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SUMMARY 1 

Adaptive behavior is critically dependent on associative learning, where environmental 2 

cues are linked with subsequent positive or negative outcomes. In mammals, primary neocortical 3 

sensory areas serve as pivotal nodes in this process, processing stimuli and distributing information 4 

to cortical and subcortical networks. Layer 5 (L5) of the cortex comprises two types of pyramidal 5 

projection neurons—intratelencephalic (IT) and extratelencephalic (ET) neurons—each with 6 

distinct downstream targets. Despite the crucial function of L5 as a main output node of the cortex, 7 

the specific contributions of these L5 neuronal subtypes to associative learning remain poorly 8 

understood. In the present study, by leveraging transgenic mouse lines, we distinguished IT and 9 

ET neurons in the primary somatosensory cortex and examined their roles in a whisker-based 10 

frequency-discrimination learning task. Longitudinal two-photon calcium imaging revealed 11 

distinct response characteristics between IT and ET neurons throughout learning. Interestingly, the 12 

activity of IT neurons hardly changed over the five days of learning, while the activity of ET 13 

neurons developed robustly. Furthermore, IT neurons appeared to show stimuli encoding from the 14 

beginning, whereas the ET neurons became increasingly responsive to stimuli associated with 15 

reward. Chemogenetic silencing of either IT or ET neurons both impaired learning, but in 16 

strikingly distinct ways, each associated with a different phase of learning. By modeling the 17 

response characteristics of IT and ET neurons using a reinforcement learning framework, we show 18 

that IT neurons primarily encode sensory stimuli, and their representations are critical for forming 19 

stimulus-reward associations. ET neurons instead represent the value of the stimulus, used for 20 

refining behavior. Thus, our results delineate the distinct roles of L5 IT and ET neurons, 21 

underscoring their integral and complementary contributions to associative learning.22 
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INTRODUCTION 1 

Associative learning is essential for selecting appropriate behaviors by linking stimuli to 2 

different outcomes. The learning process consists of multiple components, including acquisition 3 

and refinement, and involves diverse neural circuits across the brain that function in concert1,2. 4 

Primary sensory cortical areas are crucial for first processing and analyzing sensory stimuli, but 5 

then also for linking these stimuli to behaviorally relevant outcomes, such as rewards or threats3-6 

6. During stimulus-reward associative learning, neurons in these areas alter their response patterns 7 

to stimuli based on their relevance to rewards3,7-9. These learning-associated changes in neuronal 8 

activity are thought to then be transmitted to other brain regions outside the sensory cortices. While 9 

recent studies have begun to elucidate the contribution to learning of cortical neurons projecting 10 

to distant brain regions5, little is known about the activity changes these projection neurons 11 

undergo during learning and their functional roles throughout the learning process. 12 

Layer 5 (L5) serves as the main output layer of sensory cortices and consists of two major 13 

groups of outward projecting pyramidal neurons: intratelencephalic (IT) and extratelencephalic 14 

(ET) neurons. IT neurons project bilaterally to other cortical areas and the striatum, while ET 15 

neurons project predominantly to subcortical areas in the ipsilateral hemisphere, including the 16 

striatum, higher-order thalamic nuclei, midbrain and pons10-12. Recent advances in transgenic13 and 17 

retrograde-viral targeting14 technology have begun to shed light on the distinct contribution of each 18 

projection neuronal subtype to cortical function and information processing, such as sensory 19 

detection and discrimination4,5,15,16, decision making17, and movement control18-21. But as yet, the 20 

question still remains as to how IT and ET neurons contribute to learning. 21 

The primary somatosensory cortex (S1) has been shown to engage in vibrotactile 22 

discrimination in humans22, primates23, and rodents24. In the present study, we sought to determine 23 
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how the activity patterns of S1 L5 projection neuronal subtypes evolve during learning of 1 

vibrotactile discrimination, specifically in the context of stimulus-reward associations. To study 2 

the learning process, we designed an appetitive Pavlovian conditioning task, where head-restrained 3 

mice were trained to distinguish between two vibratory stimuli delivered to their whiskers with 4 

different frequencies, with one stimulus paired with a water reward and the other not. Utilizing 5 

transgenic mouse lines, we selectively targeted and tracked the activity of either L5 IT or ET 6 

neuronal populations in S1 during the learning process. Using in vivo two-photon imaging, we 7 

measured calcium activity in the apical dendritic trunks, which highly correlates with somatic 8 

activity of L5 pyramidal neurons25,26, and found distinct response patterns between IT and ET 9 

neurons to stimuli and rewards, along with changes in these patterns during learning. By 10 

chemogenetically silencing selective L5 subtypes, we found that both IT and ET neurons are 11 

critical for learning, with each subtype contributing to distinct aspects of the learning process. To 12 

further elucidate the specific roles of IT and ET neurons, we developed a theoretical model inspired 13 

by classical reinforcement learning frameworks and based on their distinctive response properties. 14 

The model suggests that IT neurons encode an ‘unsupervised’ model of the sensory world, which 15 

can then be used to initiate the formation of associations between stimuli and rewards. In contrast, 16 

the model suggests that ET neurons are pivotal in the subsequent refinement of learned responses, 17 

thereby enhancing the discriminability between rewarding and non-rewarding stimuli.18 
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RESULTS 1 

Whisker stimulus-reward associative learning depends on S1  2 

To study reward-based associative learning in mice, we developed a Pavlovian trace 3 

conditioning task in which head-restrained mice were trained to associate one of two stimuli, i.e. 4 

a conditioned stimulus (CS+) vs. a non-conditioned stimulus (CS-), with water reward (Fig. 1a). 5 

The CS+ consisted of C2-whisker stimulation at 10 Hz for 1s, followed by a short delay (trace 6 

interval; 0.5 s) before the delivery of a reward. For CS- trials, the same whisker was stimulated at 7 

5 Hz with no reward. Over multiple daily sessions of training, the mice gradually learned to 8 

discriminate between the two stimuli, as shown by a selective increase in the frequency of 9 

anticipatory licks to CS+ (i.e., licks from stimulus onset to the time of reward delivery) (Fig. 1b). 10 

The task performance, i.e., CS discriminability, was quantified as the area under a receiver 11 

operating characteristic curve (auROC) calculated on anticipatory licks in CS+ vs. CS- trials for 12 

each session (Fig. 1c)27,28. Within five days, 18 out of 20 mice reached a proficient level (auROC 13 

> 0.7) to discriminate the stimuli (Fig. 1d). Learning was not contingent on the specific frequencies 14 

of conditioned stimuli used as mice could successfully learn the task where 5 Hz stimulation was 15 

set as CS+ and 10 Hz stimulation as CS- (Fig. S1).  16 

A recent report suggests that learning a simple tactile detection task may not require S129. 17 

To test whether our learning paradigm depends on S1, we pharmacologically inactivated it during 18 

training. Prior to each training session, muscimol, a GABAA-receptor agonist, was locally injected 19 

into the C2 barrel column of S1, contralaterally to the stimulated C2 whisker (Fig. 1e). Silencing 20 

S1 disrupted learning compared to mice with intact S1 or S1 injected with saline (Fig. 1f). In 21 

contrast, silencing S1 in expert mice did not affect the behavioral performance (Fig. 1g). 22 
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Collectively, these results demonstrate that S1 activity facilitates learning of the task, but once 1 

learned, S1 is not necessary for the expression of conditioned responses.  2 

 3 

IT neurons respond primarily to whisker stimuli while ET neurons are sensitive to reward-4 

related signals 5 

To investigate the responses of S1 neurons to stimuli and rewards, and how they are 6 

modulated during learning, we used in vivo two-photon calcium imaging to monitor neuronal 7 

activity over time before, during and after learning. We focused on the two main long-range 8 

projection neurons in L5 of S1, IT and ET neurons. Two Cre-driver transgenic mouse lines, Tlx3-9 

Cre and Sim1-Cre, were used to distinguish between IT and ET neurons, respectively (Fig. 2a)13. 10 

A Cre-dependent viral expression strategy yielded selective labeling of L5 IT neurons in Tlx3-Cre 11 

mice and ET neurons in Sim1-Cre mice, as previously reported (Fig. 2b)13,16,19,20. 12 

Using these mouse lines, we expressed a genetically-encoded calcium indicator, 13 

jGCaMP8m30, in IT and ET neurons. To facilitate stable longitudinal recordings, we imaged apical 14 

dendritic trunks as a proxy for global activity as activities in apical trunks and somata have been 15 

shown to be highly correlated25,26. The same field of view (FOV) in the C2 barrel column was 16 

imaged for seven consecutive days; five days during the course of learning as well as one imaging 17 

session before and one imaging session after learning to record the neurons’ response profiles to 18 

stimulus alone and reward alone (Fig. 2c). Tlx3-Cre and Sim1-Cre transgenic mice learned the 19 

task equally well over the course of five days (Fig. 2d). On average, the FOV (178.3 × 178.3 µm2) 20 

contained 56 IT neurons (34–83 neurons, n = 5 mice; Fig. 2e) or 28 ET neurons (11–45 neurons, 21 

n = 6 mice; Fig. 2i).  22 
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When comparing the responses of IT and ET neurons in passive mice, where stimuli and 1 

rewards were presented separately in different trial blocks (Fig. 2f, j), we observed striking 2 

differences between the two subtypes. A larger fraction of IT neurons responded to whisker stimuli 3 

compared to ET neurons (pre-learning: 56.41% vs. 35.85%, n = 273 IT neurons vs. 159 ET 4 

neurons; p = 3.7 × 10-5, χ2 test = 17.00; Fig. 2g, k). Subpopulations of IT neurons exhibited CS 5 

selectivity; however, a notable fraction of neurons responded to both CS+ and CS- (Fig. 2g). 6 

Regardless of subtype, responsiveness to stimuli tended to decrease after learning. 7 

In contrast, a greater proportion of ET neurons responded to rewards compared to IT 8 

neurons (pre-learning: 16.79% vs. 25.48%, n = 262 IT neurons vs.157 ET neurons; p = 0.032, χ2 9 

test = 4.62; Fig. 2g, k). Similar to their stimulus responsiveness, ET neurons’ reward 10 

responsiveness also declined after learning. Interestingly, ET, but not IT, neurons that initially 11 

responded to stimuli showed increased responsiveness to rewards after learning (Fig. 2h, l). This 12 

suggests a learning-induced shift in the response properties of ET neurons, where stimulus-13 

responding ET neurons preferentially develop increased sensitivity to rewards through the learning 14 

process.  15 

Collectively, our results show that IT neurons primarily responded to stimuli, while ET 16 

neurons were more responsive to rewards. 17 

 18 

Learning reshapes ET neuronal responses, with little change in IT neurons 19 

To assess how IT and ET neurons change their activity patterns during learning, we 20 

recorded from the same mice over successive daily training sessions. The response patterns of IT 21 

neurons remained stable throughout the learning period (Fig. 3a, b). In contrast to outside the 22 

training (Fig. 2), where we observed a decrease in stimuli-responsive neurons, the fraction of 23 
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stimulus-responding IT neurons did not change throughout learning (Fig. 3c, left), nor did their 1 

response amplitudes (Fig. 3c, right). Similarly to naive mice (Fig. 2g), the IT neurons responding 2 

to CS+ and CS- largely overlapped (green; Fig. 3c, left), with only a subset of neurons showing 3 

stimulus-specific responses (blue and yellow; Fig. 3c, left). ET neurons, on the other hand, showed 4 

a robust response to rewards on Day 1. Their response patterns gradually changed over the training 5 

period, parallel to the evolution of anticipatory lick patterns in response to the stimuli (Fig. 3e, f). 6 

Learning altered the proportion of engaged ET neurons as well as their response amplitudes (Fig. 7 

3g). The response amplitudes for both stimuli significantly increased from the beginning to the 8 

end of training (Fig. 3g, right). Importantly, ET neuronal activity emerged with anticipatory 9 

licking but did not merely reflect lick-related motor activity (Fig. S2). Instead, it represented a 10 

response to reward-predicting stimuli. Together, these results suggest stable, sensory 11 

representations in IT neurons and learning-induced increase in ET neuron activity. 12 

Since mice improved their performance in discriminating between CS+ and CS- through 13 

learning, we next sought to investigate how the activity of each neuronal subtype developed during 14 

learning. To investigate this, we performed a population-decoding analysis using a linear support 15 

vector machine (SVM) decoder to classify stimulus types on a trial-by-trial basis. Stimulus type 16 

was decoded throughout the trial using time-binned population activity (bin = 0.5 s) for Days 1–17 

5. There was a consistent sharp rise in the decoding accuracy of IT neurons after the stimulus 18 

presentation and the accuracy remained high throughout the trial (Fig. 3d). These results reveal a 19 

robust populational representation of individual stimuli in IT neurons that change little during 20 

learning. In contrast, ET neurons showed high CS discriminability in the reward time window at 21 

the beginning of learning, while a second peak gradually appeared during the stimulus presentation 22 

time window over the training period (Fig. 3h). These results align with the observation that many 23 
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ET neurons were responsive to reward before and at the early phase of learning (Day 1), and that 1 

an increase in activity associated with reward expectation emerged as learning progressed (Fig. 2 

3h). 3 

Given the distinct activity patterns of IT and ET neuronal populations, we wondered how 4 

individual neuronal activities evolve during learning. To assess this, we next analyzed neurons 5 

consistently identifiable across the five-day training period and tracked daily changes in their 6 

activity (Fig. 4a, c). Individual IT neurons exhibited stable response patterns throughout the 7 

learning period. A largely consistent neuronal population was activated by each stimulus from day 8 

to day (Fig. 4a). To further assess the response stability, we calculated the Pearson correlation of 9 

session-averaged activity traces for each neuron across different learning days and averaged these 10 

correlations across the population. This analysis confirmed that IT neuronal responses remained 11 

highly stable across days for both trial types (Fig. 4b). In contrast, ET neurons displayed more 12 

variable response patterns, with their activity changing from day to day (Fig. 4c), resulting in lower 13 

inter-day correlations (Fig. 4d). However, these correlations tended to gradually increase over 14 

time, suggesting that ET neuronal responses became more consistent. Together, these results 15 

suggest that individual IT neurons maintain stable activity that is unaffected by learning, while 16 

individual ET neurons undergo dynamic changes, with their activity patterns becoming more 17 

consistent as learning progresses. 18 

 19 

IT and ET neurons contribute to different aspects of learning 20 

The differences in responsiveness between IT and ET neurons during learning raise the 21 

question of how these two neuronal subtypes uniquely contribute to behavioral learning. We 22 

therefore examined the specific functional roles of IT and ET neuronal populations during the 23 
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associative learning task. We silenced each neuronal subtype in the C2 barrel by injecting a viral 1 

vector conditionally expressing an inhibitory designer receptor exclusively activated by designer 2 

drug (DREADD), hM4Di, into Tlx3-Cre or Sim1-Cre mice (Fig. 5a–c)31. Prior to each training 3 

session, a DREADD ligand, clozapine-N-oxide (CNO), was systemically injected into the mice, 4 

thus selectively inhibiting IT or ET neurons. Silencing either neuronal subtype led to a significant 5 

impairment in learning compared to control mice with intact S1 (Fig. 5d). The disruption of 6 

learning was not due to CNO injections alone as the learning remained intact when injecting CNO 7 

in mice without hM4Di expression (Fig. S3). 8 

Interestingly, the progression of overall anticipatory lick rates significantly differed 9 

between IT and ET neuron silencing (Fig. 5e). Under closer observation, during learning in control 10 

mice, anticipatory lick rates for CS+ increased as learning progressed, while lick rates for CS- 11 

increased during the first two days and then trended to decline (Fig. 5f). Inactivating IT neurons 12 

caused a general reduction in anticipatory lick rates for both CS+ and CS-, with a more pronounced 13 

decrease for CS+ (Fig. S4a), ultimately eliminating the difference between the two (Fig. 5g). 14 

Conversely, ET neuron inactivation resulted in a sharp increase in anticipatory lick rates for both 15 

CS+ and CS- on Days 1 and 2, which remained elevated throughout learning (Fig. 5h). Notably, 16 

the anticipatory lick rate for CS- was significantly higher than in control mice (Fig. S4b). 17 

Furthermore, similar to S1 inactivation using muscimol, silencing either IT or ET neurons had no 18 

effect on the behavioral performance of expert mice (Fig. S5). These results suggest distinct 19 

functional roles for IT and ET neurons in shaping stimulus-reward associative learning, where IT 20 

neurons are critical for the association to be formed, and ET neurons are critical for CS 21 

discrimination to be refined. 22 

 23 
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A reinforcement learning model reflecting L5 subnetworks captures learning dynamics 1 

The differences in response properties in IT and ET neurons and their impact on learning 2 

imply distinct computational roles in learning stimulus-reward associations. To explore this 3 

further, we employed mathematical modeling to decipher their specific contributions. The 4 

Rescorla-Wagner (RW) model is a simple yet widely used reinforcement learning framework for 5 

understanding classical Pavlovian conditioning32. The basic principle of the RW model is to update 6 

the value function (i.e., association strength) for each conditioned stimulus by calculating the 7 

reward prediction error (RPE) through learning. We implemented an RW-type model within a 8 

neural network framework, in which the neural network was trained to predict the value of each 9 

stimulus type (CS+ vs. CS-) using an RW update rule, here referred to as ‘value-encoding network’ 10 

(Fig. 6a). Next, we extended this model to incorporate three key features observed in our 11 

experimental results. First, IT neurons, which exhibited stable representations of stimuli before 12 

learning (Figs. 2, 3), were modeled as a neural network that was pre-trained in an unsupervised 13 

learning task to reconstruct (see Methods) and remained unchanged during stimulus-reward 14 

training. After unsupervised training, the IT neural network developed representations that help 15 

differentiate between stimuli, thus helping the value-encoding network in predicting the reward 16 

values (Fig. 6a, left). Second, based on our experimental results showing that reward-predicting 17 

responses to stimuli evolve in ET neurons over learning (Fig. 3), we modeled ET neurons as 18 

relaying reward prediction signals generated by the value-encoding network to an RPE calculation 19 

circuit (Fig. 6a, right). These signals are then compared with actual rewards, generating RPEs that 20 

update the value-encoding network during reward-based training. Lastly, since expert mice were 21 

able to perform the task without S1 (Fig. 1g), the learned associations (i.e., stimulus values) must 22 

therefore be stored in brain regions outside of S1. These regions should therefore also receive 23 
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sensory input and are capable of executing learned responses independently of S1 during expert-1 

level performance. To model this, the value-encoding network includes two input channels: ‘IT’ 2 

and ‘non-S1’ (Fig. 6a, left). Both channels independently transmit sensory information to predict 3 

stimulus values. This component of the model predicts that the IT channel is responsible for 4 

conveying richer stimulus representations coming from the IT network, while the non-S1 channel 5 

only conveys coarse stimulus representations (see Methods).  6 

The model was trained to associate two distinct classes of artificial stimuli, representing 7 

CS+ and CS-, with the correct reward outcome. The predicted anticipatory lick rate was derived 8 

by linearly scaling the association strength, or value, of each stimulus. Comparison with 9 

experimental data showed that the model accurately reproduced the learning dynamics across 10 

conditions. Specifically, in the control condition, the model closely tracks the tendency in the 11 

experimental data for the initial rise in lick rates for both stimuli, followed by a divergence where 12 

CS+ licks continued to increase, and CS- licks declined (Fig. 6b). Analysis of the IT neural 13 

network in the model revealed that this early general increase could be attributed to the proximity 14 

of CS+ and CS- stimuli in the encoding space (Fig. 6c), suggesting that overlapping stimulus 15 

representations in IT neurons contribute to the general increase observed in the experiments (Fig. 16 

5f). The model also captured the distinct learning dynamics observed when IT or ET neurons were 17 

blocked. Because in the model IT neurons are responsible for rich sensory encoding, blocking 18 

them resulted in a general slower learning for both stimuli (Fig. 6d). On the other hand, because 19 

ET neurons mediate the transmission of value for RPE computations blocking highlights the fast 20 

sensory learning mediated by IT neurons, but inability to correctly assign values to specific stimuli 21 

(Fig. 6e). Therefore, our model shows that comparing ET neuronal output against the actual reward 22 

outcome to generate a RPE is consistent with our data (Fig. 5h). Furthermore, it indicates the 23 
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potential involvement of an RPE calculation circuit downstream of ET neurons. Finally, as 1 

expected, our model exhibits learning transfer, so that as learning progresses, the non-S1 input 2 

channel in the value-encoding network increasingly builds stimulus-reward associations, leading 3 

to a reduced reliance on the IT input channel. This aligns with our experimental observation that, 4 

at the expert level, neither IT nor ET neurons in S1 are required for task execution (Fig. 6f).  5 

In conclusion, the model effectively captured the distinct contributions of IT and ET 6 

neurons to stimulus-reward learning and accurately mirrored experimental findings. These results 7 

highlight the complementary computational roles of IT and ET neurons, which fit within a classical 8 

associative learning model, where IT neurons provide representations of sensory stimuli to 9 

estimate stimulus value, and ET neurons relay this value to the prediction error regions for updating 10 

the value function.  11 
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DISCUSSION 1 

Recent studies have begun to reveal distinct roles for L5 IT and ET neurons in cortical 2 

sensory areas in decision-making, perception, and cognitive processes4,5,16,17,21. Our study extends 3 

the understanding of these roles by demonstrating the unique contributions of each L5 subtype to 4 

stimulus-reward associative learning. Specifically, we found that IT neurons have stable and robust 5 

responses to the stimuli from the beginning which are maintained throughout the learning process, 6 

regardless of the associated stimulus value. This indicates their critical role in reliably encoding 7 

sensory information. In contrast, ET neurons showed dynamic changes, with their activity patterns 8 

evolving as learning progressed. Their responses to the stimuli became more pronounced, 9 

coinciding with the emergence of anticipatory licking, suggesting that ET neurons encode the 10 

value and behavioral relevance of a stimulus, rather than merely responding to sensory input. 11 

Our chemogenetic inactivation experiments corroborated these distinctions: silencing IT 12 

neurons severely impaired the development of anticipatory licking for both CS+ and CS-, 13 

underscoring their essential involvement in the association of cue with reward. On the other hand, 14 

silencing ET neurons did not affect the overall increase in anticipatory licking but specifically 15 

prevented the suppression of licking to CS-, demonstrating their role in refining and differentiating 16 

learned responses. 17 

Moreover, these findings align seamlessly with the classical reinforcement learning 18 

framework. Our modeling results suggest that IT neurons encode sensory stimuli based on a pre-19 

acquired world model, facilitating value estimation that is crucial for learning. In contrast, ET 20 

neurons are engaged in transmitting this estimated value to compute prediction errors, a process 21 

fundamental to refining associations. Together, we conclude that L5 IT and ET neuronal 22 
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subpopulations in the sensory cortex contribute in distinct yet complementary ways to stimulus-1 

reward associative learning. 2 

 3 

Involvement of S1 in stimulus-reward learning 4 

Pharmacological inactivation of S1 severely impaired learning (Fig. 1f), while it did not 5 

disrupt the performance in expert mice (Fig. 1g). This observation aligns with previous studies, 6 

indicating that sensory cortex is critical during learning but not necessarily required for the 7 

performance of well-established, habitual responses, particularly for simple sensory tasks5,29,33. 8 

Importantly, our results imply that learned stimulus-reward associations are maintained outside of 9 

S1. 10 

The striatum, a central region involved in reward-based learning34, emerges as a likely 11 

candidate for the retention of learned associations, as lesions in this area have been shown to 12 

abolish conditioned responses even in fully trained animals29. Both IT and ET neurons in the 13 

sensory cortex project to the striatum. Previous studies have shown that stimulus-reward learning 14 

induces synaptic strengthening in cortico-striatal projections3 and blocking these pathways 15 

disrupts learning5, but until this study the specific roles of IT and ET neurons in this process had 16 

not been investigated. Given the results of this study, including the fact that IT and ET neuronal 17 

output are quite dissimilar, we hypothesize that they each exert different effects on striatal activity 18 

during learning, particularly in the context of value estimation and updating of learned 19 

associations.  20 
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 1 

Contribution of IT neuronal activity to stimulus-reward learning 2 

What are the implications of the clearly distinct response patterns and changes seen in IT 3 

vs. ET neurons? A large proportion of the IT neurons responded to the stimuli and were able to 4 

distinguish the stimulus types with high accuracy, and their response patterns remained largely 5 

unchanged during learning. Extrapolating from these observations, we hypothesize that the IT 6 

population forms a pre-trained network that encodes various features with high precision. 7 

Nevertheless, it was also notable that the majority of stimulus-responding IT neurons responded 8 

to both CS+ and CS- (Fig. 3c). Our model suggests that this overlap in representations contribute 9 

to the generalized stimulus-reward associations that mice initially acquire during learning (Fig. 10 

6c). The representational overlap between similar stimuli could promote generalized learning. In 11 

some cases of learning, it may reflect a biological strategy to quickly establish a generalized 12 

association between stimulus and outcome per se, and then to take a longer time to establish 13 

stimulus-specific differences that more closely predict outcome.  14 

 15 

Contribution of ET neuronal activity to stimulus-reward learning 16 

In contrast to IT neurons, ET neurons showed strong responses to the reward itself or to 17 

the stimuli that predict reward, with their response patterns dynamically changing as learning 18 

progressed. A recent report has highlighted the reward responsiveness of the apical dendrites of 19 

L5 neurons in the sensory cortex35, and our ET neuron results are consistent with this. Notably, 20 

during learning, ET neurons gradually developed reward prediction activity in response to both 21 

CS+ and CS-, coinciding with an increase in anticipatory licks. This raises the question of whether 22 

ET neuronal activity represents the motor responses accompanying licking. Further analysis of our 23 
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calcium activity data in ET neurons separating delayed from early lick trials, showed that this 1 

activity is at least partially independent of the motor response (Fig. S2). This is consistent with a 2 

previous study showing that dendrites of L5 neurons do not respond to spontaneous licks unrelated 3 

to rewards35, supporting the idea that the ET neurons convey reward prediction signals.  4 

Reward prediction signals are fundamental to the process of reinforcement learning, 5 

particularly in refining stimulus-specific responses in associative learning. According to classical 6 

theoretical models of reinforcement learning1,36,37, prediction errors are computed by comparing 7 

reward prediction signals with the actual reward availability, reinforcing responses to CS+ and 8 

suppressing responses to CS-. The idea that the output of ET neurons is used to calculate the reward 9 

prediction error necessary for refining the learned responses is consistent with the finding that the 10 

mice with silenced ET neurons failed to learn to discriminate between CS+ and CS- (Fig. 6a, e). 11 

However, since the initial association was unaffected by the inactivation of ET neurons, it suggests 12 

that their output is not critical for generating positive prediction errors, i.e., positive reinforcement. 13 

Instead, they are more likely to be involved in the generation of negative prediction errors, thereby 14 

suppressing incorrect responses, such as licking to CS-. Identifying the downstream circuits that 15 

compute prediction errors using the output of ET neurons would be an important area for future 16 

research. One potential target is the subcortical dopaminergic circuits38. Recent reports indicate 17 

that transient drops in subcortical dopamine signals are responsible for negative prediction errors 18 

and contribute to the attenuation of CS- responses in discrimination learning39. The reward 19 

prediction signals generated using the output of ET neurons may contribute to these dopamine 20 

dips.  21 

How reward prediction signals are generated in ET neurons remains to be investigated in 22 

future research. The apical dendrites of L5 neurons, located in cortical layer 1 (L1), are 23 
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hypothesized to function as critical sites for cortical association mechanisms40-44. L1 receives non-1 

sensory top-down inputs from higher cortical areas which may contribute to the formation of 2 

reward prediction signals. The orbitofrontal cortex (OFC) is an important structure in value 3 

encoding during stimulus-reward associations45-47. A recent study by Liu et al. demonstrated that 4 

top-down inputs from the OFC are involved in the formation of reward prediction activity within 5 

the sensory cortex by modulating the activity of dendrite-targeting inhibitory neurons48. Inhibition 6 

of top-down inputs from the OFC during learning prevented mice from suppressing incorrect lick 7 

responses to reward-irrelevant stimuli, paralleling our results from ET neuronal suppression. Thus, 8 

the pathway from the OFC to L5 ET neurons in the sensory cortex may convey reward prediction 9 

signals to downstream areas, facilitating the generation of negative prediction errors, essential for 10 

refining behavioral responses. 11 

 12 

In conclusion, we show that distinct subtypes of L5 neurons in sensory cortex are involved 13 

in learning, albeit in different aspects of learning. Overall, IT neurons showed stable responses 14 

conveying stimulus information necessary for forming general associations between stimuli and 15 

reward. In contrast, ET neuronal responses evolved over learning, conveying reward expectation 16 

signals, which were necessary for learning to discriminate between stimuli. Their unique activity 17 

patterns highlight parallel cortical computations during learning and demonstrate distinct yet 18 

complementary contributions of IT and ET neurons to associative learning12.  19 
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FIGURE LEGENDS 1 

 2 

Figure 1 | Whisker stimulus-reward associative learning depends on S1. 3 

(a) Behavioral task design. Mice were exposed to two different whisker stimuli of different 4 

frequencies: one stimulus (CS+, 1 s) followed by a reward after a short delay (trace interval, 0.5 5 

s), and the other (CS-, 1 s) left unrewarded.  6 

(b) Example training sessions (Days 1, 3 and 5) from a mouse showing anticipatory and 7 

consummatory licking during CS+ and CS- trials. Licking activities are shown in raster plots (top) 8 

and histograms (bottom). Top, raster plot with trial sorted according to stimulus type (CS+ vs. 9 

CS-). Shaded areas, stimulus presentation; black dashed lines, stimulus onset and offset; blue 10 

dashed lines, reward onset for CS+ trials. 11 

(c) Left, distribution of the anticipatory lick counts during CS+ (blue) and CS- trials (yellow) of 12 

an example session (Day 5 in b). Right, the area under the receiver operating characteristic 13 

(auROC), scoring behavioral performance. TPR: true positive rate; FPR: false positive rate. 14 

(d) Evolution of CS discrimination performance over five days of training (n = 20 mice; p = 8.1 × 15 

10-12, F = 21.32; one-way repeated-measure ANOVA). Gray lines, individual mice; dashed gray 16 

lines, mice that did not learn the task; black dashed line, chance level of behavioral discrimination 17 

between CS. Data are presented as mean ± SEM. 18 

(e) Coronal section of S1, showing the diffusion of muscimol injected in the C2 barrel column.  19 
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(f) Learning trajectory of mice with intact S1 (n = 20 mice), mice with saline injection (n = 6 mice), 1 

and mice with muscimol injection (n = 6 mice; p = 1.2 × 10-4, F = 12.48; two-way repeated-2 

measure ANOVA with post hoc Tukey-Kramer test). **p < 0.01, ***p < 0.001. Data are presented 3 

as mean ± SEM. 4 

(g) Behavioral performance of expert mice injected with muscimol (n = 6 mice; p = 0.95, F = 5 

0.055; one-way repeated-measure ANOVA). Data are presented as mean ± SEM; gray lines, 6 

individual mice. 7 
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 1 

Figure 2 | Distinct response patterns of L5 neuronal subtypes to sensory stimuli and reward. 2 

(a) Schematic showing the genetic and viral intersectional strategy, targeting L5 IT neurons in 3 

Tlx3-Cre mice and ET neurons in Sim1-Cre mice.  4 

(b) Images from coronal sections from S1 of a Tlx3-Cre mouse (top) and Sim1-Cre mouse 5 

(bottom) injected with AAV-Flex-GFP, showing the injection site in S1 and labeled axons in the 6 

secondary somatosensory cortex (S2), corpus callosum (CC), striatum (Str), and posterior medial 7 

thalamic nucleus (POm). 8 

(c) Longitudinal two-photon calcium imaging from Tlx3-Cre and Sim1-Cre mice injected with 9 

AAV-Flex-jGCaMP8m in S1 before, during, and after five days of training. 10 

(d) Behavioral performance of Tlx3-Cre and Sim1-Cre mice used in imaging experiments (n = 5 11 

Tlx3-Cre mice and 6 Sim1-Cre mice; p = 0.96, F = 0.0032; two-way repeated measure ANOVA). 12 

Data are presented as mean ± SEM. 13 

(e) An example field of view of IT neuronal dendrites. 14 
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(f) Heatmaps of IT neuronal responses to stimulus alone (left, CS+ responses; middle, CS- 1 

responses; n = 273 neurons) and reward alone (right, n = 262 neurons) before learning (n = 5 mice). 2 

ROIs in each heatmap are sorted by their mean response amplitudes within 1.5 s of stimulus or 3 

reward onset. 4 

(g) Top, fraction of IT neurons responding to CS+ or CS- before and after learning (*p = 0.032 for 5 

CS+; ***p = 4.5 × 10-8 for CS-; 2 × 2 χ2 test). Inset, average responses of CS-responding IT neurons 6 

(mean ± SEM). Dashed line, stimulus onset. Bottom, fraction of IT neurons responding to reward 7 

before and after learning (p = 0.13; 2 × 2 χ2 test). 8 

(h) Left, scatter plot showing IT neurons’ responses to reward before and after learning. Each 9 

circle represents an individual neuron. Colors represent neurons’ CS selectivity before learning 10 

(blue, CS+ only; yellow, CS- only, green, both stimuli). Right, IT neurons’ response amplitudes 11 

to reward before vs. after learning (mean ± SEM), separated by their CS selectivity before learning 12 

(n = 58 neurons responding to CS+, p = 0.95; n = 51 neurons responding to CS-, p = 0.91; n = 104 13 

non-responding neurons, p = 0.24; two-sample t-test).  14 

(i–l) Same as e–h but for ET neurons. (j) n = 159 neurons for stimulus alone, n = 157 neurons for 15 

reward (n = 6 mice). (k) Top, **p = 0.0043 for CS+, ***p = 5.8 × 10-5 for CS-. Bottom, **p = 0.0062. 16 

(l) n = 22 neurons responding to CS+, *p = 0.020; n = 18 neurons responding to CS-, *p = 0.013; 17 

n = 96 non-responding neurons, p = 0.11. 18 

19 
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 1 

Figure 3 | L5 IT neurons maintain robust stimulus encoding, while ET neurons develop 2 

reward-expectation responses during learning. 3 

(a) Heatmaps of trial-averaged responses of IT neurons during learning, sorted based on the mean 4 

response amplitudes from the stimulus onset until the reward onset at each day (n = 5 mice). 5 

(b) Colored trace, calcium responses average across IT neurons responding to CS+ (blue) or 6 

responding to CS- (yellow). Inset, the numbers indicating the fractions of IT neurons responding 7 

to CS+ or responding to CS-. Gray trace, average lick rates. Data are presented as mean ± SEM 8 

(c) Left, fractions of IT neurons responding to CS+ only (blue), CS- only (yellow), or both stimuli 9 

(green) (p = 0.14, χ2 test = 17.24; 4 × 5 χ2 test). Right, peak response across the 5 days to CS+ 10 

trials (blue; F = 0.75; one-way ANOVA) and CS- trials (yellow; F = 0.43; one-way ANOVA). 11 

Data are presented as mean ± SEM. 12 

(d) Left, SVM decoder performance in classifying the trial types (CS+ or CS-) at different time 13 

points within the task over training Days 1–5, based on IT neuronal responses (n = 5 mice). Right, 14 
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decoder accuracies for the time window marked in pink on the left (F = 0.44; one-way repeated 1 

measure ANOVA). Data are presented as mean ± SEM. 2 

(e–h) Same as a–d but for ET neurons (n = 6 mice). (g) Left, fractions of ET neurons responding 3 

to CS+ only (blue), CS- only (yellow), or both stimuli (green) (p = 1.8 × 10-7, χ2 test = 55.02; 4 × 4 

5 χ2 test). Right, peak response across the 5 days to CS+ trials (blue; F = 2.72; one-way ANOVA) 5 

and CS- trials (yellow; F = 3.29; one-way ANOVA). (h) Right, F = 3.37; one-way repeated 6 

measure ANOVA. Data are presented as mean ± SEM. 7 

8 
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 1 

Figure 4 | Static IT neuronal encoding and adaptive ET neuronal responses throughout 2 

learning. 3 

(a) Heatmaps of trial-averaged responses of IT neurons during learning, sorted based on the 4 

calcium response amplitudes at Day 5. 5 

(b) Pairwise Pearson’s correlation coefficient between training days of matched single neurons’ 6 

trial-averaged traces (n = 130 tracked IT neurons from n = 5 mice). The values were averaged 7 

across all neurons for each mouse and then averaged across mice. 8 

(c, d) Same as a and b but for ET neurons. (d) n = 108 tracked ET neurons from n = 6 mice. 9 
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 1 

Figure 5 | Silencing IT or ET neurons disrupts learning, but with different effects. 2 

(a) Targeted chemogenetic silencing of IT or ET neurons in S1 in Tlx3-Cre or Sim1-Cre mice, 3 

respectively. 4 

(b) Example image of a coronal section of S1 where IT neurons expressed hM4Di-mcherry. 5 

(c) Same as b but for ET neurons. 6 

(d) Behavioral performance of mice with S1 intact (n = 20 mice), silenced IT neurons (n = 6 mice), 7 

ET silenced ET neurons (n = 6 mice; p = 1.9 × 10-5, F = 16.15; two-way repeated-measure ANOVA 8 

with post hoc Tukey-Kramer test). Data are presented as mean ± SEM. **p < 0.01, ***p < 0.001.  9 

(e) Mean anticipatory lick rates of mice with S1 intact (n = 20 mice), silenced IT neurons (n = 6 10 

mice), and silenced ET neurons (n = 6 mice; p = 0.034, F = 3.80; two-way repeated-measure 11 

ANOVA with post hoc Tukey-Kramer test). Data are presented as mean ± SEM. *p < 0.05. 12 

(f) Left, lick rates for CS+ (blue) and CS- (yellow) average across mice for Days 1–5 (n = 20 13 

mice). Right, evolution of mean anticipatory lick rates during learning (p = 1.5 × 10-4, F = 6.06; 14 

two-way repeated-measure ANOVA). Dashed lines represent CS onset and offset and reward 15 

onset. Data are presented as mean ± SEM. ***p < 0.001.  16 

(g) Same as f but for mice with silenced IT neurons (p = 0.77, F = 0.45; two-way repeated-measure 17 

ANOVA). 18 
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(h) Same as f but for mice with silenced ET neurons (p = 0.82, F = 0.38; two-way repeated-measure 1 

ANOVA). 2 

3 
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 1 

Figure 6 | A reinforcement learning model of L5 subnetworks reproduces learning dynamics 2 

across conditions. 3 

(a) Schematics of the Rescorla-Wagner (RW)-type model, which implements two steps: value 4 

estimation and value update. Left, a pre-trained IT network (purple) processes the stimulus, 5 

providing a stimulus representation (hIT), with which the value-encoding network (VW) estimates 6 

the value of the stimulus (Vt). Additionally, the value-encoding network also receives a stimulus 7 

representation, hnon-IT, independently of S1. The predicted value is also used to model the 8 

anticipatory lick rate. Right, ET neurons convey the predicted value, which is then compared with 9 

the actual reward to calculate the reward prediction error (RPE). Finally, the RPE is sent back to 10 

the value-encoding network to update the prediction function. 11 

(b) Association strengths (solid lines) from the model for CS+ and CS- stimuli through training in 12 

the control condition, plotted together with anticipatory lick rates (dashed lines) from the 13 

experimental data. Data are presented as mean ± SEM. 14 
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(c) Relationship between learning dynamics and overlap between CS+ and CS- stimuli in the IT 1 

network representational space (black dots), with an exponential fit (black line). Learning 2 

dynamics is represented by the difference in association strengths (i.e., anticipatory licks) between 3 

distinct CS+ and CS- pairs after Session 2. Representational overlap is measured as the Euclidean 4 

distance between CS+ and CS- in the IT network space. Inset, the first two principal components 5 

(PCs) of IT representations for three example CS+ and CS- pairs, marked as open circles in the 6 

main panel, and their corresponding association strengths across training. 7 

(d) Same as b but for the condition where IT neurons were silenced. 8 

(e) Same as b but for the condition where ET neurons were silenced. 9 

(f) Discrimination performance in experts before and after silencing of S1, from the model (black) 10 

and the experimental data (gray). Data are presented as mean ± SEM. 11 
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 1 

Figure S1 | Mice can learn the reversed paradigm. 2 

Evolution of behavioral discrimination between CS with reversed CS configuration (CS+ is 5 Hz 3 

and CS- is 10 Hz) over 13 days of training (n = 6 mice; p = 7.1 × 10-17, F = 20.45; one-way 4 

repeated-measure ANOVA). Gray lines, individual mice. Data are presented as mean ± SEM. 5 

6 
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 1 

Figure S2 | ET neuronal signals are not a simple reflection of lick-related motor activity. 2 

Left, calcium responses in CS+ trials on Day 5, where mice initiated licking during the stimulus 3 

presentation time window, averaged across ET neurons responding to CS+ (n = 71 neurons from 4 

6 mice; 75–92 early lick trials per mouse). Right, calcium responses for CS+ trials where mice 5 

licked after the stimulus presentation time window (n = 71 neurons from 6 mice; 8–25 late lick 6 

trials per mouse). Note that there was calcium activity in the stimulus window despite the lack of 7 

licking. Blue trace, ET neuronal calcium responses; gray trace, average lick rates. Data are 8 

presented as mean ± SEM. 9 

10 
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 1 

Figure S3 | CNO alone does not disrupt the learning progression. 2 

Behavioral performance of control mice with intact S1 (n = 20 mice) and wild-type mice injected 3 

with CNO (n = 6 mice) (p = 0.14, F = 2.34; two-way repeated-measure ANOVA with post hoc 4 

Tukey-Kramer test). Data are presented as mean ± SEM. 5 

6 
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 1 

Figure S4 | IT and ET neuronal inactivation affects the evolution of anticipatory licking 2 

through learning. 3 

(a) Anticipatory lick rates for CS+ trials for mice with intact S1 (n = 20 mice), mice with silenced 4 

IT neurons, (n = 6 mice) and mice with silenced ET neurons (n = 6 mice; p = 0.031, F = 3.92; two-5 

way repeated measure ANOVA with post hoc Tukey-Kramer test). *p < 0.05. Data are presented 6 

as mean ± SEM.  7 

(b) Anticipatory lick rates for CS- trials for mice with intact S1 (n = 20 mice), mice with silenced 8 

IT neurons, (n = 6 mice) and mice with silenced ET neurons (n = 6 mice; p = 0.017, F = 4.71; two-9 

way repeated measure ANOVA with post hoc Tukey-Kramer test). *p < 0.05. Data are presented 10 

as mean ± SEM. 11 

12 
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 1 

Figure S5 | IT and ET neuronal inactivation does not disrupt behavior after learning. 2 

Behavioral performance of expert mice with silenced IT neurons (n = 6 mice; p = 0.077, F = 3.36; 3 

left) and silenced ET neurons (n = 6 mice; p = 0.13, F = 2.56; one-way repeated-measure ANOVA; 4 

right). Gray lines, individual mice. Data are presented as mean ± SEM. 5 
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METHODS 1 

Animals 2 

Adult C57BL/6J wild-type mice (male and female) or Sim1-Cre (KJ18) (MMRRC, no. 3 

031742-UCD) and Tlx3-Cre (PL56) (MMRRC, no. 041158-UCD) transgenic mice (male and 4 

female) mice (>P60) were used. Mice were housed in groups of 2–4 mice per cage in a 12:12 5 

reversed day-night cycle. All experiments were conducted following the guideline given by 6 

Landesamt für Gesundheit und Soziales Berlin (LAGeSo) and were approved by this authority. 7 

 8 

Surgical procedures 9 

During the surgery, mice were anesthetized with isoflurane (1.5–2.0% in O2) or ketamine 10 

(100 mg/kg)/xylazine (10 mg/kg) and kept on a thermal blanket. The skin was removed and the 11 

skull was carefully cleaned and scraped with a surgical scalpel. A light-weight head-post was fixed 12 

on the skull over the right hemisphere with light-curing adhesives and dental cement. Intrinsic 13 

imaging was performed over the skull under light isoflurane anesthesia (1.5-0.8% in O2 ) to locate 14 

the C2 barrel column for viral injections and pharmacology. 15 

For chemogenetic inhibition, AAV2/1-hSyn-DIO-hM4D(Gi)-mCherry (Addgene, Product 16 

#44362) was injected through a glass pipette (tip diameter, 5–10 µm) into the contralateral (left) 17 

S1 (100 nL at 700 μm depth under the pia). The experiments started 3 weeks after viral injection.  18 

For in vivo two-photon calcium imaging, AAV2/1-syn-FLEX-jGCaMP8m-WPRE 19 

(Addgene, Product #162378) was injected through a glass pipette (tip diameter, 5–10 µm) into the 20 

contralateral (left) C2 barrel column (100 nl at 700 μm depth under the pia). A 3-mm diameter 21 

craniotomy was made over the injected area and the skull and dura were carefully removed. The 22 

craniotomy was sealed with a triple-layered glass coverslip (3 mm diameter for the two bottom 23 
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layers and 4 mm diameter for the top layer) with cyanoacrylate glue and dental cement. 1 

Experiments started 3 weeks after viral injection.  2 

  3 

Behavior 4 

Mice were kept on a reversed light/dark cycle. Habituation of the mice to head restraint 5 

began a week after the head-post surgery. Head-restrained time on the first day was 5 min and then 6 

gradually increased each day until the mice sat calmly for an hour. Mice were water restricted 7 

during habituation and subsequent periods of behavioral training. 8 

Behavioral events (e.g., licking, whisker deflection, reward delivery) were monitored and 9 

controlled by a custom-written program running on a microcontroller board (Arduino). The C2 10 

whisker was deflected by displacing a light metal tube (~3 mg) slid over the whisker using a 11 

magnetic coil placed underneath the animal. Local magnetic force was generated by loading the 12 

coil with a sinusoidal current. Mice were exposed to one of two different frequencies of whisker 13 

deflection, 10 Hz and 5 Hz, with a duration of 1s. The 10 Hz whisker deflection (CS+) was paired 14 

with a water reward (~5 µl), delivered through a lick port 0.5 seconds after the stimulus offset, 15 

while the 5 Hz whisker deflection (CS-) was not followed by any reward. Licking was detected by 16 

a piezo-electric device attached to the licking spout. The mice were allowed to lick at any time, 17 

and no punishments were given for any premature licking event. Each mice received 100 trials of 18 

each stimulus type (200 trials in total, each trial having an inter-trial interval of 6–8 s), each session 19 

repeated for 5 days. The probability of receiving CS+ or CS- was 50% during each session.  20 

For in vivo calcium imaging, there was a pre-training and post-training imaging session 21 

one day prior as well as one day after training respectively. In these sessions mice were exposed 22 
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to the stimuli only (without reward) and reward alone (without stimuli) to assess the stimulus 1 

response and the reward response, respectively, of the neurons before and after training.  2 

 3 

Behavioral performance analysis 4 

To assess the performance of the task, we used the anticipatory licking occurring from the 5 

stimulus onset to the time of the reward (1.5 s) to calculate the area under a receiver operating 6 

curve (auROC). auROC ranges from 0 to 1 where auROC > 0.5 indicates higher amount of 7 

anticipatory licks in the CS+ trials and auROC < 0.5 indicates higher amount of anticipatory licks 8 

in the CS- trials. 9 

 10 

In vivo pharmacology 11 

Before every training session, the mice were lightly anesthetized with isoflurane (1.5–2.0% 12 

in O2). A very small craniotomy was made above the C2 barrel column and muscimol (5 mM, 13 

Tocris) was injected at two depths (at depths of 700 µm and 350 µm, 100 nl each). The craniotomy 14 

was sealed with a silicone sealant (Kwik-Cast, World Precision Instruments). The mice were put 15 

back in their homecage to recover for 10 min before commencing the behavior. After the last 16 

training session of the pharmacology experiment, fluorescent muscimol (BODIPY TMR-X 17 

conjugate, Thermo Fisher Scientific) was injected into the same injection site (at depths of 700 µm 18 

and 350 µm, 100 nl each), and mice were perfused 30 min after the injection. 19 
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 1 

In vivo chemogenetics 2 

The experiments started 3 weeks after viral injection of hM4Di. Before each session, mice 3 

were injected with CNO (5 mg/kg intraperitoneally, Tocris) under brief anesthesia with isoflurane 4 

and kept for 30 min in a home cage prior to behavioral testing.  5 

  6 

Histology 7 

Mice were anesthetized using isoflurane (1.5–2% in O2) and euthanized by an 8 

intraperitoneal injection of urethane (1.5 g/kg). Mice were perfused transcardially with 0.1 M PBS, 9 

followed by 4% paraformaldehyde (PFA) in PBS. After perfusion, brains were removed from the 10 

skull and postfixed in PFA overnight. The next day, brains were washed in PBS, transferred into 11 

a 30% sucrose solution in PBS, and left for 24–48 h for cryoprotection. For cryosectioning, brains 12 

were embedded in optimal cutting temperature compound. Coronal brain sections (70 μm) were 13 

washed twice in PBS for a minimum of 10 min each at room temperature before staining the nuclei 14 

were stained using DAPI (NucBlu Fixed Cell ReadyProbe Reagent, ThermoFisher). After 15 

washing, sections were mounted on slides and coverslipped with Fluoromount-G mounting 16 

medium. Images were obtained using a fluorescent microscope (DMI 4000B, Leica 17 

Microsystems). 18 

 19 

Two-photon calcium imaging 20 

Imaging from behaving mice was performed with a resonant-scanning two-photon 21 

microscope (Thorlabs) equipped with GaAsP photomultiplier tubes (Hamamatsu). jGCaMP8m 22 

was excited at 940 nm with a Ti:Sapphire laser (Mai Tai eHP DeepSee, Spectra-Physics) and 23 
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imaged through a 16×, 0.8 NA water-immersion objective (Nikon). Full-frame images (512 × 512 1 

pixels; pixel size, 0.35 × 0.35 µm2) were acquired from the apical trunks of ET or IT neurons 2 

expressing jGCaMP8m at a depth from the pia of ~200 µm at 30 Hz using ScanImage 4.1 software 3 

(Vidrio Technologies). 4 

 5 

Imaging data analysis 6 

Motion correction of raw files and regions of interest (ROI) selection was performed using 7 

Suite2p49. Fluorescence change (ΔF/F0) was calculated for each trial where F0 was the average 8 

fluorescence during trial baseline, i.e., during 1 s prior to stimulus onset. ROIs were considered 9 

stimulus responsive if the time-averaged response during 1.5 s after stimulus onset significantly 10 

increased than the baseline activity during 1 s prior to stimulus onset (paired two-sided Wilcoxon 11 

signed rank test, alpha = 0.01), and if their normalized response exceeded 0.05 ΔF/F0. For reward 12 

alone trials, we compared the baseline activity to the mean activity during 1.5 s after reward 13 

delivery.  14 

We trained a linear Support Vector Machine (SVM) classifier to assess if we could predict 15 

trial type (CS+ vs. CS- trials) from the neuronal data. We trained the SVM on 80% of the trials 16 

and tested it on the residual 20% of the trials. Trials were binned at 500 ms and the SVM 17 

performance was evaluated for each bin. This process of random resampling of train and test data 18 

was repeated 1000 times for each bin and the performance of the decoder was collected after each 19 

iteration.  20 

Stability of individual neuronal response was measured by performing a Pearson 21 

correlation coefficient for each neuron across the 5 days. To assess both the stimulus response 22 
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stability and reward response stability, trial average responses in the time window of 3 s from 1 

stimulus onset to 1.5 s after reward delivery.  2 

 3 

Computational model 4 

We designed a Rescorla Wagner-type model50, which learned the value (association 5 

strength) of each stimulus (CS+ vs. CS-) over multiple trials. 6 

We modeled the encoding of different stimuli values, i.e., association strengths, using a 7 

simple feedforward ‘value-encoding neural network’ denoted as 𝑉! with synaptic weights, 𝑤. This 8 

network consisted of a single linear hidden layer with 116 units where the network inputs were 9 

combined into a unified representation, which was then fed to an output layer with sigmoid 10 

activation. The value-encoding network, 𝑉!, consisted of two distinct input channels: an S1 IT 11 

input channel, providing the IT neuronal representation of the current stimulus (i.e., CS+ or CS- 12 

stimuli) and a non-S1 input channel, providing a ‘raw’ representation of the current stimulus 13 

independent of S1. At each trial 𝑡, the value-encoding network prediction for the current stimulus, 14 

𝑥", is defined as, 15 

𝑉" =	𝑉!(ℎ"#$ , ℎ"%&%'(1) 16 

where ℎ"#$ denotes the IT representation of the current stimulus, 𝑥", while ℎ"%&%'(1 denotes the 17 

non-S1 representation of the same stimulus, 𝑥". The IT representation, ℎ"#$, was obtained from a 18 

separate neural network, IT network, which was pre-trained with unsupervised learning (see 19 

below). Conversely, we assumed the non-S1 representation, ℎ"%&%'(1, to be the ‘raw’ 20 

representation of the stimulus, 𝑥" (i.e., ℎ%&%'(1" = 𝑥"). Note, the same non-S1 representation 21 

ℎ"%&%'(1, was also used by a separate value-encoding sub-network to support S1-independent 22 

expert performance, as described below. 23 
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The value-encoding network adapted its synaptic weights, 𝑤, to predict the correct values, 1 

𝑉, for CS+ and CS- stimuli based on the experienced reward outcomes. Following RW models, 2 

the value-encoding network synaptic weights were updated at each trial 𝑡 as following, 3 

[𝛥𝑤]𝑡 	= 	𝛼	𝛿𝑡𝛻𝑤𝑉𝑤 4 

where 𝛿" denotes the reward prediction error (RPE) at trial 𝑡, 5 

𝛿" = 	𝑅(𝑥") 	− 𝑉!(ℎ"#$ , ℎ"%&%'(1) 6 

Here, 𝑅 denotes the reward for the current stimulus, 𝑥". Note that we assumed the reward 7 

to be 1 for CS+ stimuli, while to be 0 for CS- stimuli, i.e., 𝑅(𝑥" = 𝐶𝑆+) 	= 	1 and 𝑅(𝑥" = 𝐶𝑆−) 	=8 

	0. 9 

In summary, at each trial 𝑡, the value-encoding network, 𝑉!, took the IT stimulus 10 

representation, ℎ"#$, as well as the non-S1 stimulus representation, ℎ"%&%'(1, as inputs and was 11 

trained to predict the correct value, 	𝑉", for the current stimulus, 𝑥". Finally, the value-encoding 12 

network included a separate sub-network, which could predict the value of each stimulus 13 

exclusively based on the non-S1 representation, ℎ"%&%'(1. During learning, this network was 14 

trained based on the S1 IT-dependent value predictions, 𝑉!(ℎ"#$ , ℎ"%&%'(1), using a simple mean 15 

squared loss. In this way, at expert performance, the model could solve the task without requiring 16 

S1 IT stimuli representations. 17 

 18 

IT network pre-training 19 

The IT neural network consisted of a feedforward auto-encoder architecture with two 20 

encoder layers (with 50 units each), a bottleneck layer (with 15 units) and two decoder layers (with 21 

50 units each). This IT network was pre-trained via unsupervised learning, using a standard L2 22 

loss between the original and the network-reconstructed stimuli51. The stimuli were generated by 23 
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sampling from eight distinct 20-dimensional Gaussian distributions with distinct random means 1 

and equal isotropic covariances. Each Gaussian distribution represented a different stimulus type, 2 

such as a specific whisker stimulation frequency, with each sample representing a noisy 3 

representation of the corresponding stimulus type. Note, we used Gaussian distributions to 4 

represent different stimulus types rather than fixed values to account for noise in sensory 5 

processing. Two of the eight distinct types of stimuli were randomly selected to be used as CS+ 6 

and CS- stimuli in the stimulus-reward association task. Once the IT network was pre-trained, its 7 

synaptic weights were fixed and did not change during the association task. The IT-dependent 8 

representation, ℎ"#$, for the current stimulus, 𝑥", was derive as the output of the second encoder 9 

layer.  10 

 11 

IT and ET silencing 12 

We modeled IT chemogenetic silencing by replacing the IT-dependent input, ℎ#$, to the 13 

value-encoding network with zero-mean isotropic Gaussian noise. As a result, the value-encoding 14 

network could no longer exploit the IT-dependent stimuli representations to estimate the value of 15 

each stimulus. Similarly, we reproduced ET chemogenetic silencing by replacing the value 16 

predictions relayed by ET neurons with isotropic Gaussian noise. As a result, RPEs could no longer 17 

be estimated correctly.  18 

 19 

IT representational overlap and learning performance 20 

For the IT representational overlap analysis, we used the eight Gaussian distributions of 21 

stimuli that pre-trained the IT network. Randomly pairing these distributions allowed us to assess 22 

how overlap between IT representations of stimulus pairs (CS+ vs. CS-) influences learning in the 23 
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stimulus-reward association task. We computed the mean Euclidean distance between IT 1 

representations, ℎ#$, across paired stimuli and measured learning performance as the difference in 2 

stimulus association strength (i.e., value prediction) between CS+ and CS- after Session 2, where 3 

a larger positive difference indicated better learning.  4 

5 
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