratins (KRT6, KRT16, and KRT17), 

MMP2, BMP2, NDRG1, TFF3, and FOXP1 (Fig. 5D). Interestingly, we observed a high 

density of signature genes on 19q (Supplementary Fig. 2C), suggesting that 19q gain 

contributed to the RCT signature in Eso26. Next, we aimed to better understand of the 

pathway changes behind resistance-associated expression changes and performed gene set 

enrichment analysis (GSEA) for Eso26 tumors after RCT treatment compared with their 

untreated counterparts. The data showed that common downregulated pathways were 

related to proliferation, including DNA replication and G2/M/cell cycle checkpoints, whereas 

common upregulated pathways were related to cornification/keratinization (Fig. 5E). The 

latter involves several keratins as markers of basal cells and epithelial differentiation.  

A privious study reported that there are two distinct EAC transcriptome subtypes: basal and 

classic. The basal-like subtype is reportedly more resistant to chemotherapy than the classic 
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subtype 25. By integrating the published transcriptomic data of the basal-like subtype with our 

data from Eso26 RCT-treated tumors, we observed a positive correlation between the two 

groups (r = 0.3319, p < 0.0001, Spearman's correlation test, Fig. 5F). This correlation 

suggests a connection between the basal-like subtype, keratin upregulation, and the 

development of resistance to RCT treatment. We searched for transcription factors that might 

be responsible for the switch towards the basal-like phenotype and identified ATF3 as a 

potential candidate. ATF3 was significantly upregulated in Eso26-RCT, Eso26-BRCA2kd, 

OE19-RCT, and OE19-BRCA2kd-RCT, and was more highly expressed in the resistant 

OE19 cell line than in the sensitive Eso26 cell line (Supplementary Table 5). ATF3 is a 

stress-induced transcription factor that characterizes quiescent colorectal cancer cells 26.  

In summary, we have defined a transcriptomic signature for a post-RCT/ RCT-resistance 

phenotype. This resistance phenotype is similar to the changes induced by BRCA2kd, and 

has basal-like characteristics. 

Elevated expression of the basal-like cell marker keratin 6 is associated with short 

survival in neoadjuvant-treated EAC patients 

To investigate the potential role of keratinization in the development of RCT resistance, we 

examined the overexpression of keratins in our dataset of RCT-treated tumors. Our 

transcriptomic data revealed that several keratins, including KRT6, KRT16, and KRT17, were 

upregulated in RCT-treated Eso26 tumors (Fig. 6A). Cytokeratin 5/6 (CK5 and CK6 encoded 

by KRT5 and KRT6) are markers for squamous cell carcinomas of basal cell origin. Both 

keratins occur in the squamous epithelium, KRT5 dominates in basal and KRT6 in 

suprabasal layers 27,28. We therefore used KRT6 as a marker for the transdifferentiation to a 

basal-like transcriptomic phenotype. We validated the upregulation of KRT6 upon RCT 

through immunohistochemical (IHC) staining of the xenografts, demonstrating KRT6 

overexpression in RCT-treated tumors (Fig. 6B). To evaluate the clinical significance of 

these findings, we analyzed 1,161 EACs collected before and after neoadjuvant treatment, 

respectively, from patients who underwent surgical resection. The histological examination of 

EAC tumors from treated and untreated patients revealed varying levels of KRT6 expression 

in the 728 tumors that could be evaluated, classified as 0 (no expression, n = 541, 74.3%), 

low (expression in <25% tumor cells, n = 117, 16.1%), and high (expression in >25% tumor 

cells, n = 70, 9.6%; Fig. 6C, D). The overall survival analysis of the 728 patient cohort 

showed significantly shorter survival for patients with KRT6 high-expressing tumors (score 2, 

p = 0.0054, log-rank test, hazard ratio [HR] = 1.2, Fig. 6E). Strikingly, when we separated the 

cohort into patients with and without neoadjuvant treatment (n = 497 and n = 231, 

respectively), we found a statistically significant shorter survival only for patients with KRT6 

high-expressing tumors in the neoadjuvant-treated group (p = 0.00071, log-rank test, HR = 
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1.2). This data suggests that the basal subtype marker KRT6 might be used as a biomarker 

for poor response to neoadjuvant treatment in EAC patients. 

To further characterize the cell state changes captured by KRT6, we used the transcriptomic 

data of all xenografts across all cell lines and experimental conditions and correlated gene 

expressions with KRT6A and KRT6B, respectively, both recognized by our KRT6 antibody. 

We observed a significant positive correlation between KRT6A and KRT6B (Spearman r = 

0.44, p = 0.00077, Supplementary Fig. 4). KRT6A-correlated genes showed enrichment for 

gene ontology terms of hair follicle development, hemidesmosome assembly, and epidermis 

morphogenesis, while KRT6B-correlated genes were enriched for blood vessel endothelia 

and response to oxygen radicals (Supplementary Fig. 5, Supplementary Table 6). 

Negatively correlated with KRT6A were Wnt signaling and DNA replication, whereas KRT6B 

was negatively correlated with interferon-gamma-mediated signaling, type I interferon 

signaling, and DNA replication. The correlations suggest that KRT6-positive EAC xenografts 

are less proliferative, immune silent, and have a changed epithelial phenotype dealing with 

reactive oxygen species. 

Taken together, KRT6, a marker of a resistance-associated basal-like subtype, is distinctly 

expressed in 25% of the tested EAC cohort and serves as a strong predictor of poor survival, 

particularly among patients treated with RCT. 

 

Discussion 

An advantage of in vitro and mouse models is the possibility to repeatedly challenge 

genetically homogeneous cancer cells or tumors with the same therapy to test for recurrent 

molecular features that occur in response to developing resistance or relapse. Using patient-

derived cancer cell lines, the genomes/transcriptomes/proteomes of experimental biological 

replicates can be considered almost equal at the start of our experiments. Deep omics 

analyses of such xenografts after RCT therefore have a higher chance identifying recurrent 

resistance mechanisms among a small number of tumors compared to analyses of tumors 

across a cohort of patients who typically have a high inter-patient genomic variability. We 

have applied this approach using three EAC cell lines with different sensitivities to RCT and 

their derivatives with BRCA2kd. We observed remarkable transcriptomic changes after 

knocking down BRCA2 which were stronger than the long-term influence of RCT (Fig. 4A). 

BRCA2kd resulted in some expected phenotypes, i.e., γH2Ax as a marker for DNA double-

strand breaks was increased after Carboplatin treatment (Fig. 2D). BRCA2kd tumors 

exhibited higher genomic instability compared to RCT-treated parental tumors in both the 

Eso26 and OE19 models (Fig. 3A). We observed an increased cell migration after 
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knockdown of BRCA2 for all three cell lines (Fig. 2C, Supplementary Fig. 1D, E). This effect 

has been described for prostate cancer cells previously, where a connection with high levels 

of reactive oxygen species has been found to be a consequence of BRCA2 reduction and a 

prerequisite for the migration phenotype 29. Interestingly, BRCA2 knock out seems to be 

lethal for the three EAC cell lines Eso26, OE19, and OE33. This might be based at least in 

part on the fact that all three cell lines have TP53 mutations since mutual exclusivity of TP53 

and BRCA1/2 mutations has been reported for gastric cancer 30. 

This is in contrast to reported BRCA2 knockout cancer cell lines, including the colorectal 

cancer cell line HCT116 31 and cell lines derived from a breast cancer mouse model 32. 

Although we attempted to knock out BRAC2 only in a limited number of EAC cell lines, it 

suggests that BRCA2 is essential for many EACs. It is in agreement with the fact that 

germline BRCA2 mutations are known to increase the risk to develop breast, ovarian, and a 

number of other cancers but not to a relevant extent EAC 33,34. Further, BRCA2kd resulted in 

a significantly reduced tumor growth rate (Fig. 2F), suggesting a high cost or increased 

stress that reduces the proliferation rate in vivo.  

Strikingly, a region on chromosome 19q showed copy gains in all six post-RCT Eso26 

xenografts (Fig. 3D). Eso26 is hypodiploid, having only one copy of chromosome 19 22. The 

consistent copy gains suggest the presence of a gene in this region contributing to RCT 

resistance. The oncogenes AKT2, AXL, BCL2L12, BCL3, CBLC, CIC, CD79A, POU2F2, 

RRAS, and ARHGAP35 within the 19q region are candidates for this phenomenon, of which 

BCL2L12 is the only oncogene within the smallest common copy gain region of Eso26-RCT-

18 and -42. While the deletion of 19q13.31–33 and within this region LIG1 have been 

described as a mechanism for Carboplatin resistance in triple-negative breast cancer 35, and 

there is evidence for BCL2L12 knockdown in breast cancer cells to inhibit Cisplatin-induced 

apoptosis 36 the apoptotic influence of BCL2L12 is controversial, showing cell type 

dependency 37. BCL2L12 inhibits post-mitochondrial apoptosis in glioblastoma 38 and has an 

anti-apoptotic effect in ovarian cancer 39. Therefore, BCL2L12 might be a candidate for 

explaining the RCT-associated copy gain in the Eso26 xenografts and may contribute to RCT 

resistance.  

On the transcriptomic and proteomic level, the molecular distance between xenografts was 

dominated by the parental (original) EAC cell lines (Fig. 4), indicating that inter-patient 

differences are larger than BRCA2kd and RCT-induced changes. BRCA2kd led, in particular 

on the transciptomic level, to the second strongest changes, followed by RCT, emphasizing 

the relevance of BRCA2 function in the context of EAC. By differential expression analysis of 

post-treatment relapsed vs. non-treated and resistant cell line vs. sensitive, we defined a 48-

gene resistance signature (Fig. 5B, D). Unexpectedly, the post-RCT resistance signature of 
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Eso26 is highly correlated with transcriptomic changes induced by BRCA2kd (Fig. 5C), 

suggesting again that the stress responses have commonalities. The pathways that showed 

the strongest enrichment of overexpressed genes are ‘formation of cornified envelope’ and 

‘keratinization’ (Fig. 5E). This was in part based on the induced expression of several 

keratins (Figs. 5D and 6A) with KRT6A and KRT16 known as a stress response in skin upon 

damage and UV light 40,41. Both keratins might be seen as markers for RCT-stressed EAC. 

KRT16 has been found to be upregulated upon induced DNA damage in human lung 

epithelial cells along with a squamous transdifferentiation 42 and squamous differentiation 

seems to protect cells from apoptosis 43. The RCT-induced biological process we observe in 

the EAC model reflects a transdifferentiation as stress reponse.  

The mechanistic chain of action of how RCT induces the transdifferentiation remains to be 

clarified. The stress-induced transcription factor ATF3 is a potential candidate in this process. 

Its expression has been observed in quiescent colorectal cancer cells 26 resembling the less 

proliferative state of the KRT6 high post-RCT state in our EAC model. While the effect of 

ATF3 can be pro or contra cancer 44,45, the reported requirement of Atf3 for a higher 

metastatic burden after chemotherapy in a mouse model 46 supports the involvement of ATF3 

in the observed RCT response in our EAC model. Of note, our analyses excluded mouse 

sequence-specific reads/peptides so that ATF3 can be assigned to the cancer cells rather 

than the tumor microenvironment as in the study of Chang and colleagues 46.  

EAC has been divided into ‘basal’ and ‘classical’ based on their transcriptomic profiles, 

where KRT6A and KRT16 are among the core enrichment genes for the basal subtype 25. 

Indeed, we observed an overall transcriptomic shift after RCT of our Eso26 model towards 

the basal signature (Fig. 5F). We therefore use the term ‘therapy-induced basal-like’ to 

describe the EAC phenotype related to post-RCT and/or RCT resistance. The terminology 

‘basal-like’ in cancer has been established for breast cancer, where it is related to but not 

identical with triple-negative breast cancer, a difficult-to-treat subtype without expression of 

estrogen and progesterone receptors and HER2 47,48. Basal-like breast cancers are 

characterized by high histological grade and proliferative rate 49,50, a high expression of 

genes of the basal cell layer of the epithelium, including KRT5/KRT6 (CK5/CK6) as specific 

markers, and they are enriched in patients harboring TP53 and BRCA1 mutations 51. Basal-

like breast cancers with a high expression of growth factor genes (basal-like 2 type) have a 

particularly poor prognosis and do not respond to chemotherapy 52,53 similar to the therapy-

induced basal-like subtype we observe in our EAC model.  

Since KRT5, KRT6, and KRT16 are not typical keratins for EAC, their expression has not 

been systematically investigated in EAC to our knowledge. To clarify the clinical role of the 

therapy-induced basal-like subtype of EAC, we used KRT6 as a marker since KRT6A and 
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KRT6B were among the strongest expression differences in Eso26 RCT vs. control 

(Supplementary Fig. 3). We screened our well-annotated cohort of 728 EAC for the 

expression of KRT6 and observed a remarkable frequency of 25.7% of tumors expressing 

KRT6 at detectable levels, 9.6% at high levels, where >25% of tumor cells are positive. The 

high-level expression was significantly associated with shorter overall survival. Strikingly, this 

effect was driven by EAC with neoadjuvant RCT or perioperative chemotherapy (Fig. 6E) 

suggesting that the difference in overall survival was to a large extent due to poor treatment 

response. It is important to note that we determined the KRT6 expression post-therapy which 

captures the therapy-induced upregulation of KRT6. Patients who did not receive 

neoadjuvant/perioperative treatment showed a similar trend but did not reach significance. 

Here, the analyzed samples have not been treated, and it is unknown which of them would 

have responded with KRT6 upregulation upon therapy. Our findings indicate that every tenth 

EAC patient has reduced benefit from RCT/chemotherapy. Therefore, it will be important for 

risk classification to test post-RCT EAC tissue for KRT6 expression. Patients with therapy-

induced high KRT6 expression might require more intense surveillance programs or 

additional therapy modalities, such as immune therapies. It will be important to find new 

treatment strategies for patients with EAC of therapy-induced basal-like subtype, a group of 

patients who poorly respond to the current standard of care.  

A metaplastic response to radiation of normal squamous epithelium towards stratified 

squamous epithelium has already been noticed in 1950 54 emphasizing that the 

transdifferentiation of epithelial cells as a stress response is a widespread phenomenon. A 

prominent example of the clinical relevance of lineage plasticity is the transdifferentiation of 

non-small cell lung cancer and prostate cancer to neuroendocrine disease under targeted 

therapy 55. This transdifferentiation poses a highly relevant clinical problem as targeted 

treatment fails, requiring changed treatment regimens.     

Overall, our study revealed a mechanism of adaptation of EAC to RCT that involves the 

upregulation of stress response keratins and a basal-like subtype. This phenotype overlaps 

with a response to reduced BRCA2 function and is associated with short overall survival of 

treated patients. Future studies will have to clarify the molecular mode of action by which this 

cell state results in resistance to pave the way for a better treatment of these patients.    

 

Materials and Methods 

Animal studies 

Eight weeks old male nude mice (Rj:NMRI-Foxn1nu/nu) purchased from Janvier labs (Saint 

Berthevin Cedex, France) were anesthetized with isoflurane for controlled injection of cells. 
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Human xenografts were generated by subcutaneous injection of 5*106 human EAC cells in 

100 µl PBS bilateral into both flanks of nude mice. Tumor volume was measured by calliper 

and calculated with the formula V = π/6 × length × width2. Mice were randomly distributed into 

groups of treatment or control. Treatment was started when a xenograft reached a volume of 

up to 500 mm3. Mice were treated with a combination of chemotherapy and radiation 

(radiochemotherapy, RCT). At the Department of Radiotherapy and Cyberknife Center of the 

University Hospital Cologne, radiation was applied locally to the tumor regions in 2 fraction of 

11.5 Gy each with a distance of 1 week, yielding in an equivalent dose in 2 Gy fractions of 

41.2 Gy assuming α/β =10 Gy in the tumor tissue. Simultaneously with the first radiation 

dose, chemotherapy was started with i.p. injections of 50 mg/kg/body weight carboplatin 

twice per week and 20 mg/kg/body weight paclitaxel once per week. Total treatment time 

was 3 weeks. Mice were sacrificed when one tumor reached a maximum volume of 1000 

mm3. Close monitoring of mice behaviour did not show any signs of side effects of the 

treatment. H&E staining of liver, spleen and kidney was performed for all sacrificed mice, 

with no findings. All animal experiments were approved by the local Ethics Committee of 

Animal experiments. 

 

Tissue culture 

Human EAC cell lines Eso26, OE19 and OE33 were obtained from Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (DSMZ, Germany). All cell lines were cultivated in RPMI-

1640 (Life technologies, USA) supplemented with 10 % fetal bovine serum (Capricorn 

Scientific, Germany), 1 % penicillin (Life technologies, USA) and 1 % streptomycin (Life 

technologies, USA) in a humidified atmosphere of 5 % CO2 at 37 °C. All cultures were tested 

for contamination of mycoplasms by qualitative PCR. 

 

Immunofluorescence staining of yH2AX 

EAC cell lines were seeded on glass slides and allowed to attach for at least 24 hours under 

optimal culture conditions. Cells were then treated with 1 mM carboplatin in culture media for 

24h. Cells were washed twice with PBS, fixed with 2% PFA for 20 minutes and 

permeabilized with 0.1% TX100 in PBS for 10 min. Blocking was done with 1% BSA in PBS 

for at least 30 minutes, followed by incubation of primary Phospho-Histone H2A.X Ser139 

(20E3, Cell Signaling Technology) in 1% BSA for over-night and subsequently incubation of 

secondary antibody Alexa-Fluor 488 (#A11034, Thermo Fisher) for 1h. 
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Migration assay 

EAC cell lines were seeded into multiwell plates and grown to confluency. Cells were starved 

without serum for 24 hours before a scratch was applied manually with a pipette tip. Cells 

were washed and again cultured with starving media while migration of cells into the scratch 

was monitored. 

 

In vitro radio-chemotherapy 

EAC cells were seeded into 96-well plates at a density of 2500 cells/well. After 24h, cells 

were treated with a combination of carboplatin and paclitaxel dissolved in growth media. 

Right after the start of the chemotherapy, cells were irradiated with 2 Gy (Biobeam GM 8000, 

Eckert & Ziegler, Gamma-Service Medical GmbH, Germany). Control cells were mock 

treated. Cells were allowed to grow for 72 h before cell viability was assessed via CellTiter-

Glo® 2.0 Cell Viability Assay (Promega, Germany) according to the manufacturer’s 

instruction and measurement with a Centro LB 960 Microplate Luminometer (Berthold 

Technologies GmbH & Co. KG, Germany). 

 

CRISPR/Cas9 editing 

EAC cell lines Eso26, OE19 and OE33x were transfected with BRCA2 Double Nickase 

Plasmid (sc-400700-NIC, Santa Cruz Biotechnology, USA) targeting human BRCA2 gene 

according to the manufacturer’s instruction. Transfected cells were selected by flow sorting 

for GFP+ cells using a LE-MA900FP flow sorter (Sony) and with puromycin, respectively, and 

subsequently seeded at a calculated density of 0.5 cells/well for the establishment of single 

cell clones. Single cells were expanded and DNA was extracted (NucleoSpin Tissue, Mini kit 

for DNA from cells and tissue, Macherey-Nagel, Germany). With primers flanking the gRNA 

target site, the extracted DNA was PCR-amplified and analyzed via Sanger sequencing to 

determine CRISPR/Cas9 edited cells. PCR products from cells identified with a heterozygous 

sequencing result at the expected CRISPR/Cas9 target site were further analyzed via 

TOPO® TA Cloning® Kit for Sequencing (Thermo Fisher Scientific, USA) according to the 

manufacturer’s instructions. Individual PCR-product derived E. coli clones were picked and 

plasmid inserts were analyzed by Sanger sequencing to determine the spectrum of alleles at 

the BRCA2 locus within a single cell colony.  

 

Biochemical assays 
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For immunoblot analysis, cells were lysed in Laemmli sample buffer (Bio-Rad, USA) and 

heated at 95 °C for 5 minutes. Sample proteins were separated via SDS-PAGE and 

transferred to a methanol activated PVDF membrane via wet transfer blotting. Endogenous 

BRCA2 was detected with primary antibody anti-BRCA2 (#10741, Cell Signaling Technology, 

USA) diluted 1:1000 in 5% bovine serum albumin (BSA) in Tris-buffered saline (TBS) 

containing 0.05% Tween-20.  

 

Tumor growth rate analysis 

The measurements of tumor volume were taken at discrete and unevenly spaced points in 

time. In order to determine growth rates, we determined derivatives with respect to time from 

these discrete and noisy measurements, which required smoothing the original data. Suitable 

tools for smoothing and the estimation of the derivative are a Gaussian smoothing kernel 

(Gaussian filtering) and a Gaussian derivative kernel, respectively. For smoothing the time 

series of data points (volume measurements)  at times  (with time points labelled 

), we computed the discrete approximation of the Gaussian convolution 

 

giving smoothed estimates  at arbitrary time points . The corresponding estimate of the 

derivative of the time series follows from the Gaussian derivative kernel 

 

with the estimate of the growth rate at a particular time given by  following from the 

growth equation . We set  days throughout; different choices do not 

substantially affect the results. 

To estimate the growth rate over a period of time, we computed the average of 

 

over a specific time interval (Supplementary Fig. 6). For time series without treatment, we 

took the average over the first 15 days of measurement, which corresponds to the 

exponential growth phase. 

i= 1,2,3,…

λ= d y
d t

/ y

d y
d t

= λ y σ= 5
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Treatment took place over a period of 21 days. To compute growth rates before treatment, 

we took the average over the days starting with the first non-zero measurement and ending 

with the start of the treatment. To compute growth rates after treatment, we averaged over 

the period beginning at day 40 after the start of treatment (19 days after the end of treatment) 

and ending with the end of the time series. This particular starting point has been chosen to 

ensure that the growth rate has reached a post-treatment plateau. The figure shows a 

representative example.  

 

Xenograft preparation 

Xenografts dissected from sacrificed mice were snap-frozen in liquid nitrogen and stored at -

80°C until further processing. When tumor size allowed, a representative tumor region was 

preserved in 4 % PFA, embedded in paraffin and processed for hematoxylin and eosin 

staining. The frozen parts of the tumor were ground in mortars under constant cooling with 

liquid nitrogen to homogenize the tumor material. The ground tissue was split into two 

cryotubes and stored at -80 °C until further processing. Material from one cryotube was used 

to extract DNA and RNA using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen, 

Germany) according to the manufacturer’s instruction. The second cryotube was used for 

extraction and in solution digestion of proteins at the Proteomics Core Facility Cologne 

according to the core facility’s protocol. 

 

Proteomics 

For liquid chromatography mass spectomotry (LCMS) data independent acquisition (DIA), 

samples were analyzed on a Q Exactive Exploris 480 (Thermo Scientific) mass spectrometer 

that was coupled to an EASY nLC 1200 (Thermo Scientific). Peptides were loaded with 

solvent A (0.1% formic acid in water) onto an in-house packed analytical column (30 cm — 

75 µm I.D., filled with 2.7 µm Poroshell EC120 C18, Agilent). Peptides were 

chromatographically separated at a constant flow rate of 300 nL/min and the following 

gradient: 4-30% solvent B (0.1% formic acid in 80 % acetonitrile) within 74.0 min, 30-55% 

solvent B within 8.0 min and 55-95% solvent B within 2.0 min, followed by a 6 min column 

wash with 95% solvent B. These high pressure (HP)LC settings were used for library 

generation and analytical runs. 

For spectrum library generation by gas phase fractionation, aliquots from all samples were 

pooled and used for spectrum library generation by narrow window DIA of six 100 m/z gas 

phase fractions (GPF) covering the range from 400 m/z to 1000 m/z 56. The MS was 

operated in DIA mode. MS1 scans of the respective 100 m/z gas phase fraction were 
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acquired at 60.000 resolution. Maximum injection time was set to 60 msec and the AGC 

target to 100% (1E6). DIA scans ranging from 300 m/z to 1800 m/z were acquired in 25 

staggered 4 m/z windows resulting in nominal 2 m/z windows after demultiplexing. MS2 

settings were 15.000 resolution, 60 msec maximum injection time and an AGC target of 

1000% (1E6). All scans were stored as centroid.  

For data independent acquisition, MS1 scans were acquired from 390 m/z to 1010 m/z at 

15k. Maximum injection time was set to 25 msec and the AGC target to 100% (1e6). DIA 

windows covered the precursor range from 400 - 1000 m/z and were acquired in 75 x 8 m/z 

staggered mode resulting in nominal 4 m/z windows after demultiplexing. MS2 scans ranged 

from 300 m/z to 1800 m/z and were acquired at 15 k resolution with a maximum injection 

time of 22 msec and an AGC target of 100% (1E6).  All scans were stored as centroid. 

For data preprocessing, Thermo raw files were demultiplexed and transformed to mzML files 

using the msconvert module in Proteowizard. For spectral library searching, all DIA files were 

processed using DIA-NN 1.7.16 57. Mouse and a Human canonical Swissprot fasta file were 

converted to Prosit csv upload files with the convert tool in encyclopedia 0.9.0 58. The 

following settings were applied: Trypsin, up to 1 missed cleavage, range 396 m/z – 1004 m/z, 

charge states 2+ and 3+, default charge state 3 and NCE 33. The csv files were uploaded to 

the Prosit webserver to generate spectrum libraries in generic text format 59. Human and 

mouse spectrum libraries were merged, redundant elution groups were removed and the 

library was annotated using a merged human and mouse fasta file. A calibrated assays 

library was generated by searching the predicted library with the 6 GPF runs. Finally, the 

calibrated assay library was searched with 56 samples runs using double-pass mode and Rt-

dependent cross run normalization. Precursor and fragment m/z ranges were set to match 

the acquisition method. DIA-NN default settings were used for all other parameters. 

The DIA-NN output file was filtered for global precursor Q value <0.01 and global protein 

group Q value <0.01. Identifier columns and protein group MaxLFQ intensities were 

extracted, transformed to a data matrix and imported to Perseus 60. The data set was split 

into four subsets containing (i) all, (II) human plus shared, (iii) human only and (iv) mouse 

only protein groups. Each subset was filtered for at least 70% valid values in at least one 

condition and remaining missing data were imputed using MinDet (q = 0.01) from the 

imputeLCMD package integrated in Perseus.  

 

RNA-sequencing  

Libraries for RNA sequencing were prepared using the QuantSeq 30 mRNA-Seq Library 

Prep Kit FWD for Illumina (Lexogen GmbH, Vienna, Austria) according to the low-input 
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protocol. Libraries were sequenced on a NovaSeq 6000 (Illumina) by 1x 50 

bases.Downloaded raw data files were first processed with Xenome tool 61 to remove host-

derived contamination. The remaining, xenograft-only data were mapped to the GRCh38 

genome reference using nf-core/rnaseq pipeline version 3.8.1 62. Raw expression read 

counts obtained as a result were used for differential expression analysis was conducted with 

DESeq2 63, identifying differentially expressed genes (DEGs). Genes with an absolute log2-

foldChange value of at least 1 and an adjusted p-value < 0.05 were considered significantly 

differentially expressed. 

 

Gene set enrichment analysis 

Gene expression data was preprocessed to remove low-expression genes with count per 

million (CPM) value < 0.5. After preprocessing, the reduced gene expression matrix was 

utilized for Gene Set Enrichment Analysis (GSEA). The analysis was conducted using the 

GSEA software version 4.3.3 developed by the Broad Institute, following the standard 

procedure as described by Subramanian and colleagues 64. The genes were ranked 

according to the signal-to-noise ratio, which was calculated based on the expression 

difference between conditions. The ranked list was then used as input for the enrichment 

analysis with gene sets obtained from the Molecular Signatures Database (MSigDB, version 

2022.1), specifically the REACTOME collection. Gene sets containing fewer than 15 genes 

or more than 500 genes were excluded. Permutation test was performed by randomly 

shuffling the gene labels 1,000 times to generate a null distribution of Enrichment Score 

(ES). Data normalization was performed using the "meandiv" method resulting in Normalized 

Enrichment Score (NES). Additionally, the false discovery rate (FDR) was calculated to 

correct for multiple hypothesis testing, providing an estimate of the proportion of false 

positives among the gene sets identified as significant. Gene sets with an FDR q-value < 

0.25 were considered significantly enriched. 

 

Whole exome sequencing (WES) 

WES was performed using the SureSelect Human All Exon V6 (Agilent) for enrichment 

according to the manufacturer’s recommendations and were sequenced 2x100 on a 

NovaSeq 6000 (Illumina). To differentiate between mouse DNA (host) and human xenograft 

DNA, we utilized the Xenome tool (61, version 1.0.0). Only reads classified as graft (graft.fa) 

were retained for further analysis. Graft.fa reads were aligned to the reference genome using 

the BWA-MEM 65, integrated in the ICGC-Argo pipeline 66. For copy number variation (CNV) 

calling, we employed the Genome Analysis Toolkit (GATK) CNV calling tool (67, version gatk-
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package-4.1.3.0) with Processing Intervals: "gatk CollectReadCounts" and  Calling Reads: 

"gatk CollectReadCounts". A panel of normals (PON) was created from the control (CTRL) 

samples of each cell line to serve as a baseline for CNV detection. The CNV calling was then 

performed using the GATK CNV calling tool, with the PON integrated into the analysis to 

improve the accuracy of the detected variations. For single nucleotide variation (SNV) calling, 

a similar approach was used to create a panel of normals. The SNV calling was executed 

using a modified version of the ICGC Argo pipeline (version gatk-mutect2-variant-calling-

4.1.8.0-6.0), tailored in-house to accommodate the analysis of non-matched tumor-normal 

samples. Variants that were present in both treated and control cell samples were removed 

to avoid artifacts and pre-existing mutations in the control samples.  

 

EAC tissue micro array immunohistochemistry and survival analysis 

The procedure of tissue microarray (TMA) analysis by immunohistochemistry (IHC) and the 

cohort of EAC patients have been described earlier 68. In brief, tumor specimen were 

included of 1,161 patients with esophageal adenocarcinoma that underwent Ivor-Lewis 

esophagectomy with curative intention in between 1998 and 2019 at the University Hospital 

of Cologne. The local ethics committees approved the study (ethics committee number: 21-

1146) and it was conducted in accordance with the declaration of Helsinki. TMA was 

performed as described elsewhere 69. IHC was conducted to assess expression of CK6 

(KRT6) with antibody Anti-Cytokeratin 6 antibody [SN71-07] (HUABIO, USA) according to the 

manufacturer on a automatic staining system Leica BOND-MAX with Leica Bond Polymer 

Refine Detection Kit (Leica Biosystems, Wetzlar, Germany). For 728 tumors, CK6 IHC was 

evaluable. CK6 stainings were classified according to their percentage of stained tumor cells 

(0%= negative, >0-25%= low positive, >25% high positive). Analyses were performed with R 

version 4.3.0. Overall survival was defined as time between surgery and death or loss of 

follow-up. P values below 0.05 were considered statistically significant. Chi-square test was 

conducted to compare qualitative variables. Survival analyses were conducted using Kaplan-

Meier curves with respective log-rank tests.  
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Resource table 

Reagent or Resource Source Identifier 

Antibodies 
  H2A.X Ser139 (20E3) Cell Signaling Technology 9718S 

Goat anti-rabbit Alexa-Fluor 488  Thermo Fisher #A11034 

Anti-BRCA2 Cell Signaling Technology, USA #10741 

Cytokeratin 6 HUABIO, USA SN71-07 

Biological samples 
  Human esophageal 

adenocarcinoma, resected with 
curative intent University Hospital Cologne N/A 
Chemicals, peptides, and 
recombinant proteins 

  Isoflorane Piramal 9714675 

Phosphate-buffered saline (PBS) Life technologies, USA 14190169 

Carboplatin  Pharmacy N/A 

Paclitaxel  Pharmacy N/A 

RPMI-1640 Life technologies, USA 61870044 

Fetal bovine serumg Capricorn Scientific, Germany N/A 

Penicillin/ Streptomycin Life technologies, USA 15140122 

Paraformaldehyde (PFA) Thermo Scientific J19943.K2 

Triton-X 100 (TX100) Sigma-Aldrich, USA X100-5ML 

Bovine serum albumin (BSA) Sigma-Aldrich, USA A2153-50G 

BRCA2 Double Nickase Plasmid  Santa Cruz Biotechnology, USA sc-400700-NIC 

Puromycin  Santa Cruz Biotechnology, USA sc-108071 

Laemmli sample buffer Bio-Rad, USA 1610747 

Tween-20 Sigma-Aldrich, USA P9416-100ML 

Water with 0.1 % Formic acid  VWR 84866.290P 

Acetonitrile with 0.1 % Formic 
acid  VWR 

84866.290P 
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Trypsine Serva, Germany 84866.290P 

Critical commercial assays 
  CellTiter-Glo® 2.0 Cell Viability 

Assay  Promega, Germany G9242 

NucleoSpin Tissue, Mini kit for 
DNA from cells and tissue Macherey-Nagel, Germany 740100.50 
TOPO® TA Cloning® Kit for 
Sequencing Thermo Fisher Scientific, USA 450071 
AllPrep DNA/RNA/miRNA 
Universal Kit Qiagen, Germany 80204 
Empty pulled tip fused silica 
column pulled in house  N/A 
C18 chromatography resin (30 
cm — 75 µm I.D) Agilent 

2.7 µm Poroshell (EC120 
C18) 

QuantSeq 30 mRNA-Seq Library 
Prep Kit FWD for Illumina Lexogen GmbH, Vienna, Austria 191.96 

SureSelect Human All Exon V6 Agilent 5190-8864 

Leica Bond Polymer Refine 
Detection Kit  

Leica Biosystems, Wetzlar, 
Germany DS9800 

Deposited data 
  3'RNA-seq data  NIH Short Read Archive (SRA) PRJNA1190871 

WES data NIH Short Read Archive (SRA) PRJNA1190871 

proteomics data ProteomeXchange PXD058517 

Experimental models: Cell lines 
  

Eso26 

Deutsche Sammlung von 
Mikroorganismen und 
Zellkulturen (DSMZ, Germany) ACC 708 

OE19 

Deutsche Sammlung von 
Mikroorganismen und 
Zellkulturen (DSMZ, Germany) ACC 700 

OE33 

Deutsche Sammlung von 
Mikroorganismen und 
Zellkulturen (DSMZ, Germany) ACC 706 

Experimental models: 
Organisms/strains 

  Nude mice  Janvier labs Rj:NMRI-Foxn1nu/nu 

Software and algorithms 
  

Perseus Tyanova et al. 2016 60 
https://github.com/framesurge
/perseus 

Prosit webserver Gessulat et al. 2019 59 
https://www.proteomicsdb.org/
prosit/ 

Xenome Conway et al. 2012 61 

https://github.com/data61/gos
samer/blob/master/docs/xeno
me.md 

nf-core/rnaseq pipeline version 
3.8.1  Ewels et al. 2020 62 

https://github.com/nf-
core/rnaseq 

DESeq2 Love et al. 2014 63 
https://github.com/thelovelab/
DESeq2 

GSEA Subramanian et al. 2005 64 
https://www.gsea-
msigdb.org/gsea/index.jsp 

BWA-MEM Li and Durbin 2009 65 https://github.com/lh3/bwa 
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ICGC-Argo genomic pipeline  ICGC ARGO 
https://github.com/icgc-argo-
workflows 

Genome Analysis Toolkit (GATK)  Broad Institute 
https://github.com/broadinstitu
te/gatk 

R N/A https://www.r-project.org/ 

other 
  

Biobeam GM 8000 

Eckert & Ziegler, Gamma-
Service Medical GmbH, 
Germany N/A 

Centro LB 960 Microplate 
Luminometer 

Berthold Technologies GmbH & 
Co. KG, Germany LB960 

PVDF membrane  Carl Roth GmbH + Co.KG T830.1 

Flow Sorter LE-MA900FP Sony LE-MA900FP 
Q Exactive Exploris 480 mass 
spectrometer  Thermo Scientific BRE725533 

EASY nLC 1200 Thermo Scientific LC140 

NovaSeq 6000 Illumina 20012850 

MSigDB UCSanDiego/Broad Institute 
https://www.gsea-
msigdb.org/gsea/msigdb 

Leica BOND-MAX Leica N/A 

 

Figure legends 

Figure 1: RCT treatment response tested in three EAC models. (A) Cell Titer Glo (CTG) 

viability assay illustrates the distinct responses of Eso26, OE19, and OEx33 esophageal 

adenocarcinoma (EAC) cell lines to RCT treatment. CROSS chemotherapeutic 

concentrations displayed on the x-axis are calculated as µM Carboplatin and µM*10 

Paclitaxel concentrations combined with 2 Gy of radiation. (B) Experimental design and 

workflow for in vivo-based analyses. (C) Overview of the combined RCT treatment protocol 

executed in vivo. (D) Graphical representation of growth curves for the three EAC tumor 

models, showcasing the initial response to RCT treatment and subsequent post-treatment 

progression in 4 out of 13 tumors in the OE33x model, 4 out of 6 tumors in the OE19 model, 

and in 6 of 8 tumors in the Eso26 model following RCT treatment. FFPE refers to formalin-

fixed, paraffin-embedded tissue; N, numbers of tumors included in the analysis. (E) Growth 

rates of three EAC xenograft models before and at day 40 after RCT start. ***, P < 0.001 T-

test. 

Figure 2: Reduced function of BRCA2 leads to changes in migration potential and DNA 

damage response in EAC tumor cell models. (A) CRISPR/Cas9 mediated BRCA2 allele 

alteration was induced in 120 clones across three EAC cell lines. The resulting clones were 

verified through Sanger sequencing. Notably, none of the viable BRCA2 edited clones had a 

homozygous BRCA2 knockout (KO). The BRCA2 edited clones have one wild type/in-frame 
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BRCA2 allele left, referred to as BRCA2kd. (B) Verification of BRCA2kd across EAC models 

through Western blot analysis. (C) Top: OE19 BRCA2kd cells exhibit enhanced migration 

rates, as assessed through a wound-healing assay, in comparison to parental cells at 0, 24, 

and 48 hours (* P<0.05, T-test). Bottom: ImageJ analysis of inverted microscopic 

measurements were employed to measure the distance traveled by cells. (D) 

Immunofluorescence staining of γH2AX in Eso26 parental and BRCA2kd cells. The 

expression of the DNA damage marker γH2AX increased in 50 µM Carboplatin-treated 

Eso26 BRCA2kd tumors compared to parental tumors 40x magnification. CPT, Carboplatin. 

(E) Xenograft growth dynamics in parental and BRCA2kd tumors. BRCA2kd significantly 

decreased the tumor growth potential in vivo when compared to parental tumors. (F) Growth 

rates of three EAC parental and BRCA2kd xenograft models. *, P<0.05 T-test. 

Figure 3: Induced genomic response in EAC parental and BRCA2kd tumors post RCT 

treatment. (A) Genomic copy number analysis based on WES defines the genomic instability 

index (GII, y-axis) as a measure for the fraction of the genome that is altered. RCT treatment 

induces GII to a moderate extent while BRCA2kd leads to high GII in Eso26 and OE19 tumor 

models. (B) Single nucleotide variant (SNV) analysis of mutations acquired during the course 

of the experiment compared to parental cell lines without treatment reveals three mutation 

signatures. (C) Copy number profile of chromosome 19 (y-axis) of post-RCT relapsed Eso26 

tumors and parental Eso26 as reference is shown with red indicating gained copy number. 

Note consistent copy number gain of chromosome 19q in Eso26 RCT-treated tumors 

compared to treatment-naive tumors. Known cancer-related genes are shown on the right. 

Figure 4: Transcriptomic and proteomic profile changes are most prominent in BRCA2kd 

tumor models. (A) Hierarchical clustering of the Euclidean distance matrix based on 3’ 

mRNASeq normalized gene expression of the three EAC tumor models. This heatmap 

showing sample similarity and the dominant signature of EAC cell lines. (B) Hierarchical 

clustering of the Euclidean distance matrix based on proteomic data of the three EAC tumor 

models. Heatmap illustrates proteins that are differentially expressed across all groups in the 

EAC tumor models. 

Figure 5: BRCA2kd and RCT treatment induced overlapping transcriptomic changes in EAC 

tumor models. (A) Illustration depicting the numbers of DEGs across the three EAC tumor 

models. (B) Correlation analysis of gene expression differences between RCT-treated vs. 

untreated Eso26 tumors (x-axis) and untreated OE19 vs. Eso26 tumors (y-axis). (C) 

Correlation analysis of gene expression differences between RCT-treated vs. untreated 

Eso26 tumors and untreated Eso26 BRCA2kd vs. untreated Eso26 parental tumors. (D) 

Definition of resistance expression signature based on common expression differences 
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between Eso26 treated vs. untreated and OE19 vs. Eso26 (left schematic and left and 

middle column in heatmap). Resistance gene set of 48 genes correlates with transcriptomic 

changes induced by BRCA2kd in Eso26 (right column in heatmap). (E) GSEA for 

REACTOME pathways for differentially expressed genes between Eso26 RCT vs. Eso26 

parental. (F) Correlation analysis between gene expression differences of RCT treated 

Eso26 vs. untreated tumors and the basal-like keratinization vs. classic subtype reported by 

Guo et al. 2018 25. 

Figure 6: Elevated expression of basal cell marker keratin 6 (KRT6) is associated with poor 

survival in EAC patients who underwent neoadjuvant treatment. (A) Gene expression 

heatmap shows the overexpression of several keratins in RCT-treated Eso26 tumors. (B) 

Immunohistochemical (IHC) staining of KRT6 in a tumor with (RCT) and without treatment 

(Ctrl) shows overexpression of KRT6 in treated Eso26 tumors. (C) Examples for KRT6 

expression levels low and high for the analysis of tissue microarray (TMA) by IHC showing 

the differential expression levels of KRT6 in EAC patient tumors. . (D) Quantitative analysis 

of KRT6 IHC of 1161 EACs from Cologne arranged as TMA. Zero represents KRT6 negative, 

low indicates <25% KRT6 positive, and high signifies >25% KRT6 positive tumor cells. (E) 

Kaplan-Meier survival analysis of 728 EAC patients with evaluable IHC and survival data with 

different levels of KRT6 expression. Analysis of all patients is shown on top (HR = 1.201; 

95%CI = 1.032 - 1.397), treatment naive patients (middle; HR = 1.189; 95%CI = 0.8977 - 

1.574), and EAC of patients post-treatment at the bottom (HR = 1.202; 95%CI = 1.002 - 

1.442).  
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