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Polarity-JaM: an image analysis toolbox for
cell polarity, junction and morphology
quantification

Wolfgang Giese 1,2,8 , Jan Philipp Albrecht 1,3,4,8, Olya Oppenheim 1,2,5,
Emir Bora Akmeriç 1,2,5, Julia Kraxner1,2, Deborah Schmidt1,3,
Kyle Harrington 1,6 & Holger Gerhardt 1,2,5,7

Cell polarity involves the asymmetric distribution of cellular components such
as signalling molecules and organelles within a cell, alterations in cell mor-
phology and cell-cell contacts. Advances in fluorescencemicroscopy and deep
learning algorithms open up a wealth of unprecedented opportunities to
characterise various aspects of cell polarity, but also create new challenges for
comprehensible and interpretable image data analysis workflows to fully
exploit these new opportunities. Here we present Polarity-JaM, an open source
package for reproducible exploratory image analysis that provides versatile
methods for single cell segmentation, feature extraction and statistical ana-
lysis. We demonstrate our analysis using fluorescence image data of endo-
thelial cells and their collective behaviour, which has been shown to be
essential for vascular development and disease. The general architecture of
the software allows its application to other cell types and imaging modalities,
as well as seamless integration into common image analysis workflows, see
https://polarityjam.readthedocs.io. We also provide a web application for cir-
cular statistics and data visualisation, available at www.polarityjam.com, and a
Napari plug-in, each with a graphical user interface to facilitate exploratory
analysis.Wepropose a holistic image analysisworkflow that is accessible to the
end user in bench science, enabling comprehensive analysis of image data.

Cellular polarity is important in many biological phenomena,
spanning from developmental processes such as angiogenesis to
tissue repair in the adult organism. Cell migration, cell division,
and morphology depend on prior polarisation and breaking of
spatial symmetry. Spatial reorganisation of the plasma mem-
brane, cytoskeleton, cell-cell junctions, or organelles is required
to establish an axis of polarity with a distinct ‘front and back’
direction, in order to guide directed processes1. In these

processes, cells react and adapt according to multiple and often
conflicting cues from their environment2.

Fluorescence microscopy has become an invaluable tool for
producing high-resolution, high-content images of in vitro systems as
well as in vivo tissues. These images can be obtained at a subcellular
resolution of less than one micron, with multiple fluorescence chan-
nels acquired in parallel, often onmultiple planes, allowing for detailed
quantification of cellular polarity and asymmetries. At the same time,
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deep learning segmentation algorithms have developed at a stagger-
ing pace over the past few years, enabling the segmentation of indi-
vidual cells and organelles with near-human accuracy3–9. This opens up
a wealth of unprecedented possibilities, but also creates new chal-
lenges for comprehensible and interpretable image data analysis
workflows that fully exploit these new potentials.

Each cell has a unique shape, a particular spatial distribution of
organelles, and contains different absolute amounts and distributions
of protein species, which are measured by intensity and gradients,
respectively. In addition, junctional cell-cell contacts exist with their
own morphological phenotypes10,11. Taken together, this image-based
information provides a snapshot of a cell’s state, which we aim to turn
into quantitative and comparable features. We demonstrate our
investigations on image data from endothelial cells (ECs). ECs line the
inside of blood vessels and play a crucial role in organ function and
health of the whole organism. Migration of these cells is important for
vessel formation and repair, but can also be involved in disease pro-
cesses in the cardiovascular system, cancer, or inflammation. ECs are

sensitive to shear stresswhenbloodflowpasses throughblood vessels,
causing alterations at the collective and single-cell level, including
morphological changes in ECs alignment, shape, size, as well as sub-
cellular changes to cell-cell junctions, organelle polarity, and gene
expression. The location or distribution of organelles in the cell can be
quantified in relation to the nucleus or the cell centre. For example, the
position of nucleus and Golgi apparatus are used to compute nuclei-
Golgi polarity, which has been positively correlated with directed
motility12 and cell orientation13 in several cell types, including epithelial
cells and ECs, see Fig. 1A, B. EC polarity can be induced by multiple
signaling cues, including shear stress and VEGFA, which can be in
competition with each other. Various EC shear stress sensors have
been identified that induce ECpolarisation, including Piezo1, plexinD1,
focal adhesions (FA), the VEGFR2/PECAM1/VE-cadherin complex, or
caveolae14. As a result, ECs adapt their shape and orientation to shear
forces13,15. Cell shape is often measured using circularity, shape index,
or length-to-width ratio (LWR). While LWR has been positively corre-
lated with VEGFA treatment in all EC types16, the collective signature

Fig. 1 | An overview of feature categories and targets. A Endothelial cells under
static conditions exhibit a random polarity, while endothelial cells exposed to
laminar flow polarise against the direction of flow (indicated here by the relative
nuclei-Golgi polarity) and elongate. The flow direction is indicated by the black
arrow. B Categories of image-based features comprise identification and localisa-
tion, polarity, morphology, and intensity readouts, which can be applied to (C)

several targets, including cell, nucleus, organelle, marker and junction interfaces.
For example, localisation can be computed for the targets cell, nucleus, and
organelle. Similarly, morphology features describing the elongation of an object
can be calculated for different targets, such as the cell and nucleus. Polarity-JaM
features are generated automatically based on available targets and user config-
uration. See Supplementary Tables 1 and 2 for an overview.
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also differs across organs and microenvironments17. ECs exposed to
undisturbed flow are elongated with an increased LWR and are aligned
with the direction of flow, whereas ECs in areas of disturbed flow are
more cuboidal and are randomly oriented, both in vivo and in vitro18.

A major challenge in the creation of every image analysis pipeline
is identifying and measuring informative features. This search has a
large iterative component and is based on precise and accurate mea-
surement of the relevant microscopy data19. Several studies have
proposed meaningful measures such as Quantify Polarity20, Junction
Mapper11 and Griottes21 or reviewed existing ones19. However, it is not
yet possible to integrate these different aspects into a single pipeline
andperformamultivariate analysis. For a comparisonof tools,we refer
to Supplementary Table 3. These requirements and constraints moti-
vated the development of the Polarity-JaM package, which is built to
streamline the process of exploratory image analysis; this is accom-
plished by providing the end user with functionality that includes a
wide range of features, explanatory metadata, clear and concise doc-
umentation, and high testing coverage. Proper meta-data and testing
ensure that parameters can be tuned safely and systematically, and the
functionality of the main components of the package can be -reason-
ably- extended to new types of analysis. All relevant analysis can be
performed with our package, making installation and usage
straightforward.

To cover the wide range of properties that can be extracted from
multichannel images, we have developed a framework that makes
themeasy tofindand explain.We therefore introducedifferent feature
categories, including (1) object identification and localisation, (2)
morphology, (3) polarity, and (4) intensity-related properties, see
Fig. 1B. Each of these categories can be applied to different targets,
including single cells, nuclei, organelles, the intensity profile of a
marker, and junction interfaces, see Fig. 1C. For example, localisation
can be applied to the cell, nucleus and organelle. In the same way, we
can calculate morphology features for different targets, e.g. the LWR
canbe extracted fromacell andnucleus. Polarity features aregenerally
based on (a) differences between the left and right sides of a cell, (b)
the calculation of an orientation angle with respect to an axis, here
called axial polarity, or (c) the calculation of a directional ‘front-back’
polarity, see Fig. 1B and Supplementary Table 1. Note that in the latter
case, polarity features can have two targets; in the example of nuclei-
Golgi polarity, the positions of the nuclei (target 1) and Golgi (target 2)
relative to each other are extracted, which is used to define the ‘front-
back’ polarity of a cell with a defined direction. We will discuss these
examples in the Results section. Depending on the input image and the
configuration, different features and combinations will be computed.

In this article, we present Polarity-JaM, an open-source software
suite for measuring and analysing cellular properties in microscopic
images, using EC biology as an example. To visualise and explore the
wide range of cellular polarity,morphology and junctional features, we
have developed an R-shiny application that integrates bespoke statis-
tical tools for circular data not available in standard toolboxes. We
introduce informative statistical plots, including circular histograms,
polarity indices and confidence intervals, to display all relevant infor-
mation. For terminology used in our article, we provide a glossary at
the end of the supplement, see Supplementary Table 15. In summary,
we propose a holistic image analysis workflow that is accessible to the
end user in bench science, enabling comprehensive analysis of col-
lective cell systems.

Results
Asymmetries in subcellular localisation of organelles
Cell polarisation is a dynamic process that involves the reorganisation
of various cellular components, including the cytoskeleton, intracel-
lular signaling molecules, organelles, and the cell membrane. The
nucleus is the most prominent organelle in eukaryotic cells and is
constantly exposed to intrinsic and extrinsic mechanical forces that

trigger dynamic changes in nuclei morphology and position22. Orga-
nelles like the centrosome and Golgi apparatus are located outside the
nucleus and typically not at the cell’s geometric centre23,24. Their
positions are crucial for various directed processes, such as cell divi-
sion, migration, adhesion, and cell-cell contact formation. The posi-
tioning of these organelles can have passive or active effects on
mechanisms such as Rho signaling and Map Kinase signaling25.

We exemplified our approach using nuclei-Golgi positioning and
nucleus displacement as read-out; see Fig. 2. Sprouting angiogenesis
and vascular remodelling are based on directional migration of ECs26.
In response to flow-induced shear stress, the position of the Golgi
apparatus is relocated upstream of the nucleus, against the flow
direction13. Nuclei-Golgi polarity is often used as a proxy for the
migration direction in static images in vivo and in vitro. We applied
shear stress levels of 6 dyne/cm2 and 20 dyne/cm2 for 16 h under dif-
ferentmedia conditions, to induce robust collective polarisation of the
EC monolayers (see Fig. 2). Microscopic images contained a junction
channel, a nuclei channel, and Golgi staining, see Supplementary
Fig. 1A and Supplementary Fig. 2 for an example. Using the Cellpose5

algorithm, we obtained segmentations for cells and nuclei. Golgi seg-
mentations were obtained by applying Otsu thresholding directly to
the Golgi channel and superimposing the resulting mask with the cell
segmentation from Cellpose, see Supplementary Fig. 1B for an exam-
ple. The nuclei-Golgi vectors were automatically calculated for each
cell, see Fig. 2A.

The collective strength of polarisation is commonly measured
using the polarity index27, which is calculated as the resultant vector of
all orientation vectors from each single cell. Mathematically we obtain
a vector for every single cell

ri =
cosαi

sinαi

� �
: ð1Þ

Note that αi in this example is the orientationof the displacement from
nucleus toGolgi, but canbe a placeholder for any givendirected ‘front-
rear’polarity feature, includingnuclei displacementwith respect to the
cell centroid andothers, see Supplementary Table 1. The averageof the
individual vectors is used to calculate the resultant vector from

r=
1
N

XN
i = 1

ri, ð2Þ

where N is the number of cells. The length of this vector, computed
from R = ∥r∥, is called the polarity index and its direction is themean of
the distribution. The value of the polarity index varies between 0 and 1
and indicates how much the distribution is concentrated around the
mean direction. A polarity index close to 1 implies that the data are
concentrated around the mean direction, while a value close to 0
suggests that the data are randomly distributed or spread in several
directions. In summary, the polarity index indicates the collective
orientation strength of the cell layer or tissue. Note that the polarity
index is closely related to the varianceof the distribution by S = 1 − R. In
Fig. 2C, E, F the value of the polarity index is shown and indicates the
strength of the collective flow response.

To complement this analysis, we introduce a signed polarity index
(V), which is derived from the V-test statistics28,29 and assumes a known
predefined polar direction as a reference. For example, if we assume
thatflow isorientated from left to right,we set thepolardirection to an
angle of αp = 0 in our reference system, see Fig. 2C. The signed polarity
index is computed from:

V = cR, ð3Þ

with c= cosð�α � αpÞ: ð4Þ

Article https://doi.org/10.1038/s41467-025-56643-x

Nature Communications |         (2025) 16:1474 3

www.nature.com/naturecommunications


The signed polarity index varies between −1 and 1 and indicates the
strength of polarisation with respect to the polar direction. In our
example, a value of −1 indicates that all cells are perfectly orientated
against flow, while a value of 1 indicates that all cells are perfectly

orientated with flow. For values in between, the distribution is more
spread or diverges from the polar direction. Therefore, the signed
polarity index measures both the deviation from given polarity direc-
tion and the spread of the distribution. Note that the polar direction

Fig. 2 | Asymmetric localisation of organelles as a measure for cell polarity.
A Human umbilical vein endothelial cells (HUVECs) in culture exposed to 20dyne/
cm2 shear stress for 16 h. Nuclei-Golgi polarity [left] and displacement of the nuclei
within each cell with respect to its centre [right]. Orientation is indicated by a cyclic
colour scheme and white arrows from the centre of the nuclei to the centre of the
Golgi (nuclei-Golgi polarity) or from the centre of each cell to the nucleus (nucleus-
displacement polarity). The flow direction is always from left to right. Scale bar
20μm. B Schematic representation of the features and target for this figure. A full
overviewof features that canbe extracted fromnuclei andorganelle targets is given
in Supplementary Tables 4 and 5. C Circular histograms of the distribution of cell

orientations of a single image; the red arrow indicates themean directionof the cell
collective and its length is the polarity index. The red dashed lines indicate the 95%
confidence intervals. Black dots indicate single-cell measurements. The grey arrow
indicates the polar vector that points in the direction of flow, and the length of the
black bar indicates the signed polarity index (V). D Circular correlation of nuclei-
Golgi polarity and nuclei displacement polarity. E Ensemble plot of nuclei-Golgi
polarity generated with the Polarity-JaM app for different flow conditions.
F Ensemble plot of the nuclei displacement orientation polarity generated with the
Polarity-JaMapp for different flow conditions. Source data are provided as a Source
Data file.
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provides a reference for comparing conditions, therefore we also cal-
culate the V-score for the static condition, even though there is no
flow. We suggest a graphical design for the representation of the
polarity index, the signed polarity index, the polar direction,
confidence intervals, circular histograms, and single measurements,
see Supplementary Fig. 3.

To compare and correlate nuclei-Golgi polarity with nuclei dis-
placement, we repeated the same calculations, but with polarity vec-
tors from cell centres to nucleus centres, see sketch in Fig. 2B. The
distribution of the polarity index (R) and signed polarity index (V) for
Ni = 30 images per condition is shown in Supplementary Fig. 4A, B for
the nuclei-Golgi polarity and in Supplementary Fig. 4C, D for nuclei
displacement. We found that the nuclei-Golgi polarisation of ECs
under shear stress is highly correlated with the displacement of the
nuclei and points in the opposite direction, Fig. 2C, D. We found the
same behaviour for a wide range of flow conditions; see Fig. 2E, F and
Supplementary Fig. 5, but with differentmagnitudes depending on the
media conditions and magnitude of shear stress. Our web application
includes a number of different statistical tests, including the Rayleigh
test, the V-test, the Watson test, and Rao’s spacing test, see Supple-
mentaryNote 5. It should be noted that these tests are not appropriate
for measurements of individual cells, given that the groups of single
cells within a monolayer or tissue exhibit significant correlation. We
therefore recommend the use of estimation statistics30 to calculate
effect sizes of collective parameters such as the polarity index (R) and
signed polarity index (V) (See Supplementary Fig. 4).

In31 a systematic analysis has demonstrated that the V-test, which
is based on the computation of the signed polarity index, is recom-
mended over other tests if an expected direction is known a priori.
Note that hereweuse theflowdirection as thepolar direction,whereas
for the V-test the expected polarisationdirectionmust be used. For the
nuclei-Golgi polarity, for example, the expected polarisation direction
points in the opposite direction to the flow direction, while for the
nuclei displacement both the flow direction and the expected polar-
isation direction are the same. The signed polarity index in our data
provides a more accurate distinction of all conditions with respect to
control, in particular for 6 dyne/cm2 and 20 dyne/cm2. In conclusion, it
is advantageous to use the signed polarity index when the expected
direction of polarisation or the direction of an external signal is known
in advance.

Shape orientation and morphology
Cell morphology is an essential part of cell biology as it provides
insights into the structure and function of cells and can be used to
understand the effects of different treatments, genetic mutations or
identify therapeutic targets. The shape of the cell also affects the
ability of cells to interact with their environment and to respond to
external signals. Cell protrusions can function as small pockets and
reaction chambers, while signaling gradients aremore easily stabilised
along the long axis of the cell than the short axis32,33. Cell shape is also
coupled with the migration direction; for example, in keratocyte-like
motion, polarisation occurs along the short axis of the cell34, while
other cell types migrate along the long axis. Furthermore, cell shape
can be an indicator of the mesoscale properties of tissue or cell
monolayer and is often used as an order parameter in soft matter
physics35,36. In summary, cell shape and orientation are important
readouts for directed cellular processes.

Recent studies have shown that EC monolayer orientation is
modulated by both physical and chemical stimuli37,38. In particular,
laminar shear stress induces collective EC alignment and elongation.
We compared the morphological response of ECs under three
experimental conditions: static, 6 dyne/cm2 shear stress at 24 h and
20dyne/cm2 shear stress at 48 h, see Fig. 3. We determined cell
orientation from the angle of the major axis to the x-axis (Fig. 3C, D),
which results in axial orientation data for each single cell. Note that

angular data of cell shape orientation are referred to as axial data,
whichmeans that all orientation anglesϕi, 1,⋯ ,N take values between
0 and 180°. Thus, we do not distinguish the front and back of the cell
(or nucleus), see Fig. 3G. Circular histograms showing the angular
distribution were generated with the Polarity-JaM app. It is important
to note that all axial orientation measurements have a periodicity of
180° and are therefore repeated every 180° in the circular histograms.
The duplicated data points are therefore shown transparent, see
Fig. 3E and Supplementary Fig. 3. To compute statistical quantities,
these axial orientation data were converted to directional data by
doubling all values θi = 2ϕi. The mean direction was calculated from
�ϕ=

�θ
2, where

�θ is the common circular mean of the directional data θi.
Similarly, the polarity index was calculated as the length of the mean
resulting vector of directional values θi. Again, the polarity index varies
between 0 and 1 and indicates how much the distribution is con-
centrated around themean. A polarity index close to 1 implies that the
data are concentrated around the mean direction, while a value close
to 0 suggests that the data are evenly distributed or random. The
V-score can be computed in the same fashion as for directed circular
data (see Supplementary Note 5 for more details).

Applying those measures, we found a strong response in the
orientation parallel to the flow at 6 dyne/cm2 and 20dyne/cm2 with a
V-score of 0.507 and 0.51 respectively. For static condition, there is no
collective orientation with respect to flow indicated by a V-score of
−0.0408, which is close to zero. We repeated the same computation
for nuclei orientation and found strong correlation with cell orienta-
tion, but with overall less concentrated collective orientation of the
nuclei, Supplementary Fig. 6E, F. Elongation was characterised by the
ratio of length to width, which where computed from the repsective
image moments. We observed only a weak response in elongation for
6 dyne/cm2, but a strong response for 20dyne/cm2 with a length to
width ratio greater than 3 (Fig. 3F). To complement this analysis, we
further quantified the shape symmetry with respect to the cue direc-
tion by splitting each cell along an axis perpendicular to the flow
direction through its centre, mirroring each half, and calculating its
shape symmetry based on the intersection over union of the resulting
areas, see Supplementary Fig. 6C. This symmetry score ranges from 0,
meaning very asymmetric, to 1, meaning perfectly symmetric. We
found that the EC monolayer at high shear stress of 20 dyne/cm2

appears to be more swirly than at 6 dyne/cm2, resulting in a much
lower symmetry score. In addition, the cell shape appearsmore curved
at high shear stress. Note that shape symmetry is not captured by
either elongation or orientation. For a complete list of features with
target cell, please refer to Supplementary Table 6.

Quantification of intracellular signalling gradients
Gradients or asymmetric distributions of signaling molecules are
inherent in cell polarity. Often these asymmetries are decoded into
rather small and subtle gradients that can be amplified by signaling
feedback systems, suchas theRhoGTPase system39. The establishment
of these signaling gradients within single cells allows cell collectives to
respond to their environment in a coordinated manner and is used to
control cell migration, differentiation, and other cellular processes40.
Quantifying the direction and strength of intracellular signaling gra-
dients between different experimental conditions is therefore crucial
to gain insight into the underlying processes.

The notch signaling pathway is involved in the regulation of var-
ious genes responsible for angiogenesis41 and has been shown to be a
mechanosensor in adult arteries42. Therefore, the effects of this path-
way are of great interest. We present an automatic quantification
approach of signaling gradients for each cell with the example of the
NOTCH1 protein using our tool. We investigated both circular and
linear features. First, themarker polarity is a circular feature, which can
be described as the direction from the geometric cell centre to the
weighted centre of marker intensity of the cell. Second, we computed
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the cue directional intensity ratio as a linear feature, which can loosely
be described as the ratio between themean intensities of the left-hand
and right-hand cell-half of a cell perpendicular to a given cue direction.
We provide a detailed description in the ‘Materials and Methods’ sec-
tion. The ratio takes values ranging from [−1, 1] where −1 indicates a
strong asymmetry against a direction of the cue, 0 without visible
effect, and +1 a strong asymmetry along the direction of the cue. An
example image together with a visualisation of the cue directional
intensity ratio and marker polarity is shown in Fig. 4A (from left to
right). A similar approach of using ratios on opposite sides of the cell
was introduced by ref. 43 to determine the magnitude and angle of
polarity of a given cell.

To investigate the polarity of the Notch1 signal, we compared ECs
in static conditions and exposed to shear stress for a 2 h time period.
The images contained a junction and nucleus channel as well as a
NOTCH1 staining. The junction and nucleus channel were used for
segmentation to then quantify the intracellular NOTCH1 signaling
gradient.

The result of the analysis is shown in Fig. 4 bottom row. We
observed a shift in the marker cue directional intensity ratio when
comparing static and shear stress conditions. We observed a rather
small, but consistent change inmean, indicating a small gradient of the
NOTCH1 signal, with a lower concentration on the flow-facing side,
Fig. 4B. The results of the marker polarity analysis showed strong
asymmetry effects, see Fig. 4C, with large polarity index of 0.647 and
0.47 and V-score of 0.639 and 0.458 at 30min and 120min, respec-
tively, while the mean was pointing along the direction of flow. This
confirms the results from ref. 42. A circular-linear correlation analysis
between thepolarity index and thedirectional intensity ratioof the cue
revealed a correlation coefficient of 0.721, see Fig. 4D, which implies a
strong correlation between both measurements. Since signaling gra-
dients in a single cell are rather small and sometimes noisy44, ratio
values are expected to be close to zero and show higher variance.
However, the cue directional intensity ratio is a linear feature, easy to
interpret, and canbe compared between experimental setups,which is
why we included it in our set of features. The marker polarity, on the
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Fig. 3 | Cell and nuclei shape orientation. A Example input image with DAPI
(yellow) and VE-cadherin (blue). B Cell elongation is indicated by colour with blue
‘roundish’ and red ‘very elongated’. C Cell shape orientation is visualised by a
circular colour scheme ranging from 0° to 180°. D Comparison of different flow
conditions static, 6 dyne/cm2 and 20dyne/cm2. E The orientation of cell shape is
summarised in circular histograms with statistical read-outs including the polarity
index (red bar) and V-score (black bar), lower hemirose plots are duplicated data

points and therefore shown transparent. F Histogram showing the change of cell
elongationwith respect to the threedifferentflowconditions.GPictogramshowing
the calculation of the length-to-width ratio and shape orientation, which is applied
to each single cell mask (target). Note, that the number of biological replicates is
n = 2 for static,n = 1 for6 dyne/cm2 andn = 1 for 20 dyne/cm2. The full set of features
with target cell can be found inSupplementary Table 6. Source data are provided as
a Source Data file.
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contrary, ismuchmore sensitive, but does notmeasure themagnitude
of the gradients, but only their direction.

Intracellular intensity patterns
To complement our investigation of signal intensity gradients, we also
characterised the localisation of image-based signal intensities, which
indicate the localisation of specific processes. Localisation of cellular
processes in biological cells is important because it allows for precise
regulation of downstream processes, such as gene expression, protein
synthesis, signaling and other cellular activities. For instance, it is
important whether molecules are localised at the cell membrane,
where they might get activated via phosphorylation, or if they fulfill
other functions through anchoring to the membrane. Localisation to
the nucleus is also important for a variety of cellular processes,
including gene expression or RNA processing.

To quantify the signal in the different subcellular compartments,
we computed the total amount and concentration of signal intensity,
in the nucleus, the cytosol (without the nucleus) and the membrane
nucleus, see Fig. 5A. We demonstrate the capabilities of the Polarity-
JaM pipeline, by quantifying the intensity ratio of Krüppel-like factor 4
(KLF4) in the nucleus with respect to the cytosol. KLF4 is a transcrip-
tion factor that is known to be upregulated via exposure to laminar
shear stress45,46. We calculated the intensity of KLF4 in the nucleus and
cytosol for static, after 4 h and 16 h of 6 dyne/cm2

flow. We found a
significant increase after 4 h of flow exposure in nuclei localisation
compared to control and a slow decrease at 16 h compared to 4 h
Fig. 5B, C. For statistical comparison, we have used the DABEST
method47, see Fig. 5C.

Junction morphology
Cell-cell junctions underpin any architecture and organisation of tis-
sue. They vary indifferent tissues, organs, and cell types andneed tobe
dynamically remodelled in development, homeostasis, and diseases.

For example, EC-cell junctions must provide stability and prevent
leakage while also allowing dynamic cellular rearrangements during
sprouting, anastomosis, and lumen formation10. The organisation and
topology of junctions and inversely the organisation and topology of
ECs contain a wealth of biological information. By analysing adjacency
patterns in ECs, organisational patterns that are associated with tissue
phenotypes can be uncovered. There are vast differences in endo-
thelial arrangement between different tissues and organs48.

We are using the cell-cell contact features from an already pub-
lished tool JunctionMapper to decipher cell-cell junction-related
phenotypes11. Note, that this tool is not adapted to studying EC in
organs or in 3D tubular structures, which will be in the scope of future
studies. The normalised junction features suggested in JunctionMap-
per allow one to quantify images of different resolution, cell type, and
modalities. In our tool, the analysis is automatically performed in a
region that is defined by the cell outlines, which we obtain from the
instance segmentation using the proposed deep learning frameworks.
This outline is dilated by a user-defined thickness. There are no more
parameters necessary to define. The result can be seen in Supple-
mentaryFig. 1C. The resulting areaof thedilatedoutline is the interface
area, which is computed for each single cell. We then derive the
characteristic from a junction label, for example, VE-cadherin staining
in the case of ECs, see Fig. 6A. The junction protein area results from
Otsu thresholding in that region, see Fig. 6B and Supplementary
Fig. 1C. Using these readouts, we can compute three features: (1)
interface occupancy by computing the junction protein area over the
interface area, (2) the intensity per interface area by computing
the average intensity in the interfacearea, and (3) cluster density by the
average intensity in the junction protein area. We find a unique sig-
nature of the three junction features in ECs after flow stimulation, see
Fig. 6C, demonstrating the effectiveness of our method. In static
condition, the cell-cell junctions are very heterogeneous, with some
cells having thick junctions and high VE-cadherin intensity, while
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For an overview of features that can be extracted from intensity measures, see
Supplementary Table 7. Source data are provided as a Source Data file.
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others have low signal intensity and low occupancy. Intensity and
occupancy become more homogeneous after exposure to flow. At
6 dyne/cm2 the total intensity per interface area increases aswell as the
interface occupancy. At 20 dyne/cm2, however, the junctions become
thinner, resulting in lower interface occupancy, while the intensity per
interface area remains almost the same compared to static. At the
same time, the intensity within the junction increases, resulting in
higher values of cluster density. For the entire junction analysis
workflow, only one additional parameter needs to be specified, namely
the width of the automatically generated outlines that serve as regions
of interest for cell-cell contacts. In summary, Polarity-JaM offers the
possibility to fully automate the essential parts of the JunctionMapper
workflow by setting a single additional parameter.

Reproducability, replicability and interoperability
Iterative acquisition of images and various experimental settings
sometimes require complex folder structures and naming schemes to
organise data, leaving the researcher with the problem of data struc-
ture and replicability of their analysis. To help with both tasks, the
Polarity-JaM pipeline has three execution scenarios: (a) single image,
(b) image stack, and (c) complex folder structure—for the latter option
see Supplementary Table 9. Furthermore, a comprehensive logging
output is provided, as well as a standardised input structure in yml
format. For a list of configurable parameters we refer to Supplemen-
tary Table 10. The generated outputs follow a naming scheme. The
extracted collective and single cell features are stored in a csv file. The
results of the statistical analysis from the app can be downloaded in
various formats, including pdf and svg. For different categories or
conditions, the Polarity-JaM app uses several qualitative colour
schemes that are colour-blind friendly, the infrastructure follows a
similar principle as PlotTwist49, which was designed for time series
analysis. Metadata and log information are also saved in a human-
readable format on disk. Polarity-JaM uses well-established non-pro-
prietary formats (such as csv, yml, tiff, svg) to aid interoperability,
following a recommendation in ref. 50. All statistical analysis for cir-
cular features shown in this study and more can be performed in the
App. Our tool can be combined with other tools such as Griottes21,
polarity features can be mapped on spatial network graphs and their

relation can be explored using the same segmentation, see Supple-
mentary Tables 12 and 13.

Exploitative image analysis requires interactivity to quality check
each analysis step. Hence, Polarity-JaM is designed with a simple
Python API that is optimised for usage within a Jupyter Notebook51. We
provide several examples in our documentation on how to perform
such an analysis. An overview of the entire Polarity-JaM software suite
is depicted in Fig. 7. We additionally equip Polarity-JaMwith a Napari52

plugin with a graphical user interface to enable direct feedback on
segmentation and features. Finally, Polarity-JaM is available via Python
Package Index (PyPI). Taken together, we are committed to the prin-
ciples of FAIR research53.

Discussion
Our image data processing and analysis workflow can be used to
simultaneously compute features of cell polarity, including organelle
localisation, cell shape, and signalling gradients, allowing single-cell
and collective high-content endothelial phenotyping. Circular statis-
tics can be performed interactively via a web application. We also
provide an informative graphical design for directional and axial data.
We recommend the use of the signed PI when a polarisation direction
is expected on the basis of an external cue, as is the case in most
endothelial flow assays.

With the focus of the Polarity-JaM toolbox on a diverse feature set
and replicability and interactivity, we provide means for answering
various biologically motivated experimental questions and for the
extraction of aspects that are otherwise easy to overlook. For instance,
collective orientation and cell size have been inversely correlated with
EC senescence. Older ECs tend to be larger and share a less pro-
nounced direction of orientation54. The orientation as a collective
phenotype can be correlated with processes such as flow and senes-
cence. Multivariate analysis, for example, including size in the image
analysis, could perhaps differentiate between endothelial phenotypes
by flow or those by cellular senescence.

This investigation has been exemplified for ECs, but can also be
applied to other cell types such as cardiomyocytes55, epithelial cell
tissues20 and potentially other cell types. The image modality is not
restricted to fluorescencemicroscopy but can be also applied to phase
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contrast or other—here the only restriction is that the image can be
decomposed intomasks of single cells. The current version of Polarity-
JaM integrates different segmentation models, including Cellpose9,
microSAM8 a fine-tunedmodel based on SAM7, and DeepCell6. There is
a vivid community around all these segmentation algorithms8,9;
therefore, we provide an interface to these models, which can also be
adapted by the user. This will help maintain this software and ensure
long-term use. Future development needs to address better segmen-
tation of subcellular structures, including cell-cell junctions, cytoske-
leton, and FA sites, using deep learning methods.

The quantification of junctional morphology is based on the fea-
tures suggested in ref. 11 including junction occupancy, cluster den-
sity, and intensity per interface area. While these features provide
good indicators for junctional changes and adaptations, they may not
be exhaustive referring to the manual morphological classification of
adherens junctions, which is frequently done in five common cate-
gories: straight junctions, thick junctions, thick to reticular junctions,
reticular junctions, and fingers56. To automate the translation into this

classification, furtherwork is needed on junction segmentation, aswell
as an advanced classifier using manual training data, which was not
ready at the timeof this publication butwill be addressed in the future.

Future challenges involve tissue and organoid image data in 3D
space, which introduces more challenges in algorithmic development
including robust segmentation (mainly due to the lack of training
data), anisotropy in image acquisition, and the size of the image data.
Also, efficient extraction of cell and nuclei features, which are by
default not included in common packages, need to be developed.
Multiplex imaging will stimulate further developments as this image
data modality dramatically increases the information content and
therefore challenges meaningful feature extraction and comprehen-
sive spatial and circular statistical approaches57.

The focus of this pipeline is on static images. However, the pipe-
line could also be applied to a series of images, and feature extraction
would be performed for each frame. The extracted data can be stit-
ched together by label identification58. Computational models can be
informed by a wealth of quantitative data through our approach,
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including vertex models35, but also the cellular Potts model34,59 or
agent-based models60,61. The spatial context can be further explored
using tools such as Griottes21 and the circular version of Moran’s I62 to
extract collective phenotypes. Mechanistically, this will also help to
predict different states of tissues and dynamics from static biomedical
images36,63,64, which is an interesting avenue for future research with a
wide range of applications.

Methods
Experimental setup
Cell culture and shear stress assays. Commercially available human
umbilical venous ECs (HUVECs, mixed donors of both sexes, Promo-
Cell: C-12203) were cultured and used at passages 2–4 at 37 °C and 5%
CO2 humid incubator, in endothelial growth medium containing
growth supplement kit (EGM2, Lonza) for optimal cell growth. For
passaging and fluid shear stress (FSS) assays, cells werewashed once in
sterile PBS, followed by a 5min incubation in Trypsin at 37 °C and 5%
CO2, then neutralised with FBS and EGM2. Cells were centrifuged for
5min at 480 × g and counted. For FSS assays, cells were seeded in 0.4
ibiTreat Luer flow slides (Ibidi) coated with 0.2% gelatin at a cell con-
centration of 2 million cells per ml. One hundred microlitre of cell
suspension were added to each slide and incubated overnight at 37 °C
and 5% CO2. The following day, the slides were connected to red per-
fusion sets assembled onto perfusion units (Ibidi) and connected to a
pump (Ibidi). Laminar shear stress was applied at 6 dyne/cm2 or
20dyne/cm2 for 4, 16, or 24 h inside a 37 °C and 5% CO2 humidity
incubator. Static controls were kept in the same incubator for the
duration of the experiment.

Immunofluorescence. At the end of flow application, slides were
disconnected from perfusion units and immediately fixated in 4% PFA
for 10min, then washed three times in PBS. Slides were then blocked
and permeabilized in BB for 3min, followed by 1 h of incubation with

primary antibodies at room temperature. Cells were washed 3 times
with PBS, then incubated 1 h with secondary antibodies at room tem-
perature, followed by another triple washing step, 5min incubation
with DAPI, and finally mounted with a Mowiol +Dabco mixture in a 9:1
ratio. The primary and secondary antibodies used can be found in
Supplementary Table 11.

Confocal image acquisition. FSS immunostained slides were
imaged on a confocal microscope (Carl Zeiss, LSM 980) using a
Plan-Apochromat 20×/0.8 NA Ph2 air objective and 63x/1.4 NA oil
objective. For each sample, random positions throughout the flow
slide were selected and Z-stacks were acquired covering the
entire depth of the monolayer. Slides were imaged with a two-
channel setup, with channel one using the 488 and 633 lasers and
channel two using the 405 and 561 lasers. Pinhole size was set to
1AU for both channels. ZEN version 3.4.91.00000 was used for
image acquisition, Fiji65 was used for max projection and export
to tiff file format. Raw data and tiffs were stored and processed
on the internal OMERO66 server of the Max Delbrück Center for
Molecular Medicine.

Image analysis
Segmentation. To isolate individual cells in a microscopic image, a
process also known as instance segmentation, we used Cellpose, a
deep neural network algorithm. Accurate instance segmentation can
be created with pre-trained models it is provided with. These models
can generalise well across both cell type and imagemodalities. For our
analysis, we used the model ‘cyto’ for cell and ‘nuclei’ for nuclei
instance segmentation. For Golgi segmentation, Otsu-thresholding
was performed. Subsequently, the segmentationmask was used to get
the corresponding Golgi instance label. The performance of instance
segmentation algorithms can vary for different modalities. Down-
stream analysis of features describing individual cells and their rela-
tionship with each other strongly depend on the quality of these
segmentations. At this point Polarity-JaM offers three segmentation
algorithms that the user can choose from: Cellpose, DeepCell, and
microSAM which are individually configurable (see Supplementary
Table 14). Additional segmentation algorithms are realised with the
help of Album67, a decentralised distribution platformwhere solutions
(in this case implementations of segmentation algorithms) are dis-
tributed with their execution environment and can be used without
additional overhead for the user.

Single-cell and organelle features. Common features are available
within the scikit-image package68. We extend the available measure-
ments by various features. For a complete list of all features, see
Supplementary Note 2.

Most features require central image moments69 that can be cal-
culated from the raw moments

mi, j =
X
x

X
y

xi � y j � Iðx, yÞ, ð5Þ

with i, j = 0, 1… are exponents, x,y the pixel coordinates, where I(x, y)
refers to the image intensity at position x,y. Generally, the centre of
mass of a grey scale image (e.g. a channel) is now given by

M = ð�x, �yÞ= m1, 0

m0,0
,
m0, 1

m0,0

� �
: ð6Þ

The central moments are then

μi, j =
X
x

X
y

ðx � �xÞi * ðy� �yÞj * Iðx, yÞ: ð7Þ

Fig. 7 |Workflowfor large imagedata stackswith automated feature extraction
and quality control. The workflow enables processing large image data stacks for
automated feature extraction. The Python API can be used to facilitate quality
control with the help of a Jupyter Notebook. An overview of the Python application
interface (API) is provided in Supplementary Fig. 7. The results in comma-separated
value (CSV) table format can be statistically analyzed using a graphical interface.
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Shape orientation. With the central moments, we compute the
orientation

ϕ= σ
1
2
atan2ð2μ1, 1,μ0, 2 � μ2, 0Þ ðmodπÞ, ð8Þ

which describes the angle of the major axis of the object (e.g. nuclei
or cell shape) with the x-axis in the interval [0, π] in radians or 0 to
180°. Note that σ = ±1 depends on the choice of coordinate system of
the biomedical image, e.g. σ = +1 is used if the y-axis is frombottom to
top, while σ = −1 is used if the y-axis is from top to bottom. Various
features can be defined with the orientation, such as the cell shape
orientation or the nucleus orientation in case the nucleus channel is
provided.

Directed front-rear polarity features. Directed or front-rear polarity
features such asnuclei-Golgi polarity, nucleus displacement, ormarker
polarity are generally defined as angles α by

α = σ � atan2 �yf � �yr , �xf � �xr

� �
ðmod2πÞ, ð9Þ

where index r indicates moments that are calculated on a reference or
‘rear’ target, and f moments that are calculated on the ‘front’ facing
target. In this way we can define directed front-rear polarity based on
two targets. In the case of nuclei-Golgi polarity, the target is the Golgi
channel and the reference is the nuclei channel. In the case of nuclei
displacement or marker polarity, the centre of mass of the cell is the
reference and the ‘front’ facing target is the nucleus or the intensity
weighted centre of mass, respectively. The values of the directed
polarity features take values in [0, 2π] in radians, which corresponds to
0° to 360°, in this study.

Signaling gradient quantification. We define the cue directional
intensity ratio for a cell as

sr =
ð1� 2Iðx, yÞAlÞ
Iðx, yÞAcell

, ð10Þ

where Al is the area of the left cell half perpendicular along a given a
cue direction αp and area of the cell Acell. Mathematically, the area Al is
described as

Al =Au \ Acell ð11Þ

with

Au = �v= ðx, yÞj �v�
�x
�y

� �� �
� �vc <0

� �
, ð12Þ

and �vc = ðcosðαpÞ, sinðαpÞÞ, where the polar direction or expected cue
direction αp is given in radians and �x and �y are calculated over the
cell mask.

Statistics and reproducibility. We used the notation Ncell, Nnuc for
numbers of analyzed cells or nuclei, respectively. Furthermore, NI

indicates the number of images analysed and n the number of bio-
logical replicates. No statistical method was used to predetermine
sample size. No data were excluded from the analyses. The experi-
ments were not randomised and the investigators were not blinded
to allocation during experiments and outcome assessment. All
statistical methods were implemented in R version 4.4.1, the sta-
tistical analysis from the CircStats package (version 0.2-6)28

for directional and axial data. We also used the DABEST (‘data
analysis with bootstrap-coupled estimation’, version v2024.03.29)
method47.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The image data generated in this study have been deposited in the
BioImage Archive database under accession code S-BIAD1540 https://
www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1540. The extrac-
ted numerical feature data generated in this study are provided in the
Source Data file. Source data are provided with this paper.

Code availability
The pipeline was developed in Python and is available through PyPI.
The code for the R-shiny application was written in R and Rstudio
(https://www.rstudio.com). The Polarity-JaM app can be used online
via (www.polarityjam.com) without the installation procedure. Both
the Polarity-JaM pipeline and the app can also be used offline. Addi-
tionally, both can be installed and used separately through album67, a
framework for scientific data processing with software solutions of
heterogeneous tools. The link can be found https://album-app.gitlab.
io/catalogs/helmholtz-imaging/de.mdc-berlin/polarityjam. The code
for pipeline, app, and Napari plugin is published under theMIT licence
and is available through GitHub (https://github.com/polarityjam).
Additional documentation and information can be found at read-
thedocs (https://polarityjam.readthedocs.io). Issues, requests and
contributions are tracked on GitHub issues. Collaboration and con-
tributions are possible and welcome. Instructions and best practices
can be found in the documentation.
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