
Academic Editor: Epaminondas

G. Zakynthinos

Received: 18 October 2024

Revised: 12 November 2024

Accepted: 20 December 2024

Published: 8 January 2025

Citation: Thiele, D.; Rodseth, R.;

Friedland, R.; Berger, F.; Mathew, C.;

Maslo, C.; Moll, V.; Leithner, C.; Storm,

C.; Krannich, A.; et al. Machine

Learning Models for the Early

Real-Time Prediction of Deterioration

in Intensive Care Units—A Novel

Approach to the Early Identification of

High-Risk Patients. J. Clin. Med. 2025,

14, 350. https://doi.org/10.3390/

jcm14020350

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Machine Learning Models for the Early Real-Time Prediction
of Deterioration in Intensive Care Units—A Novel Approach
to the Early Identification of High-Risk Patients
Dominik Thiele 1,2, Reitze Rodseth 3,4 , Richard Friedland 3, Fabian Berger 3, Chris Mathew 3 , Caroline Maslo 3 ,
Vanessa Moll 5,6, Christoph Leithner 1, Christian Storm 2,7, Alexander Krannich 2,8,* and Jens Nee 7

1 Department of Neurology and Experimental Neurology, Charité—Universitätsmedizin Berlin,
10117 Berlin, Germany

2 TCC Analytics, Telehealth Competence Center (TCC) GmbH, 22083 Hamburg, Germany
3 Netcare Limited, Johannesburg 2196, South Africa
4 Department of Anaesthesiology and Critical Care, University of KwaZulu-Natal, Durban 4001, South Africa
5 Department of Anesthesiology, Division of Critical Care Medicine, University of Minnesota School of

Medicine, Minneapolis, MN 55455, USA
6 Department of Anesthesiology, Division of Critical Care Medicine, Emory University School of Medicine,

Atlanta, GA 30322, USA
7 Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin,

22083 Berlin, Germany
8 Experimental and Clinical Research Center (ECRC), Charité—Universitätsmedizin Berlin,

22083 Berlin, Germany
* Correspondence: akrannich@tcc-clinicalsolutions.de

Abstract: Background Predictive machine learning models have made use of a variety of
scoring systems to identify clinical deterioration in ICU patients. However, most of these
scores include variables that are dependent on medical staff examining the patient. We
present the development of a real-time prediction model using clinical variables that are
digital and automatically generated for the early detection of patients at risk of deterioration.
Methods Routine monitoring data were used in this analysis. ICU patients with at least
24 h of vital sign recordings were included. Deterioration was defined as qSOFA ≥ 2.
Model development and validation were performed internally by splitting the cohort
into training and test datasets and validating the results on the test dataset. Five different
models were trained, tested, and compared against each other. The models were an artificial
neural network (ANN), a random forest (RF), a support vector machine (SVM), a linear
discriminant analysis (LDA), and a logistic regression (LR). Results In total, 7156 ICU
patients were screened for inclusion in the study, which resulted in models trained from a
total of 28,348 longitudinal measurements. The artificial neural network showed a superior
predictive performance for deterioration, with an area under the curve of 0.81 over 0.78 (RF),
0.78 (SVM), 0.77 (LDA), and 0.76 (LR), by using only four vital parameters. The sensitivity
was higher than the specificity for the artificial neural network. Conclusions The artificial
neural network, only using four automatically recorded vital signs, was best able to predict
deterioration, 10 h before documentation in clinical records. This real-time prediction
model has the potential to flag at-risk patients to the healthcare providers treating them,
for closer monitoring and further investigation.

Keywords: deterioration; real-time prediction; machine learning; ICU; high-risk patients

J. Clin. Med. 2025, 14, 350 https://doi.org/10.3390/jcm14020350

https://doi.org/10.3390/jcm14020350
https://doi.org/10.3390/jcm14020350
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-3779-7805
https://orcid.org/0009-0003-9164-5225
https://orcid.org/0000-0002-0145-3672
https://orcid.org/0000-0001-9888-4358
https://doi.org/10.3390/jcm14020350
https://www.mdpi.com/article/10.3390/jcm14020350?type=check_update&version=3


J. Clin. Med. 2025, 14, 350 2 of 11

1. Introduction
Risk stratification and prediction represent an integral part of clinical medicine and are

useful in directing patient investigation and treatment. The more accurately the current state
of a patient can be described or quantified, the more accurate the prediction becomes [1].
The utility of the variables used in risk stratification is mainly determined by two factors:
(1) their timely proximity to the patient and the outcome being predicted (patient proximity)
and (2) their responsiveness to change (i.e., dynamic or static variables); e.g., a prediction
model that uses a “history of coronary heart disease” as a risk factor to predict death from
acute myocardial infarction is always going to be inferior to a model that includes a current
troponin elevation as a risk factor. Similarly, in a patient with cardiac failure, a cardiac echo
performed at the time of hospital admission has much greater predictive value than an echo
performed one month prior to admission. Closer timely patient proximity will generally
improve the predictive ability of a risk factor, as well as the risk scores that include such
variables [1].

In intensive care unit (ICU) patients, predictive machine learning (ML) models have
made use of a variety of scoring systems to quantify disease severity and identify clinical
deterioration. These include acute physiology and chronic health evaluation (APACHE),
systemic inflammatory response syndrome (SIRS), sequential organ failure assessment
(SOFA), the quick SOFA (qSOFA), National Early Warning Score (NEWS), Modified Early
Warning Score (MEWS), and Pediatric Early Warning Score (PEWS) [2–4]. There are also
extensions to these scores, such as the Queensland Adult Deterioration Detection System
(Q-ADDS), which has been reported to have superior discriminatory power in identifying
deteriorating patients compared to non-deteriorating patients [5]. However, considering
how rapidly an ICU patient’s clinical condition can change, most of these scores rely on
relatively static variables. These static variables include, among others, daily laboratory
tests, microbiological culture results, and clinical assessments performed once or twice a
day. Among these scores, qSOFA can be calculated by the bedside using only the respiratory
rate (rr), systolic blood pressure (sbp), and the presence of an altered mental state—Glasgow
Coma Scale (GCS) < 15—and so does not rely on laboratory investigations [6].

Continuous telemetric high-frequency vital sign data from ICU patients (heart rate,
blood pressure, respiratory rate (RR), and saturation) are both dynamic and temporally
proximate to the patient. Incorporating such high-frequency data into risk scores may
improve risk score performance. Recent data support this hypothesis, suggesting that
high-frequency data sampling strategies may be superior to traditional models in the
detection and prediction of deterioration, for example, due to sepsis [7]. There are further
data showing that ML algorithms using high-frequency data can achieve good sepsis
prediction [8], and several of these models, which demonstrate high prediction accuracy,
have already been published and summarized in a recent systematic review [9].

There are a variety of factors that may cause a patient to deteriorate clinically, the
most common being respiratory compromise, heart failure, and infection and suspected
sepsis [3]. In this study, we developed a real-time ML prediction model using automatically
recorded high-frequency vital sign data to identify deteriorating patients, irrespective of
the cause. The goal was to develop a model as an early warning system, able to identify
deteriorating patients 10 h before onset. A qSOFA score ≥ 2 was defined as significant
clinical deterioration. Our aim was to provide a clinical decision support algorithm able to
flag patients at risk of deterioration from any cause (respiratory compromise, infection and
suspected sepsis, or heart failure) who may benefit from early intervention. In addition,
we sought to develop the model using a parsimonious number of variables to reflect the
limited information available in the clinical setting [9,10].
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2. Methods
This article was written in accordance with the TRIPOD statement for the development

of prognostic multivariable models [11]. The study used retrospective, fully anonymized
electronic data from Netcare Limited “Netcare”, a private healthcare group in South Africa.
On 5 February 2023, data were extracted from the newly implemented EMR system,
encompassing information from the time period between 2019 and 2022. The process
of data cleaning, processing, and analysis was conducted as a joint venture between
Netcare South Africa, Charité-Universitätsmedizin Berlin, and Telehealth Competence
Center Analytics (TCC Analytics) GmbH Hamburg, Germany. A representation of the data
infrastructure is shown in Figure 1. The analysis is part of the RiskML project, approved
on 16 August 2020, under EA4/138/22 by the IRB of Charité-Universitätsmedizin Berlin,
Berlin, Germany. Informed consent was waived by the committee, and all procedures were
followed in accordance with the Declaration of Helsinki of 1975.
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Figure 1. Schematic representation of the data infrastructure and the final best model. Data are
transferred from the ICU to a database. The data are then mirrored into an anonymized database. The
different models are trained in an RStudio Server environment, from which access to the anonymized
database is granted. The final best model is an artificial neural network (ANN). Abbreviations: sbp,
systolic blood pressure; dbp, diastolic blood pressure; hr, heart rate; spo2, saturation of peripheral
oxygen; ANN, artificial neural network; ICU, intensive care unit.
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2.1. Patients

Critical ill adult patients with qSOFA < 2 at the start of observation were included
in the analysis if they were admitted to ICU and had at least 24 h of vital sign recordings
(diastolic, systolic, and mean blood pressure, respiratory rate, oxygen saturation, heart
rate, and temperature) and had a recorded GCS. The GCS, respiratory rate, and systolic
blood pressure were used to calculate the deterioration, which served as the outcome for
the training of the risk prediction models.

2.2. Data Preprocessing

A median filter was used to smooth all the continuous vital sign measurements [12]. A
schema of the algorithm is shown in Figure 2. It made use of a two-hour time window and
was shifted over the full course of the 24 h of measurement before reaching deterioration.
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Figure 2. Exemplary presentation of the sliding median window of the heart rate of a patient. The
window the size of two hours (red box) is shifted over the course of the measurements. Within
the window, the median heart rate is calculated to smoothen the curve. The gray curve shows the
smoothened curve. The yellow curve represents the original heart rate. The red bar symbolizes the
timepoint when the patient deteriorates.

Candidate prediction variables were first chosen based on availability, clinical rele-
vance and use in published prediction models [13,14]. Additionally, we only included
automatically recorded high-frequency variables, such as vital signs. Variables matching
these criteria were diastolic (dbp), systolic (sbp) and mean blood pressure (mbp), respira-
tory rate (rr), oxygen saturation (spo2), heart rate (hr), and temperature. An example of
these variables is shown in Figure 3. Each variable was mathematically standardized by
using a z-transformation. The dataset was randomly split into a training dataset of 100 pa-
tients and a test dataset of 73 patients, with a total of 28,348 longitudinal measurements.
For a fair comparison of the models, the final selected variables were all the same for all
models. In planning the number of cases, we followed Harrell’s guidelines for models, as
our sample and the associated events were sufficient for stable models [15].
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time period for prediction is marked in gray, and the timepoint when qSOFA ≥ 2 is marked in red.
(dbp, diastolic blood pressure; hr, heart rate; mbp, mean arterial blood pressure; rr, respiratory rate;
spo2, peripheral capillary oxygen saturation; sbp, systolic blood pressure).

2.3. Machine Learning Methods

An artificial neural network (ANN), a support vector machine (SVM), a random forest
(RF), a logistic regression (LR), and a linear discriminant analysis (LDA) were used as
machine learning models to predict the binary outcome. All models were trained on the
training dataset and tested, evaluated, and compared using the test dataset. A detailed
description of the models is provided in Table 1. All analyses were performed using R
Statistical Software (v4.2.2; R Core Team 2021) [16].

Table 1. Models and respective parameter settings that were used to train and test the models to
predict qSOFA ≥ 2.

Method Parameters R Package Version

Logistic regression stats [16] 3.6.3

Artificial neural network

Algorithm: Resilient backpropagation +(PROP+)

neuralnet [17] 1.44.2

No. of hidden layers: 1

Stopping criterion: Threshold 0.01

Maximal no. of training steps: 100,000

Error function: Sum-of-squares error

Activation function: Logistic function

Output function: Simple threshold
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Table 1. Cont.

Method Parameters R Package Version

Support vector machine

Kernel: Radial basis kernel

e1071 [18] 1.7–12

γ: 1/4

Cost of constraints: 1

Maximum margin error: 0.5

Tolerance of termination criterion: 0.001

ε in the loss function: 0.1

Random forest

No. of trees: 500

ranger [19] 0.14.1

No. of variables for splitting: 2

Splitting criterion: Gini index

Minimal node size: 1

Depth of each tree: Unlimited

Selection of observations: Sampling with replacement

Linear discriminant analysis
Initial means of groups: Estimated from data

MASS [20] 7.3–58.1
Initial variances of groups: Estimated from data

The area under the curve (AUC) of the receiver operating characteristic (ROC) with
its 95% confidence interval (CI) was used as the main evaluation criterion. The intercept
and slope of the model’s calibration regression were examined to obtain an impression of
model calibration. A slope of 1 with an intercept of 0 reflects perfect calibration. A slope
much lower than 1 with an intercept much greater than 0 indicates poor calibration. Models
were further compared using sensitivity, specificity, Youden’s J statistic, and the negative
and positive predictive value (NPV and PPV). All models were also visually inspected
according to their corresponding ROC curve.

3. Results
A total of 7156 ICU patients were screened for possible inclusion into the study. Not

all patients fulfilled the inclusion criteria and the 24 h observation period for continuous
vital signs. Furthermore, clean and complete qSOFA documentation, including respiratory
rate, systolic blood pressure, and Glascow coma scale, was required. A reduction in
sample size was therefore expected. To the best of our knowledge, the resulting missings
are at least missing at random (MAR). Of these, 28,348 longitudinal measurements from
173 patients fulfilled the requirement for full digital and clean documentation. The baseline
characteristics of the included patients are provided in Table 2.

Table 2. Baseline characteristics of the cohort. Patients at risk of deterioration are defined as
qSOFA ≥ 2.

Cohort Development Phase Model Development Phase

overall training dataset test dataset

qSOFA ≥ 2 qSOFA < 2

n 76 97 100 73

age in years (sd) 63.6 (20.3) 62.3 (16.5) 63.7 (18.9) 61.8 (17.3)

gender, female/male (%) 32/44 (42.1/57.9) 44/53 (45.3/54.7) 47/53 (47.0/53.0) 29/44 (39.7/60.3)

circulatory or respiratory
diagnosis, yes/no (%) 40/36 (52.6/47.4) 46/51 (47.4/52.6) 47/53 (47.0/53.0) 39/34 (53.4/46.6)

Metric variables described by mean (sd) and categorical variables described by absolute frequency (rela-
tive frequency).

This dataset was randomly split into two distinct datasets: a training dataset with
100 patients and a test dataset with 73 patients. All models were trained on the training
dataset and evaluated on the test dataset.
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Of the candidate prediction variables, only four had a relevant impact on prediction
performance. These variables were SBP, RR, SpO2, and HR. The best AUCs for the enumer-
ated variables over the course of time were observed by using the time window 10 h before
the deterioration of a patient.

The results of the evaluation of the model’s prediction performances are summarized
in Table 3, and the ROC curves are shown in Figure 4. The best possible prediction
performance was achieved by the ANN. The AUC (CI) 0.81 (0.717, 0.912) and the Youden
Index 0.52 for the ANN were the best of all the models (AUC range, 0.76–0.78; Youden
Index range, 0.48–0.50). The model’s sensitivity (0.85) and the negative predictive value
(0.84) were high, whereas the model’s specificity (0.67) and positive predictive value (0.69)
were low. The positive likelihood ratio (LR) for the model was 2.56, and the negative LR
was 0.22. The calibration regression results (intercept −0.12/slope 1.26) were close to the
values of a perfectly calibrated model.

Table 3. Prediction performances of trained models on the test dataset.

Method ANN RF SVM LDA LR

AUC (CI)
0.814

(0.717, 0.912)
p = 0.002

0.781
(0.674, 0.887)

p = 0.005

0.778
(0.670, 0.886)

p = 0.006

0.765
(0.652, 0.877)

p = 0.011

0.762
(0.650, 0.875)

p = 0.011

Sensitivity 0.853 0.706 0.706 0.735 0.735

Specificity 0.667 0.795 0.769 0.744 0.744

PPV 0.690 0.750 0.727 0.714 0.714

NPV 0.839 0.756 0.750 0.763 0.763

Youden’s J statistic 0.52 0.501 0.475 0.479 0.479

Calibration intercept −0.123 0.126 −0.033 0.117 0.095

Calibration slope 1.259 0.796 1.171 0.824 0.881

Cut-off 0.335 0.435 0.443 0.395 0.409

LR+ 2.559 3.441 3.059 2.868 2.868

LR- 0.221 0.37 0.382 0.356 0.356

ANN, artificial neural network; RF, random forest; SVM, support vector machine; LDA, linear discriminant
analysis; LR, logistic regression; AUC, area under curve; CI, 95% confidence interval; PPV, positive predictive
value; NPV, negative predictive value; LR, likelihood ratio.
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4. Discussion
In this analysis, we present different prediction models that use automatically recorded

high-frequency data from ICU patients to predict the risk of a patient physiologically
deteriorating within the next 10 h. All ML models performed well, but the best model was
the ANN with one hidden layer (AUC = 0.81) predicting risk of deterioration 10 h before
onset. All other models had a lower AUC compared to the ANN but were comparable
to each other. These models also had greater specificity than sensitivity, while the ANN
model had greater sensitivity than specificity. The other models also had greater PPVs than
the ANN model. For all models, the calibration fell within an acceptable range.

Overall, these results suggest that the ANN model was superior in detecting patients
at high risk for deterioration. The low specificity and PPV show that the model might tend
towards false positives, whereas the high NPV indicates a low chance of false negatives.
With these characteristics the model is a powerful screening tool to detect patients at high
risk in a very early stage. The other models are balanced with less false-positive decisions
compared to the ANN but therefore have an increased rate of false negatives. As machine
learning models can be seen as a clinical decision support tool, lower rates of false positives
suggest possible greater utility for the ANN model.

All models made use of only four vital sign parameters, which are automatically
measured at high frequency during an ICU stay. This allows for the constant real-time
prediction of a patient’s individual risk of deterioration and offers a diagnostic and thera-
peutic window of approximately 10 h. Most ML prediction models use a high number of
static variables. These include laboratory data that are usually processed once a day and
manually calculated scores that may be subjective and influenced by human error [21,22].
These factors limit their practical clinical useability, particularly considering the rapid
development of the leading causes for deterioration on ICUs, such as respiratory insta-
bility, infection and suspected sepsis, and heart failure [23–30]. Any delay in diagnosis
will significantly impact mortality [31,32]. Furthermore, by flagging patients at high risk
for deterioration by using only a few automatically generated data, the model offers a
wide range of applications even outside of the ICU, as many hospitals have digital EMR,
including vitals [33,34].

Translating these findings to the bedside, e.g., for the very early risk stratification of
sepsis, is of special interest due to high mortality. While many models have been published,
few have been able to predict sepsis risk several hours before its onset. A model with an
AUC > 0.8 predicting sepsis 4, 6, 8, and 10 h before onset and a second model with an AUC
of 0.88 predicting the risk of sepsis for the “next day” have already been developed [21,22].
Other groups have also achieved good sepsis prediction but only up to 4 h before sepsis
onset [8,13,14,21,35–40]. As previously described, most of these models make use of static
data points [36]. It is, therefore, advantageous to have prediction models that can be used as
clinical decision support mechanisms that automatically provide alerts within the electronic
health record without requiring any additional manual workload [41]. The SSC has strongly
recommended the inclusion of sepsis screening in acutely ill patients [41]. However, using
a single qSOFA score is not recommended, as the presence of a high qSOFA score may
already be indicative of ongoing sepsis. This again highlights the advantages of using
high-frequency data as the basis for risk prediction, well in advance of a change in qSOFA
score [41]. Further, using a parsimonious number of variables in the ML model, together
with fully automated parameter generation, only simplifies the analysis and better reflects
clinical routine. However, the model needs validation for risk prediction for deterioration in
an external dataset and also for the incidence of sepsis cases predicted at a very early stage.

While the potential benefits in the early identification of sepsis are clear, the model
also holds great promise in identifying physiological deterioration due to causes other than
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sepsis. The algorithm would also quantify progressive physiological deterioration from
respiratory or heart failure, acute arrhythmias, or hypovolemia. Therefore, it is important
to treat this algorithm as a clinical decision support for flagging those at high risk of
deterioration rather than for pointing out the most likely diagnosis.

The limitations of this analysis need to be addressed. First, it is not an observational
study with study-related specific data collection. Data are gathered from routine databases,
which could lead to several bias types. Second, the aim of our models was to predict, not to
investigate, the therapeutic results of the prediction. The actual health outcome could be
independent from the initial prediction. Therefore, the model performance and the actual
health outcomes should be investigated in the future. Third, due to the limited observation
period of 24 h per patient, a lot of information, such as the length of stay, was not included
in the analysis. Furthermore, some of the routine documentation is not suitable for the
proper categorization of diagnoses and therapies. This corresponds to the target situation
for such algorithms but can lead to a relevant bias in the results.

Together with the fact that the data were collected from routine documentation, with
limited information on therapy and diagnosis, the potential bias should be further investi-
gated in an external sample.

5. Conclusions
The algorithm presented shows the possibilities of making predictions several hours

in advance with limited information such as monitoring data. The accuracy achieved
is satisfactory, although the risk of bias when using routine data is very high. Further
studies must show how robust these approaches are in routine clinical operations, although
algorithms offer promising possibilities as new tools.

Author Contributions: Conceptualization, J.N. and R.R.; methodology, A.K.; software, D.T.; valida-
tion, D.T., A.K. and V.M.; formal analysis, D.T.; investigation, C.M. (Caroline Maslo) and C.M. (Chris
Mathew); resources, R.F.; data curation, F.B.; writing—original draft preparation, C.S., R.R. and C.L.;
writing—review and editing, C.M. (Caroline Maslo) and C.M. (Chris Mathew); visualization, D.T.;
supervision, J.N.; project administration, R.F. All authors have read and agreed to the published
version of the manuscript.

Funding: Besides the regular salary from the author’s employers, no funding was received for this
publication or research topic.

Institutional Review Board Statement: This study was performed in line with the principles of the
Declaration of Helsinki. Approval was granted by the Ethics Committee of Charité Berlin, Germany
(Date 16 August 2022/No. EA4/138/22).

Informed Consent Statement: Informed consent was waived by the ethics committee due to the
study analyzing retrospective data.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to patient privacy concerns and compliance with European data protection
policies. These restrictions are in place to safeguard the confidentiality and personal information of
study participants, in accordance with the General Data Protection Regulation (GDPR) and other
applicable European data protection laws.

Conflicts of Interest: Some authors are employees of Netcare Limited, and other authors are employ-
ees of TCC GmbH. All declare no conflicts of interest regarding the publication of the article.

References
1. Biccard, B.M.; Rodseth, R.N. Rodseth Utility of clinical risk predictors for preoperative cardiovascular risk prediction. Br. J.

Anaesth. 2011, 107, 133–143. [CrossRef]
2. Doyle, D.J. Clinical Early Warning Scores: New Clinical Tools in Evolution. Open Anesth. J. 2018, 12. [CrossRef]

https://doi.org/10.1093/bja/aer194
https://doi.org/10.2174/2589645801812010026


J. Clin. Med. 2025, 14, 350 10 of 11

3. Blackwell, J.N.; Keim-Malpass, J.; Clark, M.T.; Kowalski, R.L.; Najjar, S.N.; Bourque, J.M.; Lake, D.E.; Moorman, J.R. Early
Detection of In-Patient Deterioration: One Prediction Model Does Not Fit All. Crit. Care Explor. 2020, 2, e0116. [CrossRef]
[PubMed]

4. Rapsang, A.; Shyam, D.C.; Ag, R. Scoring systems in the intensive care unit: A compendium. Indian J. Crit. Care Med. 2014,
18, 220–228. [CrossRef] [PubMed]

5. Flenady, T.; Dwyer, T.; Signal, T.; Murray-Boyle, C.; Le Lagadec, D.; Kahl, J.; Browne, M. Queensland Adult Deterioration
Detection System observation chart diagnostic accuracy in detecting patient deterioration: A retrospective case–control study.
Collegian 2023, 30, 779–785. [CrossRef]

6. Rodseth, R.N.; Biccard, B.M.; Le Manach, Y.; Sessler, D.I.; Buse, G.A.L.; Thabane, L.; Schutt, R.C.; Bolliger, D.; Cagini, L.; Cardinale,
D.; et al. The Prognostic Value of Pre-Operative and Post-Operative B-Type Natriuretic Peptides in Patients Undergoing
Noncardiac Surgery. J. Am. Coll. Cardiol. 2014, 63, 170–180. [CrossRef] [PubMed]

7. Pérez-Fernández, J.; Raimondi, N.A.; Murillo Cabezas, F. Digital Transformation: The Smart ICU. In Critical Care Administration;
Springer: Cham, Switzerland, 2020; pp. 111–125. [CrossRef]

8. Islam, M.; Nasrin, T.; Walther, B.A.; Wu, C.-C.; Yang, H.-C.; Li, Y.-C. Prediction of sepsis patients using machine learning approach:
A meta-analysis. Comput. Methods Programs Biomed. 2019, 170, 1–9. [CrossRef]

9. Barboi, C.; Tzavelis, A.; Muhammad, L.N. Comparison of Severity of Illness Scores and Artificial Intelligence Models That Are
Predictive of Intensive Care Unit Mortality: Meta-analysis and Review of the Literature. JMIR Med. Inform. 2022, 10, e35293.
[CrossRef]

10. Choi, M.H.; Kim, D.; Choi, E.J.; Jung, Y.J.; Choi, Y.J.; Cho, J.H.; Jeong, S.H. Mortality prediction of patients in intensive care units
using machine learning algorithms based on electronic health records. Sci. Rep. 2022, 12, 7180. [CrossRef] [PubMed]

11. Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD): The TRIPOD statement. BMJ 2015, 350, g7594. [CrossRef] [PubMed]

12. Ghalati, P.F.; Samal, S.S.; Bhat, J.S.; Deisz, R.; Marx, G.; Schuppert, A. Critical Transitions in Intensive Care Units: A Sepsis Case
Study. Sci. Rep. 2019, 9, 12888. [CrossRef]

13. Moor, M.; Rieck, B.; Horn, M.; Jutzeler, C.R.; Borgwardt, K. Early Prediction of Sepsis in the ICU Using Machine Learning: A
Systematic Review. Front. Med. 2021, 8, 607952. [CrossRef]

14. Fleuren, L.M.; Klausch, T.L.T.; Zwager, C.L.; Schoonmade, L.J.; Guo, T.; Roggeveen, L.F.; Swart, E.L.; Girbes, A.R.J.; Thoral, P.;
Ercole, A.; et al. Machine learning for the prediction of sepsis: A systematic review and meta-analysis of diagnostic test accuracy.
Intensiv. Care Med. 2020, 46, 383–400. [CrossRef] [PubMed]

15. Harrel, F.E., Jr. Regression Modeling Strategies—With Applications to Linear Models, Logistic and Ordinal Regression, and Survival
Analysis; R Software; Springer: New York, NY, USA, 2015; Volume 70.

16. R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.
Available online: https://www.R-project.org/ (accessed on 18 December 2024).

17. Fritsch, S.; Guenther, F.; Wright, M. Neuralnet: Training of Neural Networks. R Package Version 1.44.2. 2019. Available online:
https://CRANR-project.org/package=neuralnet (accessed on 18 December 2024).

18. Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F.; Chang, C.C.; Lin, C.C. e1071: Misc Functions of the Department of
Statistics, Probability Theory Group (Formerly: E1071), R package version 1.7-12; TU Wien: Vienna, Austria, 2022.

19. Wright, M.N.; Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw.
2017, 77, 1–17. [CrossRef]

20. Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2002.
21. Nemati, S.; Holder, A.M.; Razmi, F.; Stanley, M.D.; Clifford, G.D.; Buchman, T.G. An Interpretable Machine Learning Model for

Accurate Prediction of Sepsis in the ICU. Crit. Care Med. 2018, 46, 547–553. [CrossRef] [PubMed]
22. Kaji, D.A.; Zech, J.R.; Kim, J.S.; Cho, S.K.; Dangayach, N.S.; Costa, A.B.; Oermann, E.K. An attention based deep learning model

of clinical events in the intensive care unit. PLoS ONE 2019, 14, e0211057. [CrossRef] [PubMed]
23. Dahn, C.M.; Manasco, A.T.; Breaud, A.H.; Kim, S.; Rumas, N.; Moin, O.; Mitchell, P.M.; Nelson, K.P.; Baker, W.; Feldman, J.A. A

critical analysis of unplanned ICU transfer within 48 hours from ED admission as a quality measure. Am. J. Emerg. Med. 2016,
34, 1505–1510. [CrossRef] [PubMed]

24. Le Guen, M.P.; Tobin, A.E.; Reid, D. Intensive care unit admission in patients following rapid response team activation: Call
factors, patient characteristics and hospital outcomes. Anaesth Intensive Care 2015, 43, 211–215. [CrossRef]

25. Moss, T.J.; Clark, M.T.; Calland, J.F.; Enfield, K.B.; Voss, J.D.; Lake, D.E.; Moorman, J.R. Cardiorespiratory dynamics measured
from continuous ECG monitoring improves detection of deterioration in acute care patients: A retrospective cohort study. PLoS
ONE 2017, 12, e0181448. [CrossRef]

26. Moss, T.J.; Lake, D.E.; Calland, J.F.; Enfield, K.B.; Delos, J.B.; Fairchild, K.D.; Moorman, J.R. Signatures of Subacute Potentially
Catastrophic Illness in the ICU: Model Development and Validation*. Crit. Care Med. 2016, 44, 1639–1648. [CrossRef]

https://doi.org/10.1097/CCE.0000000000000116
https://www.ncbi.nlm.nih.gov/pubmed/32671347
https://doi.org/10.4103/0972-5229.130573
https://www.ncbi.nlm.nih.gov/pubmed/24872651
https://doi.org/10.1016/j.colegn.2023.05.006
https://doi.org/10.1016/j.jacc.2013.08.1630
https://www.ncbi.nlm.nih.gov/pubmed/24076282
https://doi.org/10.1007/978-3-030-33808-4_9
https://doi.org/10.1016/j.cmpb.2018.12.027
https://doi.org/10.2196/35293
https://doi.org/10.1038/s41598-022-11226-4
https://www.ncbi.nlm.nih.gov/pubmed/35505048
https://doi.org/10.1136/bmj.g7594
https://www.ncbi.nlm.nih.gov/pubmed/25569120
https://doi.org/10.1038/s41598-019-49006-2
https://doi.org/10.3389/fmed.2021.607952
https://doi.org/10.1007/s00134-019-05872-y
https://www.ncbi.nlm.nih.gov/pubmed/31965266
https://www.R-project.org/
https://CRANR-project.org/package=neuralnet
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1097/CCM.0000000000002936
https://www.ncbi.nlm.nih.gov/pubmed/29286945
https://doi.org/10.1371/journal.pone.0211057
https://www.ncbi.nlm.nih.gov/pubmed/30759094
https://doi.org/10.1016/j.ajem.2016.05.009
https://www.ncbi.nlm.nih.gov/pubmed/27241571
https://doi.org/10.1177/0310057X1504300211
https://doi.org/10.1371/journal.pone.0181448
https://doi.org/10.1097/CCM.0000000000001738


J. Clin. Med. 2025, 14, 350 11 of 11

27. Hillman, K.M.; Bristow, P.J.; Chey, T.; Daffurn, K.; Jacques, T.; Norman, S.L.; Bishop, G.F.; Simmons, G. Duration of life-threatening
antecedents prior to intensive care admission. Intensive Care Med. 2002, 28, 1629–1634. [CrossRef] [PubMed]

28. Cohen, R.I.; Eichorn, A.; Motschwiller, C.; Laktikova, V.; La Torre, G.; Ginsberg, N.; Steinberg, H. Medical intensive care unit
consults occurring within 48 hours of admission: A prospective study. J. Crit. Care 2015, 30, 363–368. [CrossRef] [PubMed]

29. Bapoje, S.R.; Gaudiani, J.L.; Narayanan, V.; Albert, R.K. Unplanned transfers to a medical intensive care unit: Causes and
relationship to preventable errors in care. J. Hosp. Med. 2011, 6, 68–72. [CrossRef] [PubMed]

30. Keim-Malpass, J.; Kitzmiller, R.R.; Skeeles-Worley, A.; Lindberg, C.; Clark, M.T.; Tai, R.; Calland, J.F.; Sullivan, K.; Moorman, J.R.;
Anderson, R.A. Advancing Continuous Predictive Analytics Monitoring: Moving from Implementation to Clinical Action in a
Learning Health System. Crit. Care Nurs. Clin. N. Am. 2018, 30, 273–287. [CrossRef] [PubMed]

31. Ferrer, R.; Martin-Loeches, I.; Phillips, G.; Osborn, T.M.; Townsend, S.; Dellinger, R.P.; Artigas, A.; Schorr, C.; Levy, M.M. Empiric
antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: Results from a guideline-based
performance improvement program. Crit. Care Med. 2014, 42, 1749–1755. [CrossRef] [PubMed]

32. Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al.
Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic
shock. Crit. Care Med. 2006, 34, 1589–1596. [CrossRef] [PubMed]

33. Kipnis, P.; Turk, B.J.; Wulf, D.A.; LaGuardia, J.C.; Liu, V.; Churpek, M.M.; Romero-Brufau, S.; Escobar, G.J. Development and
validation of an electronic medical record-based alert score for detection of inpatient deterioration outside the ICU. J. Biomed.
Inform. 2016, 64, 10–19. [CrossRef]

34. Escobar, G.J.; Turk, B.J.; Ragins, A.; Ha, J.; Hoberman, B.; LeVine, S.M.; Ballesca, M.A.; Liu, V.; Kipnis, P. Piloting electronic medical
record–based early detection of inpatient deterioration in community hospitals. J. Hosp. Med. 2016, 11, S18–S24. [CrossRef]

35. Shimabukuro, D.W.; Barton, C.W.; Feldman, M.D.; Mataraso, S.J.; Das, R. Effect of a machine learning-based severe sepsis
prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial. BMJ Open Respir. Res. 2017,
4, e000234. [CrossRef]

36. Mao, Q.; Jay, M.; Hoffman, J.L.; Calvert, J.; Barton, C.; Shimabukuro, D.; Shieh, L.; Chettipally, U.; Fletcher, G.; Kerem, Y.; et al.
Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and
ICU. BMJ Open 2018, 8, e017833. [CrossRef] [PubMed]

37. Horng, S.; Sontag, D.A.; Halpern, Y.; Jernite, Y.; Shapiro, N.I.; Nathanson, L.A. Creating an automated trigger for sepsis clinical
decision support at emergency department triage using machine learning. PLoS ONE 2017, 12, e0174708. [CrossRef] [PubMed]

38. Giannini, H.M.; Ginestra, J.C.; Chivers, C.; Draugelis, M.B.; Hanish, A.; Schweickert, W.D.; Fuchs, B.D.; Meadows, L.R.; Lynch,
M.R.; Donnelly, P.J.R.; et al. A Machine Learning Algorithm to Predict Severe Sepsis and Septic Shock. Crit. Care Med. 2019,
47, 1485–1492. [CrossRef]

39. Ginestra, J.C.; Giannini, H.M.; Schweickert, W.D.; Meadows, L.R.; Lynch, M.J.R.; Pavan, K.M.; Chivers, C.J.; Draugelis, M.B.;
Donnelly, P.J.R.; Fuchs, B.D.; et al. Clinician Perception of a Machine Learning–Based Early Warning System Designed to Predict
Severe Sepsis and Septic Shock. Crit. Care Med. 2019, 47, 1477–1484. [CrossRef] [PubMed]

40. Li, X.; Xu, X.; Xie, F.; Xu, X.M.; Sun, Y.M.; Liu, X.M.; Jia, X.B.; Kang, Y.M.; Xie, L.; Wang, F.; et al. A Time-Phased Machine Learning
Model for Real-Time Prediction of Sepsis in Critical Care. Crit. Care Med. 2020, 48, e884–e888. [CrossRef] [PubMed]

41. Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann,
M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021.
Intensive Care Med. 2021, 47, 1181–1247. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00134-002-1496-y
https://www.ncbi.nlm.nih.gov/pubmed/12415452
https://doi.org/10.1016/j.jcrc.2014.11.001
https://www.ncbi.nlm.nih.gov/pubmed/25465025
https://doi.org/10.1002/jhm.812
https://www.ncbi.nlm.nih.gov/pubmed/21290577
https://doi.org/10.1016/j.cnc.2018.02.009
https://www.ncbi.nlm.nih.gov/pubmed/29724445
https://doi.org/10.1097/CCM.0000000000000330
https://www.ncbi.nlm.nih.gov/pubmed/24717459
https://doi.org/10.1097/01.CCM.0000217961.75225.E9
https://www.ncbi.nlm.nih.gov/pubmed/16625125
https://doi.org/10.1016/j.jbi.2016.09.013
https://doi.org/10.1002/jhm.2652
https://doi.org/10.1136/bmjresp-2017-000234
https://doi.org/10.1136/bmjopen-2017-017833
https://www.ncbi.nlm.nih.gov/pubmed/29374661
https://doi.org/10.1371/journal.pone.0174708
https://www.ncbi.nlm.nih.gov/pubmed/28384212
https://doi.org/10.1097/CCM.0000000000003891
https://doi.org/10.1097/CCM.0000000000003803
https://www.ncbi.nlm.nih.gov/pubmed/31135500
https://doi.org/10.1097/CCM.0000000000004494
https://www.ncbi.nlm.nih.gov/pubmed/32931194
https://doi.org/10.1007/s00134-021-06506-y
https://www.ncbi.nlm.nih.gov/pubmed/34599691

	Introduction 
	Methods 
	Patients 
	Data Preprocessing 
	Machine Learning Methods 

	Results 
	Discussion 
	Conclusions 
	References

