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Supplementary Note 1 12 

Impact of clustering strategy on bio-conservation metrics ARI and NMI 13 

To compute ARI or NMI, used here to score bio-conservation, we need to compare a clustering 14 
for any given input to ground truth labels (cell type labels). The choice of clustering algorithm 15 
and hyperparameters affects results. Luecken et al. (2022) opted to optimize clustering for the 16 
Louvain algorithm with respect to the NMI and ARI metrics across a range of clustering 17 
resolutions. This strategy can lead to cluster numbers strongly deviating from the number of 18 
ground truth cell type labels and distinct number of clusters for any given scenario, complicating 19 
comparisons and potentially favoring unrealistic solutions. Recently, Maan et al. (2024) chose to 20 
optimize clustering based on the actual number of ground truth clusters (cell types).  21 
 22 
A recent study proved that the NMI metric can exhibit biased behavior when the number of 23 
detected clusters exceeds the true number of clusters (Mahmoudi & Jemielniak, 2024). In light 24 
of this, and due to the potential limitations of optimizing with little constraints, we sought to 25 
assess the impact of different strategies for deriving a clustering to compare to ground truth 26 
labels with ARI and NMI.  27 
 28 
We compare the results of choosing the maximum score in the full range of tested resolutions 29 
(0-2, step 0.1) of the Leiden clustering algorithm with choosing a maximum score only for results 30 
whose number of clusters is within ±20% (bounded) of the ground truth (cell type labels). 31 
Supplementary Figures 3-5 a) show at which resolution and respective number of clusters 32 
maximal scores were reached in the full range and in the bounded region. Supplementary 33 
Figures 3-5 b) illustrate how this impacts the overall ranking of distinct scenarios for the different 34 
data sets.  35 
 36 
We find that this choice impacts results. For example, for the full NeurIPS data, scenario 37 
“Suboptimal”, the maximum scores for ARI and NMI in the full range corresponds to a clustering 38 
output (12 clusters) that strongly deviates from the number of ground truth clusters (22) 39 
(Supplementary Figure 5 a)). In several cases, the choice of strategy even led to different 40 
rankings (e.g., ARI for NeurIPS data minimal example, Supplementary Figure 4 b)).  41 
 42 
These findings do not affect the main conclusions of our paper regarding silhouette-based 43 
metrics, but rather underscore that exploring optimization strategies based on the number of 44 
ground truth clusters needs further investigation.   45 
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Supplementary Figures 46 

 47 

 48 
Supplementary Figure 1: Extended evaluation metrics. Batch removal and bio-conservation 49 
metrics (a) for simulated and (b) for real data minimal example (cf. Figure 1). 50 
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 51 
Supplementary Figure 2: Silhouette-based metrics (Batch ASW) are unreliable with 52 
nested batch effects, failing single-cell data integration evaluation (2). 53 
a) UMAPs of full NeurIPS data set with nested batch effects integrated with increasing success, 54 
colored by cell type, sample, and site. (b) Extended evaluation metrics. 55 
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 56 
Supplementary Figure 3: Impact of clustering strategy on ARI and NMI bio-conservation 57 
metrics for simulated data. a) Relationship between Leiden clustering resolution (bottom x-58 
axis), resulting cluster count (top x-axis), and corresponding ARI and NMI scores. Dashed lines 59 
indicate resolution and cluster count for maximum metric score across full range (0-2, step 0.1). 60 
Green area highlights results within ±20% of true cluster count. Dotted lines show resolution and 61 
cluster count for maximum score within bounded range. True cluster count: 3. b) Comparison of 62 
max scores from different clustering strategies shown in a). 63 
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 64 

 65 
Supplementary Figure 4: Impact of clustering strategy on ARI and NMI bio-conservation 66 
metrics for NeurIPS data minimal example. a) Relationship between Leiden clustering 67 
resolution (bottom x-axis), resulting cluster count (top x-axis), and corresponding ARI and NMI 68 
scores. Dashed lines indicate resolution and cluster count for maximum metric score across full 69 
range (0-2, step 0.1). Green area highlights results within ±20% of true cluster count. Dotted 70 
lines show resolution and cluster count for maximum score within bounded range. True cluster 71 
count: 22. b) Comparison of max scores from different clustering strategies shown in a). 72 
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 73 
Supplementary Figure 5: Impact of clustering strategy on ARI and NMI bio-conservation 74 
metrics for full NeurIPS data. a) Relationship between Leiden clustering resolution (bottom x-75 
axis), resulting cluster count (top x-axis), and corresponding ARI and NMI scores. Dashed lines 76 
indicate resolution and cluster count for maximum metric score across full range (0-2, step 0.1). 77 
Green area highlights results within ±20% of true cluster count. Dotted lines show resolution and 78 
cluster count for maximum score within bounded range. True cluster count: 22. b) Comparison 79 
of max scores from different clustering strategies shown in a).  80 
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