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Direct specification of lymphatic 
endothelium from mesenchymal 
progenitors
 

Irina-Elena Lupu    1,2,12, David E. Grainger    1,2,12, Nils Kirschnick3,4,12, 
Sarah Weischer    5, Erica Zhao1,2, Ines Martinez-Corral6, Hans Schoofs    6, 
Marie Vanhollebeke1,2, Grace Jones1,2, Jonathan Godwin1,2, Aden Forrow7, 
Ines Lahmann8,9, Paul R. Riley    1,2, Thomas Zobel    5, Kari Alitalo    10,11, 
Taija Mäkinen    6,10, Friedemann Kiefer    3,4  & Oliver A. Stone    1,2 

During embryogenesis, endothelial cells (ECs) are generally described 
to arise from a common pool of progenitors termed angioblasts, which 
diversify through iterative steps of differentiation to form functionally 
distinct subtypes of ECs. A key example is the formation of lymphatic ECs 
(LECs), which are thought to arise largely t hr ou gh t ra ns di ff er en tiation from 
venous endothelium. Opposing this model, here we show that the initial 
expansion of mammalian LECs is primarily driven by the in situ differentiation 
of mesenchymal progenitors and does not require transition through 
an intermediate venous state. Single-cell genomics and lineage-tracing 
experiments revealed a  p op ul at ion o             f p  a r  ax  ial mesoderm-derived Etv2+Prox1+ 
progenitors that directly give rise to LECs. Morphometric analyses of 
early LEC proliferation and migration, and mutants that disrupt lymphatic 
development supported these findings. Collectively, this work establishes a 
cellular blueprint for LEC specification and indicates that discrete pools of 
mesenchymal progenitors can give rise to specialized subtypes of ECs.

The lymphatic vasculature is a blunt-ended, unidirectional vessel 
network essential for the maintenance of tissue fluid homeostasis, 
immune cell trafficking and lipid absorption1. Although defects in the 
formation and function of lymphatic vessels have been described in a 
broad range of diseases, including lymphedema, cancer, obesity and 
neurodegeneration1, our understanding of the mechanisms governing 
their formation and function has historically trailed behind that of the 
cardiovascular system2. The inner lining of lymphatic vessels is formed 

by a single layer of lymphatic endothelial cells (LECs), which have been 
shown to play important roles in organ development3, homeostasis4 and 
regeneration3. Despite these key functions, our understanding of how 
LECs are specified during embryonic development remains incomplete, 
with the developmental origins of LECs debated for over a century5–11.

During embryogenesis, formation of the vertebrate vasculature 
begins with the de novo specification of endothelial cells (ECs) from 
mesoderm-derived mesenchymal progenitors known as angioblasts12,13. 
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VEGFR2+ cells were FACS-sorted with the goal of capturing ECs as well 
as any residual VEGFR2+ progenitors differentiating from mesoderm21 
(Extended Data Fig. 2c). To maximize the diversity of EC subtypes col-
lected at E10.5/E11.5, we captured cells that expressed VEGFR2 and/
or PECAM1 (Extended Data Fig. 2d,e). A total of 19,699 high-quality 
cells were collected across three developmental stages (Extended 
Data Fig. 3a,b), with clustering of the merged dataset using Seurat 
version 4 revealing 30 distinct cellular states (Extended Data Fig. 3c,d). 
For visualization and to characterize putative transitions between 
cellular states, we used partition-based graph abstraction (PAGA) 
followed by ForceAtlas2 embedding (Fig. 1f). Each cellular state was 
comprised, to differing extents, of cells from each lineage (Fig. 1g and 
Extended Data Fig. 3d) and developmental stage (Fig. 1h and Extended 
Data Fig. 3d) and included paraxial mesoderm (Pax3+, Lbx1+, Prrx2+), 
angioblasts (Etv2+, Tal1+), venous ECs (Cdh5+, Nr2f2+, Dab2+), artery ECs 
(Cdh5+, Gja5+, Bmx+), LEC1 (Prox1+) and LEC2 (Prox1+, Lyve1+) (Fig. 1i and 
Extended Data Fig. 4a). Differential gene expression analyses between 
Pax3 lineage-positive and lineage-negative ECs identified a number of 
genes with lineage-biased expression patterns (Extended Data Fig. 4b), 
including enhanced expression of genes linked to retinoic acid signal-
ing (Cyp26b1, Rbp1, Stra6), a signaling pathway previously linked to 
lymphatic development22,23. Cluster identities were experimentally 
validated in E10.5 embryos using immunofluorescence and fluores-
cence in situ hybridization (Extended Data Fig. 5a–d′). We found that 
VWF (Extended Data Fig. 5a–b′), enriched in venous and arterial clusters 
(Fig. 1f and Extended Data Fig. 4a), was expressed throughout the dorsal 
aorta and CV but not by Prox1+ ECs in the surrounding mesenchyme. 
Expression of Lyve1, which was enriched in the venous, sinus venosus 
and liver EC clusters (Fig. 1f and Extended Data Fig. 4a), was restricted 
to the dorsal CV and not expressed by Prox1+ ECs in the surrounding 
mesenchyme at this stage (Extended Data Fig. 5c–d′).

LECs arise directly from specialized mesenchymal progenitors
To gain further insight into the cell state transitions that occur dur-
ing LEC specification, we used PAGA-based trajectory inference. 
These analyses revealed known developmental transitions within 
our dataset, including a trajectory from sinus venosus ECs to liver 
ECs24 (Extended Data Fig. 5e), and indicated that LECs can arise 
directly from angioblasts without transition through a venous EC 
state (Extended Data Fig. 5e). These findings were supported by 
Waddington Optimal Transport (Waddington-OT) (Extended Data 
Fig. 5f–k). In agreement with these findings, detailed examination of 
gene expression revealed an angioblast-like cellular state comprising 
cells that express mesenchymal markers, including Prrx2 (ref. 25), 
the endothelial pioneer factor Etv2 (ref. 26) and moderate expres-
sion of the master regulator of LEC fate Prox1 (Fig. 1i). Furthermore, 
co-expression analyses identified single cells that express both Etv2 
and Prox1 (Fig. 1j), which may represent bona fide lymphangioblasts. 

In response to locally deposited growth factors, angioblasts further 
differentiate to form ECs that migrate and coalesce to form the first 
functional vessels. It is from these initial vessels that most blood and 
lymphatic vessel networks are thought to emerge14. Early histological 
assessment of lymphatic vessel formation in mammalian embryos 
described venous endothelium8 and mesenchymal cells5 as sources of 
lymphatics. However, loss-of-function15 and genetic lineage-tracing9 
analyses in mouse later indicated that LECs mainly transdifferentiate 
from venous endothelium, with live imaging of lymphatic develop-
ment in zebrafish showing that a similar process occurs in teleosts7,11. 
In contrast, live imaging of facial lymphatic specification in zebrafish16, 
chimeric transplantation analyses in avian embryos10 and distinct 
lineage-tracing analyses in mouse6,17 revealed alternative non-venous 
sources of LECs in various tissues.

Using genetic lineage tracing in mouse, we previously showed 
that the overarching source of most mammalian LECs is the paraxial 
mesoderm18. These detailed imaging analyses revealed that paraxial 
mesoderm-derived cells contribute to venous endothelium and form 
LECs in most tissues. Here, using a combination of single-cell genom-
ics, inducible lineage tracing and high-resolution imaging, we show 
that LECs can arise directly from a specialized pool of Etv2+Prox1+ 
angioblasts, in a spatiotemporal pattern that mimics migration from 
venous endothelium into the surrounding mesenchyme.

Results
Single-cell analysis of EC specification
Immunofluorescence analyses of Pax3Cre/+;Rosa26tdTomato embryos, where 
paraxial mesoderm-derived LECs and their ancestors are labeled by 
tdTomato18, revealed that VEGFR2+ETV2+ angioblasts begin to emerge 
from somitic mesoderm at embryonic day (E) 8.25 (Fig. 1a-b′). Subse-
quently, paraxial mesoderm-derived cells contribute to the common 
cardinal vein (CV) and intersegmental vessels at E8.75 (Extended Data 
Fig. 1a), the sinus venosus, cardinal, umbilical and vitelline veins at 
E9.25 (Extended Data Fig. 1b,c) and E9.5 (Fig. 1c) and PROX1+ ECs sitting 
both inside and outside of the CV at E10.5 (Fig. 1d). Flow cytometry 
analysis of dissected Pax3Cre/+;Rosa26tdTomato embryos at E13.5 showed 
that, although the proportion of paraxial mesoderm-derived blood 
ECs (BECs) is relatively limited (Extended Data Fig. 2a,b), most LECs 
are paraxial mesoderm derived at this developmental stage (Extended 
Data Fig. 2a,b).

To more precisely define molecular transitions during LEC dif-
ferentiation, we performed single-cell RNA sequencing (scRNA-seq) 
at the onset of LEC specification (E9.5), during the emergence of LEC 
progenitors from venous endothelium (E10.5) and as primordial 
thoracic duct (pTD) formation begins (E11.5) (Fig. 1e)18,19. Due to the 
restricted contribution of the Pax3 lineage to LECs of the trunk20, at 
each stage we dissected embryos at the level of the otic vesicle and first 
pharyngeal arch (Fig. 1e). To further enrich for cells of interest, at E9.5 

Fig. 1 | Spatiotemporal analyses of EC specification. a, Representative whole-
mount immunofluorescence for tdTomato, VEGFR2 and ETV2 in an E8.25 
Pax3Cre/+;Rosa26tdTomato embryo. Dorsal view at the level of somites III–V (n = 4). 
b,b′, High-magnification single confocal plane of boxed area in a, highlighting 
a population of VEGFR2+ETV2+ angioblasts emerging from the lineage-traced 
somite. c, Representative immunofluorescence for tdTomato and PECAM1 on 
a transverse cryosection from a Pax3Cre/+;Rosa26tdtomato embryo at E9.5 (n = 6). 
d, Representative immunofluorescence for tdTomato, PECAM1 and PROX1 on 
a transverse vibratome section from a Pax3Cre/+;Rosa26tdTomato embryo at E10.5 
(n = 6). e, Schematic highlighting embryonic stages and dissection strategy 
(dashed line) for scRNA-seq analyses. f, ForceAtlas2 (FA) embedding of 19,699 
cells based on PAGA, with each dot representing a single cell. Cellular states  
were manually annotated based on known gene expression patterns.  
g, FA embedding showing the relationship between cell lineage and cell state.  
h, FA embedding showing the relationship between embryonic stage and cell 
state. i, FA embedding showing gene expression of mesenchymal (Prrx2), 

angioblast (Etv2), pan-endothelial (Cdh5) and lymphatic endothelial (Prox1) 
markers. j, Scatterplot showing co-expression of Etv2 and Prox1 in single cells.  
k,k′, Representative whole-mount analysis of Pecam1, Etv2 and Prox1 expression 
at E9.5 using HCR shows Etv2 and Prox1 co-expressing cells in the hypaxial somite 
(n = 6). l–l″, Representative immunofluorescence for EMCN, ETV2, PROX1 and 
tdTomato on transverse vibratome sections from a Pax3Cre/+;Rosa26tdtomato embryo 
at E9.5 (n = 6). m,m′, Representative whole-mount analysis of Pecam1, Etv2 and 
Prox1 expression at E10.0 using HCR shows Etv2 and Prox1 co-expressing cells in 
the pharyngeal arches (n = 6). TS, Thieler stage; aSHF, anterior second heart field; 
CCV, common cardinal vein; DA, dorsal aorta; HDM, hypaxial dermomyotome; 
ISV, intersegmental vessel; LB, limb bud; LPM, lateral plate mesoderm; NC 
mesenchyme, neural crest-derived mesenchyme; NT, neural tube; OFT, outflow 
tract; PA, Pharyngeal arch; PGC, primordial germ cell; pSHF, posterior second 
heart field; RBC, red blood cell; SHF, second heart field; SV, sinus venosus. Scale 
bars, 50 μm (a, c and l–l″), 25 μm (b), 100 μm (d, k′ and m′), 500 μm (k), 1 mm (m).
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Collectively, these data suggest that LECs may arise directly from a 
dedicated pool of Etv2+Prox1+ angioblasts.

To characterize the spatiotemporal distribution of Etv2+Prox1+ 
cells during development, we performed hybridization chain reaction 
(HCR) and immunofluorescence on whole embryos and vibratome sec-
tions between E9.0 and E10.0 (Fig. 1k–m′ and Extended Data Fig. 5l–o′). 
Whole-mount imaging of Etv2, Prox1 and Pecam1 expression identified 
Etv2+Prox1−Pecam1− angioblasts within the somitic paraxial mesoderm 

at E9.0 (Extended Data Fig. 5l–m′). By E9.5, Etv2 expression was reduced 
in the anterior somites (Fig. 1k), where strong Prox1 expression was 
observed anterior to the forelimb bud, as previously described15. 
High-resolution imaging of Etv2 and Prox1 co-expression revealed 
a population of Etv2+Prox1+Pecam1– angioblasts emerging from the 
hypaxial dermomyotome at E9.5 (Fig. 1k′). These findings were con-
firmed with immunofluorescence imaging in Pax3Cre/+;Rosa26tdTomato 
embryos, showing that paraxial mesoderm-derived, ETV2+PROX1+ 
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angioblasts differentiate within mesenchyme surrounding the CV at 
E9.5 (Fig. 1l–l″). At E10, Etv2+ cells were largely absent from the lym-
phatic anlage anterior to the limb bud, highlighting the transient nature 
of this cellular state (Extended Data Fig. 5n–o′). Notably, analysis of 
Etv2, Prox1 and Pecam1 expression revealed the presence of Etv2+Prox1
+Pecam1– angioblasts in the pharyngeal mesoderm (Fig. 1m,m′), a 
known source of cardiac LECs27,28. Collectively, these analyses identify 
specialized angioblasts for LECs that arise directly from paraxial and 
pharyngeal mesoderm.

To better characterize the molecular transitions associated with 
LEC specification from paraxial mesoderm, we performed single-cell 
Multiome (scMultiome) analyses of Pax3 lineage-positive VEGFR2+ 
nuclei isolated from Pax3Cre/+;Rosa26tdTomato embryos at E9.5 (Extended 
Data Fig. 6a). A total of 3,801 high-quality single cells were collected 

(Extended Data Fig. 6b–d), with clustering of the merged dataset using 
Seurat version 5 revealing 12 distinct cellular states (Extended Data 
Fig. 6d). To focus on cells of interest, we computationally removed the 
neural, neural crest and mixed mesoderm populations. Re-clustering 
of this subset of 3,606 cells revealed 11 cellular states (Fig. 2a,b and 
Extended Data Fig. 6e,f), including dermomyotome (Lbx1+, Pax3+), 
early angioblast (Etv2High, C1ql2+, Tal1+, Lmo2+), late angioblast (Etv2+, 
Prox1+, Pecam1−), early EC1 (Prox1+, Pecam1+), early EC2 (Prox1low, 
Pecam1High), venous ECs (Tll1+) and sinus venosus ECs (Gata4+, Tll1+). 
Expression of the artery marker Gja5 suggests that there is no clear 
contribution of paraxial mesoderm-derived cells to arterial endothe-
lium (Extended Data Fig. 6f), as previously observed in our scRNA-seq 
analyses across multiple stages (Extended Data Fig. 3d). We experi-
mentally validated cluster identity and differentiation potential 
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Fig. 2 | Multiomic analysis of paraxial mesoderm-derived endothelium. 
a, Weighted nearest neighbor UMAP (wnnUMAP) embedding of single-cell 
multiome analyses of 3,606 tdTomato+ VEGFR2+ PECAM1+ cells FACS-sorted 
from Pax3Cre/+;Rosa26tdtomato embryos at E9.5. Cellular states were manually 
annotated based on known gene expression patterns and downstream 
analyses. b, Violin plots showing expression of selected genes across each 
cellular state. c, Representative whole-mount analysis of Pecam1, Etv2 and Lbx1 
expression at E9.5 using HCR (n = 6). c′, High-magnification image of boxed 
area in c highlighting a population of Etv2+ angioblasts emerging from the 
Lbx1+ hypaxial dermomyotome. d,d′, Representative immunofluorescence 
for tdTomato, PECAM1 and PROX1 on a transverse vibratome section 
from an Lbx1Cre/+;Rosa26tdTomato embryo at E10.5 (n = 4). e,e′, Representative 

immunofluorescence for tdTomato, PECAM1 and PROX1 on a transverse 
vibratome section from an Lbx1Cre/+;Rosa26tdTomato embryo at E12.5 (n = 4).  
f, Representative whole-mount analysis of Tll1 and Etv2 expression at E9.5 using 
HCR (n = 6). High-magnification images of boxed area in f highlighting Tll1 
expression in CV ECs (f′) and C1ql2 expression in a subset of Etv2+ angioblasts (f″). 
g, Representative HCR analysis of Pecam1 and Tll1 on a vibratome section from 
an E10.5 embryo. g′,g″, High-magnification images of boxed area in g showing 
Pecam1, Tll1 and Prox1 expression (n = 4). CV, cardinal vein; DA, dorsal aorta; 
HDM, hypaxial dermomyotome; ISV, intersegmental vessel; pTD, primordial 
thoracic duct. Scale bars, 500 μm (c and f), 100 μm (c′, d′, e, f′ and g′), 200 μm  
(d and g), 50 μm (e′).
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using HCR, immunofluorescence imaging and genetic lineage tracing  
(Fig. 2c–g″). Combined analysis of Pecam1, Etv2 and Lbx1 expression 
showed that Etv2+Pecam1− angioblasts are specified within the Lbx1+ 
hypaxial domain of the dermomytome29 at E9.5 (Fig. 2c,c′). Immuno-
fluorescence imaging of lineage-traced Lbx1Cre/+;Rosa26tdTomato embryos 
showed tdTomato labeling of PROX1+ ECs in the dorsal portion of the 
CV and surrounding mesenchyme at E10.5 (Fig. 2d,d′) and the pTD and 
jugular lymph sac ( JLS) at E12.5 (Fig. 2e,e′). Whole-mount imaging of 
Tll1 and Etv2 showed restricted expression of Tll1 in the anterior por-
tion of the CV as well as substantial labeling of the sinus venosus at 
E9.5 (Fig. 2f,f′). Limited expression of Tll1 was also observed in venous 
intersegmental vessels but did not overlap with expression of Etv2 
(Fig. 2f′). Notably, imaging of C1ql2 and Etv2 revealed co-expression in 
a subset of angioblasts (Fig. 2f″), supporting our scMultiome analyses 
(Fig. 2a,b). Imaging of transverse sections from E10.5 embryos revealed 
restricted expression of Tll1 in the CV endothelium (Fig. 2g), which was 
absent from Prox1+ ECs in the surrounding mesenchyme (Fig. 2g′,g″). 
Tll1 expression was also observed in mural cells surrounding the dorsal 
aorta (Fig. 2g–g″). Collectively, these analyses validate our scMultiome 
sequencing, identify molecular differences between Prox1+ ECs found 
in the CV and those found in the surrounding mesenchyme and sug-
gest that a considerable proportion of Prox1+ ECs are specified directly 
from angioblasts.

To investigate transcription factor (TF) activity and chromatin 
dynamics during LEC specification, we performed gene regulatory 
network (GRN) analyses and assessed chromatin composition and 
putative TF binding at the Prox1 locus (Fig. 3a–f). We used SCENIC+ to 
identify enhancer-driven GRNs (eGRNs) comprising cis-regulatory ele-
ments, upstream TFs and candidate target genes (Fig. 3b and Extended 
Data Fig. 6h,i). These analyses highlighted the roles of ETS TFs during 
EC specification (ETV2; Fig. 3b and Extended Data Fig. 6h) and differ-
entiation (FLI1, ETV6, ETS2, ELK3, ETS1, ERG; Fig. 3b and Extended Data 
Fig. 6h) and identified known regulators of EC gene expression (MEF2A, 
MEF2C; Fig. 3b) and LEC specification (SOX18; Fig. 3b)30. Additionally, 
eGRN analyses revealed putative regulons that may play roles in the 
differentiation of ECs and LECs (Fig. 3b), including regulatory nodes 
driven by the early B cell factor family members EBF1 and EBF2 (Fig. 3b 
and Extended Data Fig. 6g,i). EBF1 is a pioneer factor required for B cell 
differentiation31 and neuronal development32, whereas EBF2 regulates 
bone formation33 and specification of brown adipose tissue34. Network 
analyses revealed cis-regulatory elements and target genes that may 
be co-regulated by ETV2 and EBF1/EBF2, indicating that these TFs may 
also act during EC specification (Extended Data Fig. 6i).

In a more targeted approach, we investigated regulation of Prox1 
(Fig. 3c–f). We characterized the expression of known regulators of 
Prox1, which have been studied at later stages of embryonic develop-
ment or in mature LECs30,35, including Sox18, Gata2, Nfatc1 and Foxc2 
(Fig. 3c). Notably, these TFs are expressed in angioblasts and, thus, 
may play similar roles in the initial induction of Prox1 expression dur-
ing LEC specification from angioblasts (Fig. 3c). To assess chroma-
tin composition at the Prox1 locus, we generated pseudobulk assay 
for transposase-accessible chromatin with sequencing (ATAC-seq) 
profiles by combining reads from individual cells within clusters and 
contrasted these with bulk ATAC-seq data from FACS-sorted LECs 
and BECs (Fig. 3d). These analyses identified a number of putative 
cis-regulatory elements that display increased accessibility during dif-
ferentiation from dermomyotome to endothelium (Fig. 3d,e), including 
a previously described enhancer element that sits 11 kb upstream of 
the Prox1 transcription start site (mm10:chr1:190,181,400–190,182,4
00 bp)36. Additionally, we identified elements at +63 kb (mm10:chr1:1
90,106,700–190,107,700), −330 kb (mm10:chr1:190,500,600–190,50
1,600), −347 kb (mm10:chr1:190,517,800-190,518,800), −362kb (mm1
0:chr1:190,532,650-190,533,650) and −371 kb (mm10:chr1:190,541,80
0–190,542,400), which are accessible at the onset of Prox1 expression 
in angioblasts (Fig. 3c,e). To investigate regulation of Prox1 by these 

putative cis-regulatory elements, we performed ATAC-seq footprinting 
using TOBIAS (Fig. 3f). TOBIAS is a digital genomic footprinting tool 
that maps Tn5 insertion events to characterize TF occupancy at known 
binding motifs. As individual motifs may be bound by multiple TFs 
from the same family in a manner that is indistinguishable to TOBIAS, 
we highlighted motifs bound by TF family members (for example, 
ETS, SOXF, GATA, NFAT, FOX) rather than binding by individual TFs 
(for example, ETV2, ERG, SOX18, GATA2, NFATC1, FOXC2) (Fig. 3f). 
These analyses suggest that described regulators of Prox1 may bind to 
proximal promoter elements and cis-regulatory regions to drive Prox1 
expression in angioblasts and early ECs, displaying TF co-occupancy 
at several of these regulatory elements (Fig. 3f). As extensive binding 
of ETS TFs is predicted in angioblasts, we probed the possibility of 
direct regulation of Prox1 by ETV2 by comparing our pseudobulk and 
bulk ATAC profiles with published ETV2 chromatin immunoprecipita-
tion followed by sequencing (ChIP-seq) analyses in mouse embryonic 
stem cells37. These analyses identified an ETV2 ChIP-seq peak overlap-
ping the accessible element at −371 kb, which was also predicted to be 
bound by ETS TFs in early angioblasts (Fig. 3f); it is possible that ETV2 
also binds additional elements in the Prox1 locus in angioblasts that 
are not bound in embryonic stem cells. Enhancer usage is known to 
be highly dynamic during embryonic development, with individual 
enhancers driving stage-specific biological functions38. Our data sug-
gest dynamic remodeling of chromatin composition and TF binding 
within the Prox1 locus during development, as we observed that regions 
of highly accessible chromatin in E9.5 angioblasts and ECs are closed 
in E13.5 LECs, whereas other regions display increased accessibility 
at later stages (Fig. 3d,e). Collectively, our analyses suggest that LEC 
specification from paraxial mesoderm is accompanied by chromatin 
remodeling and TF binding in angioblasts and implicate a number of 
known regulators of Prox1 in this process.

Temporal labeling of paraxial mesoderm derivatives
We next sought to assess the anatomical distribution of LECs derived 
from the paraxial mesoderm at distinct developmental stages using a 
tamoxifen-inducible Pax3CreERT2 driver39. For validation, we performed 
immunofluorescence with an ESR1 antibody to detect CreERT2. Strong 
CreERT2 expression was detected in the dorsal neural tube and der-
momyotome at E9.5 (Extended Data Fig. 7a-b′) and E10.5 (Extended 
Data Fig. 7c-d′). Notably, in agreement with previous reports21, we 
found that Pax3-driven CreERT2 expression overlapped with VEGFR2 
in the hypaxial dermomyotome at E9.5 (Extended Data Fig. 7a-b′) 
and was absent from PECAM1+ ECs at E9.5 and E10.5 (Extended Data 
Fig. 7a–d′), demonstrating the utility of this line for labeling paraxial 
mesoderm-derived ECs. To assess the timing of LEC specification from 
the paraxial mesoderm, we administered a single dose of tamoxifen to 
pregnant Pax3CreERT2/+;Rosa26tdTomato animals at E7.0, E8.0, E9.0 or E10.0 to 
label cells from ~E7.25, ~E8.25, ~E9.25 or ~E10.25, respectively. Embryos 
were collected at E13.5 and analyzed by flow cytometry to compare BEC 
and LEC labeling with constitutive labeling in Pax3Cre/+;Rosa26tdTomato 
animals (Extended Data Fig. 7e). These analyses revealed that, although 
labeling of BECs is very limited after tamoxifen administration beyond 
E8, significant labeling of LECs persists after induction at E9, indicat-
ing that the fate of paraxial mesoderm-derived angioblasts becomes 
restricted to LECs as development progresses.

To investigate the spatial contribution of paraxial mesoderm 
derivatives to blood and lymphatic endothelium, we administered 
tamoxifen to Pax3CreERT2/+;Rosa26tdTomato animals at multiple stages of 
development and performed immunofluorescence imaging (Fig. 4a–j″ 
and Extended Data Fig. 7i–j′). Imaging of transverse vibratome sections 
at E10.5 showed that most PROX1+ ECs in the mesenchyme surrounding 
the CV are labeled after tamoxifen administration at E8.0 (Fig. 4a,a′,c) 
or E9.0 (Fig. 4b,c). In contrast, labeling of PROX1+ venous ECs was sig-
nificantly reduced after tamoxifen administration at E9.0 (Fig. 4b,c), 
with a limited proportion of PROX1+ ECs on the dorsal aspect of the CV 
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Fig. 3 | GRN analyses during LEC specification. a, Weighted nearest neighbor 
UMAP (wnnUMAP) embedding of single-cell multiome analyses of 3,606 
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labeled under these conditions (Fig. 4b,c). Of note, after tamoxifen 
administration at E9.0, we observed embryos in which a substantial 
proportion of PROX1+ ECs in the mesenchyme surrounding the CV were 
labeled in the absence of venous labeling, again suggesting that LEC 
specification can occur without transition through a venous interme-
diate. The observation that paraxial mesoderm-derived angioblasts 
continue to support venous expansion after E9.0 is in agreement with a 
recent study reporting labeled ECs in the CV after tamoxifen induction 
of Etv2CreERT2;Rosa26tdTomato animals at E9.5 (ref. 40). Notably, using a Cre 
driver expressed from the Myf5 locus (a myogenic transcription factor 
gene expressed from ~E9.0), we again found a contribution of labeled 
cells to the dorsal aspect of the CV at E10.5 (Extended Data Fig. 7f–h).

In agreement with our flow cytometry analysis of BEC and LEC labe-
ling at E13.5 (Extended Data Fig. 7e), imaging of transverse vibratome 
sections at E12.0 showed a substantial contribution of Pax3-lineage 
cells to BECs in the neural tube after tamoxifen at E8.0 (Fig. 4d,d′), 
which was lost after E9.0 tamoxifen (Fig. 4e,e′). In contrast, imaging 
of transverse sections at E12.0 showed that most PROX1+ LECs in the 
pTD and lymph sac are labeled after tamoxifen administration at E8.0 
(Fig. 4f–f″) or E9.0 (Fig. 4g–g″), whereas labeling is largely absent after 
tamoxifen administration at E10.0 (Fig. 4h–h″). These analyses show 
that, between E8.0 and E9.0, the fate of paraxial mesoderm-derived 
angioblasts becomes restricted to lymphatic endothelium and indi-
cate that tamoxifen-independent tracing of LECs does not occur in 
Pax3CreERT2/+;Rosa26tdTomato animals. After tamoxifen administration to 
Pax3CreERT2/+;Rosa26tdTomato animals at E9, almost complete labeling of 
PROX1+ LECs was observed in subcutaneous tissues at E13 (Fig. 4i,i′) and 
in both lymphangiogenic sprouts (Fig. 4j,j′) and isolated LEC clusters 
(Fig. 4j,j″) of the lumbar dermis at E16; lymphatic vessels that were 
previously proposed to arise from a non-venous source6. In contrast, 
labeling of LECs in the heart at E13.0 (Extended Data Fig. 7i–i″) and 
E16.0 (Extended Data Fig. 7j,j′) was more limited than that observed 
in Pax3Cre/+;Rosa26tdTomato embryos (Extended Data Fig. 7k–l′). Col-
lectively, these analyses provide evidence for a specialized paraxial 
mesoderm-derived angioblast that is a major source of lymphatic 
endothelium.

Reassessing the venous source of LECs
We next set out to re-evaluate the extent to which venous endothe-
lium may serve as a source of mammalian LECs. Live imaging analyses 
in zebrafish embryos showed that LECs emerge from a subpopula-
tion of venous ECs7, which undergo cell divisions that give rise to 
LECs and venous ECs41. The evidence for a predominantly venous 
source of LECs in mammals comes from lineage-tracing analyses of 
Prox1CreERT2 and Tg(Tek-cre) mice9. In contrast to our findings, which 
show concomitant initiation of PROX1 expression in the CV and sur-
rounding mesenchyme at E9.5 (Fig. 1k′–l″), tamoxifen administration 
to Prox1CreERT2;Rosa26LacZ animals at E9.5 led to sparse labeling of the 
dorsal CV and no labeling of non-venous cells at E13.5 (ref. 9), suggesting 
that early labeling of Prox1-expressing cells using this approach is inef-
ficient. Analysis of our scRNA-seq dataset showed that Tek is expressed 
not only in venous ECs but also in angioblasts during LEC specification  

(Extended Data Fig. 8a). Furthermore, our previous analyses of dermal 
lymphatic vessel development in Tg(Tek-cre)12Flv/J;Rosa26mTmG embryos 
identified double-reporter-positive LECs, indicative of recent recom-
bination events induced by Tg(Tek-cre) in differentiated LECs6. Collec-
tively, these observations bring into question the use of Tg(Tek-cre) mice 
as a tool for labeling only venous-derived LECs. Given these caveats, we 
used Tg(Tek-cre)5326Sato;Rosa26tdRFP and Tg(Tek-cre)12Flv/J;Rosa26tdTomato mice 
to revisit these analyses. Whole-mount immunofluorescence imaging 
of Tg(Tek-cre)5326Sato;Rosa26tdRFP embryos revealed tdRFP−PROX1+ ECs 
dorsal to the CV at E9.5 (Extended Data Fig. 8b). Unlabeled PROX1+ ECs 
were also observed in vibratome sections of Tg(Tek-cre)5326Sato;Rosa26tdRFP 
embryos at E10.5 (Extended Data Fig. 8c,c′) and E11.5 (Extended Data 
Fig. 8d) and in the pTD at E12.5 (Extended Data Fig. 8e,e′). Quantifi-
cation of labeling at each stage revealed that approximately 30% of 
PROX1+ ECs outside of the venous endothelium are Tg(Tek-cre)5326Sato 
lineage negative (Extended Data Fig. 8f), a figure that likely underes-
timates the true non-venous contribution given that Tek is expressed 
in angioblasts (Extended Data Fig. 8a). Similar observations were 
made in Tg(Tek-cre)12Flv/J;Rosa26tdTomato embryos at E10.5 (Extended 
Data Fig. 8g,g′). Notably, the formation of lymph sac-like structures 
comprising LYVE1+PROX1+ LECs in Tg(Tek-cre)12Flv/J;Prox1fl/fl embryos 
provides further evidence for a non-venous source of LECs (Extended 
Data Fig. 8h–i′). Collectively, these analyses provide evidence for a 
major non-venous contribution to developing lymphatics and raise 
questions about the use of Tg(Tek-Cre) mice as a tool to specifically 
label vein-derived LECs.

To further evaluate the developmental source of LECs, we assessed 
cell proliferation, reasoning that if migrating venous ECs are the major 
source of LECs, a substantial increase in EC numbers would be required 
to maintain venous integrity during the rapid expansion of lymphatics 
that occurs from E10. Characterization of cell cycle phase (Extended 
Data Fig. 9a,b) and gene expression (Extended Data Fig. 9c) in our 
scRNA-seq dataset revealed that most cells in the venous cluster are in 
G1 (Extended Data Fig. 9a,b) and express low levels of genes associated 
with cell cycle progression (Extended Data Fig. 9c). In contrast, most 
cells in the angioblast and LEC1 clusters are in S/G2/M (Extended Data 
Fig. 9a–c). These analyses suggest that angioblast-derived LECs and 
their ancestors, and not venous ECs, are endowed with the prolifera-
tive capacity to support rapid growth of LECs. To assess the expansion 
of venous ECs, and PROX1+ ECs inside and outside of the veins, we 
performed quantitative whole-mount light sheet imaging of embryos 
stained for ERG and PROX1 between E9.5 and E11.0 (Fig. 5a–e). These 
analyses revealed a rapid expansion of PROX1+ ECs outside the vein, 
increasing approximately 32-fold between E9.5 and E11, from 351 ± 85 
to 11,510 ± 2,832 cells (±s.d.) (Fig. 5a–e). In contrast, more modest 
increases were observed in total venous ECs and PROX1+ venous ECs, 
increasing approximaterly 6.5-fold (1,250 ± 301 to 8,025 ± 557 cells 
(±s.d.)) and approximately nine-fold (140 ± 32 to 1,242 ± 328 cells 
(±s.d.)), respectively (Fig. 5a–e).

To empirically assess the proliferation of PROX1+ ECs inside 
and outside of the venous endothelium, we used a dual-pulse labe-
ling strategy (Fig. 5f–i and Extended Data Fig. 9d). To maintain 

Fig. 4 | Temporal analysis of LEC specification from paraxial mesoderm. 
Representative immunofluorescence images of tdTomato, PECAM1 and PROX1 
on transverse vibratome sections from Pax3CreERT2/+;Rosa26tdTomato embryos at 
E10.5 after tamoxifen administration at E8 (a,a′) or E9 (b,b′). c, Quantification 
of percentage tdTomato labeling of PROX1+ ECs present inside or outside of 
the venous endothelium of Pax3CreERT2/+;Rosa26tdTomato embryos at E10.5, after 
tamoxifen administration at E8.0 (n = 5, three pregnant dams) or E9.0 (n = 6, 
three pregnant dams). Each symbol represents data from an individual embryo 
(*** P < 0.001). Representative immunofluorescence images of tdTomato and 
PECAM1 on transverse vibratome sections from Pax3CreERT2/+;Rosa26tdTomato 
embryos at E12.0 after tamoxifen administration at E8.0 (d,d′; n = 6) or E9.0 
(e,e′; n = 6). Representative immunofluorescence images of tdTomato, PECAM1 

and PROX1 on transverse vibratome sections from Pax3CreERT2/+;Rosa26tdTomato 
embryos at E12.0 after tamoxifen administration at E8.0 (f–f″; n = 6), E9.0 
(g–g″; n = 6) or E10.0 (h–h″; n = 6). i,i′, Representative immunofluorescence 
image of tdTomato, PECAM1 and PROX1 on a sagittal vibratome section from 
a Pax3CreERT2/+;Rosa26tdTomato embryo at E13 after tamoxifen administration at E9 
(n = 4). j–j″, Representative immunofluorescence images of tdTomato, NRP2 
and PROX1 on whole-mount skin from Pax3CreERT2/+;Rosa26tdTomato embryos after 
tamoxifen administration at E9 (n = 5). CV, cardinal vein; DA, dorsal aorta; LS, 
lymph sac; NT, neural tube; pTD, primordial thoracic duct. Scale bars, 100 μm 
(a,a′, b,b′, d,d′, e,e′, f′,f″, g′,g″, h′,h″ and i,i′), 200 μm (f, g and h), 250 μm (j), 
50 μm (j′,j″). Statistical analyses were performed using unpaired Student’s t-test. 
Data are presented as mean ± s.d.
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Fig. 5 | Quantitative analysis of LEC expansion. Representative whole-mount 
immunofluorescence for ERG and PROX1 in E9.5 (a,a′), E10 (b,b′), E10.5 (c,c′) 
and E11.0 (d,d′) embryos. 3D projections of regions of interest were segmented 
(a′–d′) for temporal quantification of ERG+PROX1− ECs within the venous 
endothelium, ERG+PROX1+ ECs within the venous endothelium and ERG+PROX1+ 
ECs outside of the venous endothelium. e, Quantification of total ECs and 
PROX1+ ECs inside and outside of the venous endothelium between E9.5 and 
E11.0 (E9.5, n = 3; E10, n = 6; E10.5, n = 6; E11, n = 3). f, Schematic representation 
of the dual-pulse labeling strategy for analysis of cell cycle dynamics. g–g″, 
Representative immunofluorescence for EMCN, PROX1, EdU and BrdU on 
a transverse vibratome section from an E10.5 embryo. h, Quantification of 
labeling of PROX1+ ECs inside and outside of the venous endothelium with EdU 

and/or BrdU (n = 4). i, Quantification of cell cycle duration inside and outside 
of the venous endothelium at E10.5 (n = 4, *** P < 0.001). j,j′, Representative 
immunofluorescence for EMCN, PROX1 and KI67 on a transverse vibratome 
section from an E10.5 embryo. k, Quantification of growth fraction for 
PROX1+ ECs present inside or outside of the venous endothelium (n = 3). l–l″, 
Representative immunofluorescence for EMCN, PROX1, mCherry (G1/early S) and 
mVenus (S/G2/M) on a transverse vibratome section from an E10.5 Rosa26Fucci2 
embryo. m, Quantification of PROX1+ ECs in S/G2/M phases of the cell cycle 
inside or outside of the venous endothelium (n = 3, **** P < 0.001). DA, dorsal 
aorta. Scale bars, 500 μm (a–d), 50 μm (g–g″), 100 μm (j,j′ and l–l″). Statistical 
analyses were performed using unpaired Student’s t-test. Data are presented as 
mean ± s.d.
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ethynyl-2′-deoxyuridine (EdU) bioavailability over the course of the 
experiment, we administered EdU three times at 2-h intervals, followed 
by a 2-h 5-bromo-2′-deoxyuridine (BrdU) pulse (Fig. 5f). The growth 
fraction of PROX1+ ECs was calculated using KI67 immunofluorescence 
to account for potential differences in growth state between cells inside 
and outside the vein (Fig. 5j,k and Extended Data Fig. 9d) and con-
trasted with growth fraction in the entire CV or dorsal aorta (Extended 
Data Fig. 9e,f). Analysis of EdU and BrdU labeling revealed higher 
incorporation in PROX1+ ECs outside of the vein at E10.5 (Fig. 5g,h), 
which translated to significantly shorter cell cycle duration in these 
cells (26.6 ± 5.5 h inside vein and 8.1 ± 1.8 h outside vein (±s.d.); Fig. 5i). 
In agreement with these findings, analysis of Rosa26Fucci2 embryos42, 
where cells in G1/early S-phase are labeled with mCherry and cells in 
S/G2/M are labeled with mVenus, revealed that a higher proportion of 
PROX1+ ECs outside of the vein are in S/G2/M phase at E10.5 (Fig. 5l,m). 
Collectively, these findings show that rapid expansion of PROX1+ ECs 
outside of the vein (Fig. 5a–e) occurs despite only modest venous 
proliferation. Given the limited proliferation of venous endothelium at 
these stages, CV expansion may be supported by continued addition of 
cells from the paraxial mesoderm, as indicated by our lineage-tracing 
analyses (Fig. 4b,c). This model further challenges the prevailing view 
that, upon induction of PROX1 expression in venous ECs, LEC pro-
genitors migrate dorsally from venous endothelium to form the first  
lymphatic structures.

The migration of LECs is highly dependent on vascular endothelial 
growth factor-C (VEGFC)19,43; however, the role of VEGF signaling during 
LEC specification from paraxial mesoderm is unknown. Our scMul-
tiome analyses indicate that Etv2+ angioblasts are initially specified 
from Kdr+ (Vegfr2) mesoderm and then sequentially upregulate Flt4 
(Vegfr3) and Prox1 (Fig. 2a,b and Extended Data Fig. 10b). Interestingly, 
although we did not observe substantial expression of Vegfa (Extended 
Data Fig. 10b), Vegfc expression was observed in dermomyotome and 
angioblasts as well as in sinus venosus and neural tube ECs (Extended 
Data Fig. 10b). To validate these observations, we performed HCR 
analyses in whole-mount embryos at E9.5 (Fig. 6a–d″ and Extended 
Data Fig. 10d–g″). Combined analysis of Kdr, Flt4 and Etv2 expression 
revealed that all Etv2+ cells were Kdr+, and some Etv2+Kdr+ cells also 
expressed Flt4 (Fig. 6a-b″), indicating that Etv2 and Kdr co-expression 
precedes Flt4 expression. Etv2 was shown to directly regulate Flt4 
expression in zebrafish embryos44. To investigate regulation of Flt4 by 
ETV2 in mice, we compared our pseudobulk and bulk ATAC profiles with 
published ETV2 ChIP-seq37 and identified multiple overlapping peaks in 
the Flt4 locus (Extended Data Fig. 10c), suggesting that ETV2 may bind 
these putative regulatory elements in angioblasts to drive chromatin 
remodeling or induce Flt4 expression. FLT4 is required to maintain 
PROX1 expression in early LECs45, and our analysis of Flt4, Prox1 and 
Etv2 expression revealed that Etv2+Prox1+ cells always expressed Flt4 
(Fig. 6c,d″), suggesting that FLT4 may act upstream of PROX1 dur-
ing angioblast differentiation. HCR analysis of Vegf ligands demon-
strated broad, largely unrestricted Vegfa expression (Extended Data 
Fig. 10d-e″). In contrast, Vegfc expression was enriched in the dermo-
myotome and dorsal aorta and in Etv2+ angioblasts surrounding the CV 
(Extended Data Fig. 10f-g″), suggesting that it may act through both par-
acrine and autocrine signaling during LEC specification. Collectively, 
these findings suggest that VEGFC/VEGFR3 signaling acts upstream 
of PROX1 during LEC specification from paraxial mesoderm-derived 
angioblasts.

To address the functional importance of VEGFC signaling, we 
performed whole-mount immunofluorescence for PROX1 and ETV2 in 
Vegfc+/+ and VegfcLacZ/LacZ embryos (Fig. 6e-f′). As previously reported43, 
these analyses revealed a reduction in PROX1-expressing cells sur-
rounding the CV (Fig. 6e-f′). Notably, this reduction was coupled to 
an increase in ETV2-expressing cells (Fig. 6e-f′), suggesting that, in 
the absence of VEGFC/VEGFR3 signaling, specification of LECs from 
paraxial mesoderm stalls at the level of the angioblast. These findings 

indicate that, rather than stimulating migration of ECs from venous 
endothelium into the surrounding mesenchyme, the primary function 
of VEGFC may be to drive in situ differentiation of angioblasts into 
PROX1+ ECs. To further assess the plausibility of PROX1+ EC migration 
from the CV, we combined in situ hybridization and immunofluores-
cence for Ccbe1, Vegfc, PECAM1 and PROX1 at E10.5 (Fig. 6g,h). These 
analyses revealed that Vegfc is expressed along the lateral body wall 
and that co-expression with Ccbe1, which is essential for processing 
of VEGFC into its lymphangiogenic form46, occurs in two domains 
(Fig. 6g,h). One domain sits dorsal to the CV, in the region of the 
hypaxial dermomyotome, and a second domain immediately flanks 
the ventrolateral CV. The absence of Ccbe1 from the mesenchyme 
immediately dorsal to the CV, as well as the failure of venous PROX1+ 
ECs to enter the ventrolateral VEGFC/CCBE1 expression domain, sug-
gests that paraxial mesoderm-derived angioblasts are more likely to 
be responsive to VEGFC/CCBE1 activity than venous PROX1+ ECs. To 
assess the direction of PROX1+ EC migration, we analyzed vibratome 
sections from E10.5 embryos stained for PROX1 and the Golgi marker 
GM130 (Fig. 6i–i″). During cell migration, the Golgi apparatus is posi-
tioned ahead of the nucleus in the direction of movement and can, 
thus, be used to infer directionality of migration47. Segmentation and 
vectorization of PROX1+ EC nuclei and their Golgi allowed quantifica-
tion of Golgi orientation in the dorsal-ventral and lateral-medial axes, 
revealing that migration of PROX1+ ECs inside and outside of the vein 
is randomized (Fig. 6j). Collectively, our analyses challenge the view 
that venous endothelium is the primary source of LECs. Instead, we 
show that VEGFC induces in situ differentiation of LECs from a popula-
tion of specialized angioblasts, which, in turn, give rise to a majority 
lymphatic endothelium.

Discussion
At the beginning of the 20th century, Florence Sabin’s anatomical stud-
ies of pig8 and human48 embryos suggested that lymphatic vessels form 
through budding from large veins. An alternative model of LEC specifi-
cation, directly from mesenchymal precursors, was later proposed by 
Huntington and McClure5. Debate over these two opposing models of 
LEC specification has continued for over a century, with evidence from a 
range of model systems suggesting the existence of venous, non-venous 
and dual sources6,10,11,16,17,28,49. In mammalian embryos, the consensus 
was that LECs arise predominantly through centrifugal sprouting from 
venous endothelium, with non-venous sources making limited contri-
butions to organ-specific lymphatic networks1,6,17. Here, using a range 
of single-cell genomics, lineage tracing and high-resolution imaging, 
we show that LECs are specified in situ from specialized mesenchymal 
progenitors (Fig. 6k,l). Collectively, these analyses provide evidence 
for a specialized paraxial mesoderm-derived angioblast that is a major 
source of lymphatic endothelium at E13.5.

The term ‘specialized angioblast’ was previously used to describe 
a population of ECs in the zebrafish CV that give rise to arterial, venous 
and lymphatic endothelium7. Here, we identify bona fide ETV2+ mes-
enchymal angioblasts that do not express markers of mature endothe-
lium, are not exposed to blood flow and directly give rise to PROX1+ 
ECs. Due to the transient nature of ETV2 and PROX1 co-expression, we 
were unable to determine if all angioblast-derived LECs co-express 
these two genes during their differentiation. However, our analyses 
show that transition from ETV2+ angioblast to PROX1+ EC is rapid. 
Notably, our single-cell analyses revealed not only that specification 
of LECs from Prox1+ venous endothelium is limited but also that par-
axial mesoderm-derived angioblasts continue to contribute to venous 
expansion, observations supported by lineage-tracing and morpho-
metric analyses. Indeed, given the limited proliferative capacity of 
venous endothelium, if all PROX1+ ECs were to migrate from the CV and 
sinus venosus, these vessels would cease to exist. Instead, our analyses 
show that there is a steady increase in venous EC numbers at this stage, 
collectively supporting a model of limited PROX1+ EC migration from 
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venous endothelium. Ultimately, technological advances that per-
mit the live imaging of mammalian embryos, at currently infeasible 
stages of development, may provide definitive evidence for venous 
or non-venous sources of LECs.

Mechanistically, we provide insight into the acquisition of 
LEC identity through global GRN analyses and examination of 
cis-regulatory elements in the Prox1 locus. In agreement with the 
well-described roles of ETS factors in directing26,50 and maintaining51 
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image of Kdr, Flt4 and Etv2 expression in a whole-mount E9.5 embryo using HCR 
(n = 6). b, Transverse vibratome section showing Kdr, Flt4 and Etv2 expression 
at the level of dashed line in a (n = 4). b′,b″, High-magnification images of boxed 
area in b showing Kdr, Flt4 and Etv2 expression. Arrow indicates a Kdr+ cell, 
arrowhead indicates a Kdr+Etv2+ cell. c, Representative confocal image of Flt4, 
Prox1 and Etv2 expression in a whole-mount E9.5 embryo using HCR (n = 6). 
d, Transverse vibratome section showing Flt4, Prox1 and Etv2 expression at 
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embryos at E9.75 (n = 3). Combined in situ hybridization for Ccbe1 and Vegfc 
and immunofluorescence for PECAM1 (g) or PROX1 (h). i, Immunofluorescence 
for GM130 and PROX1 on a transverse vibratome section from an E10.5 embryo. 
Segmentation of GM130+ Golgi and PROX1+ EC nuclei (i′) and vectorization 
of Golgi orientation for quantification (n = 8) (i″). j, Rose diagram illustrating 
Golgi orientation in PROX1+ ECs inside and outside of the venous endothelium. 
Proposed model of LEC differentiation through in situ specification from 
ETV2+PROX1+ paraxial mesoderm-derived lymphangioblasts in WT (k) and 
Vegfc−/− (l) embryos; colored circles represent individual cells expressing the 
indicated genes. DA, dorsal aorta; NT, neural tube. Scale bars, 500 μm (a and c), 
100 μm (b, d, g and h), 25 μm (b′ and d′), 200 μm (e and f), 50 μm (i).
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EC fate, our analyses identified multiple eGRNs regulated by ETS TFs, 
including ETV2 and ERG. Interestingly, we also identified a number of 
putative regulators of LEC specification, including EBF1 and EBF2. EBF1 
is a pioneer factor essential for the acquisition of B cell identity52 and 
heart development53, which can bind and remodel naive chromatin52. 
Although no obvious vascular defects have been described after loss 
of either Ebf1 or Ebf2, EBF1 has been shown to functionally compen-
sate for the loss of Ebf2 in mouse adipocytes54. Thus, it is tempting to 
speculate that these factors may also contribute to establishment of 
a chromatin landscape permissive to LEC specification. Although the 
importance of PROX1 activity for acquisition and maintenance of LEC 
fate is well established, knowledge of the factors controlling its tran-
scription is relatively limited. Detailed characterization of the Prox1 
−11-kb enhancer, which is bound by GATA2, FOXC2, NFATC1 and PROX1, 
recently revealed a role for this element in the repression of hemogenic 
fate in LECs36. Furthermore, elegant work in zebrafish has shown that 
multiple cis-regulatory elements are required to drive anatomically 
distinct patterns of prox1a expression during embryonic and larval 
development55. Here, our scMultiome analyses uncovered multiple 
putative enhancers of Prox1 open in angioblasts and predicted to be 
bound by known transcriptional regulators. In future work, it will be 
of interest to investigate the spatiotemporal control of LEC specifi-
cation and Prox1 expression by the TFs and cis-regulatory elements 
identified here.

Our analyses suggest that, in addition to important roles in con-
trol of LEC migration43,56 and maintenance of LEC identity57, VEGFC/
VEGFR3 is critical for the transition of differentiating angioblasts into 
PROX1+ ECs. During the process of LEC specification from paraxial 
mesoderm, VEGFR2 and ETV2 are expressed before VEGFR3. Given 
the key roles of VEGFR2 in angioblast specification at earlier stages of 
development, it is likely that initial specification of ETV2+ angioblasts 
in the hypaxial dermomyotome is VEGFR2 dependent, with subsequent 
differentiation of VEGFR2+ETV2+ angioblasts into PROX1+ ECs requiring 
VEGFC/VEGFR3. Our revised model of mammalian lymphatic vessel 
development suggests that, rather than sprouting from a contiguous 
venous-derived structure, expansion of the initial lymphatic network 
occurs through coalescence of extravascular PROX1+ ECs. This process 
resembles formation of lymphatic vessels from LEC clusters, which has 
been observed in the mesentery17, dermis6, heart58 and kidney59, and 
raises the possibility that the coalescence of clustered LECs is a more 
general mechanism for expansion of lymphatic networks throughout 
development.

The identification of angioblasts that directly give rise to a subset 
of mammalian endothelium has broad implications for our under-
standing of vascular development. Subtypes of angioblasts that form 
arterial, venous and intestinal ECs have been described in zebrafish 
embryos7,12,40. Furthermore, chimeric transplantation in avian embryos 
demonstrated the restricted potential of dermomyotome-derived 
cells, which were found to contribute to endothelium of the body 
wall and kidney, but did not integrate into endothelium of the visceral 
organs or the ventral wall of the dorsal aorta60. Based on our findings, it 
is tempting to speculate that further aspects of EC fate and function are 
underpinned by differences established at the level of the angioblast 
source from which they arise and before they acquire endothelial iden-
tity. An improved understanding of the determinants of BEC and LEC 
fate and function will shed further light on these processes, enhancing 
understanding of congenital and acquired vascular diseases and aiding 
attempts to engineer bona fide organ- and system-specific ECs in vitro.

Methods
Animal experiments
All procedures were carried out in accordance with local legis-
lation: University of Oxford Animal Welfare and Ethical Review 
Boards in accordance with Animals (Scientific Procedures) Act 1986 
under Home Office project licences PPL PC013B246 or PP6588077; 

German animal protection legislation (Tierschutzgesetz und 
Tierschutz-versuchstierverordnung); and Uppsala Animal Experi-
ment Ethics Board (permit number 130/15).

Mouse strains, husbandry and embryo collection
The following mice lines were used in this study: Pax3Cre (Pax3tm1(cre)Joe)61;  
Pa x3 CreERT2 (Pa x3 tm1. 1(cre/ERT2 )Lepr) 39;  Lbx1 Cre (Lbx1 tm3. 1(cre)C bm) 62; 
Myf5Cre (Myf5tm3(cre)Sor)63; Tie2-Cre (Tg(Tek-cre)12Flv/J)64; Tie2-Cre 
(Tg(Tek-cre)5326Sato)65; Prox1fl (Prox1tm1a(EUCOMM)Wtsi)6; Rosa26tdTomato  
(Gt(ROSA)26Sor tm9(CAG-tdTomato)Hze) 66; Rosa26 tdTomato (Gt(ROSA)-
26Sortm14(CAG-tdTomato)Hze)66; Rosa26tdRFP (Gt(ROSA)26Sortm1Hjf)67; Rosa26Fucci2 
(Tg(Gt(ROSA)26Sor-Fucci2)Sia)42; and VegfcLacZ (Vegfctm1Ali)43. With the 
exception of the Vegfctm1Ali strain, which was maintained on a CD1 back-
ground, all animals were maintained on a C57Bl/6 background. Mice 
were maintained in individually ventilated cages (IVCs) and ventilated 
racks at 22 °C and 55% humidity. For embryo collection, mice were 
paired overnight, and females were checked the next morning for 
the presence of a vaginal plug. For inducible Cre induction, pregnant 
females were gavaged at the specified timepoints with 80 mg kg−1 
tamoxifen (Sigma-Aldrich, T5648) dissolved in peanut oil with 10% 
ethanol at a final concentration of 10 mg ml−1.

Immunofluorescence staining of embryonic sections, 
whole-mount embryos and tissues
The following antibodies were used for immunofluorescence staining 
of cryosections, vibratome sections and/or whole-mount tissues: ETV2 
(Abcam, ab181847, 1:100), VEGFR2 (BD Pharmingen, 550549, 1:200), 
PECAM1 (R&D Systems, AF3628, 1:250), PECAM1 (D. Vestweber, clones 
5D2.6 and 1G5.1, 15 μg ml−1), PROX1 (R&D Systems, AF2727, 1:200), 
PROX1 (Proteintech, 11067-2-AP, 1:100), PROX1 (Reliatech, 102-PA32, 
1:100), PROX1 (Abcam, ab225414, 1:100), EMCN (Santa Cruz Biotechnol-
ogy, sc-65495, 1:50), EMCN (D. Vestweber, VE44, 1:100), EMCN (Santa 
Cruz Biotechnology, sc-53941, 1:50), VWF (Abcam, 11713, 1:100), ESR1 
(Abcam, ab16660, 1:100), NRP2 (R&D Systems, AF567, 1:250), ERG 
(Abcam, ab92513, 1:200), GM130 (BD Pharmingen, 610823, 1:100), 
RFP (Rockland, 600-401-379, 1:500), BrdU (Abcam, ab6326, 1:100), 
KI67 (Thermo Fisher Scientific, 14-5698-82, 1:100) and GFP (Thermo 
Fisher Scientific, A-21311, 1:100). The following Alexa Fluor–conju-
gated secondary antibodies (Thermo Fisher Scientific) were used at 
1:500–1:1,000: donkey anti-rat IgG Alexa Fluor Plus 405 (A48268), 
donkey anti-rabbit IgG Alexa Fluor 488 (A21206), donkey anti-goat 
IgG Alexa Fluor Plus 488 (A32814), donkey anti-sheep IgG Alexa Fluor 
488 (A11015), donkey anti-rabbit IgG Alexa Fluor 555 (A32814), donkey 
anti-rat IgG Alexa Fluor 555 (A48270), donkey anti-goat IgG Alexa Fluor 
647 (A32849), donkey anti-rabbit IgG Alexa Fluor Plus 647 (A32795) and 
donkey anti-sheep IgG Alexa Fluor 647 (A21448).

For immunofluorescence staining of cryosections, samples were 
fixed in 4% paraformaldehyde (PFA) overnight at 4 °C. Samples were 
washed in 1× PBS and then cryoprotected in sucrose and mounted in 
Optimal Cutting Temperature (OCT) compound. Next, 10-μm cryosec-
tions were blocked (PBS containing 0.1% Triton X-100 (PBX), 1% BSA 
and 2% donkey serum) for 1 h at room temperature, and then primary 
antibodies diluted in blocking buffer were incubated overnight. After 
three 10-min washes in PBX, secondary antibodies diluted in blocking 
buffer were incubated for 1 h at room temperature. Slides were then 
washed three times for 10 min in PBX before mounting with VECTASH-
IELD Antifade Mounting Medium.

For immunofluorescence staining of vibratome sections, fixed 
embryos were mounted in 6% low-melting-temperature agarose. Then, 
150–200-μm vibratome sections were cut using a Leica VT1000S or 
a Leica VT1200S. Tissue slices were permeabilized in 0.5% PBX and 
then incubated in either PermBlock solution (PBS containing 3% BSA 
and 0.1% Tween 20) or blocking buffer (PBS containing 0.5% PBX, 0.5% 
Tween 20, 1% BSA and 3% donkey serum) for 2 h at room temperature 
and primary antibodies overnight at 4 °C. Subsequently, tissues were 
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washed three times for 20 min in PBX and incubated with Alexa Fluor–
conjugated secondary antibodies overnight at 4 °C. Tissues were then 
washed in PBX before mounting.

For whole-mount staining of fixed embryos, samples were permea-
bilized in 0.5% PBX for 12 h at room temperature, blocked in PermBlock 
solution for 1–2 d at room temperature and stained with primary anti-
bodies at 37 °C for at least 2 d. After three washing steps with PBST 
(1× PBS containing 0.1% Tween 20), tissues were incubated with Alexa 
Fluor–conjugated secondary antibodies for at least 1 d at 37 °C and then 
washed three times with PBST. Stained embryos were stored in PBST at 
4 °C until further processing for optical clearing.

For whole-mount staining of the embryonic skin, tissues were 
fixed in 4% PFA for 2 h at room temperature, washed in 1× PBS and 
then incubated in blocking buffer (1× PBS containing 0.3% PBX, 1% 
BSA and 3% donkey serum) for 2 h at room temperature. Tissues were 
then incubated with primary antibodies diluted in blocking solution 
overnight at 4 °C. After primary antibody incubation, tissues were 
washed five times for 10 min in PBX and then incubated with Alexa 
Fluor–conjugated secondary antibodies for 3 h at room temperature. 
Tissues were then washed five times for 10 min in PBX and mounted 
in VECTASHIELD.

For whole-mount imaging of embryonic hearts, dissected hearts 
were fixed in 4% PFA overnight at 4 °C, washed in 1× PBS and then 
blocked (1× PBS containing 0.5% PBX, 0.5% PBST, 1% BSA and 3% don-
key serum) overnight at 4 °C. Samples were incubated overnight at 4 °C 
with primary antibodies diluted in incubation buffer (1× PBS containing 
0.25% PBX, 0.25% PBST, 0.5% BSA and 1.5% donkey serum). After primary 
antibody incubation, tissues were washed five times for 30 min in PBX 
and then incubated with Alexa Fluor–conjugated secondary antibodies 
overnight at 4 °C. Tissues were then washed five times for 30 min in PBX 
and mounted in 0.5% low-melting-temperature agarose for imaging.

Confocal laser scanning microscopy
Imaging of immunostained tissues was performed using Zeiss LSM780, 
LSM880 or LSM980 confocal microscopes, equipped with the following 
objectives: ×10 Plan-Apo, numerical aperture (NA) = 0.45; ×20 Plan-Apo, 
NA = 0.8; ×40 C-Apo water, NA = 1.2; ×63 Plan-Apo oil, NA = 1.4. Datasets 
were recorded and processed with ZEN Pro (Zeiss). All confocal images 
represent maximum intensity projections of z-stacks of either single 
tile or multiple tile scans. Mosaic tile scans with 10% overlap between 
neighboring z-stacks were stitched in ZEN software. Confocal single 
and multiple tile scans were processed in Fiji. If necessary, adjustments 
to brightness, contrast and intensity were made uniformly across 
individual channels and datasets.

Embryo dissociation for flow cytometry and FACS
All dissections were performed in PBS with 2% heat-inactivated 
FBS. For scRNA-seq experiments, embryos were dissected at the 
level of the otic vesicle and first pharyngeal arch to remove cranial 
tissues, with embryos from the same stage pooled as follows: E9.5: 
18 embryos from four litters; E10.5: 10 embryos from three litters; 
E11.5: nine embryos from two litters. For scMultiome-seq experi-
ments, 25 E9.5 Pax3Cre/+;Rosa26tdTomato embryos were dissected at 
the level of the otic vesicle and first pharyngeal arch to remove 
cranial tissues. Single-cell suspensions were obtained and blocked 
as described above. For each stage, embryos were incubated in 
PBS with 10% FBS, 2 mg ml−1 Collagenase IV (Gibco, 9001-12-1) and 
0.2 mg ml−1 DNase I (Roche, 10104159001) for 20–45 min at 37 °C 
until fully dissociated. The cell suspension was resuspended every 
5 min. After digestion, PBS containing 0.5% FBS and 2 mM EDTA was 
added in a 1:1 ratio, with the resulting suspension passed through a 
40-μm filter and centrifuged at 500g for 5 min at 4 °C. Cell pellets 
were resuspended in Cell Staining Buffer (BioLegend, 420201). Cell 
counting was performed using a Countess 3 Automated Cell Counter 
(Thermo Fisher Scientific).

Flow cytometry
Single-cell suspensions, generated as above, were incubated with 
Zombie Aqua Fixable Viability Kit (BioLegend, 423101, 1:1,000) for 
15 min at room temperature. Cells were washed with Cell Staining 
Buffer (BioLegend, 420201) and then washed, centrifuged at 500g 
for 5 min and blocked with Fc block CD16/32 (BioLegend, 101302, 
1:100) for 5 min on ice and stained with PECAM1-BV605 (BioLegend, 
102427, 1:1,000), CD45-FITC (BioLegend, 157607, 1:200), CD41-BV421 
(BioLegend, 133911, 1:200), PDPN-eF660 (eBioscience, 50-5381-82, 
1:100) and LYVE1-PECy7 (eBioscience, 25-0443-82, 1:400) for 30 min 
on ice and then washed and resuspended in Cell Staining Buffer. The 
samples were either analyzed immediately on a BD LSRFortressa X20 
cytometer or stored in IC Fixation Buffer (eBioscience, 00-8222-49), 
washed and analyzed the next day.

FACS
Single-cell suspensions were obtained as described above and subse-
quently blocked for 5 min on ice with Fc block CD16/32 (BioLegend, 
101302, 1:100), followed by the addition of antibodies for 30 min on 
ice: VEGFR2-PECy7 (BioLegend, 136414, 1:100), CD45-APC (BioLeg-
end, 103111, 1:200) and CD41–Alexa 647 (BioLegend, 133933, 1:200). 
For E10.5 and E11.5 suspensions, PECAM1-PECy7 (BioLegend, 102418, 
1:100) was also included to capture as broad a pool of phenotypically 
diverse ECs as possible. The cell suspension was washed using Cell 
Staining Buffer (BioLegend, 420201) and then incubated with SYTOX 
Blue Dead Cell Stain (Invitrogen, S34857, 1:10,000) 10 min on ice and 
then washed. Single cells were sorted using a BD FACSAria III and col-
lected into PBS containing 0.5% BSA for scRNA-seq experiments and 
PBS containing 0.04% BSA for scMultiome-seq experiments (Miltenyi 
Biotec, 130-091-376).

scRNA-seq
Library generation and pre-processing. scRNA-seq was performed 
using the 10x Genomics Chromium platform, and libraries were gen-
erated using the Next GEM Single Cell 3′ GEM, Library & Gel Bead Kit 
version 3.1 (10x Genomics, PN-1000128). Libraries were sequenced 
with the standalone mode set to the manufacturerʼs protocol on 
the Illumina NextSeq 500 platform using the NextSeq 500/550 High 
Output Kit version 2.5, 150 cycles (Illumina, 20024907), to a depth of 
approximately 50,000 reads per cell. Raw base call files were demul-
tiplexed using bcl2fastq version 2.20 software (Illumina) according to 
10x Genomics instructions. Reads were aligned to the mm10 genome 
with the tdTomato-WPRE sequence added, and cells were called using 
CellRanger 5.0 (10x Genomics).

Quality control and normalization. The filtered barcode matrices 
were loaded into RStudio version 1.4 and further analyzed using Seu-
rat 4.0 (refs. 68,69). Cells with fewer than 2,500 detected genes and 
more than 100,000 unique molecular identifiers (UMIs) and 7% of 
mitochondrial reads were removed. The data were normalized using 
the NormalizeData function, and the highly variable features were cal-
culated using FindVariableFeatures. The data were further scaled using 
ScaleData, and principal component analysis (PCA) was performed 
using the variable features previously calculated. Cell cycle stage was 
predicted using G2M and S-phase genes70.

Batch correction. To remove technical batch effects due to the differ-
ent collection and processing times between the samples, the Seurat 
wrapper FastMNN, a faster version of MNN71, was used. The RunFast-
MNN function was used with auto.merge = T, and k was decreased to 
10 to avoid overcorrection.

Clustering. A nearest neighbor graph was calculated using Find-
Neighbors using 10 corrected embeddings from FastMNN and 10 
neighbors (k.param = 10). The clusters were found using FindClusters  
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with resolution = 2. The clusters were manually annotated according 
to marker genes determined with FindMarkers. The clusters clearly 
separated based on cell cycle stage alone were manually merged  
back together.

Visualization and trajectory analyses. The integrated Seurat object 
was converted to H5AD format for import into Python ( Jupyter Note-
book interface72) using the packages SeuratDisk and SeuratData. The 
Scanpy 1.8 package73 was used to run the PAGA74 algorithm (scanpy.
tl.paga) to produce an embedding that captures the connectivity of the 
data accurately using the corrected principal components (PCs) from 
FastMNN and the clusters previously calculated. To visualize the data, a 
force-directed graph75 was calculated using scanpy.tl. draw_graph and 
pre-computed coordinates from PAGA.

Waddington-OT analyses. Trajectories from E9.5 to E11.5 were also 
assessed using Waddington-OT76, a pipeline based on optimal trans-
port. The results corroborate independent analyses with PAGA 
(Extended Data Fig. 5e). We used Waddington-OT with default param-
eters (entropic regularization ϵ = 0.05, early timepoint balance regu-
larization λ1 = 1 and late timepoint balance regularization λ2 = 50). Given 
a series of population snapshots at times t1,… , tT , Waddington-OT fits 
a coupling between consecutive pairs of populations. Each coupling, 
mathematically a joint distribution on the product space of early and 
late gene expression, connects cells at the earlier timepoint to their 
predicted descendants and cells at the later timepoint to their pre-
dicted ancestors. To compute the couplings, Waddington-OT solves 
an entropically regularized unbalanced optimal transport problem, 
minimizing the difference in gene expression between predicted ances-
tors and descendants subject to the constraint that the population at 
ti maps to the population at ti+1. Entropic regularization allows for 
stochasticity in cell fate decisions, whereas unbalanced transport 
accounts for uncertainty in the relative growth and death rates of dif-
ferent cells. In the absence of clear prior information about the relative 
growth rates of cells, we left the initial growth rate estimates uniform. 
By concatenating the coupling from E9.5 to E10.5 with the coupling 
from E10.5 to E11.5, we are able to predict ancestors and descendants 
across the timecourse.

scMultiome-seq
Nuclei isolation and transposition. FACS-sorted cells were gently 
resuspended in 50 μl of chilled lysis buffer (10 mM Tris-HCl (pH 7.4), 
10 mM NaCl, 3 mM MgCl2, 0.1% Tween 20, 0.1% NP-40 substitute, 0.01% 
digitonin, 1% BSA, 1 mM DTT and 1 U μl−1 RNase inhibitor) for 3 min on ice. 
Nuclei were washed with diluted nuclei buffer, visualized with trypan 
blue staining under a light microscope for quality control and trans-
posed according to the manufacturer’s instructions (Chromium Next 
GEM Single-Cell Multiome ATAC + Gene Expression User Guide, Rev F).

Library generation and pre-processing. Multiome sequencing of 
transposed nuclei was performed using the 10x Genomics Chromium 
platform, and sequencing libraries were generated using the Chromium 
Next GEM Single-Cell Multiome ATAC + Gene Expression Kit (10x Genom-
ics, PN-1000285). Libraries were sequenced with the standalone mode 
set to the manufacturerʼs protocol on the Illumina NextSeq 500 platform 
using the NextSeq 500/550 High Output Kit version 2.5, 150 cycles (Illu-
mina, 20024907), to a depth of approximately 27,300 reads per cell for 
the gene expression library and approximately 33,500 reads per cell for 
the ATAC library. FASTQ files were processed using the 10x CellRanger 
Arc pipeline (version 2.0.0) count function with default settings and 
mapped to the refdata-cellranger-arc-mm10-2020-A-2.0.0 reference.

Quality control and normalization. CellRanger Arc outputs were 
loaded into RStudio version 1.4 and further analyzed using Seurat ver-
sion 5.0.1 (ref. 77) for gene expression and ATAC analyses and Signac 

version 1.12.0 (ref. 78) for ATAC analyses. Before filtering, the ATAC 
data were processed to retain only peaks in standard chromosomes. 
Nuclei with fewer than 1,000 or more than 20,000 cDNA reads, fewer 
than 1,000 ATAC fragments or more than 15% mitochondrial reads 
were removed to retain 3,801 high-quality nuclei for analysis. RNA data 
were normalized using the NormalizeData function before calculation 
of variable features with FindVariableFeatures and scaling data with 
ScaleData. RunPCA was used to calculate the first 50 PCs. ATAC data 
were normalized with RunTFIDF, and top features were identified 
with FindTopFeatures before calculating dimensiontality reduction 
with RunSVD.

Clustering. A weighted nearest neighbor (WNN) graph was con-
structed with FindMultimodalNeighbors using the 1–25 and 2–50 
dimensions from the PCA and latent semantic indexing (LSI) reduc-
tions, respectively. This graph was subsequently used to calculate a 
uniform manifold approximation and projection (UMAP) for visualiza-
tion and clustering with FindClusters (resolution = 0.8). Clusters were 
assigned biological annotation according to the top 10 enriched genes 
(FindAllMarkers) and visualization of known marker genes.

GRN analysis. To construct GRNs during LEC specification and differ-
entiation, we applied the SCENIC+ pipeline79 to our scMultiome dataset. 
High-quality singlets identified from the Seurat analysis described 
above were selected for SCENIC+ analysis.

Identification of enhancer candidates and topic modeling. 
pycisTopic79 was used to identify enhancer candidates. ATAC frag-
ment files were processed to generate pseudobulk BigWig and BAM 
files for each cell type and used to call peaks with MACS2 (ref. 80) and 
merge into consensus peaks with get_consensus_peaks(). Together 
with filtered fragments, these consensus regions were used to create 
a cisTopic object. We ran latent Dirichlet allocation (LDA) models 
on the cisTopic object with between two and 50 topics using run_
cgs_models_mallet() and used evaluatemodels() to select 30 as the 
optimal number of co-accessible region sets. Topics were manually 
inspected for their enrichment in cell types to ensure that a range of 
cell-type-specific topics had been identified. Finally, differentially 
accessible regions between cell types were identified using pycisTopic’s 
find_diff_features().

Generating a custom cisTarget database. pycisTarget80 was used to 
create pre-computed enrichment scores for all SCENIC+ motifs across 
our consensus peaks. FASTA files were generated from consensus 
regions identified above with an additional kilobase of padding as a 
background sequence for cluster-buster. Finally, we used pycisTarget’s 
create_cistarget_motif_databases.py to generate our custom database.

Inferring eGRN. Using the outputs from pycisTopic and pycisTarget, 
in combination with snRNA-seq data exported from Seurat to Scanpy, 
we ran the SCENIC+ snakemake pipeline using default settings to pre-
dict the enhancer-driven regulons constituting the GRN. The direct 
eRegulon metadata were used to examine the activity of gene-based 
and region-based eRegulons (AUCell scores) in heatmaps using heat-
map_dotplot(). To export eRegulon network graphs, the mudata object 
output from the snakemake pipeline was converted to a scenicplus 
object for backwards compatibility. For network graphs of known EC 
differentiation (Extended Data Fig. 6h), the top 350 most variable genes 
and regions were selected as nodes. Conversely, when investigating 
putatitive regulators (Extended Data Fig. 6i), the genes and regions 
with the highest triplet score were selected.

In silico prediction of TF binding. To predict the binding of TFs in silico 
on a per-cell-type basis, we first generated ATAC pseudobulks using 
sinto (https://github.com/timoast/sinto). Peaks were called for each 
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pseudobulk using Genrich (https://github.com/jsh58/Genrich). The 
resulting .bam and .bed files were used to run the TOBIAS footprint-
ing pipeline81. First, pseudobulks were corrected for Tn5 cutting bias 
with ATACorrect, followed by calculation of footprinting scores with 
FootprintingScores. Scores were calculated for all motifs in JASPAR 
2024 core motif collection with motifs of interest manually inspected 
in Integrative Genomics Viewer (IGV).

Analysis of publicly available ETV2 ChIP-seq data. Publicly available 
ETV2 ChIP-seq data were retrieved from GSE59402 (ref. 37). BigWig files 
were converted from the mm9 to the mm10 genome for display with 
our snATAC-deq data using CrossMap82 and the mm9 to mm10 chain 
file. Converted BigWig files were displayed using IGV.

Bulk ATAC-seq analysis
Nuclei isolation and transposition. Bulk ATAC-seq libraries were 
generated following the Omni-ATAC protocol83. In brief, BECs (tdTo
mato−CD41−CD45−PECAM1+PDPN−) and LECs (tdTomato+CD41−CD45
−PECAM1+PDPN+) were FACS-sorted from E13.5 Pax3Cre/+; Rosa26tdTomato 
embryos. In total, 10,000 cells were gently resuspended in 50 μl of 
chilled lysis buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 
0.1% Tween 20, 0.1% NP-40 substitute, 0.01% digitonin, 1% BSA, 1 mM 
DTT and 1 U μl−1 RNase inhibitor) for 3 min on ice. Nuclei were washed 
with 990 μl of chilled resuspension buffer (10 mM Tris-HCl (pH 7.4), 
10 mM NaCl, 3 mM MgCl2 and 0.1% Tween 20), incubated in transpo-
sition buffer (1× TD buffer, 100 nM Tn5 Transposase (FC-121-1030, 
Illumina), 0.01% digitonin, 0.1% Tween 20 and 0.33× PBS) for 30 min 
at 37 °C and 1,000 rpm. Reactions were subsequently cleaned up with 
the MinElute Reaction Cleanup Kit (Qiagen, 28204).

Library generation and pre-processing. Sequencing libraries were 
generated following standard protocols84 and amplified with a target 
concentration of 4 nM. Tagmentation efficiency was assessed with an 
Agilent TapeStation, and libraries were sequenced using paired-end 
40-bp reads on an Illumina NextSeq 500. Reads were mapped to the 
mm10 genome assembly using Bowtie 2, and duplicates were removed 
using Picard’s MarkDuplicates. To visualize peaks at regions of interest, 
BigWig files were generated using bamCoverage with a binSize of 10 
for loading into IGV.

In situ HCR
Whole-mount in situ HCR is commercially available from Molecu-
lar Technologies85. The HCR version 2.0 protocol for whole-mount 
mouse embryos was performed according to the manufacturer’s 
instructions. The following probes were used: Etv2-B4 (NM_007959.2), 
Prox1-B2 (NM_008937.3), Pecam1-B3 (NM_008816,3), Lbx1-B1 
(NC_000085.7), C1ql2-B3 (NM_207233.1), Tll1-B1 (NM_009390.3), 
Kdr-B3 (NM_010612.3), Flt4-B5 (NM_008029.3), Vegfa-B2 (NM_009505) 
and Vegfc-B1 (NM_009506.2). Embryos were mounted in SlowFade Gold 
Antifade Mountant (Invitrogen, S36936) and analyzed using a Zeiss 
inverted LSM 880 or LSM 980 or an Olympus FV1000 laser scanning 
confocal microscope.

RNAscope fluorescence in situ hybridization
RNA in situ hybridization on embryonic tissue was performed using 
the commercially available RNAscope Multiplex Fluorescent version 
2 assays (Advanced Cell Diagnostics (ACD), 323100). Frozen tissue sec-
tions of 20-μm thickness were processed according to the manufactur-
er’s protocols for fresh-frozen samples. For thick vibratome sections of 
300 μm, a modified protocol was applied. In brief, tissue sections were 
dehydrated in 50%, 75% and 100% methanol for 10 min and then washed 
with PBS-T (PBS with 0.1% Tween 20). Sections were then pre-treated 
with hydrogen peroxide for 10 min at room temperature and Protease III 
reagent for 20 min at room temperature, followed by washing with PBS 
supplemented with protease inhibitor (Sigma-Aldrich, 11873580001). 

Sections were post fixed using 4% PFA for 30 min at room temperature 
and washed with 0.2× saline sodium citrate (SSC) buffer. For RNA 
detection, sections were incubated with the following probes for 3 h 
at 40 °C: Mm-Prox1-C2 (ACD, 488591), Mm-Pecam1-C1 (ACD, 316721), 
Mm-Cdh5-C3 (ACD, 31253), Mm-Lyve1-C1(ACD, 428451), Mm-Vegfc-C2 
(ACD, 492701-C2) and Mm-Ccbe1-C1 (ACD, 485651). Subsequent ampli-
fication steps were performed at 40 °C (AMP1-FL and AMP2-FL: 50 min 
each; AMP3-FL: 20 min), and each amplifier was removed by washing 
using 0.2× SSC buffer. For signal detection, sections were incubated 
with the channel-specific HRP for 20 min at 40 °C and incubated with 
the respective fluorophores (PerkinElmer: Fluorescein, 1:500; Cy3, 
1:1,000; Cy5, 1:1,500; Opal 520, 1:750; Opal 620, 1:750) for 40 min at 
40 °C, followed HRP blocker incubation for 20 min at 40 °C.

Analysis of cell cycle kinetics in mid-gestation embryos
The mean total cell cycle (TC) and S-phase duration (TS) of initial 
LECs at E10.5 were determined using an adapted dual-pulse labeling 
protocol86,87. The experimental setup and calculation of cell cycle kinet-
ics are outlined in Fig. 5f and Extended Data Fig. 9d, respectively. EdU 
(50 mg kg−1, intraperitoneal) was administered to pregnant females 
three times, with a time interval of 2 h, to maintain bioavailability 
during the experiment. After 6 h, BrdU (50 mg kg−1, intraperitoneal) 
was administered, and, 2 h later, embryos were dissected and fixed 
overnight in 4% PFA at 4 °C. Vibratome sections (150 μm) were per-
meabilized in 0.5% Triton X-100 in PBS for 30 min at room tempera-
ture. Heat-induced antigen retrieval (HIER) was used to facilitate BrdU 
antibody labeling. Sections were submerged in sodium citrate buffer 
(10 mM sodium citrate, 0.05% Tween 20, pH 6.0) and heated to 98 °C 
for 30 min. Sections were cooled to room temperature with fresh 
sodium citrate buffer and washed for 5 min with PBS. After HIER, sec-
tions were incubated in blocking solution (3% BSA, 0.1% Tween 20 in 
PBS) for 2 h at room temperature and then incubated with antibodies 
to BrdU (Abcam, ab6326, 1:100), EMCN (D. Vestweber, VE44, 1:100) 
and PROX1 (Reliatech, 102-PA32, 1:100). Subsequently, slides were 
washed in PBS-T (PBS with 0.1% Tween 20) 3 times for 10 min each and 
incubated with Alexa Fluor–conjugated secondary antibodies for 
2 h at room temperature or overnight at 4 °C. For EdU detection, the 
Click-iT Alexa Fluor 555 reaction cocktail (Thermo Fisher Scientific) 
was freshly prepared and incubated for 30 min at room temperature. 
Sections were rinsed in PBS and then mounted with Mowiol. Sections 
were imaged on a Zeiss LSM 880 confocal microscope using a ×40 water 
immersion objective (NA = 1.2). Cell counts were performed on at least 
three 150-μm sections, and individual data points were calculated as 
the mean of all sections analyzed per embryo. LEC progenitors at E10.5 
are represented by PROX1+ nuclei (hereafter, Pcells). EdU+ and BrdU+ cells 
were scored as any nuclei showing immunoreactivity for these markers 
regardless of staining pattern.

The TS of Pcells is given by equation (1):

TS =
Ti

Lcells/Scells
(1)

Ti is the injection interval during which cells can incorporate at 
least one of the thymidine analogues. EdU+/BrdU+ double-positive cells 
reflect all cells in the S-phase at the end of the experiment (Scells). Cells 
of the initial EdU-labeled S-phase population leave the S-phase during 
Ti, with this fraction labeled with EdU but not BrdU (Lcells).

The TC of Pcells cells is given by equation (2):

TC =
TS

Scells/ (Pcells × GF) (2)

To avoid overestimation of Tc, which could occur if not all cells are 
actively progressing through the cell cycle, a growth fraction (GF) that 
represents the proportion of Pcells that are in the cell cycle was used for 
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calculation of Tc. GF can be determined by examining the proportion 
of Pcells labeled with the cell cycle marker KI67 using equation (3):

GF = PcellsKI67
+

Pcells
(3)

Optical tissue clearing
The methods used for optical tissue clearing were described 
previously88. In brief, before tissue clearing, whole-mount stained 
samples were embedded in 1% low-melting agarose to facilitate sam-
ple handling. Samples were dehydrated in increasing concentrations 
of methanol (50%, 70%, >99.5% and >99.5% (v/v)) for at least 1 h each. 
After dehydration, tissues were incubated in a 1:1 mixture of >99.5% 
methanol and BABB (1:2 benzyl alcohol:benzyl benzoate) for 1 h and, 
finally, in BABB for at least 4 h.

Light sheet microscopy
Optically cleared samples were imaged using an UltraMicroscope 
II Super Plan (Miltenyi Biotec) equipped with ×4 MI Plan Objective 
(NA = 0.35, working distance (WD) ≥ 15 mm). An NKT SuperK supercon-
tinuum white light laser served as excitation light source. For excitation 
and emission detection of specific fluorophores, custom band-pass fil-
ters (excitation 470/40, 577/25 or 640/30 nm; emission 525/50, 632/60 
or 690/50 nm) were used in combination with a pco.edge 4.2 sCMOS 
camera. Images were acquired with 2-μm steps in the z axis.

Quantification of cell numbers
Confocal and light sheet image stacks were rendered into 
three-dimensional (3D) volumes and analyzed using Imaris version 
9.5 (Bitplane; RRID: SCR_007370). Quantification of absolute cell 
numbers is based on staining of specific TFs to visualize the nuclei 
of cells of interest. Thus, the number of nuclei reflect the number of 
cells. Nuclei were automatically annotated using the ‘Spots’ function, 
which automatically detects point-like structures with a pre-defined 
diameter. Accurate quantification required an appropriate estimate 
of cell nuclei diameter and filtration of selected nuclei by tuning the 
quality parameters. The accuracy of this automatic counting procedure 
was verified by visual inspection, which herein served as ground truth. 
Using the ‘manual Surface creation’ function, vascular structures were 
segmented based on specific EC marker expression. Thereby, cell 
populations inside and outside of segmented vascular structures were 
defined by filtering the shortest distance between ‘Spots’ and ‘Surface’.

Directional migration of LEC progenitors
To assess directional migration of PROX1+ LEC progenitors, we estab-
lished an image analysis pipeline to automatically define and quantify 
cell polarity in large tissue sections. Vibratome sections (200 μm) of 
E10.5 embryos were stained for Golgi (GM130) and LEC nuclei (PROX1), 
and sections were imaged on a Zeiss LSM 880 confocal microscope 
using a ×40 water immersion objective (NA = 1.2). In a first 
post-processing step, Golgi and nuclei in each image stack were seg-
mented using the ‘Surface’ function in Imaris version 9.5 (Bitplane; 
RRID: SCR_007370). Cell populations inside and outside of defined 
vascular structures were defined as described above (‘Quantification 
of cell numbers’ subsection). Surface masks were exported and pro-
cessed in Fiji version 1.53. Subsequently, nearest neighbor analyses 
were used to pair individual nuclei with their corresponding Golgi 
(closest border–border distance), and the centroid of each object was 
computed using 3D ImageJ Suite version 4.0.36 (ref. 89). 
Two-dimensional vectorization images were obtained by drawing 
arrows from the nuclei centroid toward the Golgi centroid using Fiji. 
Nuclei–Golgi pairs with a border-to-border distance larger than 5 μm 
were excluded from further analysis. Centroid vectors were produced 
using the x–y coordinates of nuclei and Golgi centroids and 

transformed to unit vectors (A). The dorsal body axis served as refer-
ence vector (B). The angle was obtained by calculating the inverse 
cosine of the dot product of centroid unit vectors (A) and reference 
vector (B) (θ = arccos(A⋅B) ). All calculations were performed using 
Python version 3.8. Angles were transformed to represent the body 
axes (0°, dorsal; 90°, lateral; 180°, ventral; 270°, medial), and a histo-
gram on a polar axis was used to display the angular distribution of 
individual LECs representing their migration direction.

Statistical analysis
Statistical analyses were performed by unpaired, two-tailed Student’s 
t-test or non-parametric one-way ANOVA followed by Tukey’s honestly 
significant difference (HSD) using GraphPad Prism software. Data are 
presented as mean ± s.d. (error bars). P < 0.05 was considered statisti-
cally significant (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.001).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
scRNA-seq (GSE276281) and scMultiome-seq and bulk ATAC-seq 
(GSE276282) data were deposited in the Gene Expression Omnibus 
(GEO). ETV2 ChIP-seq data were downloaded from the GEO (GSE59402). 
Correspondence and requests for materials should be addressed to 
F.K. and O.A.S.

Code availability
All scripts required to reproduce the data presented are available on 
GitHub at https://github.com/StoneLabGH/LEC_Specification.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Contribution of Pax3-lineage cells to the developing 
vasculature. (a) Representative whole mount immunofluorescence for 
tdTomato and VEGFR2 in a Pax3Cre/+;Rosa26tdTomato embryo at E8.75. Lateral 
view at the level of somites II-V (n = 4). (b) Representative whole mount 
immunofluorescence for ERG and tdTomato at the level of the sinus venosus in 
a Pax3Cre/+;Rosa26tdTomato embryo at E9.25 (n = 4). (b′) High magnification view 

of boxed area in b. (c) Representative immunofluorescence for PECAM1 and 
tdTomato on transverse cryosections spanning anterior (i) to posterior (ix) 
regions of an individual Pax3Cre/+;Rosa26tdTomato embryo at E9.25 (n = 3). (ISV, 
intersegmental vessel; CCV, common cardinal vein; SV, sinus venosus; CV, 
cardinal vein; DA, dorsal aorta; UV, umbilical vein; VV, vitelline vein. Scale bars - 
50 μm (a,c), 100 μm (b)).
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Extended Data Fig. 2 | Flow cytometry and FACS sorting strategies. 
(a) Flow cytometry analysis of tdTomato labelling of LECs and BECs in 
Pax3Cre/+;Rosa26tdTomato embryos at E13.5. (b) Flow cytometry analysis of tdTomato 
labelling of blood endothelial cell (BEC) and lymphatic endothelial cell (LEC) 

populations in Pax3Cre/+;Rosa26tdTomato embryos at E13.5. Gating strategy to sort 
individual cells from Pax3Cre/+;Rosa26tdTomato embryos for scRNA-seq at (c) E9.5, (d) 
E10.5 and (e) E11.5.
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Extended Data Fig. 3 | scRNA-seq Quality Control. (a) Quality control (QC) 
plots showing RNA features, counts and percentage of mitochondrial reads per 
cell. Cells with less than 2500 detected features (genes), more than 100,000 
UMIs (counts) and 7% of mitochondrial reads were excluded from downstream 
analyses. (b) Histogram showing the number of single cells from each lineage 
and stage that passed QC. (c) Heatmap showing normalized expression of two 

diagnostic markers for each cell state. (d) Histogram showing the number and 
percentage of single cells from each lineage and stage assigned to each cell state. 
(EC, endothelial cell; OFT, outflow tract; LEC, lymphatic endothelial cell; SHF, 
second heart field; LPM, lateral plate mesoderm; NC mesenchyme, neural crest 
derived mesenchyme; aSHF, anterior second heart field; pSHF, posterior second 
heart field; RBC, red blood cell; PGC, primordial germ cell).
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Extended Data Fig. 4 | scRNA-seq gene expression analyses. (a) ForceAtlas2 
(FA) embedding showing expression of somitic paraxial mesoderm (Pax3, Lbx1), 
angioblast/early EC (Tal1), endothelial (Pecam1, Emcn), venous (Nr2f2, Dab2), 
large vessel (Vwf, Procr), arterial (Dll4, Gja5, Bmx), angiogenic EC (Apln, Kcne3), 

neural tube EC (Foxq1), lymphatic EC (Prox1, Pdpn, Lyve1) and sinus venosus/ 
liver EC (Oit3, Stab2) markers. (b) Violin plots showing expression of selected 
genes in Pax3-lineage negative and Pax3-lineage positive cells across indicated 
cellular states.
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Extended Data Fig. 5 | Gene expression and trajectory analyses. Representative 
immunofluorescence images of PECAM1 and PROX1 (a,b) or VWF and PROX1 
(a′,b′) on a transverse vibratome section from an E10.5 embryo (b-b′ - high 
magnification images of boxed areas in a-a′) (n = 4). In situ hybridization for 
Cdh5 and Lyve1 (c,d) or Prox1 and Lyve1 (c′d′) on a transverse vibratome section 
from an E10.5 embryo (d-d′ - high magnification images of boxed areas in c-c′) 
(n = 4). (e) Partition-based graph abstraction (PAGA) inference of developmental 
trajectories on 19,699 cells. Cellular states were manually annotated based 
on known gene expression patterns. FA embedding showing Waddington-
OT-based optimal transport analysis of (f) descendants of E9.5 venous cells, 
(g) descendants of E10.5 venous cells, (h) descendants of E9.5 angioblasts, (i) 

descendants of E10.5 angioblasts, (j) ancestors of E10.5 LEC progenitors and (k) 
ancestors of E10.5 LECs. (l-m′) Representative whole mount imaging of Pecam1, 
Etv2 and Prox1 expression at E9.0 using hybridization chain reaction (n = 6). (n-o′) 
Representative whole mount imaging of Pecam1, Etv2 and Prox1 expression at 
E10.0 using hybridization chain reaction (n = 6). (CV, cardinal vein; DA, dorsal 
aorta; He, heart; LB, liver bud; EC, endothelial cell; LEC, lymphatic endothelial 
cell; SV, sinus venosus; SHF, second heart field; PXM, paraxial mesoderm; LPM, 
lateral plate mesoderm; aSHF, anterior second heart field; pSHF, posterior 
second heart field; RBC, red blood cell; PGC, primordial germ cell; Scale bars - 
100 μm (a-a′, c-c′), 50 μm (b-b′, d-d′), 1 mm (l-o′)).
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Extended Data Fig. 6 | scMultiome Quality Control and gene regulatory 
network analysis. (a) Gating strategy to sort individual cells from 
Pax3Cre/+;Rosa26tdTomato embryos for scRNA-seq at E9.5. (b) Quality control (QC) 
plots showing RNA features, counts and percentage of mitochondrial reads per 
cell. (c) Quality control (QC) plots showing ATAC counts, transcription start 
site (TSS) and percentage nucleosome signal per cell. (d) Weighted nearest 
neighbour Uniform Manifold Approximation and Projection (wnnUMAP) 
embedding of single cell multiome sequencing of 3,801 tdTomato+ VEGFR2+ 
PECAM1+ cells FACS-sorted from Pax3Cre/+;Rosa26tdtomato embryos at E9.5. (e) 

Heatmap showing normalized expression of two diagnostic markers for each cell 
state on the subset of 3,606 cells in Fig. 2a. (f) Violin plots showing expression of 
Pax3, Tal1, Lmo2, Cdh5, Gata4 and Gja5 across each cellular state. (g) Violin plots 
showing expression of Ebf1 and Ebf2 across each cellular state. (h) Visualisation 
of the eGRN formed by ETV2, FLI1, ERG, ETS1 and ETS2. The network consists of 
selected transcription factors and the top 300 most variable regions and genes. 
(i) Visualisation of the eGRN formed by ETV2, ERG, EBF1 and EBF2. The network 
consists of selected transcription factors and the regions and genes with the 30 
highest triplet scores for each of the chosen eRegulons.
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Extended Data Fig. 7 | Spatiotemporal analyses of LEC lineage. Representative 
immunofluorescence image of VEGFR2 and CreERT2 (detected with an ESR1 
antibody) (a, b) or PECAM1 and CreERT2 (a′, b′) on a transverse vibratome 
section from an E9.5 Pax3CreERT2/+ embryo (b-b′ - high magnification image of 
boxed area in a-a′) (n = 4). (c-c′) Representative immunofluorescence image 
of tdTomato, PECAM1 and CreERT2 on a transverse vibratome section from a 
Pax3CreERT2/+;Rosa26tdTomato embryo at E10.5 following tamoxifen administration 
at E9 (n = 4). (d-d′) High magnification image of boxed area in c-c′. (e) 
Quantification of tdTomato labelling of BECs and LECs by flow cytometry 
in Pax3Cre/+;Rosa26tdTomato and Pax3CreERT2/+;Rosa26tdTomato embryos at E13.5. 
Tamoxifen was administered to Pax3CreERT2/+;Rosa26tdTomato animals at E7 (n = 3, 1 
pregnant dam), E8.0 (n = 4, 2 pregnant dams), E9.0 (n = 5, 3 pregnant dams) or 
E10.0 (n = 3, 2 pregnant dams). Representative immunofluorescence images 
of tdTomato, PECAM1 and PROX1 on transverse vibratome sections from (f) 
Pax3Cre/+;Rosa26tdTomato (n = 3) or (g) Myf5Cre/+;Rosa26tdTomato (n = 4) embryos 

at E10.5. (h) Quantification of percentage tdTomato labelling of PROX1+ ECs 
present inside or outside of the venous endothelium in Pax3Cre/+;Rosa26tdTomato 
or Myf5Cre/+;Rosa26tdTomato embryos at E10.5. (i-i″) Representative 
immunofluorescence image of tdTomato, PECAM1 and PROX1 on a sagittal 
vibratome section from a Pax3CreERT2/+;Rosa26tdTomato embryo at E13 following 
tamoxifen administration at E9 (n = 4). (j-j′) Representative immunofluorescence 
image of tdTomato, NRP2 and PROX1 on a whole mount heart from a 
Pax3CreERT2/+;Rosa26tdTomato embryo at E16.0 following tamoxifen administration 
at E9 (n = 4). (k-k″) Representative immunofluorescence image of tdTomato, 
PECAM1 and PROX1 on a sagittal vibratome section from a Pax3Cre/+;Rosa26tdTomato 
embryo (n = 4). (l-l′) Representative immunofluorescence image of tdTomato, 
NRP2 and PROX1 on a whole mount heart from a Pax3Cre/+;Rosa26tdTomato embryo 
at E16.0 (n = 4). (DM, dermomyotome; CV, cardinal vein; DA, dorsal aorta; pTD, 
primordial thoracic duct; LS, lymph sac; Scale bars - 50 μm (a-a′, f, g), 100 μm (c-
c′, i′-i″), 200 μm (j-k′), 500 μm (i); Data are presented as mean ± s.d. (error bars)).
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