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Abstract 11 

Current-day single-cell studies comprise complex data sets affected by nested batch effects 12 
caused by technical and biological factors, relying on advanced integration methods. Silhouette 13 
is an established metric for assessing clustering results, comparing within-cluster cohesion to 14 
between-cluster separation, and adaptations of it have emerged as the dominant choice to 15 
evaluate the success of these integration methods. However, silhouette’s assumptions are often 16 
violated in single-cell data integration scenarios. We demonstrate that silhouette-based metrics 17 
can neither reliably assess batch effect removal nor biological signal conservation and are thus 18 
inherently unsuitable for data with (nested) batch effects. We propose alternative, robust 19 
evaluation strategies that enable accurate integration method assessment and call to update 20 
benchmarking practices.  21 

Main text 22 

Integrating single-cell data remains a key challenge of single-cell analysis due to the increasing 23 
complexity and volume of data sets generated. These data sets often include intricate, nested 24 
batch effects from both technical and biological factors, requiring rigorous evaluation of 25 
integration methods to ensure accurate integration and interpretation. Silhouette-based 26 
evaluation metrics have become widely adopted to address this challenge. As an integral part of 27 
current data integration benchmarking, they are used for scoring both biological signal 28 
conservation (bio-conservation) and batch removal. However, we demonstrate that these 29 
metrics cannot reliably score data integration. 30 
 31 
The metric “silhouette” scores clustering quality by comparing within-cluster cohesion to 32 
between-cluster separation (Rousseeuw, 1987), and was originally developed for evaluating 33 
unsupervised clustering results of unlabeled data (internal evaluation). In the single-cell field, 34 
silhouette was thus quickly taken up for determining the optimal number of clusters in single-cell 35 
data sets (Wagner et al., 2016; Scialdone et al. 2016). More recently, silhouette has been 36 
adapted for evaluating horizontal data integration (Argelaguet et al., 2021), for instance, to score 37 
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bio-conservation by assessing how well cell type annotations (based on labeled data, i.e., 38 
external evaluation) from distinct batches co-cluster (Haghverdi et al., 2018; Tran et al., 2020; 39 
Luecken et al., 2022). From 2017 onwards, silhouette-based metrics have also been employed 40 
for scoring batch effect removal, another key challenge of horizontal data integration (Risso et 41 
al., 2018; Büttner et al., 2019; Cole et al., 2019). Here, the silhouette concept is, however, 42 
inverted for scoring how well cells from distinct batches (external labels) mix. Fueled by a large-43 
scale single-cell benchmark and accompanying toolbox, silhouette-based batch removal metrics 44 
have become a predominant score to evaluate and claim the success of many new single-cell 45 
integration methods (Luecken et al., 2021; Luecken et al., 2022).  46 
 47 
Unfortunately, it appears to have gone unnoticed that silhouette-based batch removal metrics 48 
completely fail when scoring data integration in even modestly challenging scenarios. To 49 
illustrate this, consider a simplified, illustrative example: we simulate four single-cell RNA-seq 50 
samples with three cell types. The samples are split into two groups, mimicking that they were 51 
sequenced at two distinct sites (Figure 1(a)). This corresponds to data with batch effects nested 52 
in groups with decreasing levels of between-group batch effects (or, conversely, increasing 53 
levels of successful data integration), which we complement with an overcorrected scenario. To 54 
evaluate the behavior of silhouette scores for evaluating batch removal, we chose the 'ASW 55 
batch' metric, a commonly used cell-type dependent implementation of a silhouette-based batch 56 
removal metric (scib package (Luecken et al., 2022)). We find that Batch ASW results in near 57 
maximal, close to identical scores for every scenario - no matter whether data was actually 58 
integrated or not. Silhouette scores only consider the nearest neighboring clusters - here, 59 
assigned by sample - and when samples from the same group are highly similar, batch effects 60 
between the groups cannot be captured (Figure 1 (b)). Given the increasing prevalence of 61 
nested batch effects in single-cell studies, addressing this limitation is pivotal for ensuring 62 
reliable data integration. As we will see, the problem results from the underlying definition of the 63 
silhouette score, thus extending to every silhouette-based metric for batch removal.  64 
 65 
The silhouette is defined as follows. For a cell 𝑖 assigned to a cluster 𝐶!. Given 𝑎": the mean 66 
distance between a cell 𝑖 and all other cells in the same cluster 𝐶!. With: 𝑏": the mean distance 67 
between a cell 𝑖 and all other cells in the nearest (neighboring) other cluster 𝐶# where 𝑙 ≠ 𝑘, the  68 
silhouette coefficient of a single cell 𝑖, denoted as 𝑠" is given by:  69 

𝑠" =
$!%&!

'&((&!,$!)
  (1).  70 

Note that this is only defined for 2	 ≤ 	#	𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠	 ≤ 	#	𝑐𝑒𝑙𝑙𝑠	 − 1 and ranges between -1 and 1, 71 
with 1 indicating good cluster separation (𝑎" ≪ 𝑏"), values near 0 indicating cluster overlapping 72 
(𝑎" = 𝑏"), and  -1 wrong cluster assignment (𝑎" ≫ 𝑏"). In contrast to the use of silhouette for 73 
internal clustering evaluation (unsupervised clustering), for scoring data integration in the single-74 
cell field, cells are not assigned to clusters in a data-driven manner, e.g., by the result of a 75 
clustering algorithm, but by external information, such as cell type or batch labels. 76 
 77 
To illustrate why silhouette is inadequate for evaluating batch removal, consider integrating 78 
multiple data sets (samples) with a single cell type. In this context, the aim is to score cluster 79 
overlap and not separation. Silhouette-based batch removal metrics first assign the cells of 80 
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distinct samples to corresponding clusters. The assumption is that silhouette values 𝑠" around 0 81 
indicate a high level of cluster overlap and, hence, batch effect removal. However, an important 82 
detail goes unnoticed: silhouette (cf. equation (1)) considers the mean distance between a cell 83 
𝑖	and all other cells in only the nearest (neighboring) other cluster 𝐶# (𝑏"). A value for 𝑠"	around 0 84 
is thus attainable if a given cluster overlaps with just a single other cluster and could still be very 85 
distinct from all other remaining ones. This behavior is highly problematic in the presence of 86 
nested batch effects, where samples within groups are a lot more similar to each other than 87 
between groups. If samples within groups overlap, but differences remain between samples of 88 
distinct groups, silhouette-based metrics can result in maximal scores despite remaining strong 89 
batch effects, in the worst case, even favoring suboptimal methods. In practice, data sets 90 
usually comprise a multitude of cell types. Silhouette-based batch removal scores are 91 
commonly computed per cell type label and later aggregated to account for differences in cell 92 
type composition between samples (Luecken et al., 2022). Additionally, they are transformed to 93 
range between 0 and 1, with 1 indicating best performance. The same caveats apply - in the 94 
presence of nested batch effects, maximal scores are reached even if data is insufficiently 95 
integrated. 96 
 97 
This behavior is not limited to toy examples but, in fact, painfully obvious on real data sets. We 98 
empirically discovered this issue for 'Batch ASW' in the context of the NeurIPS 2021 challenge 99 
(Lance et al., 2022). The benchmark data is rich in nested batch effects of samples sequenced 100 
at different sites (intra-site differences smaller than inter-site) from bone marrow mononuclear 101 
cells (Luecken et al., 2021). Choosing a scRNA-seq subset with four batches nested into two 102 
groups (sites) for clarity, we compare metric performance on unintegrated, suboptimally 103 
integrated, effectively integrated, and optimized integrated data (Figure 1(c)). Here, the 104 
silhouette-based batch removal metric Batch ASW even favors worse solutions with stronger 105 
batch effects (Figure 1(d)), with the same observations applying to the full data set 106 
(Supplementary Figure 2(b)). While we demonstrate this behavior with scRNA-seq data, this 107 
finding generalizes to any data with nested batch effects.  108 
 109 
Single-cell integration benchmarking is an area of active research, which has seen large-scale 110 
coordinated efforts (Tran et al., 2020; Luecken et al., 2021; Luecken et al., 2022; Hu et al., 111 
2024; Maan et al., 2024). When first introduced, silhouette-based batch removal metrics were 112 
applied to small data sets without nested batch effects (Büttner et al., 2019), with the limitations 113 
not becoming apparent. However, given the prevalence of nested batch effects in current-day 114 
data sets, silhouette’s inability to account for nested batch effects is a real concern. It is 115 
especially problematic when they are not combined with metrics that could indicate insufficient 116 
integration, but also when evaluation results are aggregated into a single summary score that 117 
obscure possible discrepancies. Two classes of metrics should be considered to score 118 
horizontal data integration: Batch removal and bio-conservation metrics (Tran et al., 2020; 119 
Luecken et al., 2022; Maan et al., 2024). Among alternatives to silhouette, some batch removal 120 
metrics score local batch mixing and are thus not prone to the same behavior, either without cell 121 
type labels (iLISI (Korsunsky et al., 2019), kBET (Büttner et al., 2019)) or accounting for cell type 122 
imbalance if cell type labels are available (CiLISI (Andreatta et al., 2024)). Concerning bio-123 
conservation, many clustering metrics have been applied to cell type labels (ARI, NMI, cell type 124 
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ASW). Evaluating performance on a high confidence subset, e.g., samples from the same donor 125 
or technical replicates, can be a valuable option (Rautenstrauch & Ohler, 2024).  126 
 127 
Combining local mixing batch removal with bio-conservation metrics on a cell type level has 128 
proven to be a successful strategy for evaluating integration performance (Andreatta et al., 129 
2024). For example, applying CiLISI with ARI is robust to nested batch effects, leading to 130 
accurate rankings in our simulated and real data scenarios while flagging overcorrection (high 131 
batch removal but low bio-conservation scores) (Figure 1(b) and (d)). It is also possible to "fix" 132 
the silhouette-based metric Batch ASW to be robust to nested batch effects by redefining 𝑏" as 133 
the mean distance between a cell 𝑖 and all other cells in any other cluster 𝐶# with 𝑙 ≠ 𝑘. 134 
Changing euclidean to cosine distance results in higher discriminative power (cf. Methods for 135 
further details). This adaptation, which we call batch removal adapted silhouette (BRAS), could 136 
also be employed in other metric variants. Like CiLISI, the BRAS metric also accurately ranks 137 
simulated and real data (cf. Figure 1(b) and (d) and Supplementary Figures 1(a) and (b) and 138 
(2)). 139 
 140 
Silhouette score problems are not limited to batch integration but also arise in scores adapted 141 
for bio-conservation. As such, the Cell type ASW score shows significant limitations in 142 
discriminating between scenarios (Figure 1(b) and (d); details concerning other bio-conservation 143 
metrics can be found in Supplementary Note 1). This limitation also goes back to repurposing 144 
the silhouette score - originally intended for internal - to external evaluation, which imposes 145 
cluster labels on the data. Highly non-convex cluster shapes, particularly in the presence of 146 
strong batch effects, cause unintended behavior as silhouette’s comparison of within-cluster 147 
cohesion to between-cluster separation becomes erratic, which can also affect batch removal 148 
metrics. Arguably, such edge cases can and have been flagged by complementing Cell type 149 
ASW with batch removal metrics (Haghverdi et al., 2018), similarly to the strategy that we show 150 
to flag the overcorrection scenario (Figure 1(b)). However, current benchmarking practices often 151 
aggregate scores across different metrics without identifying outliers. This practice can lead to 152 
misleading evaluations, as high scores from unreliable metrics can disproportionately influence 153 
the overall assessment of a method's performance. 154 
 155 
Single-cell data integration remains a key computational challenge and an active area of 156 
research. Our investigation reveals the inadequacy of currently prevalent silhouette-based 157 
evaluation metrics for assessing data integration. In the presence of nested batch effects, these 158 
metrics can produce near-maximal scores even when data integration fails, as they focus solely 159 
on the nearest neighboring samples. We propose a robust evaluation strategy that combines 160 
local batch mixing with bio-conservation metrics, along with modifications to the silhouette 161 
metric to address its current issues. In any case, including a baseline model, such as 162 
unintegrated data, is essential for meaningful evaluation of integration. The limitations of 163 
silhouette metrics extend to bio-conservation assessments, where non-convex cluster shapes 164 
resulting from batch effects lead to erratic behavior. In summary, silhouette-based integration 165 
metrics are inadequate and should not be used to evaluate integration. Benchmarking practices 166 
need to discontinue the use of silhouette-based metrics, especially when aggregating results. 167 
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This is required to ensure reliable assessments of integration methods, as method choice 168 
impacts downstream analyses. 169 
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Figures 176 

177 
Figure 1: Silhouette-based metrics (Batch ASW) are unreliable with nested batch effects, 178 
failing single-cell data integration evaluation. 179 
(a) UMAPs of simulated data with nested batch effects between groups of samples with 180 
decreasing levels of batch effects between groups. Colored by cell type and sample. (b) Batch 181 
removal metrics: Unreliable metric (Batch ASW), reimplementation fixing erratic behavior called 182 
batch removal adapted silhouette (BRAS), and an alternative cell type-dependent diversity 183 
score: CiLISI. Bio-conservation metrics: Cell type ASW and ARI. (c) UMAPs of NeurIPS data 184 
minimal example with nested batch effects integrated with increasing success, colored by cell 185 
type and sample. (d) Metrics as in (b). 186 
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Online methods 187 

Data  188 
Simulated data 189 
Drawing inspiration from Andreatta et al. (2024) and a recommendation of the Splatter 190 
developer (https://github.com/Oshlack/splatter/issues/99), we simulate five scenarios with 191 
decreasing levels of nested batch effects with the Splatter package (Zappia et al., 2017) 192 
(version 1.26.0). Each scenario is composed of four samples with three cell types nested in two 193 
groups, meaning that the samples within a group are more similar to each other than between 194 
the groups. The scenarios are "Strong", "Intermediate", and "Mild", as well as "None" - with no 195 
(nested) batch effects, and an "Overcorrected" scenario, with neither nested batch effects nor 196 
biological cell type signal. We first simulate data with two samples of 2000 cells stemming from 197 
three distinct cell types with varying proportions. We vary the nested batch effect for the 198 
different scenarios via the batch.facLoc and batch.facScale parameters. We then select half of 199 
the cells of the two samples, and add small noise factors to them, resulting in four samples 200 
nested into two groups of 1000 cells each. The noise factor stems from another simulated data 201 
matrix without batch and cell type structure where we use a small library size parameter 202 
lib.scale. In the "Overcorrected" scenario, we choose no differential expression between cell 203 
types and samples.  204 
 205 
Real data 206 
We employ a benchmarking data set from the NeurIPS 2021 Multimodal Single-Cell Data 207 
Integration competition, specifically designed to contain nested batch effects for evaluating 208 
integration. In particular, Luecken et al. (2021) profiled bone marrow mononuclear cells from 209 
multiple donors across distinct sites, with inter-site batch effects being larger than intra-site 210 
batch effects between donors. For demonstration purposes, we only use the scRNA-seq data of 211 
the Multiome data accessible via GEO accession: GSE194122, in particular, a preprocessed 212 
AnnData object provided as a supplementary file. We further used a minimal data subset 213 
(minimal example) to illustrate the unreliable behavior of silhouette-based metrics with nested 214 
batch effects with four samples from four donors from two distinct sites s1d1, s1d3, s4d8, and 215 
s4d9, for our main figure panels, which we renamed to Sample 1, 2, 3, and 4, respectively. We 216 
also consider the full data set, with results shown in Supplementary Figure 2. 217 
 218 
Data integration 219 
Simulated data 220 
No integration was performed, as we have simulated differing levels of nested batch effects, 221 
which can in turn be interpreted as varying success at batch effect removal. 222 
 223 
Real data 224 
To demonstrate the insensitivity of silhouette-based batch removal metrics to differing levels of 225 
nested batch effects, we aimed to obtain integration results with varying success. The data was 226 
first normalized to median total counts and logarithmized, and then dimensionality reduced with 227 
PCA. No integration ("None") serves as a baseline. A naive, mild batch correction 228 
("Suboptimal") was achieved by batch-aware selection of highly variable genes (hvg), prioritizing 229 
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genes that are highly variable across batches, which is applied before PCA (carried out with 230 
scanpy (Wolf et al., 2018)). To obtain different batch removal strengths, we used our tunable 231 
model liam (Rautenstrauch & Ohler, 2024), which gives us control over distinct batch removal 232 
strengths. In particular, we applied liam, to the raw scRNA-seq data of the BMMC Multiome data 233 
set with default parameters ("Effective"), and increased batch removal by setting the adversarial 234 
scaling parameter to 5 ("Optimized"). Of note, the findings related to the metrics are not specific 235 
to the integration models used. 236 
 237 
Evaluation 238 
Overview 239 
We assess horizontal data integration using a broad selection of metrics, in particular, Batch 240 
ASW, iLISI, CiLISI, BRAS, and BRAS variants for batch removal, and cLISI, Cell type ASW, 241 
NMI cluster/label and ARI cluster/label for bio-conservation.  242 
 243 
For most metrics, we use the scib package, except for the implementations for the custom 244 
CiLISI and newly proposed BRAS metrics (detailed below). 245 
 246 
All metrics are scaled to range between 0 and 1, with 1 being optimal. For the silhouette-based 247 
metric Cell type ASW this implies that original silhouette scores around 0 correspond to 248 
transformed scores of approximately 0.5. We use low-dimensional embeddings as input: PCA 249 
embeddings for simulated data, and PCA or liam embeddings for the NeurIPS data.  250 
 251 
Custom implementations of batch removal metrics robust to nested batch effects  252 
CiLISI: We implement a custom version of CiLISI (Andreatta et al., 2024), a cell-type aware 253 
version of iLISI. First, we compute iLISI (range 0-1, scib implementation) per given cell type 254 
label, which is summarized into a weighted mean (weighted by number of cells per cell type 255 
label).  256 
 257 
Batch removal adapted silhouette (BRAS): To account for nested batch effects in single-cell 258 
data, we modify the silhouette score 𝑠" as described in equation 1. Specifically, we redefine 𝑏" 259 
as the mean distance between a cell 𝑖 and all other cells in any other cluster (default in BRAS). 260 
We also test a version with 𝑏" as the distance between a cell 𝑖 and all other cells in the furthest 261 
other cluster.  262 
 263 
The modified silhouette score is computed per cell 𝑖 assigned to a cluster 𝐶!. Following Luecken 264 
et al.’s (2022) implementation: 265 
 266 
𝑠" =	 |𝑠"|, with 𝑠" computed as in equation 1. 267 
Then, for each cell type label 𝑘	corresponding to cluster 𝐶! we define the BRAS score as: 268 
𝐵𝑅𝐴𝑆! =

-
|/"|

∑"	0	/" 1 − 𝑠" 	 269 

where 𝑁! denotes the set of cells assigned to cluster 𝐶! and |𝑁!|the number of cells in that set. 270 
For the final 𝐵𝑅𝐴𝑆  score, we average over the set of unique cell labels 𝑀. 271 
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𝐵𝑅𝐴𝑆 =
1
|𝑀|

A
!	0	1

𝐵𝑅𝐴𝑆! 272 

We use cosine distance as the default for BRAS, finding it provides higher discriminative power 273 
than euclidean distance (Supplementary Figure 1(a) and (b) and Supplementary Figure 2(b)). 274 
We also compute Batch ASW and Cell type ASW with cosine distance.  275 
 276 
Details on ARI cluster/label and NMI cluster/label.  277 
Following Luecken et al. (2022), we optimized (Leiden) clustering with respect to the ARI and 278 
NMI metric across a range of clustering resolutions (0-2, step 0.1) and show these results in 279 
Figure 1 and Supplementary Figure 1 and 2 (Leiden is now the current default in scib, in the 280 
original publication the Louvain algorithm was used). For a discussion on potential limitations of 281 
this strategy, its impact on our results and alternative strategies see Supplementary Note 1 and 282 
Supplementary Figures 3-5. 283 
 284 

Code availability 285 

The scripts and notebooks for data preprocessing, analyses, and figure generation are publicly 286 
available at https://github.com/ohlerlab/metrics_matter_manuscript_reproducibility and will be 287 
deposited in Zenodo upon acceptance.  288 
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