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Abstract 
Cancer cells display distinct, recurrent phenotypic cell states. Metastatic spreading 

correlates with tumor cell state evolution. However, the molecular mechanisms underlying 
metastasis remain elusive. Here, we demonstrate that the quantitative dosage of oncogenic 
KRAS drives lung adenocarcinoma progression and metastasis via the integration of external 
signaling and pioneer transcription factor dynamics into qualitative cell states. Combining 
mouse models, in vivo CRISPR activation screens, and fate mapping, we show that even mild 
transcriptional amplification of KRAS significantly fuels tumor progression and metastasis. 
Chromatin profiling and transcriptomics reveal that high and low KRAS dosages supersede 
and integrate inflammatory and TGFβ signaling to dictate mouse cancer cell states. Patient 
data show that KRAS dosages correlate with distinct survival outcomes, transcription factor 
activity, and cell states. Direct KRAS inhibition in xenografts limits the KRAS-high 
"proliferative" cell state but spares a minimal residual state mimicking the KRAS-low 
"ciliated-like" state. Thus, oncogenic KRAS dosage fuels tumor heterogeneity at the cell state 
level and drives a bimodal tumor evolution during metastasis, with implications for 
prognosis and treatment. 
 
Introduction 

Metastasis, the spread of cancer cells from a primary to distant organs, significantly 
increases mortality risk among cancer patients 1-3. Genetically, cancer drivers in metastatic 
tumors often mirror those of their primary counterpart 4,5, indicating that additional genetic 
alterations may not be essential for tumor progression 6.  Metastasis involves limited copy 
number aberrations, which may influence therapeutic responses but do not fully explain 
metastatic spread 4. The distribution of tumor microenvironments (TMEs) is largely 
consistent across most primary and metastatic cancers 4, which might support an hourglass 
evolution model by which non-genetic factors could critically influence cancer cell fates 
during progression and metastasis. In certain contexts, 'driver cell states,' may supersede 
genetic alterations in driving tumor initiation, progression, therapeutic response, and 
metastasis 7. How driver genetics and driver cell states are connected remains to be 
systematically investigated and is likely context-dependent. 

RAS proteins, among the most intensively studied oncogenes in cancer biology, 
became recently 'druggable' 8-11. Directly targeting KRAS through mutation-specific and 
pan-active forms is expected to extend patient survival but will also increase metastatic 
recurrence. Given this, it is timely to expand focus on how RAS proteins influence cancer 
progression and metastasis. KRAS mutations are present in approximately 32% of non-small 
cell lung cancer (NSCLC) cases, the most prevalent cancer globally, particularly affecting the 
lung adenocarcinoma (LUAD) subtype 12. 

KRAS fits well the definition of a prototypic driver gene in human cancer 13. KRAS 
mutations in LUAD and pancreatic adenocarcinoma (PAAD) often represent founding 
mutations, whereas in the context of Colorectal Adenocarcinoma (COAD), KRAS mutant 
typically act more as a “promoter” 14. In all the cases, mutations in KRAS are associated with 
poor prognosis, not least due to the lack of therapeutics until recently. Autochthonous 
mouse models for KRAS-driven cancers like LUAD and PAAD closely mimic human disease 
15,16, offering predictive value for therapeutic responses 17. In the most prevalent KRAS-driven 
mouse model, a KrasG12D allele is activated through genetic recombination, resulting in 
heterozygous oncogenic expression in the targeted tissues 15,16. In such models, metastatic 
events are infrequent, but the progression is driven by the collaboration between KrasG12D 
and the deletion of tumor suppressor genes such as Trp53, Lkb1 and Eed, as well as non-
genetic tumor evolution 18-22. In mouse LUAD, oncogenic Kras can transform multiple cell 
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types 23 and displays a broad range of cell states ranging from those mirroring the candidate 
cell of origin towards evolving a mesenchymal-like state enriched at late stages and 
metastasis 18. While KRAS-associated metabolism and microenvironment are key players in 
shaping progression24,25, how cell state evolution occurs in these models remains unclear. 

Intriguingly, in Kras-driven mouse PDAC, copy number aberrations increasing the 
genetic dosage of the hyperactive Kras oncogene were observed 26. Moreover, allelic 
imbalance between wild-type and oncogenic KRAS drives metabolic rewiring 27. This 
suggests that Kras mutations and dosage serve two distinct non-overlapping roles in tumor 
progression. However, the need to deduce transcriptional or protein dosage from copy 
numbers, combined with the early occurrence of such events, complicates the assessment 
of their impact on progression and metastasis. Transplantation-based models provide 
practical advantages over the rapid progression of aggressive LUAD and the impracticality 
of surgical resection in autochthonous models. These models offer unique opportunities for 
elaborate genetic manipulations and challenging in vivo genetic screens 28,29 and the 
relevance of findings generated in these models may be augmented by data analyses of 
large repositories of cellular and molecular cancer obtained in an intact mouse and human 
cancers. 

In this study, we investigated the molecular mechanisms driving Kras-driven LUAD 
progression and metastasis, focusing on a model for mucinous LUAD—an advanced stage 
driven by intrinsic cancer cell state evolution20,30 and associated with resistance to KRAS 
inhibition31. To this end, we used the KrasG12D;Trp53-/-;Eed-/- (KPE) genotype, which 
recapitulates these features in mice 20. KPE cells uniformly progress toward pre-metastatic 
stages and retain high-grade phenotypes after transplantation, making this setting ideal for 
studying metastasis via CRISPR activation and fate mapping screens. By integrating findings 
across KPE and other model systems (e.g., KP mouse models and human xenografts), and 
testing the generalizability of our findings in human primary and metastatic LUAD 
transcriptional repositories, we establish KRAS dosage as a robust driver of metastatic 
dynamics dictating global chromatin and transcriptional changes ultimately influencing 
cancer cell states and progression, with broad implications for metastasis and therapeutic 
responses. 

 
Results 
Fate mapping and Transcriptional amplification during lung adenocarcinoma 
progression and metastasis by cellular barcoding and CRISPR activation in vivo 

We previously established mouse models for aggressive LUAD initiation, progression 
and metastasis 20,28. To study whether modulating endogenous gene expression levels of 
cancer genes in the lung microenvironment drives functional outcomes during murine 
LUAD progression and metastasis, we set up an in vivo screening platform using an 
orthotopic setting. The first component of such in vivo platform consists of primary cells 
derived from autochthonous lung tumor model capable of disease-relevant transplantation. 
We used KPE primary cells from mice with a KRASG12Dfl/+;Trp53fl/fl;Eedfl/fl background , derived 
from LUAD induced by adenoviral-CRE. Compared to the most commonly used KP 
genotype, this model homogeneously progresses towards a pre-metastatic stage in vivo via 
EMT and phenotypic switching towards mucinous differentiation 20. The latter characteristic 
is cell intrinsic and retained upon transplantation in secondary recipients 20. A second 
component of this platform is a CRISPRa system with a doxycycline-inducible dCas9 fused 
to a VPR trans-activator 32, and a library of gRNAs cloned in a CROP-seq vector 33. We chose 
gRNA targeting 88 genes, enriched in those functionally driving progression in a 
transplantation model for LUAD progression, such as Kras and NF-kB/PRC2 targets 28. A set 
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of ~10 /gene on-target gRNAs was complemented with an equal number of non-targeting 
gRNAs. Together, the combined system enables transcriptional amplification of target 
genes via locus-specific gRNAs or population-level cellular fate mapping via non-targeting 
gRNAs serving as neutral barcodes (Fig. 1A). Detection of in vivo bioluminescence via firefly 
Luciferase expression enables time-resolved lung grafting prior to gRNA activation (Fig. 
S1A). 

To test whether this system is well versed to study whether transcriptional 
amplification of candidates oncogenes impacts progression, we concomitantly delivered to 
the same cells three gRNA, each targeting endogenous Vav1, Cxcr4 and L1cam. These were 
previously validated in vivo using standard viral-driven ORF amplification28. Compared to 
control cells, dox-treatment induced significant transcriptional and protein expression of 
the VPR-dCas9 in a time window of 20 days, that was maintained after dox-washout, and 
promoted up to 40-fold transcriptional amplification of Vav1, Cxcr4 and L1cam (Fig. S1B-C). 
KPE cells colonized both lung and several organs of recipient NSG mice as individual small 
cell clusters as gauged by ex vivo light sheet microscopy of CUBIC cleared tissues. Together 
with the increased tumor burden in presence of targeted transcriptional amplification, both 
support the robustness of the platform (Fig. 1B-C). 

To run simultaneous clonal analysis of the impact of transcriptional amplification of 
single genes and population-level fate mapping of KPE dynamics during progression and 
metastasis, we next synthesized a library of 1,981 gRNAs equally divided between targeting 
and 981 non-targeting gRNAs and planned a theoretical representation at the time of 
chemogenetic library activation of >1,000 gRNAs per tumor, assuming a single infection per 
cell 29. We performed two independent screens and used ex vivo bioluminescence to guide 
dissection of tissues carrying substantial primary or metastatic burdens (Fig. 1A and S1). 
Compared to plasmid and input controls, massively parallel library preparation and 
sequencing in passage zero cell culture from each tissue in each mouse confirmed the 
overall broad representation of input gRNA in orthotopic tumors (Fig. 1D-G and S1D-E) and 
revealed its progressive reduction in metastatic lesions (Fig. 1E and S1E). Dox-activation 
selectively increased targeting gRNA within the context of a uniform segregation of 
targeting and non-targeting gRNAs across tissues (Fig. S1F-G). This indicates that 
transcriptional amplification of oncogenes is not required for metastasis in the KPE model 
but can increase the metastatic rate. Of note, tissue-derived tumor cells display phenotypic 
differences and variable EMT biomarkers (Fig. 1H and S1G-I), likely the result of distinct and 
heritable phenotypic adaptation in tissues. 

Overall, our data support that coupling fate mapping and CRISPR activation in vivo 
enables the functional dissection of genes regulating progression and metastasis in a mouse 
model for aggressive NSCLC. 
 
Kras transcriptional amplification promotes oligo-/poly-clonal orthotopic and 
metastatic growth in a KrasG12D-driven lung adenocarcinoma 

To analyse our in vivo screens in a statistically robust manner, we devised a strategy 
that shortlisted homogeneously diverse samples, which builds on key parameters such as 
the number of reads per guide and inter-sample correlation (Fig. 2A, S2A-C and methods). 
This strategy enabled us to compare and contrast input, orthotopic and metastatic samples 
that are quantitatively comparable. In turn, this approach uncovered that orthotopic 
samples represent both targeting and non-targeting gRNAs in Gaussian fashion as predicted 
by light sheet imaging (Fig. 1B) and a bimodal gRNA distribution defines oligoclonal and 
polyclonal metastases as the prevalent mode of dissemination in the KPE model (Fig. 2B). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2024. ; https://doi.org/10.1101/2024.12.29.630643doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.29.630643
http://creativecommons.org/licenses/by-nc-nd/4.0/


Next, we applied two parallel approaches to nominate the driver(s) among the genes tested 
in vivo (methods). This approach showed that Kras was the sole gene within our pool to 
systematically reach statistical significance (Fig. 2E-F and S2C-D). In turn, this reinforces that 
a KPE genotype is fully penetrant for both tumor initiation, progression and metastasis in 
cell intrinsic manner (e.g. in a immunodeficient model for tumor progression). Of note, the 
cardiac vasculature appeared to host highly polyclonal KPE cells. Ranking RRA scores and 
focusing on individual tissues opened to the potential selection of additional hits, such as 
IcosL and Napsa in the Kidney and Liver setting (Fig. 2F and S2D), but Kras remains the top 
hit. Surprisingly, well-established oncogenes such as Vav1, Cxcr4 and L1cam previously 
validated via overexpression of human open-reading frames  using strong viral promoters 
did not score as hits despite their dosage was amplified via their endogenous locus 28. 

To validate Kras as the single event promoting mouse LUAD, we set up independent 
validation experiments. First, we set up an in vivo competition assay, in which seven top 
ranking gRNAs targeting endogenous Kras transcriptional amplification were pooled and 
low-MOI transduced KPE;dCas9-VPR cells with mCherry fluorescence marker. These cells 
were mixed in an unfavorable ratio with KPE;dCas9-VPR cells infected with a large library of 
gRNAs targeting the human-genome (n=104,504), which are therefore off-target in the 
mouse (Fig.3A-B). In all organs in which bioluminescence highlighted substantial tumor 
burden, transcriptional amplification of Kras drove competitive advantage in both short in 
vitro assay with a single Kras guide, as well as during tumor transplantation in vivo, as gauged 
by mCherry-labeled cells bearing seven distinct on-target guides outnumbering neutral 
guide-bearing BFP-labeled ones (Fig. 3A and 3C). 

We next set up a parallel competition assay in vivo between off-target gRNA bearing 
cells (BFP-labeled) against pooled gRNAs targeting either Kras or other random genes 
enriched in our primary screen with statistical significance but unclear functional role 
(Fig.S3A-D), which may be due to lower functionality, on-target activity, or off-target 
stochastic clonal expansion. Kras transcriptional amplification over remained significant 
whereas the other targeting gRNAs largely lost the competition to the control cells (Fig. 3D-
E). Some gRNAs showed dominant enrichment over others (Fig. S3B-D), yet their functional 
weight is lower than Kras and potentially independent from their target gene. The finding 
that only Kras but not other previously validated oncogenes such as Vav1, Cxcr4 and L1cam 
significantly accelerated progression under physiologically-relevant dosage amplification 
was rather surprising in that KrasG12D is the genetic driver event used to initiate 
tumorigenesis in our autochthonous model 20. Moreover, in line with the standard mode of 
Kras-driven tumorigenic in autochthonous pancreatic cancer26, both the wild-type and 
mutant Kras alleles are genomically amplified also in KPE cells28. Biochemically, we 
confirmed that most Kras targeting gRNAs drove mRNA amplification of both wild-type and 
mutant allele, and therefore including but not limited to the oncogenic Kras protein (Fig. 
S3E-F). In line with expectations for an endogenous system like CRISPRa targeting a highly 
expressed gene, we note that Kras amplification was mild and limited to two-to-four folds 
over basal levels in KPE (Fig.S3D-E). 

In a reanalysis of single-cell RNA sequencing and lineage-tracing data by Yang et al. 
18, we next found that increased Kras transcriptional dosage is significantly linked to late-
stage tumorigenesis and metastatic phenotypes in the autochthonous KP Tracer model 
(Fig. 3F). Notably, Kras detection rates, serving as a proxy for transcriptional levels, were 
markedly elevated in mesenchymal and metastatic cells, which dominate the late-stage 
clusters in an unperturbed metastatic setting (Fig. S3G-H). Next, we aimed to assess the role 
of Kras dosage in a human xenograft setting. Our analyses of data from the DepMap and 
MetMap500 projects demonstrated that transcriptional dosage of oncogenic KRAS 
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correlates with metastatic potential and tissue colonization of human lung and pancreatic 
cancer cell lines across five organs upon xenografting (Fig. 3G). Notably, this effect was 
predominantly driven by the mutant allele, as allelic imbalance with the wild-type KRAS 
allele emerged as a tissue-specific feature (Fig. 3G), and the KRAS dosage effect was 
abrogated when non-mutant cell lines were analyzed (Fig. S3I-M). 

In summary, transcriptional amplification of oncogenic KRAS drives progression and 
metastasis in KRASG12D-driven cancers across multiple experimental models, underscoring 
the broad relevance of KRAS dosage in driving metastatic potential. 
 
KRAS transcriptional levels are linked to poor survival in primary KRAS-mutant driven 
cancers 

If increasing KRAS transcriptional dosage during progression has functional 
relevance in human cancers, there should be correlative evidence in primary and metastatic 
datasets. Consistently, significantly shorter survival was associated with KRAS expression in 
patients with primary LUAD (TCGA) adjusted for age and KRAS mutational status. LUAD 
patients divided in groups according to KRAS transcriptional dosage, after having defined 
its impact across expression bins (methods), also support that high KRAS dosage holds a 
mild but significant poor prognosis (Fig. 4 and Fig. S4B). Poor prognosis and KRAS 
transcriptional dosage remained significantly associated even when the Cox model was 
extended to metastatic META-PRISM (PRISM) and Hartwig Medical Foundation (HMF) 
cohorts (4)(31), and other cancer types in which oncogenic KRAS is either the undisputed 
genetic driver (e.g. PAAD) or a well-established genetic driver of progression 
(COREAD=COAD + READ; Fig. S4A). Of note, in primary TCGA and metastatic HMF LUAD 
cohorts the RAS84 gene signature 13 that focuses on KRAS activity rather than transcriptional 
levels performs comparably to KRAS gene alone (Fig. S4E-G). This is consistent with a model 
in which KRAS transcriptional dosage is an early driver of progression and metastasis. 
 
Kras-driven cells interact with a sterile inflammatory microenvironment during tumor 
progression and with the activated TGFB pathway during metastasis 

To assess the fidelity of our transplantation KPE model compared to the 
autochthonous mouse KP model, we exploited the parallel mRNA information obtained in 
our screening procedure (Fig. S5A-B). Unbiased clustering analysis showed that KPE 
extracted from orthotopic lungs adopt a homogeneous transcriptional state, whereas 
metastases display broader inter-sample variability (Fig. S5B). Gene set enrichment analysis 
(GSEA) shows that orthotopic and metastatic KPE display signatures associated with a broad 
set of the KP mouse cell states 18. A transition from a state resembling endoderm- and 
gastric-like, pre-EMT, and high plasticity cell states converge onto the full MES1/2 states 18 
(Fig. S5C), supporting the pathophysiological relevance of our model. 
To exploit our model for the retrospective assessment of the oncogenic pathways whose 
parallel activation cooperates with Kras in driving LUAD progression in the mouse, we 
performed Ingenuity pathway analysis (IPA) of ex vivo KPE transcriptomic profiling derived 
from either the lungs or metastatic sites. This revealed that KPE cells experience 
inflammatory signaling via the JAK/STAT and NF-kB pathways, which was prominently 
sustained in the lung and retained, albeit to a lower extent, in the metastatic sites (Fig. 5A). 
Differential IPA between metastatic and orthotopic tumor-derived cells indicates that KPE 
cells acquire a signature of TGFB signaling exposure once they left their orthotopic niche 
(Fig. 5A).  To validate the computational analyses, we reversely engineered the lung tumor 
microenvironment and in vitro subjected KPE cells to the cocktail of pro-inflammatory 
cytokines inferred from IPA ex vivo. We used Il33 and Ncam1 as a proxy of sterile 
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inflammation- and TGFB- driven cell state changes, respectively (Fig. 5B), and combined 
Interferon gamma, TNFa, Il1B and OSM as pathophysiologically relevant lung TME mimic 
(Fig. 5A). RT-qPCR follow-up validated both the induction of Il33 by sterile inflammation and 
the shift towards Csf1 and Ncam1 expression by the addition of TGFB1 (Fig. 5C). As an 
independent approach, we used a high-content analysis (HCA) screen for Ncam1 expression 
(Fig. 5D), which aimed at the unbiased discovery of external signaling driving Ncam1 
expression and potentially mirroring a metastatic niche signaling. This screen nominated 
TGFB1 as the sole external factor leading to Ncam1 activation KPE cells exposed to 
inflammatory signaling (Fig. 5E-F), and this in vitro setting as driver of biomarkers observed 
in vivo. 

To corroborate our experimental findings in distinct models, we ran PROGENy 
pathway analysis on the single-cell RNA-seq data by Yang et al. and found that the JAK/STAT 
pathway activation is particularly connected with high KRAS dosage, whereas the TGFB 
activity increases during progression (Fig. S5D). In the human setting, we next applied gene 
set enrichment analysis to an ensemble of primary and metastatic bulk RNA-seq profiles 
from a total of 1467 LUAD patients. This includes molecular datasets of primary (TCGA, 
n=516) or metastatic (PRISM, n=165 and HMF, n=284) tumors but also longitudinal 
multisampling by TRACERx data (n=502, longitudinal n=80 from 17 patients), which  
encompass the full spectrum of tumor evolution, from primary to metastatic stages 34. This 
analysis was well-powered to test the association between a high KRAS transcriptional 
dosage and the activation of pathways connected to inflammation and fibrosis during LUAD 
progression. GSEA using the classic Hallmarks gene sets selected for KRAS activity, 
inflammation and EMT, revealed that indeed inflammation plays an essential role in 
oncogenic KRAS-driven LUAD progression and metastasis (Fig. 5G). As complementary 
computational approach, we used PROGENy, which is designed specifically on human 
cancer data to detect pathway activation. Both analyses converged on JAK/STAT pathway 
connection with a high KRAS dosage in KRAS mutant during metastatic progression, 
including in the direct TRACERx longitudinal cohort (Fig. S5D). The confirmatory finding 
that high KRAS transcriptional dosage strongly correlates with the MAPK pathway activation 
supports the robustness of the analysis despite the bulk nature of the transcriptomics (Fig. 
S5E). An interesting divergence between the mouse experimental and the human 
descriptive datasets is the opposite behavior of the TGFB pathway, which appears to 
suggest that the metastatic stage in the models is distinct from that measured post-mortem 
in humans (see discussion). 

Still, bulk RNA-seq analyses remain potentially confounded by the 
microenvironment, even if correcting for transcriptional purity is possible. To confirm that 
KRAS transcriptional levels converge with specific pathways during progression and 
metastasis in human cancer cells, we analyzed single cell datasets, which can be restricted 
to aneuploid cells. To this end, we used two independent reference datasets featuring either 
a limited but matched primary metastatic dataset in western patients for KRAS LUAD 35 and 
single cells from or a deeper non-small cell lung cancer dataset in the Chinese population 36. 
After filtering for aneuploid cells based on RNA-seq inference of copy-number aberrations 
and divided cell in two groups according to KRAS transcriptional dosage (S5F-H), PROGENy 
confirmed that high KRAS LUAD cells, whether primary or metastatic, feature the 
simultaneous activation of the NF-kB and TGFB pathways when KRAS dosage is highest, 
along other pathways, including MAPK (Fig. 5H). From our analyses, whether mouse or 
human, bulk or single cell, the expected correlation between KRAS transcriptional dosage 
and MAPK pathway activity occurred as expected, whereas inflammatory or TGFB activity 
appeared to be dependent also on the early or late stage of progression, respectively.  
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Together, our data support a model in which high oncogenic KRAS dosage 
collaborates with sterile inflammation to drive progression and metastasis consistently 
across KPE, KP, and human data, and suggest that the TGFB pathway activation holds stage-
specific functions. 
 
Kras transcriptional amplification operates within the context of a pre-existing 
chromatin configuration 

The KRAS-driven signaling cascade drives MEK-ERK activation and results in a 
transcriptional output, which in turn sets the stage for gene expression patterns and 
acquisition of defined cell states 37. To obtain a mechanistical insight into how high KRAS 
transcriptional dosage drives tumor progression, we combined our in vivo model of KRAS 
transcriptional amplification by CRISPRa and our in vitro reverse engineering of LUAD 
microenvironment. Next, we conducted the Assay for Transposase-Accessible Chromatin 
using sequencing (ATAC-seq) in all of the above-describe conditions, as probing chromatin 
accessibility via ATAC-seq can potentially uncover both current, memory and potential cell 
states (Fig. 6A and Fig. S6A). Overlap between independently called peaks showed that KPE 
cells share a large fraction of open chromatin, which is accessible independently from the 
growth conditions (in vitro and in vivo), external signaling (basal, pro-inflammatory/fibrotic 
in vitro, or TME in vivo), as well as KRAS transcriptional dosage (Fig. 6B and fig S6A-E). We 
also observed that each condition is associated with selective patterns of qualitative (i.e. 
peaks) and quantitative (Fig. 6B inset, and Fig. S6B-E), indicating that KRAS transcriptional 
dosage integrates its activity within the context of a pre-existing chromatin configuration. 

To infer the transcription factors that prime chromatin for KRAS signal transduction 
in KPE, we next ran HOMER associated on KPE shared open chromatin. This reveled that the 
main transcriptional factors marking this open chromatin landscape in KPE are the 
individual factors composing the main configurations of the AP-1 dimer (Fig. 6C). Next, we 
probed differentially accessible regions (DAR) that are significantly open in metastasis-
derived KPE compared to basal (Fig. 6B and S6C) using ChromVAR and found that AP-1 
featured the most relevant driver of such accessibility, indicating that KPE progression is 
associated with AP-1 hyperactivation. The samples that were subjected to in vitro 
stimulation with pro-inflammatory and/or fibrotic factors, offered support to this analysis, 
as AP-1 appeared to be activated specifically by pro-inflammatory signaling (Fig. 6D), which 
follows consensus 38. 

To gain insights into the potential transcriptional regulators of the KPE accessible 
chromatin, we annotated genes nearing the shared peaks and performed IPA upstream 
regulators analysis. This uncovered that MYC/E2F, NRF2 (i.e. NFE2L2) and CEBP factors are 
the main predicted regulators downstream oncogenic KRAS signaling in KPE (Fig. 6E). Of 
note, all of these factors are much more expressed in LUAD single cells from primary and 
metastatic sites, if compared to resident cells in human lungs, and MYC and CEBPD are 
particularly enriched at metastatic presentation (Fig. 6F). 

Together, the data support a model in which signal transduction by KRAS promotes 
the activity of highly expressed transcription factors within the context of pre-existing open 
chromatin. 
 
Chromatin remodeling during lung cancer progression in vivo reveals a pioneer 
transcription factor transition 

Tumor cells face the need to adapt to different environments and execute diverse 
transcriptional programs, but many of the pathways and factors herein identified are largely 
connected to proliferation. In the ChromVAR analysis, we noted a marked shift in 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2024. ; https://doi.org/10.1101/2024.12.29.630643doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.29.630643
http://creativecommons.org/licenses/by-nc-nd/4.0/


accessibility of AP-1 associated TFBS, whereas TFBS associated with GATA, TEAD, and FOX 
transcription factors followed the opposite trend as AP-1 (Fig. 6D). FOX factors are canonical 
developmental pioneer transcription factors, capable of accessing their cognate motif even 
when embedded into an intact nucleosome 39. To gain pathophysiological relevance for this 
pioneer factors dynamics, we exploited an ATAC-seq single-cell profile previously generated 
from ex vivo autochthonous KP LUAD and metastases 19. Importantly, we confirmed that 
data generated in our KPE model follow the same trend as within an intact mouse model, 
with FOX TFBS being progressively closed as cell state progression towards metastasis is 
plotted. In contrast, but perfectly aligned with our predictions, AP-1 TFBS are consistently 
more accessible at late stages of the tumorigenic process and metastasis (Fig. 6G). 

We next wished to corroborate such transcription factor dynamics in the 
autochthonous KP tracer progression 18. To this end, we used CollecTRI to infer the TF activity 
inferred in human cancers in single-cell longitudinal transcriptomic profiles from early and 
late/metastatic mouse LUAD cell states. This analysis shows that MYC, E2F and AP-1 targets 
are significantly associated with Kras-high expression and enriched during progression, 
whereas and FOXA1, FOXA2, FOXP1 follow the opposite trend, with FOXA2 targets being 
particularly (Fig 6H). This analysis confirmed that AP-1 activity appears to correlate with 
progression in human LUAD as well. 

Since MYC, NRF2, CEBPB, and E2F are DNA binding factors expected to bind 
accessible cognate TFBS whereas both FOX and AP-1 factors are considered pioneer 
transcriptional regulators capable of binding nucleosomal DNA, the observed switch 
between FOX and AP-1 during tumor progression supports a model in which high KRAS 
activity cooperates with pioneer transcription factor dynamics to potentially dictate cell 
states. 
 
Kras dosage dictates Kras-driven cells states and explains responses to KRAS 
Inhibition 

Having connected a high Kras dosage and tumor progression with external signaling 
and pioneer transcription factors dynamics in vivo (Fig. 6D-G), we next wished to dissect the 
net contribution of each component over KPE cell state dynamics. To this end, we 
conducted both RNA-seq and ATAC-seq on KPE cells in which individual components were 
perturbed. On the one hand, we exploited the ability of inflammatory cytokines and TGFB1 
to impart a transcriptional program that amplifies AP-1 activity without impacting on Fox 
transcription factors (Fig. 6D). On the other hand, we deleted the most expressed 
developmental pioneer factors in KPE, Foxa1 and Foxp1, using CRISPR-based genetic knock-
out. Finally, we transcriptionally modulated Kras dosage by generating an additional set of 
KPE lines carrying a repressive dCas9-MeCP2, directed to the Kras locus via the same gRNAs 
for CRISPRa. Strikingly, both ATAC-seq and RNA-seq showed concordant variation across the 
two major PCA components and the individual replica experiments remained close, 
indicating that both chromatin and transcription lie on a single axis of variation dependent 
on Kras dosage (Fig. 7A-B). As the second axis of variation successfully resolves the 
phenotypic impact of the pro-inflammatory phenotype and the loss of pioneer factors’ 
activity, this indicates that, in our model, KRAS dosage appears to dominate transcriptional 
and chromatin accessibility variation (i.e. PC1).  To investigate how Kras dosage modulation 
imparts specific cell states in KPE globally, we defined the upstream regulators of 
differentially expressed genes using IPA. In this analysis, we independently calculated the 
upstream regulators in KPE cells in which only Kras dosage was modulated (KPE), or Kras 
dosage was modulated in presence of inflammation and TGFB1 (KPE+IFN+TGFB) or absence 
of developmental pioneer transcription factors (KPE;Foxa1-/-;Foxp1-/-;+IFN+TGFB). After that, 
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we clustered the results and observed that a high Kras dosage holds a dominant effect over 
transcriptional networks associated with either a proliferative cell state (e.g. Myc, E2f, Srf), 
whereas a low Kras dosage promotes the upregulation of transcriptional programs 
connected to stress responses (Atf4, Nrf2, Stat3; Fig. 7C). Of note, low Kras dosage also 
induced a transcriptional program connected to Foxa1. Hence, we performed an 
immunoblot to probe each individual component and discovered that Kras dosage 
antagonistically modulates the AP-1 and Foxa1/Foxp1 protein levels (Fig. 7D-E). GSEA 
confirmed a dominant role for Kras dosage over the other components when focusing on 
the regulation of genes residing in chromatin remodeled during metastasis (Fig.S7A). 

To gather evidence that KRAS dosage associates LUAD progression and metastasis 
to gene expression via distinct cell state programs, we next exploited the compendium of 
human pan-cancer cell states recently generated by non-negative matrix factorization of 
single-cell RNA-seq data 40, along with well-established hallmark gene sets. GSEA 
contrasting patients’ biopsies with high or low KRAS transcriptional dosage in primary LUAD 
(TCGA, TRACERx), and metastatic LUAD (PRISM, HMF, TRACERx), showed that a high KRAS 
dosage positively correlates with proliferation cell states, MYC and secretory activity and a 
EMT state independently of the KRAS gene mutation status and LUAD progression (Fig. 7F). 
In contrast, a low KRAS dosage is associated with cell differentiation, with Alveolar, AT1 and 
Cilia cell states marked by statistical significance in the primary LUAD but not metastasis 
(Fig. 7F). These states were the only ones recurrently associated with KRAS transcriptional 
dosage among all the pancancer single cell states and several gene sets associated with 
cancer hallmarks (Fig. S7B). Strikingly, unlike the AT1 state that appears to be strongly 
connected to the KRAS dosage independently of the mutational state and LUAD stage, the 
"ciliated-like" showed a stage-dependent switch in the mutant, raising the intriguing 
possibility that this cell state may hold functional properties. 

The use of single-cell RNA-seq and large number of biopsies from distinct biopsies 
support the theory that these cell states reflect a cell intrinsic cancer cell property directly 
regulated by KRAS signaling. Consistent with this hypothesis, all solid tumor lines from the 
Cancer Dependency Map portal (DepMap) can be categorized in KRAS-high, KRAS-low 
states and non-classified (Fig. S7C). Albeit we did not find evidence of "ciliated-like" states 
in LUAD cell lines, we discovered that that the quasi-mesenchymal A549 LUAD cell line 
resembles KRAS-high patients and switches to a KRAS-low phenotype when RAF1 is 
knocked-down (Fig. 7G). Thus, the KRAS-high and KRAS-low ends of the transcriptional 
spectrum we discovered in LUAD patients depend on KRAS dosage via the canonical 
RAS/RAF signaling. 

Direct KRAS inhibition (KRASi) disconnects KRAS dosage from its downstream 
activity and leads to downregulation of KRAS, E2F and MYC signatures in xenografts41. In the 
KP mouse model, AT1 differentiation stabilizes KP cells in response to KRASi17. Thus, we 
hypothesized that direct KRAS inhibition would directly target the KRAS-high proliferation 
cell state and drive a KRAS low-like phenotype at minimal residual disease level. To test this, 
we run a differential GSEA in four cell line derived xenografts (CDX) treated in vivo with the 
clinically-approved covalent KRASG12C inhibitor MRTX849 (a.k.a. Adagrasib). This analysis 
also confirmed our previous finding that KRAS drives EMT20 and supported the herein 
describe connection between KRAS dosage and TGFB activity (Fig.  S7B). Importantly, this 
analysis also showed that KRASi induces the Ciliated-like state (Fig. 7G), which we had found 
significantly associated with primary LUAD in patients cohort but not in established cell 
lines, suggesting that such state occurs under in vivo (Fig. 7F). Of note, the conserved 
biomarker of ciliated lung epithelial cells is FOXJ1, which is significantly inversely correlated 
with MYC, E2F1, NF-kB and AP-1 (Fig. 6H and S6F). 
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To prospectively test our hypothesis, we established a KRASG12C LUAD patient-
derived xenograft (PDX) model, and treated F4-generation mice (n=22) with MRTX849 or 
vehicle. Prolonged KRASi (up to 67 days) induced a marked reduction in tumor volume, 
which was reversed upon drug removal indicating that KRAS inhibition induces the 
establishment of MRD that holds intact potential to restart tumor growth (Fig. S7C-D). 
Response to KRASi was accompanied early on by a substantial shift in tumor phenotypes 
from epithelial and proliferative-like to fibrotic-like (Fig. 7H). IHC highlighted a high 
proliferative index in the pre-treatment lesions as illustrated by cellularity, Ki-67 and 
phospho-H3 positivity (Fig. S7E and data not shown), suggesting high MYC/E2F activity in 
agreement with our data and predictions based on literature. Most importantly, residual 
tumor cells, which hold intact potential to restart tumor growth upon KRASi withdrawal 
(Fig.S7C), showed substantial acetyl-alpha-TUBULIN and ARL13B positivity, both of which 
are well-established markers of ciliated cells (Fig. 7I-K). Hence, data in CDX and PDX models 
support the significance of a previously not captured Cilia-like cell state in both tumor 
evolution and response to targeted therapy. 

Taken together, our data nominate oncogenic KRAS dosage as the key driver tumor 
evolution shaping cell states during mouse and human LUAD progression and metastasis as 
well as in response to direct KRAS inhibition. 
 
Discussion 

Successful first-line cancer treatments renders metastasis an uprising societal challenge. 
Therefore, understanding the mechanistic basis of metastasis is crucial. We identify 
oncogenic KRAS dosage as a key driver of LUAD progression by integrating external 
signaling and pioneer transcription factor dynamics into distinct cellular states, which are 
key in driving tumor evolution and response to KRAS inhibitors 8-11. 

Our results extend beyond the KPE model. Validation in KP and CDX models underlines 
that KRAS dosage influences lung adenocarcinoma progression in genetically and 
physiologically diverse systems. These results suggest that KPE offers unique insights into 
advanced cell states and that the KRAS dosage effect is translatable across models. 

Although a single aberration is typically insufficient to transform a human cell 42, KRAS 
mutations meet the established criteria for cancer drivers 13, particularly in LUAD or PDAC 
where they feature initiating genetic event. Here, we demonstrate that increasing the 
transcriptional dosage of oncogenic KRAS is sufficient to drive LUAD progression. This aligns 
well with previous observations in the autochthonous PDAC model 26, and our endogenous 
transcriptional modulation via CRISPRa is now able to disentangle the transcriptional 
dosage from copy number aberrations. Moreover, our in vivo transplantation LUAD model 
separates initiation from progression and metastasis. Both the KP model in Muller et al. and 
the KPE model used here rely on KRASG12D, bear spontaneous KRAS genetic amplification and 
retain the wild-type allele. However, distinct KRAS mutations have unique functional 
properties 43, and role of the wild-type allele in KRAS mutant cancers on progression and 
response to targeted therapy is significant yet context-dependent44-47. Nevertheless, our 
data extend beyond the model employed since subclonal expansions within primary LUAD 
are linked to poor survival independently of KRAS 48. Expanding our approach to cross-
validate findings across both immunocompromised (KPE, human xenografts) and 
immunocompetent (KP model) systems reinforces that KRAS dosage impacts cell states and 
metastatic dynamics broadly, with elements associated with KRAS dosage being also 
recapitulated in other KRAS-driven and even KRAS-wild-type cancers. 

From a biomarker perspective, the observation that mild transcriptional up-regulation 
of KRAS promotes clonal expansion of orthotopic and metastatic lesions supports the 
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speculation that copy number aberrations may stabilize the KRAS-driven subclonal 
expansion as an advantageous trait in a Darwinian sense therefore representing a fraction 
of the KRAS-high lesions. If confirmed, KRAS transcriptional levels would hold prognostic 
value. Hence, it is worth noting the marked accumulation of polyclonal cancer cells within 
the heart vasculature (Fig. 1B), specifically in the pulmonary vein and aorta, highlighting a 
potential 'sewage-like' effect. It is plausible to consider a digital RT-qPCR screen of 
pulmonary vein samples in clinical studies on pulmonary hypertension or prospectively in 
patients with KRAS-mutant tumors at the minimal residual disease stage. This approach 
could be superior to cell-free DNA detection in bronchoalveolar lavage, which is considered 
for LUAD screening but is confounded by the presence of KRAS mutations in pre-
transformed tissues. 

From a therapeutic perspective, we recently proposed that targeting oncogenic drivers 
along with driver cell states may be key to attaining profound responses 7. When KRAS 
transcriptional dosage dominates LUAD progression and cell states, future strategies should 
aim to target KRAS mutants and the KRAS high dosage cell state simultaneously. Our data 
in primary and metastatic patients’ cohorts suggest that the KRAS-high state relies on 
PI3K/mTOR and VEGFA activation and provide molecular support for the previously 
suggested combinatorial partners for KRAS inhibitors 41, possibly integrating anti-
angiogenic therapies 49. Notably, lowering KRAS dosage drives chromatin and 
transcriptional remodeling, mimicking direct KRAS inhibition, which holds therapeutic 
potential, possibly in an adjuvant setting. The 'ciliated' phenotype observed in patient data 
(Fig. 7 and S7) aligns with predictions from cell line models 50,51. It was recently shown that 
direct inhibition of KRAS leads to differentiation to AT1 in mice 17 and we show an additional 
Ciliated-like phenotype in PDX data upon KRASi and in primary human data with low-KRAS 
dosage (e.g., TCGA). Low KRAS dosage boosts Foxa1, Foxa2, FOXJ1, and stress response 
factors' activity (Fig. S7F). Therapeutically, it will be particularly important to target this MDR 
as KRASi appears to be insufficient to phenocopy their genetic target inhibition 

Oncogenic KRAS and FOX collaborate to define tumor phenotypic identity in both LUAD 
and PDAC models 30,52-54. The collaboration between KRAS-low dosage and FOX observed 
herein might hold dormancy-like potential in lung niches via differentiated cell states, which 
have distinct metabolic requirements. Surviving cells upon KRAS downregulation in PDAC 
fail to activate its hardwired anabolic glycolysis 55, yet do not show signs of (mitochondrial) 
stress upon OXPHOS inhibition 56. Whether these KRAS-low lesions may be sensitive to 
OXPHOS inhibitors is an exciting question stemming from this work. However, unlike the 
widely represented KRAS-high cell state, characterized by proliferative traits, the KRAS-low 
phenotype may depend more on primary and metastatic niches and will require precise 
characterization in patients on treatment. 

Mechanistically, this study reveals how tumor cells with shared oncogenotypes, exposed 
to broad pathways, adapt to specific environments and execute diverse transcriptional 
programs. A high KRAS dosage collaborates with inflammation and fibrosis signaling to 
promote a FOX-to-AP-1 pioneer transcription factor transition. We present both in vitro and 
in vivo evidence supporting this key observation, which we further confirm in independent 
autochthonous models (Fig. 6). Whether AP-1 qualifies as a pioneer transcription factor 57,58 
or a stripe factor 59, its role in maintaining accessibility to various co-binding partners 
explains how tissue-agnostic homeostatic and regenerative programs may be integrated 
into a site-specific transcriptional output via the available accessory transcription factors. 
This way, the broad KRAS-ERK-MYC-AP1 signaling cascade adeptly integrates niche-directed 
transcription in cell type/state-specific outputs. Hence, our data connect the activity of 
broad pathways mediating cell-intrinsic signaling by oncogenic KRAS via ERK 60,61 and TME-
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driven NF-kB and TGFB, to context-dependent transcriptional outputs required for cell state 
stabilization in autochthonous and foreign niches. 

In summary, the modulation of cell identity and functional properties defined in this 
study underscores oncogenic KRAS dosage as the 'driver of drivers'. Oncogenic KRAS 
functions in LUAD and PDAC models are similar in the context of different organs, and KRAS 
is a model oncogene, suggesting a broader applicability of our data to other RAS oncogenes, 
if not beyond. Technologically, our unbiased in vivo approach using CRISPR activation and 
fate mapping strategy is scalable, and a parallel approach utilizing CRISPR interference could 
similarly identify genes crucial for maintaining competitive advantage and be closer to 
therapeutic effects than CRISPR knock-out. Conceptually, our findings illustrate a bimodal 
evolutionary trajectory in LUAD, where both high and low dosages of oncogenic KRAS 
dictate the extremes of a spectrum covering all conceivable cell states within KRAS-driven 
solid tumors. Echoing the Paracelsian principle that 'the dose makes the poison' our 
framework simplifies the complex continuum of states observed in patients through 
functional dimensionality reduction and highlights the crucial role of oncogenic KRAS 
dosage in determining the biological impact of KRAS on tumor heterogeneity, progression, 
and therapeutic responses. 
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Figure legends 

 
Figure 1. In vivo gain-of-function and fate mapping of Kras-driven lung cancer cells 
by CRISPRa-CROP-seq.  
A)  Experimental outline: KrasG12D ;Trp53 -/-;Eed-/-;TetON-dCas9-VPR (KPE-VPR) were low-MOI-
infected with a lentiviral library of gRNAs targeting Kras-associated inflammatory 
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mediators (from Serresi et al., 2018) and non-targeting gRNAs serving as barcodes for 
neutral evolution. KPE-VPR; CROP-mCherry were orthotopically transplanted into recipient 
mouse lungs and gRNA expression was activated in vivo by doxycycline upon grafting was 
verified (see Fig.S1). Plasmid library, input and in vitro expanded cells served as control for 
stochastic gRNAs drift.  
B) Representative lightsheet microscopy of lung, heart and kidney from mice transplanted 
with the cells indicated background.  
C) Violin plot of bioluminescence (BLI) emission at the humane-end-point from ex-vivo 
isolated organs from mice injected with the indicated KPE cells. Regions of interest (ROIs) 
were guided by BLI signal and normalized over background-positioned ROIs. 
D) Graphical summary of the tissue samples collected in the screenings.  
E) Bar plot of sgRNA detection rate from all the samples in the screen. Color code denotes 
cells or tissue of origin. 
F) Sankey plots showing the tumor evolution in animals treated with doxycycline-inducing 
gRNA library activation, or sham (no gRNA activation). 
G) Bar plot showing the linear counts of non-targeting and targeting sgRNA value in 
primary lung tumors and in representative distant organs. 
H) Representative images of isolated primary passage 0 cancer cells from different organs. 
mCherry marks gRNAs containing cancer cells. 
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Figure S1. Extended characterization of the KPE-luc- tet-ON-dcas9VPR cellular 
system and in vivo CROP-seq technology. 
A) Above, Luciferase emission of in vitro KPE-cells treated with or without luciferin 
previously transduced with a vector containing Luciferase. Below, BLI upon grafting. Note 
the dose-response to luciferin. 
B) Bar plot showing In vitro expression by RT-qPCR (above) and western blot (below) of 
dcas9-vpr upon doxycycline treatment of KPE transduced with TetON-dcas9vpr system. 
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C) Bar plot showing target gene expression detected by qPCR upon doxycycline treatment 
of L1cam, Cxcr4, and Vav1 sgRNAs cloned in a CROP-seq vector. 
D) Bar plot showing reads mapping statistics 
E) Bar plot showing the distribution of the sgRNA evenness/GINI index across the indicated 
sample groups.  
F) Density plot showing the representation of on-target sgRNAs and off-target for the 
indicated tissues (color-coded). Note the overall linear correlation. 
G) Graphical depiction of the distinct isolation of primary tumor cells from tissues using 
gentleMACS™ Octo Dissociator with Heaters (Milteny) and from bone marrow cells using 
standard flushing. 
H-I) Western blot analysis of the indicated markers for the epithelial and mesenchymal 
phenotype in primary cells isolated from different tissues of mouse #60. 
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Figure 2. Kras transcriptional amplification promotes orthotopic and metastatic 
growth in a KrasG12D-driven lung cancer.  
A) Schematics of quality control (QC) pipeline. 
B) Density distribution plot of the total gRNAs retrieved in each sample. Oligoclonal and 
Polyclonal metastases were defined as 25-50 and >75 percentile of frequency. 
C) Visualization of enrichment/depletion scoring for gRNAs targeting a selected subset of 
genes compared to non-targeting controls; for each gene, red and blue denote gRNAs 
with fold-change >0 and <0, respectively. 
D) Volcano plot showing False Discovery Rate (FDR) significance for orthotopic lung grafts 
at the gene level. 
E-F) MAGeCK plot showing Robust Rank Aggregation (RRA) scores for all genes in the 
library in core screen samples divided into the indicated classes (see Fig. S2 and methods).  
FDR significance threshold denotes Kras as the key gene for orthotopic and metastatic 
growth. 
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Figure S2. Extended characterization of the in vivo CRISPRa screen outcome. 
A) Library complexity distribution plot of the indicated sample groups. 
B) Scatter plot of the indicated sample scores subdivided by tissue of origin. 
C) Density distribution plot of sample entropy for the indicated groups. 
D) Scatter plot showing the distribution of the inter-group correlation scores for the 
indicated groups. 
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Figure 3. Kras transcriptional amplification by CROP-seq CRISPRa fuels lung cancer 
growth and metastasis  
A) Schematics of the cell competition experiments. Left, a representative FACS plot 
showing the dynamics of KPE;dCas9-VPR cells propagated under doxycycline and modified 
with either the CROP-seq-mCherry-gRNAKras#4 or pCRISPRia-v2-BFP non-targeting gRNAs. 
B) Schematics of the in vivo cell competition experiment between Kras-targeting or non-
targeting pools. 
C) Stacked bar plot summarizing the multi-organ grafting competition experiment.  FACS 
analysis of lungs, livers and kidneys (n=11), hearts (n=10) and bone marrows (n=7).  
D) Box plot comparing the distribution of percentages for mCherry and BFP expressing 
tumor cells of metastases from pro-metastatic pooled sgRNA or KRAS-only sgRNA 
overexpression.  
E) Dot plot illustrating the distribution of tumor cells within various organs for different 
experimental conditions. Each dot represents an individual sample with its size reflecting 
the number of tumor cells. The color of the dots represents the ratio of mCherry to BFP 
expression, with a gradient from blue (100% BFP) to red (100% mCherry). The x-axis shows 
the organ type, and the y-axis represents the animal ID. 
F) Violin plot of Kras normalized expression in single cells from autochthonous KP-tracer 
mice grouped according to disease stage. Data are from Yang et al., 2022. 
G) Forest plot of the Cox proportional hazards model illustrating the effect of KRAS 
expression on the metastatic patterns of CCLE cell lines from the MetMap500 (Jin et al., 
2020). Pearson correlation coefficient is shown for the indicated sub-classes of cell lines 
divided according to cell line tissue of origin, KRAS status, copy number and zygosity. 
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Figure S3.  On-set in vitro specificity of KRAS and single genes overexpression and in 
vivo validation of the screening 
A) Table indicating the single gene description and the sgRNA sequences cloned in the 
CROP-seq-cherry vector used in the validation experiments 
B) pie chart indicating the frequency (%) of sgRNAs retrieved in the input, primary lung 
tumors, and metastatic organs in the in vivo validation screening of eight genes. 
C) FACS analysis of the in vivo competition experiment showing the injected population of 
BFP-nontargeting KPE input cells and   Cherry-KPE targeting cells. 
D) Heat map depiction of quantitative PCR (qPCR) data. Each single gene expression in KPE 
was assessed upon dox-inducible dcas9-vpr activation after 7 or 14 days. Data are 
normalized by gapdh and dCas9-VPR, and p-values are by 1-way ANOVA 
E) Expression level measurement upon doxycycline treatment of KPE cells transduced with 
seven single sgRNAs targeting KRAS. Bar plot showing mRNA levels referring to GAPDPH 
and control KPE. 
F) western blot, and bubble blot showing KRASG12D protein levels and the respective 
quantification (right). 
G) Horizontal stacked bar plot showing the number of single cells from autochthonous KP-
tracer mice in which Kras expression is detected or not, as proxy for high and low 
expression, respectively. Cells are grouped according to their cell state as originally defined 
by Yang et al., 2022. 
H) Vertical stacked bar plot showing the number of single cells from autochthonous KP-
tracer mice in which Kras expression is detected or not, as proxy for high and low 
expression, respectively. Cells are grouped according to their progression stage as 
originally defined by Yang et al., 2022 and significance is calculated by Fisher's exact test. 
I-M) Scatter plot showing the correlation between KRAS expression and metastatic 
potential in recipient mice as defined by MetMap500 in Jin et al., 2020, for the indicated 
subsets of barcoded CCLE cell lines. Pearson’s R and P value of correlation are shown. Note 
the positive correlation for KRAS expression limited to cell lines derived from KRAS-driven 
cancers with KRAS driver mutations. 
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Figure 4. KRAS transcriptional levels are linked to poor survival in primary lung 
adenocarcinoma. 
Forest plot of the Cox proportional hazards model illustrating the effect of KRAS 
expression on survival in TCGA-LUAD. KRAS expression is adjusted for KRAS mutation 
status and age (see methods). P-value and hazard ratio of a covariate is indicated in the 
right and middle of a row respectively. Asterisks denotes significance. Global p-value is 
indicated at the bottom. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2024. ; https://doi.org/10.1101/2024.12.29.630643doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.29.630643
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure S4. KRAS transcriptional levels are linked to poor survival in Kras-driven 
cancer 
A) Forest plot of the Cox proportional hazards model illustrating the effect of KRAS 
expression (see methods) on survival in LUAD, PAAD, COREAD patient cohorts from TCGA, 
PRISM and HMF. KRAS expression is adjusted for stage and age. P-value and hazard ratio of 
a covariate is indicated in the right and middle of a row respectively. Asterisks denotes 
significance. Global p-value is indicated in the bottom. 
B-E) Kaplan–Meier survival plots and Log-rank test for overall survival in primary (TCGA) 
and metastatic (PRISM and HMF) cohorts. Samples were separated into groups based on 
median KRAS gene expression level (see methods). 
F-I) Kaplan–Meier survival plots and Log-rank test for the same comparisons but focused 
on the transcriptional signature optimised to capture RAS oncogenic activity (RAS84 Index, 
RI) in LUAD (East et al). Samples were separated into groups based on median RI level (see 
methods). 
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Figure 5. Kras-driven cells interact with a sterile inflammatory microenvironment 
during tumor progression and with the activated TGFB pathway at a metastatic site. 
A)  Upstream regulators analysis for the indicated comparisons of orthotopic (n=11), 
metastatic (n=45) and in vitro (n=17) samples. Significant differentially-regulated genes 
were identified using LIMMA (padj<0.05, FC±0.5), Top ten regulators were identified using 
Ingenuity Pathway Analysis. 
B) MA plot showing differential expression between metastases- (n=45) and lung- or 
(n=17) -tumor derived lines. 
C) Bar plot showing RT-qPCR data for the indicated genes and conditions. P values were 
calculated by two-way ANOVA and Dunnett post-hoc test (only significant comparisons 
were shown; ****, P ≤ 0.0001; ***, P ≤ 0.001, **, P ≤ 0.01). 
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D) Workflow of the pro-metastatic upstream regulators screening: lung orthotopic tumor 
TME signaling was inferred from (A) and were Ncam1 from (E) is used as biomarker for 
metastatic TME signaling. 
E) Scatter showing regulators of Ncam1 protein expression as proxy for metastatic TME in 
KPE cells exposed to inflammatory mediators from (A). 
F) Immunohistochemical staining for the indicated markers in KPE in inflammatory 
medium (i), TGFB1+ 10ng/ml (ii). A no secondary antibody control is also shown (iii). 
G) Heatmap showing GSEA normalized enrichment scores and adjusted p-value for the 
indicated gene sets. Asterisks denote p-value level: *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
Patients are divided according to their known KRAS mutation status and disease stage 
(legend). The broad class of the gene sets is also shown in legend. 
H) Dotplot heatmap showing activity scores (presented as z-score) of PROGENy pathways 
(left) in human primary and metastatic cancer cells stratified by KRAS expression levels 
(Laughney, AM et al n=17 patients, 35,985 total cells, 1,731 aneuploid cells). 
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Figure S5. Extended analysis on transcriptomic analyses. 
A)  Workflow integrating CROP-seq and BRB-seq to capture targeting gRNAs, non-
targeting cellular barcodes and global poly-A mRNA. 
B) Representative hierarchical clustering of Euclidean distances between the indicated 
RNA-seq samples. 
C) Right, graphical representation of GSEA of lung differential expression between lung 
and metastatic samples from mRNA-seq. Color code and position in the evolutionary plot 
and dot size denote the directionality of the GSEA and gene set size, respectively.  Left, 
schematic depiction of GSEA in the cell states associated with autochthonous KP-tracer 
model LUAD progression as defined by scRNA-seq and lineage-tracing (Yang et al., 2022). 
D) Heatmap showing activity scores (presented as z-score) of PROGENy pathways in single 
cell clusters associated with progression stages and separated based on Kras expression as 
in Fig. 2F from the autochthonous KP-tracer model as defined by scRNA-seq and lineage-
tracing (Yang et al., 2022). 
E) Heatmap showing activity scores (presented as z-score) of PROGENy pathways in 
n=1467 patients with LUAD from primary (TCGA), and metastatic cohorts (PRISM and 
Hartwig) as well as longitudinal TRACERx. 
F) UMAP of scRNA-seq from 83,701 NSCLC cells across 42 patients samples and classified 
by aneuploidy estimation using CopyKAT. 
G) Density plot of normalized KRAS expression level in 36,459 cells aneuplouid cells from 
(F). 
H) Dotplot plot heatmap showing activity scores (presented as z-score) of PROGENy 
pathways (left) in NSCLC patients (Wu et al., n=42 patients, aneuploid cells n=83,701 cells) 
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Figure 6. Kras transcriptional amplification operates via transcription factor 
dynamics at pre-existing open chromatin  
A) Schematic representation of the experimental conditions included in the ATAC-seq 
profiling. 
B) Upset plot showing the overlap between ATAC-seq profiles. Inset shows first principal 
component. 
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C) Top 10 motifs predicted by HOMER TFBS enrichment analysis of overlapping ATAC-
peaks from (B). 
D) Circular plot showing the ChromVar of ATAC-seq peaks specifically remodelled in vivo. 
Differential Z-scores deviation for the top TFBS motifs between each condition and basal in 
vitro is shown. 
E) Lollipop plot showing IPA upstream transcriptional regulators analysis of genes 
annotated near ATAC-seq peaks from (C). 
F) Violin plot showing expression levels of the indicated genes in single cells in human 
normal lung, primary and metastatic cancer cells (Laughney, AM et al n=17 patients, 
35,985 total cells). 
G) UMAP representation of single-cell ATAC-seq module scores for the indicated pioneer 
factors in KP cancer cells from LaFave et al. The AT2-like (i.e. candidate LUAD cell of origin) 
and metastatic cell states and arrow indicate the spatiotemporal evolution of the mouse 
autochthonous LUAD.  
H) Heatmap showing activity scores of CollecTRI transcription factor activity inference in in 
single cell clusters associated with progression stages and separated based on Kras 
expression as in Fig. 2F from the autochthonous KP-tracer model as defined by scRNA-seq 
and lineage-tracing (Yang et al., 2022). Asterisks denote p-value level: *, p < 0.05; **, p < 
0.01; ***, p < 0.001. 
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Figure S6. Extended analysis of integration of Kras with chromatin in KPE and its 
significance in LUAD patients' datasets.   
A) Heatmap of the indicated ATAC-seq (merged) tracks for the shared peaks from the 
upset plot in 6b. 
B) Giraph plot showing the distance between individual ATAC-seq peak lists. Note the 
quantitative difference for the in vivo and in vitro chromatin accessibility despite the 
qualitative overlap in 6b and s6a. 
C) MA plot showing distribution of the indicated ATAC-seq DAR (blue) compared to all 
other accessible peaks (grey). 
D-E) UCSC view of Kras and Me1 to illustrate the quality of the ATAC-seq profile, the shared 
peaks and the ones private to progression such as the gene set in s6c. The red boxes 
denote opposite behaviour in accessibility. 
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Figure 7. Kras dosage dictates Kras-driven LUAD cells states. 
A) PCA of a broad set of accessible peaks from KPE cultures with the indicated genotypes 
and treatments. Dot are colored according to their KRAS dosage, determined by the 
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presence of gRNAs targeting the Kras locus, and doxycycline inducing either an activating 
dCas9-VPR (orange) or repressive gCas9-MeCP2 (blue). 
B) PCA of a broad set of mRNAs from KPE cultures with the same setting and color code as 
in (A). 
C) Upstream regulator analysis by IPA for the indicated comparison on the genes passing 
the FC threshold (FC±0.5, padj<0.05). 
D-E) Western blotting of the indicated antibodies in lysates from KPE cultures with the 
indicated genotypes and treatments. Note the dominant role for KRAS dosage in c-JUN 
and FOX factors protein levels. Foxa1 and Foxp1 KO controls as immunoblot specificity and 
sensitivity are shown. 
F) Heatmap showing GSEA scores (presented as normalized enrichment scores, NES) of the 
indicated pan-cancer single-cell consensus meta-programs and selected hallmarks in KRAS 
high vs. low contrast setting (see methods) in primary and metastatic bulk RNA-seq 
profiles. Patients are divided according to their known KRAS mutation status (“*” legend). 
Filled circles denote Benjamini-Hochberg adjusted p-value level: *, p < 0.05; **, p < 0.01; 
***, p < 0.001.  
G) Heatmap showing GSEA scores (presented as normalized enrichment scores, NES) of the 
Cilia signature associated with KRAS dosage in LUAD  in (F) and hallmark signature 
pathways differentially regulated in at least one Cell line derived xenograft (CDX) 24 hours 
following oral administration of a single 100 mg/kg MRTX849 dose compared with vehicle. 
NES shown in all models 6 or 24 hours after a single dose (QD × 1) or 5 (QD × 5) or 7 (QD × 
7) days dosing. Data were reanalyzed from Hallin et al. 
H) Schematic of a LUAD KRASG12C patient-derived xenograft (PDX) experiment to test the 
phenotypic markers associated with minimal residual disease following continuous 
administration of MRTX849. 
I) Representative hematoxylin-Eosin (HE) staining of PDX subcutaneous tumors treated with 
Captisol (left), and 100 mg/kg MRTX849 QD × 7 or QD × 20 (center, right, respectively). 
J-K) Representative immunohistochemical (IHC) images of PDX tumors collected at 
indicated timepoints, stained for acetyl-Tubulin (j, red) or ARL13B (k, red) and 
counterstained with DAPI (blue). Scale bars = 20 μm. 
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Figure S7. Extended transcriptomic analyses and KRAS dosage model. 
A) MA plot and GSEA showing distribution of the gene residing in chromatin remodelled in 
KPE in vivo (blue; Fig. 6B-6D) and the directionality, extent and significance of their 
enrichment as compared to all other mRNAs (grey). 
B) Extended GSEA scores (presented as normalized enrichment scores) of the indicated 
pan-cancer single-cell consensus meta-programs and selected hallmarks in KRAS high vs. 
low contrast setting (see methods) in primary & metastatic bulk human RNA-seq profiles. 
Patients are divided according to their known KRAS mutation status (“*” legend). Filled 
circles denote Benjamini-Hochberg adjusted p-value level: *, p < 0.05; **, p < 0.01; ***, p < 
0.001. 
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C) Scatter plot showing the distribution of CCLE cell lines from the DepMap according to 
their enrichment score for the human KRAS high and low signature, X and Y axiss, 
respectively. Color code denotes their classification as KRAS high (pink), low (blue) or 
unclassified (grey) based on thresholds defined as described in the methods. 
D-E) Line plots showing the longitudinal tumor size measuring over time for human 
KRASG12C PDX models. MRTX849 was administered via daily oral via IP at the indicated dose 
to mice bearing LUAD xenografts stabilized in four previous passages (F4). Dosing was 
initiated when tumors were approximately 300 mm3. MRTX849 was administered to mice 
daily until day 67. Individual data point denote a single tumor volume per mouse. Long-
term and short term sampling is shown in D and E, respectively. 
F) Representative immunohistochemical (IHC) images of PDX tumors collected at indicated 
timepoints, stained for Ki-67 (green), and counterstained with DAPI (blue). Scale size is 
indicated. 
G) A model for KRAS-dosage driven tumor evolution and LUAD cell states. KRAS gene level 
are normal at the initiation stages (e.g. AT2 transformed cells) and KRAS signal 
transduction promotes the transcription of both cell proliferation and cell identity genes. 
During progression & metastasis, LUAD cells experiencing pressure to increase KRAS 
transcriptional dosage promotes AP-1 accumulation and activity at genes involved in 
progression and metastasis (e.g. EMT genes driven by pro-inflammatory/pro-fibrotic TME). 
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Material and Methods 

Animal experiments 

All animal experiments were performed in compliance with the EU regulation. All the 
experiments but the PDX were in strict compliance with the German Animal Welfare Act and 
approved by the Regional Office for Health and Social Affairs Berlin (LAGeSo) under license 
number G0094/18. All PDX experiments strictly complied with the protocols approved by 
the University of Leuven Animal Care and Use ethical committee project number P123/2021 
and by the ethical committee Research UZ/KU Leuven (S67758).  

Cell culture, primary cell isolation, transfection 
NSCLC KPE cell lines were isolated from KrasG12D/+;Trp53-/-;EED-/- genetic background, as 
published in Serresi et al 2016 and infected with Luciferase to monitor their growth (hereby 
KPE-luc)(Cancer Cell) Primary and metastatic cancer cells were isolated using the 
gentleMACS™ Octo Dissociator and the respective kits specific for each tissue. 
Cells were propagated in DMEM/F12 medium supplemented with 10% FBS, and 5% 
penicillin and streptomycin, 4g/ml of hydrocortisone (Sigma), 5 ng/ml murine EGF 
(Invitrogen), Insulin-Transferrin-Selenium mix/solution (GIBCO). Peripheral blood was 
collected into EDTA-coated microtubes, and Tumor circulating cells were isolated from red 
blood cell by hypotonic lysis (eBioscience™ 10X RBC Lysis Buffer) and analyzed at the FACS 
for mCherry expression. 
A549, H1944, H2030, H3122 cell lines were described before20 and were cultured in RPMI 
medium with 10% FBS, and 5% penicillin and streptomycin at 37°C in a 5% CO2–95% air 
incubator. 
KPE-luc transfection was conducted using Fugene HD transfection reagent (Promega) with 
doxycycline-inducible plasmids: PB-TRE-dCas9-VPR (Addgene #63800) and PB-TRE-dCas9-
KRAB-MeCP2 (Addgene #122267). Following transfection, cells were cultured in growth 
medium supplemented with Hygromycin (100 µg/mL) to select for stable transfectants. 

Tissue clearing and lightsheet microscopy  

Mice were anesthetized by intraperitoneal injection of 150 mg/kg ketamine and 10 mg/kg 
xylazine and transcardially perfused with PBS .Tissue clearing was performed as previously 
described with modifications  (Susaki, E. A. et al. Advanced CUBIC protocols for whole-brain 
and whole-body clearing and imaging. Nat. Protoc. 10, 1709–1727 (2015).In short, tissue was 
transferred to CUBIC1 (25 wt% Urea, 25 wt% N,N,N′,N′-tetrakis(2-hydroxypropyl) 
ethylenediamine, 15 wt% Triton X-100) and incubated at 37 °C shaking. Every other day 
CUBIC1 solution was exchanged until tissue appeared transparent (2~4 days). Afterwards, 
samples were washed for 1 day with PBS at RT, refractive index matched with EasyIndex 
(LifeCanvas Technologies) at 37 °C and imaged with the ZEISS Lightsheet Z.1, image analysis 
and video rendering, we used ZENblack v 3.1, Arivis Vision4D v3.5.1 (Arivis AG) and Imaris 
v9.8.0 (Oxford Instruments), respectively. 

Bioluminescence analysis and quantification 

Ex- vivo tissues from control mice and mice treated with doxycycline to induce 
overexpression of VAV1-L1CAM-CXCR4 were analyzed immediately after dissection using 
the IVIS Spectrum imaging system (PerkinElmer). Prior to sacrifice, mice were injected 
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intraperitoneally with luciferin (150 mg/kg body weight) to enable bioluminescence 
detection. Following luciferin injection, mice were euthanized, and the organs of interest 
(liver, spleen, lungs, and kidneys) were harvested. Bioluminescence imaging was performed 
using the IVIS Spectrum imaging system, and the resulting images were analyzed to quantify 
the bioluminescent signals. For each organ, five regions of interest (ROIs) were randomly 
defined within the tissue samples. Background luminescence was subtracted from each ROI 
measurement to obtain normalized luminescence intensities. Bioluminescence data were 
then visualized using violin plots with datapoints representing multiple ROI measurements 
per organ for both control and Dox-treated mice across the four different organs. Statistical 
analyses were conducted using PRISM software (GraphPad Software). 

Microscope imaging  

mCherry fluorescence and brightfield images were acquired using a Leica DM Fluo inverted 
fluorescence microscope equipped with appropriate filter sets for mCherry. Prior to 
imaging, samples were prepared according to standard protocols. Fluorescence images 
were captured using the appropriate excitation and emission filters, while brightfield 
images were acquired simultaneously to provide structural context.  

Western blot 
Western blotting analysis was performed using standard methods. Whole-cell extracts were 
prepared in lysis buffer [50 mM tris (pH 8.0), 50 mM NaCl, 1.0% NP-40, 0.5% sodium 
deoxycholate, and 0.1% SDS] containing protease inhibitor cocktail (cOmplete, Roche) and 
phosphatase inhibitor cocktail (Thermo Fisher Scientific). Equal amounts of protein, as 
determined by the Micro BCA Protein Assay Kit (Pierce), were resolved on NuPage Novex 4 
to 12% bis-tris gels (Invitrogen) or NuPAGE Novex 7% tris-acetate protein depending on the 
protein size and transferred onto nitrocellulose membranes (0.2 μm, Whatman). 
Membranes were blocked in phosphate-buffered saline with 0.1% Tween 20 (PBST) 5% 
bovine serum albumin (BSA) for 1 hour, incubated with primary antibodies in PBST 1% BSA 
overnight at 4°C and with secondary antibodies coupled to horseradish peroxidase for 45 
min in PBST 1% BSA. Bands were visualized using an enhanced chemiluminescence 
detection reagent (GE Healthcare). Primary antibodies used against the following antigens 
were as follows: anti-vimentin D21H3 rabbit monoclonal antibody (mAb); Cell Signaling 
Technology, #5741], anti–E-cadherin (24E10 rabbit mAb; Cell Signaling Technology, #3195), 
anti–N-cadherin (rabbit mAb; Cell Signaling Technology, #4061), anti–Sox2 (rabbit 
polycolonal Abcam, #15830),anti-slug(rabbit mAb; Cell Signaling Technology, #4933) anti-
snail (rabbit mAb; Cell Signaling Technology, #4933) anti-ZO1 (rabbit mAb; Cell Signaling 
Technology, D7D12 #8193) anti-RAS(rabbit mAb; Cell Signaling Technology, #67648)anti-
slug(rabbit mAb; Cell Signaling Technology, #4933) anti-vinculin (mouse clone h-VIN1; 
Sigma-Aldrich, #V9131), anti–FOXA1 (Abcam AB23738 rabbit mAb; anti-FOXP1 (rabbit mAb; 
Cell Signaling Technology, #2005),  anti–glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) (rabbit mAb; Santa Cruz Biotechnology, #sc-25778), anti-H3K273me [rabbit 
polyclonal antibody (pAb); Cell Signaling Technology, #9733], anti-total H3 (rabbit mAb; Cell 
Signaling Technology, #AB1791), anti-CAS9 polyclonal Diagenode #C15310258),  anti–c-JUN 
(60A8 rabbit mAb; Cell Signaling Technology, #9165), anti–Ras (G12D Mutant) Recombinant 
Rabbit Monoclonal Antibody (HL10)Thermofisher MA5-36256, anti tubulin monoclonal  
Sigma #T5168  
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Library cloning and amplification 
IFN library cloning was performed in the CROP-SEQ-mCherry2-Puro as described in 
Datlinger et al, 2017. Briefly, the modified version of CROPseq-Guide-Puro containing the 
fluorescent protein m-Cherry was digested BsmBI. The Assembly of gRNA-encoding ssDNA 
oligos into the vector backbone by Gibson Assembly. The library-plasmid amplification was 
performed by electroporation of Lucigen Endura cells (64242-2-LU). Next generation 
sequencing of gRNA sequences for library quality control or pooled screens. 
Single sgRNA targeting KRAS and all the genes used for validation control have been cloned 
using the same strategy to clone the library. All the sgRNAs sequences are indicated in 
supplementary figure 3. 
The original Cropseq Cherry Puro vector was modified to replace the cherry fluorescent 
marker with blue fluorescent protein (BFP). This vector was then used to clone single guide 
RNAs (sgRNAs) targeting KRAS, enabling the interference of KRAS expression levels. 
 
Lentivirus production and infection 
Lentivirus was produced by transfecting human embryonic kidney–293 T cells using 
FuGENE HD (Promega) as described (Gargiulo 2013). Supernatant infection of IFN library in  
KPEluc-dcas9vpr cells was performed as described in the references above, and NSCLC cells 
were infected separately by one round of overnight exposure to the viral pool. Multiplicity 
of infection was experimentally designated as <0.5 based on mCherry2 expression upon 
low-MOI infection. 

In vivo CRISPRa screening procedure 

A total of 1 × 10^6 KPE- lucTETON-dCas9-VPR-IFN library-mcherry were injected 
intravenously via the tail vein (500x representation). Successful engraftment was confirmed 
using noninvasive bioluminescence imaging. Tumor growth in the lungs was monitored 
using an IVIS imaging system. IVIS Lumina imaging was performed as described previously 
(Gargiulo et al., 2014). After 7 days post-injection, mice were randomized and were treated 
or not with doxycycline administered in the drinking water. Tumor growth in the lungs and 
distant organs was monitored regularly using IVIS imaging. Animals showing signs of 
respiratory distress were euthanized, and primary lung tumors, liver, kidney, bones, and 
brain tissues were dissected. Primary cells were isolated from these tissues. CTCs were 
isolated from the retroorbital vein. Isolated cancer cells were analyzed for mCherry 
expression using fluorescence-activated cell sorting (FACS). 

CRISPR activation and fate mapping procedure 

Total RNA was extracted using the Kit Stratec. The concentration of the RNA was quantified 
by the Qubit RNA HS Assay Kit (Invitrogen). The integrity of the RNA was determined with 
the High-Sensitivity RNA ScreenTape System (Agilent). 45 nanograms of total RNA per 
sample was used as input for constructing CROP-seq transcript-specific multiplexed 3′-cDNA 
(complementary DNA) libraries using modified barcoded primers 62 in an adapted version of 
bulk RNA barcoding and sequencing protocol 63. The final multiplexed library pools were 
quantified with the Qubit dsDNA HS Assay Kit (Invitrogen) and the Collibri Library 
Quantification Kit (Invitrogen), and the proper PCR library fragment size was assessed by the 
TapeStation High-Sensitivity D1000 ScreenTapes Kit (Agilent). Sequencing of the pooled 
libraries was performed on NovaSeq 6000 in a paired-end mode (read 1, 21 bp; index i7, 8 
bp; index i5, 8 bp; read 2: 150 bp). The initial demultiplexing based on Illumina indices was 
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performed using the bcl2fastq conversion software (v2.20.0). Next, the CROP-seq barcode 
sequences were extracted from read 1 reads using cutadapt (v2.1) and used for subsequent 
internal demultiplexing using BRBseqTools-1.6.jar ( http://github.com/DeplanckeLab/BRB-
seqTools). The 20 bp sgRNA sequences were extracted from demultiplexed reads using 
cutadapt (v2.1) and aligned to the reference custom IFN library using bowtie2 (v2.4.4), for 
subsequent generation of sgRNA read counts. The initial quality control and exploratory 
analysis were performed in the R 4.1.2 environment. First, screen samples with shallow 
library coverage (<100,000 recovered reads) were omitted from the analysis. The sgRNAs 
detection rate was calculated for each sample, providing the basis for defining the clonality 
of the metastatic samples, with the detection rates between the 0.25 and 0.5 quantiles 
defining the oligoclonal, and those above the 75th quantile – the polyclonal metastatic 
samples. The read counts were further median scaled (via normalizeMedianValues function, 
gCrisprTools package (v.2.0.0) and used to define stable groups for differential analysis.  As 
a comparison measure sample diversity was estimated by calculating Shannon entropy 
index of the respective sample sgRNAs frequencies. Further, for each group of samples 
(controls, primary tumor, and poly-/oligo or tissue-specific metastasis) inter-group 
correlation (Pearson correlation, average linkage) was calculated. Samples with the lowest 
mean correlation scores were iteratively left out when necessary until cluster stability was 
achieved. The group core samples were subjected to MAGeCK (v.0.5.9.3) test command, 
with “--norm-method median --control-sgrna --remove-zero control --remove-zero-
threshold 50 --sort-criteria pos” parameters specified. For the metastatic samples with 
median sgRNA abundance of zero, a pseudocount was added to the sgRNA count for each 
sample included in the comparison.  Enriched genes at the FDR threshold of 0.05 were 
considered significant. 

In vivo competition assay 
 
For in vivo validation, we conducted a competition assay by injecting a mixture of KPE-luc 
dCas9-VPR containing 7 sgRNAs cloned in the CRISPR-Cas9 knockout pooled library 
(CropSeq) tagged with mCherry (40%) and KPE-dCas9-VPR-luc GW human library (60%) via 
the tail vein (total cells injected 2x105). Tumor growth was monitored using an IVIS imaging 
system. Subsequently, doxycycline was administered in the drinking water, and primary 
tumors and metastatic tissues were harvested at the humane endpoint. Primary cells 
isolated from these tissues were analyzed using flow cytometry (FACS) to assess the 
expression levels of BFP and mCherry. 

Genome editing of cancer cells 

Genome editing of FOXP1 and FOXA1 of all cell lines described was performed by 
electroporation using the Amaxa 4D-Nucleofector Kits and  Kit v2 by Synthego. Briefly, 2 × 
105 cells were counted and resuspended in 20 μl of the respective buffers and supplement 
in a 16-well Nucleocuvette strip. For KPE electroporation was performed with P3 
nucleofection buffer (Lonza) and using CM150. Editing efficiency was estimated by western 
blot and Sanger sequencing and calculated using the ICE (inference of CRISPR edits) webtool 
provided by Synthego. 

ATAC sequencing 
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ATAC-seq was performed on primary lung and metastatic isolated KPE cells treated with or 
without IFN (+ 10ng/ml TNFa + 5ng/ml IFNg + 5ng/ml IL1B + 2ng/ml OSM (1µl of ) medium 
and TGF-β1 (5 ng/ml).  A total of 60,000 cells were sorted in biological replica and 
centrifuged; the pellet was gently resuspended in 50 μl of ATAC mix [25-μl 2× tagmentation 
DNA (TD) buffer, 2.5-μl 891 transposase and 22.5-μl nuclease-free water from Nextera DNA 
Library Prep, Illumina]. Cells were incubated for 60 min at 37°C with moderate shaking (500 
to 800 rpm), lysed in proteinase K and AL buffer (QIAGEN); DNA was purified using 1.8× 
AMPure XP beads (Beckman Coulter). Library prep was made using primers compatible with 
Nextera Illumina. Each library was individually quantified using Qubit 3.0 Fluorometer (Life 
Technologies) and profiled on a TapeStation High Sensitivity D1000 ScreenTape (Agilent). 
The multiplexed libraries were sequenced on a HiSeq 4000 in a 2× 75–base pair (bp) mode. 

 
RT–qPCR and RNA-seq 
RNA was isolated using Trizol and cDNA was generated using SuperScript II or VILO 
according to the manufacturer’s instructions (Invitrogen). Primer details are available upon 
request. For RNA-seq, the library was prepared using Brb seq RNA sample protocol. 
 
RNA seq 
RNA was extracted using the STATEC kit. The concentration of the RNA was quantified by 
the Qubit RNA HS Assay Kit (Invitrogen). The integrity of the RNA was determined with the 
High-Sensitivity RNA ScreenTape System (Agilent). Sixty nanograms of total RNA per sample 
was used as input for constructing multiplexed 3′-cDNA (complementary DNA) libraries 
using barcoded oligo-dT primers (44) in an adapted version of bulk RNA barcoding and 
sequencing protocol (45). The final multiplexed library pools were quantified with the Qubit 
dsDNA HS Assay Kit (Invitrogen) and the Collibri Library Quantification Kit (Invitrogen), and 
the proper library fragment distribution was assessed by the TapeStation High-Sensitivity 
D1000 ScreenTapes Kit (Agilent). Sequencing of the pooled libraries was performed on 
NovaSeq 6000 in a paired-end mode (read 1, 21 bp; index i7, 8 bp; index i5, 8 bp; read 2: 150 
bp). The initial demultiplexing based on Illumina indices was performed using the bcl2fastq 
conversion software (v2.20.0). Next, the oligo-dT barcode sequences were extracted from 
read 1 reads using cutadapt (v2.1) and used for subsequent internal demultiplexing using 
BRBseqTools-1.6.jar (http://github.com/DeplanckeLab/BRB-seqTools). The demultiplexed 
data were aligned to a mouse GRCm38.102 genome using STAR (v2.6.0c), and the count 
matrices were subsequently generated using HTSeq (v2.0.2). 
 
Pro-metastatic upstream regulators cytokine screening 

KPEluc-dCas9VPR  were seeded in basal medium or in IFN medium containing 10ng/ml TNFa 
, 5ng/ml IFNg  5ng/ml IL1B  + 2ng/ml OSM).  

Cells were treated with cytokines for 24 hours at two varying concentrations with 10-fold 
difference (low and high concentration). Post-treatment, cells were fixed with 1% PFA for 
10min, washed with PBS and stained for NCAM1 to assess staining patterns through a high-
content imaging cytokine screen. Permeabilization and blocking were performed using a 
solution containing 4% BSA and 0.1% Triton-X in 1x PBS with 30 min incubation at room 
temperature, followed by one wash with PBS. Primary antibody staining was performed 
using anti-NCAM1 (mouse, Sigma, T5168) at a 1:2000 dilution and pre-conjugated 
Phalloidin-FITC. The primary antibodies were diluted in a solution of 4% BSA-PBS with 0.1% 
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Triton-X and added to the wells, excluding control wells that served as secondary-only 
controls. The plates were incubated for 1 hour at room temperature in the dark, followed by 
two washes with PBS. Secondary antibody staining was carried out using Alexa 647 (anti-
rabbit, Invitrogen, A31573), diluted at 1:200 in 0.5% BSA in 1x PBS. The secondary antibody 
was incubated for 45 min at 4°C in the dark, followed by two washes with PBS. For nuclear 
staining, Hoechst was prepared at a 1:1000 dilution in 1x PBS and incubated for 5 minutes, 
following three washes with PBS. Imaging was conducted using the Operetta high-content 
imaging system (Revvity) in confocal mode with a 40x water objective, capturing 25 fields 
per well. Using the secondary only conditions, appropriate filter and exposure settings were 
determined to image Alexa647, FITC, Hoechst33258 and brightfield channels. A z-stack of 
three planes with 2µm increments was captured. Images were analyzed by creating 
maximum projections of the z-stacks. Each channel was filtered using a rolling ball algorithm 
with a radius of 10 pixels. Nuclei were identified using the inbuilt image detection 
algorithms (Method A) on the Hoechst-stained images, and cells were identified using 
Method F on Alexa647 (Tubulin) and FITC (Actin-Phalloidin-stained) images. Morphology 
properties were calculated using the STAR Methods, recording mean and standard 
deviation parameters of cell area, roundness, width, length, compactness threshold and 
radiality. All derived cell morphology parameters were used to segment single cells and read 
out NCAM1 staining intensities per cell. Data is presented as bubble plots, with the number 
of nuclei per condition representing bubble size and the fold-change induction of NCAM1 
staining per concentration on the x-axis. Statistical analysis used multiple comparisons of 
NCAM1 intensity means with Dunnett contrasts. 

Fluorescence-activated cell sorting (FACS) 

Harvested single cell suspensions were resuspended in cold media and filtered into FACS 
tubes. FACS analysis was performed on a BD LSR Fortessa system. Sorting was carried out on 
a BD ARIA III system. Depending on the fluorophores to be analysed, the suitable laser-filter 
combinations were determined and acquired. To exclude dead cells, events were typically 
gated according to their shape and granularity (FSC-A vs. SSC-A) and doublets were 
removed (FSC-A vs. FSC-H). Positive gates were set above background thresholds with low 
to zero levels of the fluorophore of interest using unstained or wildtype cells. FlowJo v10 
was used for all analyses. 

Single cell RNA-seq analysis 

The previously published patient advanced non-small cell lung cancer and metastatic lung 
adenocarcinoma single-cell RNA-seq datasets were retrieved from the Gene Expression 
Omnibus database via respective accession codes (GSE148071, GSE123904) and analyzed 
separately using the Seurat toolkit (v4.3.0) in R (4.1.2). Standardly, the obtained gene 
expression matrices were filtered removing cells with less than 200 and more than 5000 
expressed genes, as well as cells with a mitochondrial content higher than 30%. 
doubletFinder (v2.0.3) was used to discriminate doublets and copykat (v1.0.5) was used to 
infer genomic copy numbers from the respective single-cell RNA-seq datasets. Individual 
patients single-cell RNA-seq profiles were integrated using the FindIntegrationAnchors() 
and IntegrateData() functions (normalization.method = "SCT"). PCA and UMAP 
dimensionality reduction were performed on normalized scaled datasets, cluster 
identification was performed using FindClusters() function and cell type annotation was 
conducted using the ScType package. 
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Human Bulk RNA-seq Analysis 

Data Integration. Processed RNA-seq, somatic mutation, and clinical data from TCGA were 
downloaded via TCGAbiolinks. KRAS variants classified as "Missense_Mutation" were 
considered KRAS mutants. Processed RNA-seq, somatic mutation, and clinical data from 
PRISM were downloaded from Gustave Roussy’s cBioPortal 
([https://cbioportal.gustaveroussy.fr/study/summary?id=metaprism_2023](https://cbiopor
tal.gustaveroussy.fr/study/summary?id=metaprism_2023)) and nextcloud server 
([https://nextcloud.gustaveroussy.fr/s/HFB6QgycJ56EpiC](https://nextcloud.gustaveroussy
.fr/s/HFB6QgycJ56EpiC)). KRAS variants classified as "Missense_Mutation" were considered 
KRAS mutants. Kallisto-generated raw RNA-seq counts were rounded to obtain integer raw 
counts for downstream analysis. HMF (Hartwig Medical Foundation) RNA-seq, somatic 
mutation, and clinical data were accessed via [Hartwig Medical 
Foundation](https://www.hartwigmedicalfoundation.nl/en/) data access request 
procedure. Processed data were used in the analysis. KRAS variants classified as 
"Missense_Mutation" and putative driver were considered KRAS mutants. Processed data 
from TRACERx were downloaded from 
[https://zenodo.org/records/7822002](https://zenodo.org/records/7822002), 
[https://zenodo.org/records/7649257](https://zenodo.org/records/7649257), and 
[https://zenodo.org/records/7603386](https://zenodo.org/records/7603386). KRAS variants 
classified as "nonsynonymous SNV" and putative driver were considered KRAS mutants. 
RSEM-generated raw RNA-seq counts were rounded to obtain integer raw counts for 
downstream analysis. LUAD, LUSC, PAAD, and COREAD (COAD + READ) samples were used 
from TCGA, PRISM, and HMF, while LUAD and LUSC samples were used from TRACERx.  

Gene IDs of raw RNA-seq count data from all datasets were mapped, retaining 18,727 
protein-coding genes available in all datasets, and datasets were merged (supplementary 
material).  

Since lung cancer samples from HMF were originally classified as only NSCLC (i.e., not sub-
classified as LUAD or LUSC), HMF-NSCLC samples were classified into LUAD or LUSC using 
PRISM and TRACERx LUAD and LUSC data. From differential expression results between 
LUAD and LUSC (with DESeq2 [Love et al.] v1.42.1, `design = ~ source + disease`, 13,674 
genes, excluding 5,053 genes in downstream 95 gene sets and KRAS out of 18,727 total 
integrated protein-coding genes to exclude possible variable genes, were used to calculate 
size factors with the ̀ DESeq2::estimateSizeFactors` function), upregulated top 150 genes for 
each LUAD and LUSC were identified (LUAD_genes, LUSC_genes). Then single-sample 
enrichments of LUAD_genes (LUAD_enrichment) and LUSC_genes (LUSC_enrichment) 
were calculated via the GSVA method [Hänzelmann et al.] (GSVA v1.50.5 `kcdf = "Gaussian"`) 
with VST (variance stabilizing transformation) values of datasets calculated separately via 
the `DESeq2::varianceStabilizingTransformation` function (with `blind = FALSE, design = ~ 
disease_KRAS_mutation_status`). Then a first-degree support vector machine classifier was 
fit using LUAD_enrichment and LUSC_enrichment as input to classify HMF-NSCLC samples 
into LUAD or LUSC (supplementary material). After data merging, batch effect correction 
between sources (TCGA, PRISM, HMF, TRACERx) was performed with ComBat-seq [Zhang et 
al.] (`batch = source, covar_mod = model.matrix(~ stage + disease + kras_mutation_status)`) 
by exploiting putative similarities between biological groups (i.e., the same cancer type in 
the same stage should be similar across sources, see supplementary material). After batch 
correction, VST was performed with the following settings using DESeq2: Top 150 stable 
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genes from Bhuva et al. were used to calculate size factors with the 
`DESeq2::estimateSizeFactors` function, and then VST was performed with the 
`DESeq2::varianceStabilizingTransformation` function (with ̀ blind = FALSE, design = ~ stage 
+ disease + KRAS_mutation_status`). The VST expression values were used in Cox 
proportional hazards models and KRAS expression level assignment. To define KRAS 
expression level of a sample (either KRAS-high or KRAS-low), the following approach was 
implemented: Patients were divided into groups based on the combination of data source 
(TCGA, PRISM, HMF, or TRACERx), disease (LUAD, LUSC, PAAD, or COREAD), and KRAS 
mutation status (mutant or wild type). Then median KRAS VST expression value was 
calculated for each group, and samples were classified into KRAS-high or KRAS-low with 
respect to their group's median KRAS expression. The KRAS-level of a sample and grouping 
of samples defined in this step were used in differential expression analysis. 

All human bulk RNA-seq data integration and analysis was performed in R 4.3.3 
environment. 

Survival Analysis  

All Cox proportional hazards models and Kaplan-Meier curves were generated in R 4.3.3 
using the survival and survminer packages. The log-rank test was used to determine the 
statistical significance of Kaplan-Meier curves. 

In KRAS-level Kaplan-Meier analysis, KRAS-level (KRAS-high or KRAS-low) was defined in the 
following way: Patients were divided into groups based on the combination of data source 
(TCGA, PRISM, HMF) and KRAS mutation status (mutant or wild type). Then median KRAS 
log2(TPM+1) expression value was calculated for each group, and samples were classified 
into KRAS-high or KRAS-low with respect to their group's median KRAS expression. TPM 
(transcript per million) values come from data source, no batch correction was applied to 
original TPM values since Kaplan-Meier analysis was performed on within-dataset level. 

RAS84 Index (RI) values were calculated as the mean VST value of RAS84 genes [East et al.]. 
Here VST expression values were calculated on within-dataset level in the following way: 
13,674 genes (excluding 5,053 genes in downstream 95 gene sets and KRAS out of 18,727 
total integrated protein-coding genes to exclude possible variable genes) were used to 
calculate size factors with the ̀ DESeq2::estimateSizeFactors` function. Patients were divided 
into groups based on the combination of disease (LUAD, LUSC, PAAD, or COREAD), and KRAS 
mutation status in every dataset separately (TCGA, PRISM, HMF). And then 
`DESeq2::varianceStabilizingTransformation` function were used for VST calculation with 
`blind = FALSE, design = ~ group`. Then median RI value was calculated for each group, and 
samples were classified into RI-high or RI-low with respect to their group's median RI. 

Gene Set Enrichment Analysis 

All gene set enrichment analyses were performed with the `fgsea` R/Bioconductor package 
v1.28.0 [Korotkevich et al.] using Wald statistics from DESeq2 differential expression results 
of desired contrasts (i.e., comparisons between selected groups). 

MSigDB Hallmark Gene Sets were retrieved via msigdb R/Bioconductor package. 'Cilia 
Signature' was derived from Patir et al., filtering their signature by: Human Protein Atlas 
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Bronchus Cilia staining as "Positive Stain" and FOXJ1 gene expression profile as "Associated". 
'AT1 Signature' and 'AT2 Signature' were derived from AT1 and AT2 signature lists of Li et al., 
Travaglini et al. and Sikkema et al. All  genes and gene sets used in human bulk RNA-seq 
analysis are provided in supplementary material 1. 

Differential Expression Analysis 

 ComBat-seq batch-corrected integer expression values (see above) were used for 
differential expression analysis with DESeq2 with `design = ~ stage * kras_status * 
kras_level`. 150 stable genes (see above) were used for the `DESeq2::estimateSizeFactors` 
function. 

Differential expression analysis of longitudinal TRACERx LUAD KRAS mutant samples was 
performed in the similar fashion but with paired design `design = ~ patient + kras_status * 
kras_level * stage`. 

In figure S7B where different metastatic tissues (lymp node, metastatic lung or distant 
organ) were compared to primary lesion side, `tissue_type` variable were used in the 
designs instead of stage, such that `design = ~ tissue_type * kras_status * kras_level`, and 
for longitudinal analysis of KRAS mutant TRACERx data `design = ~ patient + kras_level * 
tissue_type`. 

PROGENy Pathway Activity Inference  

PROGENy pathway activity inference was performed using the decoupleR R/Bioconductor 
package v2.8.0 [Badia-I-Mompel et al.]. The PROGENy [Schubert et al.] model was retrieved 
with `decoupleR::get_progeny(organism = 'human', top = 1500)` from OmnipathR v3.15.1. 
Model was fit with the `run_mlm` function in contrast-based mode using Wald statistics 
from DESeq2 differential expression results of indicated contrasts. 

DepMap Data Analysis 

DepMap[Tsherniak et al.] data (Version: DepMap Public 24Q2) were obtained from 
[DepMap's data portal](https://depmap.org/portal/data_page/?tab=allData). For 
evaluating KRAS-high and KRAS-low signature enrichment across CCLE/DepMap cell lines, 
we selected 316 cell lines representing 9 cancer types: LUAD, PAAD, COAD, LUSC, STAD, 
ESCA, IHCH, PLBMESO, and BLCA. To score these cell lines, we used the file 

 “OmicsExpressionProteinCodingGenesTPMLogp1BatchCorrected.csv” from DepMap. 

Differential expression analysis results for "Mutant, KRAS-high vs. KRAS-low" and "Metastatic 
Mutant, KRAS-high vs. KRAS-low" were integrated in a majority-vote framework to create six 
gene sets (signatures): three for KRAS-high and three for KRAS-low, with gene thresholds set 
at 100, 300, and 500 to minimize the impact of gene set size. 

  

For each signature, a majority vote was based on ranking the sum of integrated statistics (-
log10(padj) * log2(FoldChange)). We selected the top-ranking genes for KRAS-high and the 
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lowest-ranking genes for KRAS-low to form each gene set. Gene Set Variation Analysis 
(GSVA) was applied to score the cell line expression profiles, and the mean values of the 100, 
300, and 500 gene set enrichments were calculated to derive the final KRAS-high or KRAS-
low enrichment scores (Fig. S7C).  

Finally, the difference between KRAS-high and KRAS-low scores was computed for each cell 
line, and these differences were scaled. The resulting scores are shown on the y-axis in Fig. 
7G. 

MetMap Data Analysis 

MetMap500[Jin et al.] data were accessed from [DepMap's MetMap data 
portal](https://depmap.org/metmap/data/index.html) and integrated with DepMap data to 
incorporate information on KRAS expression, mutation status, and copy number alterations. 
Pearson correlations between KRAS expression and mean metastatic potential were 
calculated across various subsets based on KRAS mutation status and copy number 
alterations, as shown in Fig. 3G. 

KP-Tracer Data Analysis 

Processed KP-Tracer scRNA-seq data were obtained from 
[Zenodo](https://zenodo.org/records/5847462) [Yang et al.]. In Figs. 3F and S3H, we 
classified cell states and fates according to the authors' framework, defining cell states in 
"Fate Cluster 3" as "late" and those in "Fate Clusters 1 and 2" as "early." 

For contrast-based PROGENy (Fig. S5D) and CollecTRI (Fig. 6H) analyses, we first created 
pseudobulk profiles by aggregating raw counts through summation. We then conducted 
differential expression analysis using DESeq2 with a `design = ~ stage` model for the "Late 
vs. Early" comparison, and `design = ~ stage_level` for other comparisons. 

Pathway activity inference was carried out using the PROGENy model through the 
decoupleR R/Bioconductor package (v2.8.0) [Badia-I-Mompel et al.]. We retrieved the 
PROGENy model with `decoupleR::get_progeny(organism = 'mouse', top = 500)` from 
OmnipathR (v3.15.1) and fitted the model in contrast-based mode with the `run_mlm` 
function, utilizing Wald statistics from DESeq2 differential expression results for the 
specified contrasts. 

Similarly, transcription factor activity inference was performed with the CollecTRI model 
[Müller-Dott et al.], also using decoupleR (v2.8.0). The CollecTRI model was retrieved via 
`decoupleR::get_collectri(organism = 'mouse', split_complexes = FALSE)` from OmnipathR 
(v3.15.1) and fitted in contrast-based mode with the `run_ulm` function, applying Wald 
statistics from DESeq2 differential expression results for each contrast.  

Gene Set Enrichment Analysis of cell line-derived xenografts 

Bulk RNA-Seq from PDX models engrafted with lung cancer cell lines treated with KRAS-
G12C inhibitor MRTX849 were downloaded from SRA database (project number 
PRJNA578935). Low-quality reads and adaptors were removed by fastp v.0.23.2 (parameters 
--average_qual 30 --length_required 100 --detect_adapter_for_pe)  and xengsort v.2.0.5 
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was used to remove mouse reads. Good quality reads were pseudoaligned against the 
human transcriptome (v.30 Ensembl 96) by kallisto v.0.44.0 (parameters -b 100). Counts were 
loaded into R v.4.3.2 and lowly expressed genes removed prior to differential expression 
analysis (minimum of 10 reads in at least one sample and a minimum of 20 reads across all 
samples). Data was normalized and differentially expressed genes were identified using 
DESeq2 v.1.42.1.  The function GSEA from package clusterProfiler v.4.10.0 and the Molecular 
Signature Database v.2023.2 were used for Gene Set Enrichment Analysis on hallmark gene 
sets and the cilia signature. KRAS copy number was from https://depmap.org/portal 
(DepMap 24Q2 Public. Figshare+. Dataset. 
https://doi.org/10.25452/figshare.plus.25880521.v1) and allele frequency from  

Fastp - https://doi.org/10.1093/bioinformatics/bty560 

Xengsort - https://doi.org/10.1186/s13015-021-00181-w 

Kallisto - https://doi.org/10.1038/nbt.3519 

DESeq2 - https://doi.org/10.1186/s13059-014-0550-8 

clusterProfiler - https://doi.org/10.1016/j.xinn.2021.100141 

MsigDB - https://doi.org/10.1073/pnas.0506580102 

Patient-derived xenografts 

The lung cancer xenograft model was obtained from the Victorian Cancer Biobank. The 
patient-derived xenograft (PDX) model was generated from a patient with a lung 
adenocarcinoma that contained the following mutation in KRAS (c.34G>T; p.G12C). Ethical 
approval was obtained to generate this model. In collaboration with TRACE the PDX model 
was further expanded in Leuven and F4 generations were used for all experiments.  

KRAS inhibition in vivo 

When the tumors reach a volume of 300 mm3, the PDX mice were injected daily with 
100mg/kg of the KRAS inhibitor MRTX849 dissolved in citrate buffer (0,05M pH5) and with 
10% captisol via oral gavage. Control mice were injected with 0,05M citrate buffer only. After 
67 days of treatment the drug administration as stopped, and the tumor size was measured 
regularly. Random mice were sacrificed before treatment and after 7 or 20 days of treatment 
and the tumors were embedded for further analysis. 

OPAL staining 

An OPAL-based approach, which relies on individual tyramide signal amplification (TSA)-
conjugated fluorophores to detect various targets, was used to perform the staining. 
Sections (5 mm) of formalin-fixed, paraffin-embedded tumors were deparaffinized and 
subjected to antigen retrieval in citrate buffer pH6. Blocking was performed for 30 minutes 
with 10% goat serum in 1% BSA and 01% Triton X-100 in PBS. The sections were incubated 
overnight at 4°C with the following primary antibodies anti-acetylated tubulin (Merck, 
T7451, 1/2000); anti-Arl13b (Sanbio, 17711-1-AP, 1/500) and anti-FANK1 (Merck, 
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HPA038413, 1/50).  After washing with TBST, the sections were incubated for 15 min at room 
temperature with the appropriate HRP and Fluor tyramides (PerkinElmer) to detect antibody 
staining, prepared according to the manufacturer’s instructions: Opal 570 or OPAL 690 
(dilution 1:150). Stripping of primary and secondary antibodies was performed by placing 
the slides into a plastic container filled with antigen retrieval (AR) buffer in citrate buffer pH 
6. A microwave was used to heat the liquid to 100 °C (2 min), and the sections were then 
microwaved for an additional 15 min at 75 °C. Slides were allowed to cool down in the AR 
buffer for 15 min at room temperature and were then rinsed with deionized water and 13 
Tris-buffered saline with Tween-20. After three additional washes in deionized water, the 
slides were counterstained with DAPI for 5 min and mounted with ProLong Gold Antifade 
Mountant (Thermo Fisher Scientific, P36930). 

Statistics & Reproducibility 

Unless otherwise indicated, the standards of the analyses were as follows. For multiple 
comparisons of two groups, unpaired two-tailed Student’s t-test was used, unless otherwise 
specified. For comparisons of two or more groups, one-way ANOVA followed by Dunnett’s 
post-hoc multiple comparisons test correction. For correlation analyses, Pearson correlation 
coefficients were calculated. Hierarchical clustering used Manhattan distance calculations. 
For boxplot representations, data distribution is shown with box indicating the interquartile 
range and inner line indicating the median. Whiskers extend to represent the data range, 
including outliers. Barplot data is shown as mean value +/- standard deviation. All 
experimental data has been derived from at least three independent biological replica. No 
data that passed QC were excluded from the analyses and the investigators were not 
blinded to allocation during experiments and outcome assessment. 
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Patient-derived xenografts 

The lung cancer xenograft model was obtained from the Victorian Cancer Biobank. The 
patient-derived xenograft (PDX) model was generated from a patient with a lung 
adenocarcinoma that contained the following mutation in KRAS (c.34G>T; p.G12C). Ethical 
approval was obtained to generate this model. In collaboration with TRACE the PDX model 
was further expanded in Leuven and F4 generations were used for all experiments.  

KRAS inhibition in vivo 

When the tumors reach a volume of 300 mm3, the PDX mice were injected daily with 
100mg/kg of the KRAS inhibitor MRTX849 dissolved in citrate buffer (0,05M pH5) and with 
10% captisol via oral gavage. Control mice were injected with 0,05M citrate buffer only. After 
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67 days of treatment the drug administration as stopped, and the tumor size was measured 
regularly. Random mice were sacrificed before treatment and after 7 or 20 days of treatment 
and the tumors were embedded for further analysis. 

OPAL staining 

An OPAL-based approach, which relies on individual tyramide signal amplification (TSA)-
conjugated fluorophores to detect various targets, was used to perform the staining. 
Sections (5 µm) of formalin-fixed, paraffin-embedded tumors were deparaffinized and 
subjected to antigen retrieval in citrate buffer pH6. Blocking was performed for 30 minutes 
with 10% goat serum in 1% BSA and 01% Triton X-100 in PBS. The sections were incubated 
overnight at 4°C with the following primary antibodies anti-acetylated tubulin (Merck, 
T7451, 1/2000); anti-Arl13b (Sanbio, 17711-1-AP, 1/500) and anti-FANK1 (Merck, 
HPA038413, 1/50).  After washing with TBST, the sections were incubated for 15 min at room 
temperature with the appropriate HRP and Fluor tyramides (PerkinElmer) to detect antibody 
staining, prepared according to the manufacturer’s instructions: Opal 570 or OPAL 690 
(dilution 1:150). Stripping of primary and secondary antibodies was performed by placing 
the slides into a plastic container filled with antigen retrieval (AR) buffer in citrate buffer pH 
6. A microwave was used to heat the liquid to 100 °C (2 min), and the sections were then 
microwaved for an additional 15 min at 75 °C. Slides were allowed to cool down in the AR 
buffer for 15 min at room temperature and were then rinsed with deionized water and 13 
Tris-buffered saline with Tween-20. After three additional washes in deionized water, the 
slides were counterstained with DAPI for 5 min and mounted with ProLong Gold Antifade 
Mountant (Thermo Fisher Scientific, P36930). 

Statistics & Reproducibility 

Unless otherwise indicated, the standards of the analyses were as follows. For multiple 
comparisons of two groups, unpaired two-tailed Student’s t-test was used, unless otherwise 
specified. For comparisons of two or more groups, one-way ANOVA followed by Dunnett’s 
post-hoc multiple comparisons test correction. For correlation analyses, Pearson correlation 
coefficients were calculated. Hierarchical clustering used Manhattan distance calculations. 
For boxplot representations, data distribution is shown with box indicating the interquartile 
range and inner line indicating the median. Whiskers extend to represent the data range, 
including outliers. Barplot data is shown as mean value +/- standard deviation. All 
experimental data has been derived from at least three independent biological replica. No 
data that passed QC were excluded from the analyses and the investigators were not 
blinded to allocation during experiments and outcome assessment. 
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