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1 Description of gold standard for drug name
normalization

As there is no gold standard for drug names and the possibilities of synonyms are
extensive, we generated our own gold standard using commonly used names from
three different types of sources (see supp. Table S1). First, we used drug names
presented in the molecular tumor board at the Charité Comprehensive Can-
cer Center. Second, we sampled drug names from the data bases Biomarkers,
CIViC, oncoKB and TARGET. And last, we used the semi-structured entries
from https://clinicaltrials.gov/ in the column ”Intervention” to sample another
cohort. All common names were matched to the corresponding ChEMBL ID to
generate the goldstandard (available at https://github.com/ermshaua/preon/).

These data sets comprise a variety of problems, that will occur in reports,
especially settings:

1. Spelling issues,
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Source Number of
Entities

Avg.
Length

Perc. of Multi-
Token Names

Number of matched
Chembl-IDs

MTB Charité 260 9.26 6.54 260
Data bases 76 11.25 9.21 72
Clinical Trials 97 15.34 34.02 86

Combined 421 10.97 13.16 406

Table S1: Number of samples for the gold standard of drug names. The different
sources are separately listed.

2. Use of synonyms,

3. Suggestion of combination therapies,

4. Use of abbreviations, and

5. Use of drug classes rather than a specific medication.

From the original data, we removed all samples which describe a drug class
(e.g. BRAF inhibitor), because this is a different type of task. We included
combination therapies to identify a ChEMBL ID for each substance.

1.1 Process of manual annotation and file description

Data description:
The table includes 5 columns:

1. source ... The source from where we sampled the drug names for normal-
ization. This can be a database, the annotation from the molecular tumor
board, or clinicaltrials.gov.

2. treatment ... the treatment given in clinical trials, which can include more
than one drug.

3. drug name ... The common name of the drug is taken from the corre-
sponding source.

4. ChEMBL ID ... ID from ChEMBL https://www.ebi.ac.uk/chembl/

5. NCT ID ... for the treatments and drugs coming from clinicialtrials.gov,
the corresponding IDs are given.

2 Description of gold standard for cancer type
normalization

Within the project, we are trying to integrate multiple databases to provide a
systematic overview of therapeutic options for cancer patients based on single
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nucleotide variants. Some drugs are only effective in certain types of cancers and
it is very valuable to provide the cancer entity if this information is available.
To make the cancer types comparable, it is useful to normalize common names
to standard names. We have randomly selected a number of common cancer
names from each database and prepared them for manual annotation.

For the normalization of cancer entities, we relied on two different types of
data sources. First, we sampled 20 entities from different databases, respectively,
including clinical trials (see supp. Table S2) and matched them manually with
the corresponding entry in disease ontology (Schriml et al., 2019). This data set
is available as supp. material and the data format is described in more detail
in the following section:

2.1 Process of manual annotation and file description

All entries from the different databases were first matched with precise match-
ing to IDs from disease ontology. Only 58 tumor entity names had a unique
mapping, with 65 entities having no mapping or a partial mapping to disease
ontology. Unclear annotations were validated by a clinician.

Data description:
The table has 4 main parts:

1. source . . . The database from where we sampled the common name of
tumor entities.

2. cancer type . . . The common name of the tumor entity as taken from the
disease description in the corresponding database.

3. DOID . . . ID from Disease Ontology https://disease-ontology.org/. There
can be no entry, one entry, or multiple entries separated by a comma.

4. None . . . these entries do not constitute a tumor entity in the cancer sub-
tree of disease ontology. This is for clarification on behalf of the annotating
clinician.

The data rows consists of three parts, marked with different colors:

1. Green ... Cancer types with exactly one identifier in the cancer subtree of
disease ontology (n = 82).

2. Yellow ... Cancer types, with multiple identifiers along one level in the
cancer subtree of disease ontology (n = 3).

3. Orange ... Entries, which are not defined as tumor entities according to
disease ontologies (n = 48).

Second, we used NCBI Disease, which is a data set with abstracts (Doǧan
et al., 2014) in which diseases are annotated with MESH/OMIM-IDs. We used
mondo (Shefchek et al., 2020) to relate the MESH identifiers with the corre-
sponding ones from disease ontology. Because we are focusing on normalization
of tumor entities, we reduced the data set by including only diseases from the
cancer related subtree (DOID:162).
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Source Number of
Entities

Avg.
Length

Perc. of
Multi-
Token
Names

Number of
matched
DOIDs

Biomarkers 20 13.05 45.00 11
CIViC 15 22.40 80.00 14
Clinical Trials 20 26.00 95.00 2
Cosmic 20 20.10 15.00 10
DOCM 20 20.75 85.00 20
oncoKB 18 23.06 77.78 12
PMKB 20 21.35 70.00 16

NCBI disease 158 22.22 75.76 158

Table S2: Number of samples for the gold standard of cancer types. The different
sources are separately listed.

3 Definition of precision and recall for fuzzy match-
ing

In preon, we are focusing on the use case, where we are searching for an iden-
tifier in a given nomenclature. Based on our gold standard, we can define a
contingency table and thus calculate precision (Equation 1), recall (Equation 2)
and the harmonic mean of the two, called F1 score (Equation 3).

Precision =
TP

TP + FP

= 1− FDR

(1)

Recall =
TP

TP + FN
(2)

F1 =
2 · Precision ·Recall

Precision+Recall

=
2 · TP

2 · TP + FP + FN

(3)

In a fuzzy matching approach, multiple identifiers can be returned. We label
a result as a true positive if at least one identifier is correctly returned. It is up
to the medical-inclined user to verify the correct identifier.

4 Identifying thresholds for fuzzy matching

In the first step, we identified the best number of elements for partial matching
(Figure S1A and D) as well as the number of tokens in the n-gram match-
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ing (Figure S1D). Using moderate partial matching thresholds (20%-30%) and
bigrams increases recall while maintaining high precision.
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Figure S1: A Effect of fuzzy matching for drug names. The threshold is given as
a percentage of the length of the drug names. Precision (blue), recall (orange)
and F1 sores (dark gray) are shown. The light gray highlights the chosen thresh-
old for further evaluation. B Number of results returned for different thresholds
in the fuzzy matching. Shown is the mean (bar) and standard deviation as er-
ror bars over all drug names. C Precision (blue), recall (orange) and F1 scores
(dark gray) for different number of n-grams for cancer type normalization. The
results for the databases are shown with solid lines, the results for the NCBI
disease data set are shown with dashed lines. D Effect of fuzzy matching for
cancer types similar to A. E Number of results returned for different thresholds
for cancer types similar to B

With increasing thresholds for partial matching, the number of identifiers
for the users to check will increase. Thus, we not only optimized the threshold
for best precision and recall but also took the number of results into account
(see supp. Figure S1B and E).

5 Dealing with class imbalance

The F1-score is dependent on the ratio between positive to negative cases
(Williams, 2021). The fraction of positives in the data set can be denoted
by

π = P/(P +N) (4)

With π → 1 the precision will increase and converge to 1 (Williams, 2021).
Thus we expanded our gold standard to include more negative cases. For the

NCBI data set, we have around 300 cancer queries and 1000 queries annotated
as true negatives for tumor entities. preon reaches a precision of 76.9%, a recall
of 71% and a F1 score of 73.8%. Although precision is lower in this case, it
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Measurements

tool measure mean sd ci lower ci upper

combined
GILDA F1 0.86 0.01 0.86 0.87
GILDA precision 1.00 0.00 1.00 1.00
GILDA recall 0.76 0.02 0.76 0.76
MetaKB F1 0.66 0.02 0.65 0.66
MetaKB precision 0.75 0.02 0.75 0.76
MetaKB recall 0.59 0.03 0.58 0.59
preon F1 0.95 0.01 0.95 0.95
preon precision 0.98 0.01 0.98 0.98
preon recall 0.92 0.01 0.92 0.92

data bases
GILDA F1 0.92 0.02 0.91 0.92
GILDA precision 1.00 0.00 1.00 1.00
GILDA recall 0.85 0.04 0.84 0.86
MetaKB F1 0.68 0.05 0.67 0.69
MetaKB precision 0.72 0.06 0.71 0.74
MetaKB recall 0.64 0.06 0.63 0.65
preon F1 0.98 0.01 0.98 0.98
preon precision 0.99 0.01 0.98 0.99
preon recall 0.97 0.02 0.97 0.98

Table S3: Benchmarking precision, recall, and F1 for drug names. Mean, stan-
dard deviation and confidence intervals are shown after bootstrapping (n=100)
for different data sets and tools.

validates the quality of preon and highlights the importance of balanced test
data sets. In comparison, MetaKB only has a precision of 9% and a recall of
93%. This dramatic decrease in precision is related to the fact, that MetaKB is
not specific for tumor entities but will return any ID from the disease ontology.

6 Benchmarking

7 preon and MetaKB runtimes

We measured the runtime for preon and MetaKB for the drug name and cancer
type normalisation task. For MetaKB we used https://github.com/cancervariants/
metakb. Supp. Table S5 reports the summary statistics for each dataset. On
average, preon and MetaKB share similar results for drug name normalisation.
However, preon is 15 times faster than MetaKB for cancer type normalisation.
preon’s differences in runtime between the tasks are mostly explained by the dif-
ferent amount of reference data (around 100k entries in ChEMBL and around
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Measurements

tool measure mean sd ci lower ci upper

data bases
GILDA F1 0.83 0.04 0.82 0.84
GILDA precision 1.00 0.00 1.00 1.00
GILDA recall 0.71 0.05 0.70 0.72
MetaKB F1 0.78 0.04 0.77 0.78
MetaKB precision 0.67 0.05 0.66 0.68
MetaKB recall 0.92 0.03 0.92 0.93
preon F1 0.93 0.02 0.93 0.94
preon precision 0.98 0.02 0.97 0.98
preon recall 0.89 0.03 0.89 0.90

NCBI disease
GILDA F1 0.58 0.04 0.57 0.59
GILDA precision 1.00 0.00 1.00 1.00
GILDA recall 0.41 0.04 0.40 0.42
MetaKB F1 0.83 0.03 0.83 0.84
MetaKB precision 0.75 0.04 0.74 0.76
MetaKB recall 0.93 0.02 0.93 0.94
preon F1 0.82 0.03 0.82 0.83
preon precision 0.97 0.02 0.97 0.98
preon recall 0.71 0.04 0.71 0.72

Table S4: Benchmarking precision, recall, and F1 for cancer entities. Mean,
standard deviation and confidence intervals are shown after bootstrapping
(n=100) for different data sets and tools.
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10k entries in DO).

Dataset preon MetaKB GILDA

Drug Combined (0.05/53/419/22,666) (19/67/286/28,347) 0.0/0.0/5/186
Drug DB (0.05/38/436/2,910) (30/73/286/5,567) 0.0/0.0/1/23
Cancer DB (0.07/7/40/971) (31/107/239/14,011) 0.0/0.0/2/31
NCBI Disease (0.06/9/33/1,480) (32/128/258/20,218) 0.0/0.0/1/21

Table S5: Min/Average/Max/Total runtimes in ms for normalisation and
matching in preon and MetaKB for queries from the different datasets.
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