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Abstract: Hypertrophic cardiomyopathy (HCM) is often characterized by augmented car-
diac contractility, which frequently remains undetectable in its early stages. Emerging
evidence suggests that hypercontractility is linked to mitochondrial defects that develop
early in HCM progression. However, imaging markers for identifying these early alter-
ations in myocardial function are lacking. We used cardiac magnetic resonance feature
tracking (CMR-FT) to assess myocardial strain in a Mybpc3-knockin (KI) mouse model that
mimicked human HCM. While homozygous (HOM) mice exhibited cardiac hypertrophy,
heterozygous (HET) mice represented an early, asymptomatic stage of HCM. To explore
mitochondrial contributions to hypercontractility, we evaluated mitochondrial integrity via
scanning electron microscopy (SEM) and correlated these findings with strain abnormalities.
Young HET female, but not male mice exhibited significant torsion abnormalities (p = 0.02),
reduced left ventricular global longitudinal strain (LVGLS, p = 0.009), and impaired right
ventricular global longitudinal strain (RVGLS, p = 0.035) compared to the controls. Strain
abnormalities correlated strongly with mitochondrial morphological alterations, including
changes in volume and area distribution (R > 0.7). Abnormal myocardial strain patterns,
including torsion and GLS, serve as early markers of HCM and are closely associated with
underlying mitochondrial dysfunction. The HET Mybpc3-KI HCM model provides impor-
tant insights into the initial stages of HCM progression, highlighting strain abnormalities
and sex-specific differences to enhance early diagnosis and therapeutic strategies.

Keywords: cardiomyopathy; myocardial remodeling; cardiac dysfunction; imaging
markers; contractility; strain; magnetic resonance imaging

1. Introduction
Hypertrophic cardiomyopathy (HCM) represents the most prevalent inherited cardiac

condition, affecting an estimated 1 in 200 to 1 in 500 individuals [1]. Sex plays a role in the
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prevalence of some forms of the disease [2]. HCM is characterized by hypercontractility, an
early pathological feature driven by excessive myosin–actin interactions within the sarcom-
ere [3]. This hypercontractility leads to increased left ventricular (LV) pressure, triggering
progressive LV hypertrophy and adverse cardiac remodeling, including cardiomyocyte
enlargement and disarray, myocardial fibrosis, and small vessel disease [4]. Hypercon-
tractility is typically assessed through in vitro or ex vivo methods, such as sarcomeric
contractility and calcium handling assays, which provide detailed insights into myocardial
performance at the cellular and molecular levels, albeit with considerable complexity [5,6].
Non-invasive in vivo assessment of hypercontractility in HCM is challenging, but several
methods are used. Speckle tracking echocardiography, particularly the longitudinal strain
rate of the interventricular septum, detects early LV contractility changes, though it may
miss subtle or regional abnormalities. Cardiac MRI with feature tracking (CMR-FT) offers
several advantages for assessing hypercontractility in HCM. Unlike traditional methods
like echocardiography, which may miss subtle or regional changes in myocardial function,
CMR-FT provides high-resolution, detailed strain analysis across multiple myocardial
directions (longitudinal, circumferential, and radial) [7]. This allows for the comprehensive
evaluation of myocardial deformation, capturing even early-stage abnormalities that are
often undetectable by other imaging techniques. Additionally, CMR-FT can assess the
heart’s twisting motion through torsion [8] and measure strain rates [9], providing valuable
insights into the dynamics of myocardial contractility. These capabilities make CMR-FT an
ideal tool for detecting early changes in HCM, offering a non-invasive, in vivo method to
study myocardial performance and progression of the disease. Although LV myocardial
wall thickening or hypertrophy remains the primary clinical manifestation of HCM [10],
right ventricular (RV) dysfunction has emerged as a critical determinant of patient prog-
nosis [11]. RV structural and functional abnormalities significantly impact outcomes in
various cardiac conditions, including heart failure and acute myocardial infarction [12]. In
HCM, global RV strain has been identified as an independent prognostic marker, irrespec-
tive of the presence of RV hypertrophy [13]. While the majority of research has focused on
LV strain, understanding RV dysfunction is essential for a thorough assessment of cardiac
function in HCM. Hence, our study seeks to assess LV and RV strain utilizing CMR-FT.

Many patients with HCM carry autosomal dominant genetic variants in sarcomeric
proteins, resulting in increased and irregular interactions between myosin and actin fil-
aments within the sarcomere [14]. HCM involves more than 450 variants across at least
13 genes encoding sarcomeric proteins [15,16], among which MYBPC3 genetic variants
are the most frequent [4]. Notably, approximately 75% of MYBPC3 variants result in a
frameshift, which is expected to lead to C-terminal truncated protein [17]. To mimic the
human disease, we utilized a Mybpc3-targeted knock-in (KI) mouse carrying a point mu-
tation [18] frequently associated with HCM and linked to severe phenotypes and poor
prognosis in humans [17,19]. The genetic structure of this mouse model closely mirrors that
of human patients. In our study, wild-type (WT) mice served as the normal control group.
Compared to WT mice, homozygous (HOM) mice develop left ventricular hypertrophy,
reduced fractional shortening, and interstitial fibrosis, which represent severe HCM. While
HET mice do not display left ventricular hypertrophy (LVH) or systolic dysfunction, they
show increased myofilament Ca2+ sensitivity, faster Ca2+ transient decay, and diastolic
dysfunction, which mirror the subtler, early-stage pathophysiology seen in human carriers
of MYBPC3 mutations [20].

Cardiac mitochondria play a crucial role in sustaining myocardial function and con-
tractility, constituting up to 30% of the cell volume in adult cardiomyocytes [21]. Recent
studies in advanced HCM have reported mitochondrial abnormalities in both structure and
function. These include swollen mitochondria and reduced cristae density, and functional
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deficits such as decreased high-energy phosphate metabolites and impaired expression of
genes related to creatine kinase and ATP synthesis [5]. These mitochondrial deficiencies
are believed to manifest early in the progression of HCM, potentially contributing to the
pronounced hypercontractility observed in advanced disease stages [22]. The increased
mechanical workload on cardiomyocytes is inadequately supported by a proportional
rise in mitochondrial calcium uptake, potentially leading to an energetic imbalance [23].
Therefore, we aim to investigate how alterations in myocardial strain correlate with changes
in mitochondrial morphology.

To test our first hypothesis—that strain serves as an early marker of HCM—we
employed CMR-FT to assess global and regional strain in the LV and RV of a mouse model
representing early-stage HCM. To address our secondary hypothesis—that changes in
myocardial strain are closely associated with mitochondrial dysfunction in early HCM—we
utilized scanning electron microscopy (SEM) for the ultrastructural analysis of mitochondria
integrity in this model. This integrated approach aims to elucidate how strain abnormalities
correlate with mitochondrial changes, thereby enhancing our understanding of HCM
progression and identifying potential imaging markers for early intervention.

2. Results
2.1. Cardiac Ventricular Function and Myocardial Thickness in HCM Mouse Models

Assessing ventricular function and structure is crucial for understanding the early
pathological changes in HCM. Our analysis revealed distinct differences among the HCM
genotypes for LV and RV ejection fraction (LVEF and RVEF, respectively), LV end-diastolic
volume (LVEDV), LV end-systolic volume (LVESV), cardiac output (CO), LV stroke volume
(LVSV), RV stroke volume (RVSV), LV mass, LV end-diastolic mass (LV mass at ED), and LV
end-systolic mass (LV mass at ES). HET mice carrying one mutated allele have LV and RV
functions that did not differ to the WT mice. On the other hand, HOM mice that are bi-allelic
for the genetic defects exhibited significantly lower LV and RV functions (Figure 1c–h).
These trends were consistent across male and female mice. In males, LVEF did not differ
significantly between HET and WT mice, while it was 66% lower in HOM mice than in
WT mice (p < 0.001). In females, LVEF values were similar between HET and WT mice,
while they were 60% lower in HOM than in WT mice (p < 0.001; Figure 1c). Similarly, RVEF
did not differ between male HET and WT mice, whereas it was 62% lower in HOM than
in WT male mice (p < 0.001). Similarly, RVEF did not differ between HET and WT female
mice, whereas it was 54% lower in HOM than in WT female mice (p < 0.001; Figure 1g).
Additionally, left ventricular wall thickness was significantly greater in HOM mice than in
both WT and HET mice. LV wall thickness in HOM mice was markedly greater than in the
WT group (male: p < 0.001, female: p < 0.001; Figure 1b). These findings underscore the
significant functional and structural differences between WT and HOM mice, with HET
mice exhibiting normal values.



Int. J. Mol. Sci. 2025, 26, 1407 4 of 19
Int. J. Mol. Sci. 2025, 26, x FOR PEER REVIEW 4 of 20 
 

 

 

Figure 1. Functional analysis of ventricular performance in mice with different genotypes and gen-
ders using CMR. (a). Endocardial and epicardial borders were manually segmented at the end-
Figure 1. Functional analysis of ventricular performance in mice with different genotypes and genders
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using CMR. (a). Endocardial and epicardial borders were manually segmented at the end-systole
and end-diastole using a stack of short-axis FLASH CINE images in both male and female mice
(7–36 weeks old). (b). LV wall thickness is presented as a mean value with standard deviation (SD) on
a slice-by-slice basis. (c–h). Functional parameters assessed include LVEF, LV mass, LV mass at ED, LV
mass at ES, LVSV, LVEDV, LVESV, CO, RVEF, and RVSV. Abbreviations: LVEF: left ventricular ejection
fraction; ED: end-diastolic; ES: end-systolic; LVSV: LV stroke volume; LVEDV: LV end-diastolic
volume; LVESV: LV end-systolic volume; CO: cardiac output; RVEF: right ventricular ejection fraction;
and RVSV: right ventricular stroke volume.

2.2. Bi-Ventricular Myocardial Deformation in HCM Mouse Models

To evaluate bi-ventricular myocardial deformation in HCM mouse models, we suc-
cessfully utilized CMR-FT for comprehensive analysis. The tracking quality for both
endocardial and epicardial borders was deemed adequate through visual inspection and
manual adjustments. The age of the WT female group (n = 10) was 15.6 ± 11.5 weeks and
for the WT male group (n = 10) 15.7 ± 11.2 weeks. The age of HET female group (n = 14)
was 15.2 ± 10 weeks, while it was 19 ± 10.5 weeks for the HET male group (n = 14). The
age of the HOM female group (n = 7) was 18.6 ± 11.1 weeks, and that of the HOM male
group (n = 7) was 13 ± 8.5 weeks (Figure 2a).

Our CMR-FT analysis revealed significantly lower LV global circumferential strain
(LVGCS), LV global radial strain (LVGRS), LV global longitudinal strain (LVGLS), and tor-
sion in HOM mice than in WT and HET mice (p < 0.05). Similarly, RV global circumferential
strain (RVGCS) and RV global longitudinal strain (RVGLS) were markedly reduced in
HOM mice (p < 0.01). Metrics such as LV diastolic circumferential strain rate (LVDCST),
LV systolic circumferential strain rate (LVSCST), LV diastolic radial strain rate (LVDRST),
LV systolic radial strain rate (LVSRST), LV diastolic longitudinal strain rate (LVDLST), and
LV systolic longitudinal strain rate (LVSLST) were also significantly lower in HOM mice
(p < 0.05). Significant differences between WT and HET mice in the female group were
observed for torsion (p = 0.0076) and LVSLST (p = 0.022; Figure 2b–d), suggesting their
potential as early imaging markers for subtle cardiac alterations in HCM. The torsion in
HET mice was marginally lower than in WT mice (p = 0.0076; Figure 2b), indicating early
cardiac changes even in the HET genotype.

We observed strong correlations between LV strain metrics (LVGCS, LVGRS, LVGLS,
torsion) and LVEF (R ≥ 0.7, p < 0.001; Figure 2e), as well as between RV strain metrics
(RVGCS (R = 0.78), RVGLS (R = 0.64)) and RVEF (p < 0.001; Figure 2f). Although strain
demonstrated a strong correlation with EF, it offered superior sensitivity in detecting
subclinical myocardial dysfunction. While no significant differences were observed in
the LV and RV functional parameters between the WT and HET groups (Figure 1), the
strain parameters revealed distinct differences, highlighting their ability to detect subtle
myocardial changes. Positive correlations were also found between LV and RV global
strains, with RVGCS and LVGCS (R = 0.85, p < 0.001) and RVGLS and LVGLS (R = 0.84,
p < 0.001; Figure 2g).
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mean values with SD on a slice-by-slice basis. (e). Correlation analysis between LV strain parameters 
(LVGCS, LVGRS, LVGLS, and torsion) and LVEF. (f). Correlation analysis between RV strain pa-
rameters (RVGCS and RVGLS) and RVEF. (g). Linear regression analyses of LV versus RV strain. 
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on myocardial function, minimizing age-related variability and ensuring a precise evalu-
ation of early disease markers. We focused exclusively on HET mice, which retain normal 
function and show no signs of HCM, to better understand early disease progression and 
avoid confounding effects from advanced stages. In our comprehensive analysis encom-
passing all strain and strain rate parameters across all age groups, significant differences 
were noted in torsion (p = 0.0076) and LVSLST (p = 0.022) between WT and HET mice, 
particularly in the female cohort. Furthermore, in the strain analysis of the 7–8-week-old 
HET and WT mice, significant differences were also observed in LVGLS (p = 0.009), 
RVGLS (p = 0.035), and torsion (p = 0.022; Figure 3b,c). These findings reinforced our initial 
observations across all age groups and underscore the potential utility of torsion and GLS 
as early markers for detecting the subtle cardiac alterations associated with HCM. 

Figure 2. Comprehensive assessment of differences in myocardial strain in the LV and RV using
CMR-FT. (a). CMR-FT images are shown at various slices for each genotype in both male and female
mice (7–36 weeks old). (b). LV strain measurements, including LVGCS, LVGRS, LVGLS, and torsion,
are presented as mean values with standard deviation (SD). (c). RV strain measurements, including
RVGCS and RVGLS, are also presented as mean values with SD. (d). LV strain rate measurements,
including LVDCST/LVSCST, LVDRST/LVSRST, and LVDLST/LVSLST are presented as mean values
with SD on a slice-by-slice basis. (e). Correlation analysis between LV strain parameters (LVGCS,
LVGRS, LVGLS, and torsion) and LVEF. (f). Correlation analysis between RV strain parameters
(RVGCS and RVGLS) and RVEF. (g). Linear regression analyses of LV versus RV strain. Abbreviations:
LV: left ventricular; RV: right ventricular; LVEF: LV ejection fraction; LVGCS: LV global circumferential
strain; LVGRS: LV global radial strain; LVGLS: LV global longitudinal strain; RVGCS: RV global
circumferential strain; RVGLS: RV global longitudinal strain; LVDCST: LV diastolic circumferential
strain rate; LVSCST: LV systolic circumferential strain rate; LVDRST: LV diastolic radial strain rate;
LVSRST: LV systolic radial strain rate; LVDLST: LV diastolic longitudinal strain rate; and LVSLST: LV
systolic longitudinal strain rate.

2.3. Myocardial Strain as an Early-Stage Marker in HCM

The strain differences observed between WT and HET mice may be attributed to the
wide age range of the mouse models utilized in this study [24]. We therefore analyzed
young mice (7–8-weeks-old) to accurately assess early-stage HCM and its initial impact on
myocardial function, minimizing age-related variability and ensuring a precise evaluation
of early disease markers. We focused exclusively on HET mice, which retain normal func-
tion and show no signs of HCM, to better understand early disease progression and avoid
confounding effects from advanced stages. In our comprehensive analysis encompassing
all strain and strain rate parameters across all age groups, significant differences were noted
in torsion (p = 0.0076) and LVSLST (p = 0.022) between WT and HET mice, particularly in
the female cohort. Furthermore, in the strain analysis of the 7–8-week-old HET and WT
mice, significant differences were also observed in LVGLS (p = 0.009), RVGLS (p = 0.035),
and torsion (p = 0.022; Figure 3b,c). These findings reinforced our initial observations across
all age groups and underscore the potential utility of torsion and GLS as early markers for
detecting the subtle cardiac alterations associated with HCM.
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Figure 3. Myocardial strain analysis across different genotypes, regions, and genders. (a). CMR-FT
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images are shown at various slices for each genotype in both male and female mice (7–8 weeks old).
(b). LV strain measurements, including LVGCS, LVGRS, LVGLS, and torsion, were conducted using
the CINE images shown above. (c). RV strain measurements, including RVGCS and RVGLS, were also
conducted using the CINE images shown above. Strain assessments for each genotype are presented
as mean values with standard deviation (SD) on a slice-by-slice basis. (d). Strain assessments in
different regions, including peak circumferential strain, peak radial strain, and peak longitudinal
strain, were also evaluated. Abbreviations: LV: left ventricular; RV: right ventricular. LVGCS: LV
global circumferential strain; LVGRS: LV global radial strain; LVGLS: LV global longitudinal strain;
RVGCS: RV global circumferential strain; RVGLS: RV global longitudinal strain; and SD: standard
deviation.

To gain deeper insight into the strain characteristics associated with HCM, we con-
ducted a detailed exploration of regional strain features. Peak circumferential strain, peak
radial strain, and peak longitudinal strain were segmented into basal, mid, and apical
layers for analysis. Strain also offers key advantages over EF by providing regional insights
into myocardial function, allowing the identification of localized wall motion abnormalities
that may remain obscured in global measures like EF. Moreover, strain is less influenced by
loading conditions, making it a more robust marker for nuanced myocardial performance.
We compared different strain values across different genotypes within these layers. Our
findings revealed a statistically significant difference in the apical layer between WT and
HET mice, specifically within the peak radial strain (male: p = 0.028; female: p = 0.044)
(Figure 3d). We also observed significant differences in LVGLS between females and males
with HCM at an early stage of HCM (p = 0.034; Figure 3b).

2.4. Ultrastructural Myocardial Alterations in HCM Mice

Cardiac mitochondria play a crucial role in sustaining myocardial function and con-
tractility, constituting up to 30% of the cell volume in adult cardiomyocytes [21]. These
mitochondria are classified into intermyofibrillar (IFM) and perinuclear (PNM) types, each
with distinct functions. IFM and PNM were identified in WT, HET, and HOM mice. In
WT and HET mice, myofibrils were aligned with uniformly distributed IFM, with intact
sarcomere structures and normal mitochondrial morphologies (Figure 4a). Collagen depo-
sition was minimal, and areas of mitochondrial disruption were electron-lucent. However,
HOM mice displayed significant disorganization of the myofibrils and mitochondria, with
clustered IFM and an abnormal mitochondrial volume, shape, and area distribution. SEM
also revealed substantial variability in mitochondrial area distribution in both the HET
and HOM mouse groups, including an abundance of smaller mitochondria and irregularly
shaped giant mitochondria (Figure 4e), particularly in females. These changes resulted in
an overall reduction in mitochondrial area (Figure 4c). Both excessively large and small
mitochondria exhibit functional impairments [25]. These SEM observations correlated
with the myocardial strain data: the disorganized mitochondrial morphology in HOM
mice aligned with the reduced myocardial strain metrics. The mitochondrial volume, area
distribution, and perimeter in HET mice showed significant differences compared to WT,
especially in the female group (Figure 4b–d). Torsion, LVGLS, and RVGLS were signifi-
cantly correlated with mitochondrial volume (Figure 4f). These findings underscored the
potential of combining myocardial strain measurements and mitochondrial morphology
analysis to identify early indicators of HCM.
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Figure 4. Mitochondrial morphological analysis in mice with different genotypes. (a). Representative



Int. J. Mol. Sci. 2025, 26, 1407 11 of 19

electron micrographs of ventricular sections from WT, HET, and HOM mice. Scale bars: 2 µm.
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3. Discussion
This study demonstrated the use of CMR-FT to assess global and regional myocardial

strain in both the left and right ventricles of a human analogue HCM mouse model. By
highlighting the correlation between our strain measurements and mitochondrial mor-
phology, we identified potential imaging markers for the early detection of myocardial
alterations in HCM. This novel approach not only enhances our understanding of HCM
pathology but also paves the way for the early detection of HCM.

The literature indicates that both LV strain and RV strain are more sensitive prog-
nostic indicators in HCM patients compared to LVEF [13]. However, the sensitivity and
correlation of strain in early-stage HCM patients, especially in asymptomatic individuals,
remain uncertain. Our findings indicate that torsion, LVGLS, and RVGLS serve as sensitive
imaging markers for early HCM detection in the mouse model, as opposed to other strain
parameters. These findings align with existing research on longitudinal strain and torsion
in patients with HCM [26]. Ventricular function is intricately linked to myocardial fiber
structure, with myocardial tissue exhibiting non-linear and complex motions dominated by
rotation and stretching throughout the cardiac cycle [15]. Specifically, longitudinal strain
reflects the function of sub-endocardial myocardial fibers, circumferential strain pertains to
subepicardial fibers, and radial strain encompasses the entire myocardial thickness, which
relates to the thickening and thinning of the myocardial tissue [27]. The observed reduction
in longitudinal function, primarily influenced by subendocardial fibers, is likely due to
the increased susceptibility of this layer to perfusion abnormalities and a higher risk of
interstitial fibrosis compared to other myocardial layers [28]. Additionally, the heart’s
twisting motion, or torsion, helps to normalize LV wall stress by reducing the transmu-
ral gradients of fiber strain, ultimately enhancing energy efficiency. However, eccentric
hypertrophy is associated with reduced torsion [29]. Consistent with prior studies, we
noted that the predominant alterations in strain occur at the apical level, which can be
attributed to non-uniform hypertrophy, abnormal myocardial arrangement, and increased
localized stress at the apex in HCM [29]. Our study also revealed a positive correlation
between RVGLS and LVGLS, as well as between RVGCS and LVGCS. These results echo
previous findings that compromised LV deformation significantly impacts RV deformation.
Impaired LV deformation can lead to changes in LV volume and pressure, which in turn
affect RV morphology and contractility, resulting in RV diastolic dysfunction and reduced
myocardial deformation [30]. CINE MRI studies indicate that LV contraction primarily
involves lateral motion, while RV contraction is predominantly longitudinal [31]. The
shortening and thickening of the septum further contribute to reduced RV systolic volume,
potentially leading to systolic dysfunction in the RV due to increased afterload [32]. Overall,
our findings underscored the intricate relationships between LV and RV mechanics in the
context of HCM, highlighting the importance of early detection and intervention to manage
these interdependencies effectively.
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Our study revealed that mice with early HCM exhibit morphological changes in
mitochondria that correlate closely with myocardial strain. Mitochondria are critical in
HCM pathogenesis and have been identified as potential early markers of the disease [22].
These findings highlight the critical importance of mitochondrial integrity in understand-
ing the molecular mechanisms underlying HCM progression and its potential as an early
biomarker. The genetic mutations associated with HCM, particularly in the Mybpc3 gene,
lead to hypercontractility, myofilament Ca2+ sensitization, and Ca2+ mishandling, all of
which contribute to oxidative and energetic stress as well as mitochondrial dysfunction.
This altered cardiac metabolism exacerbates cardiac hypertrophy and fibrosis, further
complicating calcium handling and elevating oxidative stress [33]. Our findings in HET
mice align with previous studies that noted higher rates of early fast exponential relax-
ation in septal myectomy samples from HCM patients with MYBPC3 haploinsufficiency,
reinforcing the connection between mitochondrial changes and the disease’s underlying
mechanisms [22].

Our SEM observations revealed an altered mitochondrial morphology and the pres-
ence of excessively large and small mitochondria. These mitochondria might exhibit
functional impairments and altered mitochondrial dynamics, reflecting disruptions in
mitochondrial fission and fusion, which likely serve as adaptive responses to pathological
stress. Such alterations may act as compensatory mechanisms to mitigate cellular energy
deficits arising from impaired sarcomeric energy utilization [34]. In the early stages of
HCM, increased oxidative stress leads to significant mitochondrial structural and functional
abnormalities. Moreover, failure to properly upregulate mitochondrial quality control exac-
erbates these energy deficiencies [35]. We also observed increased glycogen accumulation in
the cardiomyocytes of HOM mice, as previously reported in this model [36] and in patients
with dilated cardiomyopathy [37]. However, further metabolic assays and specific glycogen
staining are required to quantify these findings more precisely. We observed a reduced
mitochondrial volume in HET mice, specifically in females but not in males, compared
to WT mice, suggesting that female HET mice exhibit early mitochondrial morphological
alterations in the heart. This may help to explain the myocardial contractile dysfunction
observed in HET mice. Mitochondria are transported along the microtubule cytoskeleton,
altering their arrangement during myofiber differentiation in mice [38]. In HCM mice and
human engineered heart tissue, chronic activation of tubulin tyrosination enhances cardiac
function [39]. Given the strong correlation between strain and mitochondrial morphology,
this relationship may arise from the elevated mechanical workload in HOM myocytes not
being adequately matched by sufficient mitochondrial Ca2+ uptake, leading to energetic
imbalances and subsequent contractile dysfunction. Moving forward, we aim to inves-
tigate mitochondrial dynamics and microtubule organization further to elucidate their
roles in these pathophysiological processes, providing deeper insights into the molecular
mechanisms driving HCM.

Recent studies have highlighted significant sex-specific differences in various aspects
of cardiac physiology, emphasizing the need for increased awareness in this area [40,41].
These differences can influence disease progression, responses to treatment, and outcomes
in HCM, the variations of which are crucial for developing tailored approaches to diagnosis
and management, ultimately improving care for both male and female patients [40]. Prior
CMR research has identified sex differences in myocardial strain among both healthy
subjects and in patients with diastolic dysfunction [24]. Our study revealed significant
mitochondrial differences and an earlier onset of strain changes in female HCM mice.
This suggests that the more severe manifestations of HCM in females may stem from a
combination of altered estrogen signaling, mitochondrial dysfunction, increased fibrosis,
and sex-related variations in gene expression, all contributing to greater myocardial damage



Int. J. Mol. Sci. 2025, 26, 1407 13 of 19

and dysfunction [42]. Therefore, these sex-related variations in myocardial strain should be
taken into account in future investigations to enhance our understanding and management
of HCM.

Limitations of the Study

This study offers valuable insights into the mechanics of HCM, despite its several
limitations. While human HCM exhibits diverse mechanical manifestations due to complex
genetic factors [43], our research is based on a controlled population of mice, allowing for
more consistent data collection. This controlled setting minimizes external variability, thus
enhancing the reliability of our findings regarding the association between myocardial
strain and mitochondrial morphology. Although the Mybpc3 KI model may not fully
represent the broader HCM population, it provides a focused view of early-phase HCM,
revealing subtle mechanical dysfunctions that may be overlooked in more heterogeneous
models. Our findings highlighted the potential of torsion and GLS as early imaging markers,
underscoring their relevance in understanding HCM progression. While we did not assess
left atrial strain, which has been validated as a prognostic marker [44,45], our study lays
the groundwork for future research to include this important measure. Additionally, we
recognize that age and sex significantly impact strain measurements. This study used
a consistent slice thickness across all age groups. While this ensured uniform imaging
parameters, it may have affected spatial coverage along the long axis of the heart in younger
animals with smaller hearts. By utilizing comprehensive CMR protocols with parametric
mapping, our ongoing research will explore the evolution of CMR markers over time,
enhancing our understanding of how these changes might predict disease outcomes and
inform treatment strategies.

4. Materials and Methods
4.1. The Mouse Model Carries a Human HCM Genetic Variant

The animal studies received approval from the Berlin State review board at the ‘Lan-
desamt für Gesundheit und Soziales (LAGeSo; State Office for Health and Social Affairs
Berlin)’. Mice were handled according to the rules and regulations set forth by the animal
welfare authority and institutional rules. We utilized an HCM model with a Mybpc3 knock-
in mutation involving a single nucleotide replacement in the Mybpc3 gene on a C57BL/6J
background. In total, 62 mice (31 males and 31 females, 7–36 weeks old) underwent CINE
CMR for functional and strain assessment. The selected age range of 7 to 36 weeks captures
the progression from early to more advanced stages of HCM, corresponding to the transi-
tion from early- to mid-adulthood in human disease progression. This approach allowed
us to observe broad trends and refine our focus. To identify early imaging markers of strain,
we conducted a detailed analysis in 7-to-8-week-old mice, an age that corresponds to the
early phase of the disease in humans. The experimental design is illustrated in Figure 5.

4.2. In Vivo Cardiac MRI

In vivo CMR was conducted using a 9.4 T small animal MR system (Biospec 94/20,
Bruker Biospin, Ettlingen, Germany), utilizing a 72 mm volume resonator for transmis-
sion and a 4-channel surface cardiac radiofrequency (RF) array for signal reception. Mice
were anesthetized with 3% isoflurane (CP-Pharma, Burgdorf, Germany) at a flow rate of
500 mL/min medical air and 300 mL/min oxygen, with maintenance at 1 to 1.5% isoflurane
post-induction. Hemodynamic stability was rigorously maintained during CMR examina-
tions to minimize the potential interference with imaging data. Core body temperature was
regulated at 36 ± 0.5 ◦C through a heated water tubing system. Continuous monitoring of
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heart rates, respiratory rates, and core body temperature was conducted using a remote
monitoring system (Model 1030, SA Instruments Inc., Stony Brook, NY, USA).
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Figure 5. Experimental protocol. All mice underwent cardiac MRI according to the illustrated
protocol. (a). The number of mice with different age groups across the WT, HET, and HOM groups.
(b). Strain analysis was performed on mice aged 7 to 36 weeks old across the WT, HET, and HOM
groups. (c). Additional strain analysis was conducted on mice aged 7 to 8 weeks old from both the
WT and HET groups. Strain analysis was conducted in multiple myocardial directions, including
longitudinal, circumferential, and radial. Torsion was quantified as the rotational displacement
between the apex and base, normalized by the mean ventricular radius and the longitudinal axis
length. (d). Ventricular specimens were collected from three mice in each group at 7 to 8 weeks old
for electron microscopy. Abbreviations: WT, wild-type; HET, heterozygous; and HOM, homozygous.

4.3. Assessment of Cardiac Functional Integrities

Cardiac short-axis (SAX) views covering the entire mouse heart were obtained by
sequentially capturing 7–8 slices using self-gated bright-blood CINE gradient-echo imaging
(IntraGate-FLASH, repetition time/echo time (TR/TE) = 8.5/1.6 ms, flip angle (FA) = 15◦,
receiver bandwidth = 98 kHz, FOV = 11 × 22 mm2, matrix size = 192 × 384, spatial
resolution = 0.057 mm, slice thickness = 0.8 mm, movie frames (cardiac phases) = 16).
The cardiac function assessment was conducted using Segment Version 4.0 (Medviso,
Lund, Sweden) [46] and analyzed on a slice-by-slice basis. Endo- and epicardial borders
were manually delineated at end-systole and end-diastole using SAX and long-axis (LAX)
CINE images (four chamber view). LVEF, RVEF, LV mass, LVEDV, LVESV, CO, LVSV,
RVSV, LV mass at ED, and LV mass at ES were calculated. Left ventricular wall thickness
was measured at end-diastole, with the maximal wall thickness determined across all
SAX views.

4.4. Feature Tracking and Strain Analysis

The feature tracking (FT) technique was based on a block-matching approach [7]. It
first identified anatomical features along the myocardial boundaries within CINE images,
established small squared regions centered around these features in an initial image, and
then tracked them across the cardiac cycle by identifying the most similar image pattern in
the subsequent frames [47]. Strain analysis was performed on CINE images using Segment
software 4.0 (Medviso, Lund, Sweden) [48]. Standardized myocardial segmentation and
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nomenclature was used, including 16 segments of the basal, mid, and apical levels of
the myocardium [49]. RV global strain and strain rate (SR) were assessed from the free
wall, while LV global strain and SR were evaluated from the LV free wall in addition to
the septum. Regional strain was assessed from the SAX and LAX views and segmented
as appropriate. The software facilitated the automatic delineation of endocardial and
epicardial borders during end-diastole using a point-and-click approach across the four-
chamber LAX and SAX views to obtain strain values and strain rates. The global peak
values of systolic strain and strain rate were determined as the highest observed values
throughout systole.

4.5. Scanning Electron Microscopy

Following in vivo CMR, the murine hearts were extracted and fixed with 4% formalde-
hyde and 1.25% glutaraldehyde (Sigma-Aldrich, Taufkirchen, Germany) in 0.1 M phosphate
buffer of pH 7.2 at 4 ◦C for 48 h. The left ventricular free wall was dissected into 1–2 mm3

pieces, which were processed for SEM. The tissue cubes were osmicated on ice with 1%
osmium tetroxide in 0.1 M HEPES of pH 7.2, after which they were washed thoroughly
with Milli Q water. Dehydration was carried out through a graded ethanol series (30%,
50%, 70%, 90%, and 100%). This was followed by a gradual infiltration with ethanol–epoxy
resin Polybed812 (Polysciences) mixes (30% resin, 70% resin, and 100% resin). Infiltration
with 100% resin was carried out overnight prior to polymerization at 60 ◦C for 48 h.

The LV free wall was sectioned using a Reichert Ultracut S ultramicrotome and an
Ultra 45 diamond knife (Diatome, Nidau, Switzerland). The resulting ultrathin sections
(100 nm) were collected on Type P silicon polished wafers (Science Services, München,
Germany) and post-stained with 2% aqueous uranyl acetate and 3% Reynolds lead citrate
(Delta Microscopies, Mauressac, France). Imaging was performed using the Helios 5
Hydra CX Dual Beam system (Thermo Scientific, Hennigsdorf, Germany). Micrographs
captured at a pixel size of 4.5 nm/pixel were employed for the stereological analysis of
total mitochondrial volume and for the quantification of ultrastructural mitochondrial
morphological parameters.

4.6. Quantitative Analysis of Cardiomyocyte Mitochondrial Networks and Mitochondrial Volume

Quantification of the mitochondrial morphological parameters and mitochondrial
volume was carried out using the open-source software Fiji 2.14.0 [50]. The volume of
mitochondria in LV cardiomyocytes was determined from 2D SEM micrographs through
point counting stereology [51]. For this analysis, three animals/condition/sexes were
included and different mitochondrial populations (IFM and PNM). A uniform grid of points
was projected on the micrographs using Fiji [50]. Points falling inside of mitochondria
(Pm), inside the cytoplasm (Pc), and in the nucleus (Pn) were counted. After counting
≥ 700 points/animal we estimated the fraction of the cell volume that was occupied by
mitochondria (Vm) according to the formula: Vm = Pm/(Pm + Pc + Pn) [52].

4.7. Ultrastructural Mitochondrial Morphological Parameters

Qualitative data of ultrastructural mitochondrial features were supplemented by the
analysis of morphological parameters (area and perimeter). The quantification of morpho-
logical parameters was carried using Fiji [50], as described previously by Lam et al. [53].

4.8. Statistical Analysis

Analysis of cardiac function and strain metrics derived from CMR CINE images was
conducted by observers blinded to the mouse genotype. Experimental analysis and statis-
tical evaluations were performed using R Studio (http://www.rstudio.com/) (accessed
on 4 October 2024). Group mean differences were analyzed using one-way or two-way

http://www.rstudio.com/
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analysis of variance (ANOVA), followed by post-hoc Tukey HSD multiple comparisons to
determine significance levels, with p < 0.05 considered statistically significant. Variation
analysis of the mitochondrial cross-sectional area was performed with Levene’s test. In the
linear regression analyses, the multiple correlation coefficient (R) strength was evaluated
based on its magnitude, with R ≥ 0.7 considered strong, 0.3 < R < 0.7 moderate, and
R < 0.3 weak.

5. Conclusions
In conclusion, abnormal myocardial strain patterns, including torsion and GLS, serve

as early markers of HCM. Furthermore, these strain indicators are closely linked with
mitochondrial morphology, providing a foundation for future studies to enhance early
diagnosis and optimize disease management strategies.
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