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GLI3 variants causing isolated polysyndactyly are not restricted
to the protein's C-terminal third
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1 | INTRODUCTION

The Gli-Kruppel family member 3 (GLI3) gene encodes a zinc finger
transcription factor that plays an important role in the sonic hedgehog
signaling pathway and thus in various developmental processes
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Abstract

Loss of function variants of GLI3 are associated with a variety of forms of poly-
syndactyly: Pallister-Hall syndrome (PHS), Greig-Cephalopolysyndactyly syndrome
(GCPS), and isolated polysyndactyly (IPD). Variants affecting the N-terminal and
C-terminal thirds of the GLI3 protein have been associated with GCPS, those within
the central third with PHS. Cases of IPD have been attributed to variants affecting
the C-terminal third of the GLI3 protein. In this study, we further investigate these
genotype-phenotype correlations. Sequencing of GLI3 was performed in patients
with clinical findings suggestive of a GLI3-associated syndrome. Additionally, we
searched the literature for reported cases of either manifestation with mutations in
the GLI3 gene. Here, we report 48 novel cases from 16 families with polysyndactyly
in whom we found causative variants in GLI3 and a review on 314 previously
reported GLI3 variants. No differences in location of variants causing either GCPS or
IPD were found. Review of published data confirmed the association of PHS and var-
iants affecting the GLI3 protein's central third. We conclude that the observed mani-
festations of GLI3 variants as GCPS or IPD display different phenotypic severities of
the same disorder and propose a binary division of GLI3-associated disorders in
either PHS or GCPS/polysyndactyly.

KEYWORDS
GCPS, genotype-phenotype correlations, GLI3, PHS, polydactyly, syndactyly

including limb development (MIM: *165240).1? Genetic variants in
GLI3 are well known causes of the allelic disorders Pallister-Hall syn-
drome (PHS; MIM: #146510), Greig-Cephalopolysyndactyly syndrome
(GCPS; MIM: #175700), postaxial polydactyly type A and B (PAP-A
and -B; MIM: #174200), and preaxial polydactyly type IV (PPD-IV;
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MIM: #174700).3* They all feature poly- and syndactylies of varying syndromic phenotypes. GCPS is characterized by polysyndactyly,
severity. While PAP-A, PAP-B, and PPD-IV are defined by non- macrocephaly, and facial dysmorphisms (especially hypertelorism,
syndromic polysyndactyly, PHS and GCPS depict more complex broad nasal bridge, high forehead, and frontal bossing). Mild mental

FIGURE 1 Family pedigrees and images of index patients. Pedigrees: red: affected individuals carrying novel variants; solid black: affected
individuals; n.t.: not tested; n.p.: not phenotyped; arrow: index patient [Colour figure can be viewed at wileyonlinelibrary.com]
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retardation, trigonocephaly and craniosynostosis as well as further
rare anomalies may occur. By contrast, abnormalities characteristic for
PHS are a (mostly postaxial) polysyndactyly associated with hypotha-
lamic hamartoma, hypopituitarism, bifid epiglottis, imperforate anus,
headaches, seizures, and developmental delay. Mild, incidental forms
to lethal courses have been described.

The GLI3 protein harbors two N-terminal transcriptional repres-
sor domains (RD and SUFU), five DNA binding zinc finger domains
(ZF), and a C-terminal transcriptional activator domain (TAD).}® A cer-
tain genotype-phenotype correlation has been proposed: GCPS is
predominantly attributed to variants affecting the N-terminal (amino
acid position 1-660) and C-terminal third (amino acid position 1160-
1580) of the GLI3 protein, whereas PHS is attributed to variants
affecting the central third (amino acid position 661-1159) of GLI3.®
Isolated polysyndactyly (IPD), however, is supposed to result from

C-terminal variants of the GLI3 protein.”®

2 | PATIENTS AND METHODS

Patients with either syndromic or nonsyndromic polysyndactyly were
included in our study and phenotyped by clinical geneticists and/or pri-
mary physicians. Patients with clinical findings suggestive of a GLI3-
associated polysyndactyly syndrome were selected for targeted Sanger
sequencing of the GLI3 gene performed on genomic DNA isolated from
whole blood samples. Whenever possible trio sequencing of the
affected index and both parents was applied. Raw Sanger sequencing
data were analyzed using SeqPilot (JSI medical systems, USA) and vari-
ants were evaluated using ClinVar (NCBI, USA), HGMD (Qiagen Digital
Insights, Denmark), and gnomAD? databases. For missense variants, an
additional pathogenicity prediction was conducted using the bioinfor-

matic prediction tools MutationTaster,'° Polyphen2,'* and SIFT.*?

3 | RESULTS
We tested 94 individuals with polysyndactyly and detected 15 differ-
ent causing, mostly amorphic, GLI3 variants in 16 families (Table 1 and
Table S1; Figures 1 and 2A). Eight were novel variants and seven had
been reported previously. The variants spanned almost the entire cod-
ing region of GLI3 (c.366—c.4172).

Upon identification of a causing variant in GLI3 further and more
detailed phenotypic information was collected. Eight families showed
no further abnormalities beyond IPD (families 1, 3, 5, 8, 9, 10, 14, 15)

whereas five families showed additional features in line with GCPS

(families 2, 4, 6, 13, 16). Three families did not take part in further
phenotypic characterization (families 7, 11, 12). We did not observe a
distinct correlation between type of mutation (nonsense vs. missense)
and phenotype. Notably, specific phenotypes and severity varied
within families. However, in the majority of families diagnosis of either
IPD or GCPS was uniform within families. Only in family 6 both GCPS
and IPD occurred (Table 1; Figure 2A). Subgroup analysis of polydac-
tyly subtypes revealed a co-occurrence of PAP-B and PPD-IV in
hands. In feet PPD-IV was the leading manifestation of polydactyly, in
one case also accompanied by PAP-A (Figure 1 and Figure S1).

Conducting a retrospective analysis of studies on GLI3-associated
disorders, we analyzed 309 published cases of GLI3 variants (Table S2).
Of those, 65 cases showed IPD. In 32 out of these 65 cases (49.2%) of
IPD, variants affected the N-terminal third of the GLI3 protein, while 20
cases (30.8%) harbored variants affecting the central and 12 cases
(18.5%) the C-terminal third of the GLI3 protein. One case (1.5%) was
caused by a large structural variant. Interestingly, none of the identified
missense variants (12 out of 65 cases) affected the C-terminal third of
the GLI3 protein (Figure 2B,C).

While GCPS cases were also associated with variants spread across
the entire GLI3 protein (79/157 (50.3%) in the N-terminal third, 24/157
(15.3%) in the central third, 37/157 (23.6%) in the C-terminal third and
17/157 (10.8%) large SVs), PHS cases showed a distinct genotype-
phenotype correlation with the majority of cases (68/74 (91.9%)) harbor-
ing variants affecting the central third of the GLI3 protein (Figure 2C).

4 | DISCUSSION AND CONCLUSION

In 16 families with identified GLI3 variants, we observed GCPS as well
as IPD. Notably, none of the individuals in our study presented with
PHS. This can most likely be attributed to a prior selection bias since
classic PHS presents with a severe phenotype.

Previous studies suggested a genotype-phenotype correlation of
GLI3-associated disorders with GCPS being associated with variants
affecting the protein's N-terminal or C-terminal third and IPD only
occurring when variants affected the C-terminal third.>~8 Yet, in this
study, we could not observe such a distinct genotype-phenotype cor-
relation. Strikingly, GLI3 variants associated with IPD even occurred
exclusively in the N-terminal and central third of the GLI3 protein.
Interestingly, we observed only one variant affecting the protein's C-
terminal third which was associated with the presence of GCPS. Three
further variants causing GCPS affect the N-terminal third of the GLI3
protein, whereas only one variant associated with GCPS affects the

protein's central third, so that locations of variants causing GCPS are

FIGURE 2

(A) GLI3 variants identified in 16 families and their location within the GLI3 protein. Green: variants causing IPD. Blue: GCPS.

Orange: IPD as well as GCPS. Gray: Patients could not be fully phenotyped. Underscored: novel variants. Brackets below indicate regions
previously described to be associated with the respective GLI3 disorders (B) and (C) Review of published GLI3 variants and associated phenotypes
(B) Location of GLI3 variants causing IPD. Top: truncating variants, bottom: missense variants. Green: variants causing IPD. Orange: IPD as well as
GCPS. Yellow: IPD as well as PHS. (C) Descriptive statistics of location of GLI3 variants and the associated phenotypes. Top: affected regions of
the GLI3 protein and the phenotypes associated with each affected region. Bottom: vice versa, different GLI3-associated phenotypes and regions
of the GLI3 protein the respective causing variant is found in [Colour figure can be viewed at wileyonlinelibrary.com]
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overall compatible with previous reports (Figure 2A). Additionally, one
individual showed GCPS whereas another individual from the same
family presented with IPD. This phenomenon could also be observed
in previously published cases (Figure 2B). Thus, we follow previous
observations'®~*> and hypothesize that GCPS and IPD might be dif-
ferent extents of severity of the same disorder rather than distinct
entities of disease. Also, we identified several variants affecting the
central third of the GLI3 protein that were associated with IPD but
not with PHS. These cases possibly represent mild forms of PHS simi-
lar to those reported previously.’® Since brain imaging results of
patients with IPD were not available, we cannot exclude the presence
of such asymptomatic hamartomas.

A recent study focusing on the limb phenotypes associated with
GLI3 variants found a correlation of variants affecting the N-terminal
half of GLI3 with an anterior polydactyly phenotype (leading manifes-
tation of PPD-IV in feet) and variants affecting the C-terminal TAD
region with a posterior polydactyly phenotype (leading manifestation
of PAP in hands).1® The majority of the variants identified in our study
located to the N-terminal half of GLI3, whereas only three variants
affected the C-terminal TAD. With our data, we can neither confirm
nor exclude these observations by Baas et al. (Figure S2).

To further evaluate a genotype-phenotype correlation regarding
GCPS versus IPD, we performed a retrospective analysis of published
cases with GLI3 variants. In line with observations from our study, we
found no clear genotype-phenotype correlation for IPD in these cases —
with 49.2% of GLI3 variants associated with IPD affecting the protein's
N-terminal, 30.8% the central and 18.5% the C-terminal third. The same
holds true for GCPS cases, whereas we could confirm the genotype-
phenotype correlation for PHS with 91.9% of causing variants affecting
the central third of the GLI3 protein. Notably, nonsense variants causing
IPD affected almost the entire coding region of GLI3 (c.540-c.4507)
whereas missense variants clustered in the central part of the GLI3 pro-
tein (c.1446-c.3018) and especially the zinc-finger domains (Figure 2B).
We could also confirm the previously stated observation that both GCPS
and IPD are caused by varying types of variants (missense, nonsense,
splice site, larger deletions).$*°

These results from our broad retrospective analysis of 314 publi-
shed cases with confirmed GLI3 variants are in line with previous
studies of larger cohorts: Kalff-Suske et al. also showed that nonsense
variants in GLI3 leading to GCPS are distributed over the entire pro-
tein while Johnston et al. as well as Démurger et al. found that vari-
ants in the central third of GLI3 cause PHS.41718 Also, previous
studies reported variants affecting all thirds of the GLI3 protein asso-
ciated with a spectrum from IPD to GCPS.2*!> Neither in our cohort
nor in previous studies patients with GLI3 variants and an isolated
non-limb phenotype only (e.g., macrocephaly, hypertelorism, broad
forehead) could be identified. Interestingly however, Démurger et al.
reported an even asymptomatic carrier of a familial GLI3 variant
(c.427G>T, p.(Glu143*)) highlighting the
phenotypes.t”

clinical variability of the

Thus, IPD appears not to be restricted to cases with variants
affecting the C-terminal third of the GLI3 protein but may manifest
independently of variant location. PHS, however, is strongly

correlated to variants affecting the protein's central third. Taken
together, GLI3 variants are associated with a phenotypically broad
spectrum of only two distinct entities: GCPS on the one hand and
PHS on the other, with IPD occurring as a mild manifestation of GCPS
or in rarer cases of PHS.
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