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Microscopy image reconstruction with
physics-informed denoising diffusion
probabilistic model
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Light microscopy is a practical tool for advancing biomedical research and diagnostics, offering
invaluable insights into the cellular and subcellular structures of living organisms. However, diffraction
and optical imperfections actively hinder the attainment of high-quality images. In recent years, there
hasbeenagrowing interest in applyingdeep learning techniques toovercome thesechallenges in light
microscopy imaging. Nonetheless, the resulting reconstructions often suffer from undesirable
artefacts and hallucinations. Here, we introduce a deep learning-based approach that incorporates
the fundamental physics of light propagation inmicroscopy into the loss function. Thismodel employs
a conditioned diffusion model in a physics-informed architecture. To mitigate the issue of limited
available data, we utilise synthetic datasets for training purposes. Our results demonstrate consistent
enhancements in image quality and substantial reductions in artefacts when compared to state-of-
the-art methods. The presented technique is intuitively accessible and allows obtaining higher quality
microscopy images for biomedical studies.

Light microscopy (LM) is an important and accessible way to explore the
hidden biomedical world of cells and sub-cellular structures. The decreasing
cost of basic LMequipment is facilitating their accessibility in classrooms for
educational purposes1–4 and in medical laboratories, particularly for appli-
cations such as cytometry1. Moreover, it is hard to overstate the significant
contributions made by advanced LM techniques such as fluorescence
microscopy5, confocal microscopy6, or superresolution microscopy7 to a
myriad of biomedical discoveries over the past century8. Yet, optical systems
remain fundamentally limited owing to the principles of their design
(Fig. 1a, b). The blur and imperfections of a point source (e.g. single
molecule fluorescence) can be expressed mathematically as a point spread
function (PSF)9. PSFdescribes the spread of light that occurs from scattering
and diffraction as it passes through the optical components of the micro-
scope. The advent of digital microscopy and image processing allowed us to
attempt alleviating these limitations algorithmically10–15. These methods
include deconvolution methods9,16,17, regularisation methods18–20 and
bayesian methods21. However, the traditional methods fail to capture the
complexity of the images. This leads to minuscule resolution improvement
in reconstructions. Moreover, susceptibility to noise and artefacts during

image acquisition can compromise the performance of these methods,
resulting in degraded quality during reconstruction.

The deep learning (DL) models, particularly convolutional neural
networks (CNNs), have gained traction in image reconstruction tasks22–25.
CNNs learn complex mappings between images and their corresponding
ground truth. For example,Xu et al. transformedapseudo-inverse kernel for
deconvolution into a CNN, capturing degradation characteristics26. Ron-
neberger et al. incorporated deconvolution layers into the U-Net
architecture27. Generative adversarial networks have also been used for
image restoration28,29.

Another recent trend involves the utilisation of a type of likelihood-
based generative models known as Denoising Probabilistic Diffusion
Models (DDPMs)30. They have shown promise in several tasks such as
superresolution31, image colourisation, inpainting, uncropping, and JPEG
restoration32. The diffusion models have desirable properties such as dis-
tribution coverage, stationary optimisation function, scalability, and train-
ing stability. They demonstrate promising results in terms of generating
high-quality samples when compared to generative adversarial networks
(GANs)33.
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However,most of these approaches ignore the great bodyof knowledge
gathered on microscopy by optical physics. One common challenge in DL
methods involves their inclination to produce structures not found in real
images. This poses issues in fields that demand accurate reconstruction,
such as medical diagnostic images and microscopy34,35. To circumvent this,
in other domains where the physics of the process is well understood,
researchers have recently proposed an approach called physics-informed
neural networks36. In this approach, the prior knowledge regarding the
physics models serves as a regularisation for DL models. While other
approaches exist, incorporating physics by using the physical model as a
regulariser is intuitive and widely used.

To overcome the shortcomings, we introduce a physics-informed (PI)
diffusionmodel (Fig. 1d, e). In thismodel, the PI term is incorporated in the
DDPM loss function (see Fig. 1e, Methods) using the technique shown in
refs. 33,37. We show that this approach not only provides a simpler and
more principled model but also produces more natural-looking results.

Results
Light microscopy image acquisition model
LM is an imaging technique in which an analogue-digital converter detects
the electrical impulses generated by the light. As a result, image statistics can
be well represented by a Poisson process. If several acquisitions are made
and averaged, then according to the central limit theorem, the statistics of
the image can be modelled by the Gaussian process. The mathematical
model for optical systems assumes that the model is linear and time-
invariant. Therefore the image acquisition model is described by the
equation I = ϕ(h∗x+ b), where the image I, is the result of the convolution
between object x and system PSF h with the background signal noise b
added. The Poisson noise ϕ is applied afterwards over the true signal, given
by the previous equation.

In LM, the diffractionpattern generated in an ideal optical system is the
impulse response referred to as the PSF9. PSF of LMvaries depending on the
specifics of the technique employed, e.g. widefield and confocal LM (Fig. 1a,
b). Thediffractionpattern generated in an ideal optical system is the impulse

response referred to as the PSF. In fluorescence microscopy, usually, the
illumination (excitation) and detection (emission) wavelength are not the
same, so the most suitable model of the PSF38 can be expressed as:

hðx; y; zÞ ¼ juλexðx; y; zÞj
2juλemðx; y; zÞj

2; ð1Þ

where uλ corresponds to the pupil function for a respective emission or
excitation wavelength λ. This model is known as the Airy diffraction
pattern39. To add the effect of the pinhole used in confocal microscopy, we
can convolve a disk functionwith the pupil of the emission sample. The disk
function is usually modelled as:

TðxÞ ¼ 1R2 ≤X2þY2 ; ð2Þ

where R is the radius of the pinhole. Using this notion, we can rewrite the
PSF as:

hðx; y; zÞ ¼ jTðx; yÞ � uλem ðx; y; zÞj
2juλex ðx; y; zÞj

2: ð3Þ

To model the pupil function u above, we employed the Arnison-
Sheppard approach40. This approach models the optical transfer function
(OTF). The OTF is expressed as the autocorrelation of the pupil function u
in the Fourier space. Thus, the u is the inverse Fourier transform of C(K).
Mathematically, in the k-space the OTF C(K) can be denoted as below:

CðKÞ ¼
Z Z Z

Qðmþ 1
2
KÞ � Q�ðm� 1

2
KÞdm; ð4Þ

where Q corresponds to the complex vectorial pupil function41.
The complex vectorial pupil function is a complex-valued function

Q(m) of the position vectorm = (kx, ky, kz) within the aperture of an optical

Fig. 1 | Proposedmodel with physics-informed probabilistic denoising diffusion
for Microscopy image reconstruction. a, b simplified schematic depiction of
widefield and confocal microscopy. c Schematic depiction of synthetic dataset
generation using our image acquisitionmodel. d Schematic depiction of ourmodel’s
architecture. Downsampling green blocks are convolution blocks with instance
normalisation. Upsampling green blocks have an additional bilinear upsampling
operator. Yellow blocks represent the diffusion state. Blue blocks represent the
widefield image and red blocks represent the γ function at timestep t (e) illustration

of the physics-informed denoising diffusion probabilistic model we propose. The
diffusion process is carried out by distribution q, which progressively destroys the
data structure until reaching aN(0, I) distribution. The reverse process progressively
recovers the structure of the data. This process is characterised by the learned
distribution p, in which we incorporate the physics model to inform the recovery of
the data (See Methods). The physics model is assumed to be linear, represented by
matrix A, and can also incorporate a regulariser R, such as L1 or L2.
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system. This function can be expressed as:

QðmÞ ¼ AðmÞeiϕðmÞ; ð5Þ

where A is the amplitude transmission function with respect to the
numerical aperture of the microscope and ϕ is the phase shift produced by
aberrations and microscope imperfections. Finally, to obtain u the inverse
Fourier transform is applied to the OTF.

Physics-informed denoising probabilistic diffusion models
Physics-informed methods arise from the need to incorporate physical
knowledge into the construction or training of the model. In inverse pro-
blems, the objective is to determine p(y∣x) where y is the true object and x is
some observation of the object that follows a possibly stochastic process
p(x∣y). In image reconstruction problems such asMRI undersampled image
reconstruction, deblurring or microscopy image reconstruction, the phy-
sical model is generally of the form x = ϕ(K∗y) where ϕ is a function that
applies noise according to a certain distribution. Particularly, model-based
methods try to solve a problem of the form minyjjAy� xjj2 þ λRðyÞ:
Whereλ is theweight of the regulariserR(y) andA is amatrix that represents
the convolution operation with the PSF K.

To recover the true object from the observed variables. This formula-
tion can be incorporated into the model-guided DDPM42 (SeeMethods for
details on Denoising Diffusion Probabilistic Models and Conditioned
Denoising Probabilistic Diffusion models, as well as Supplementary Mate-
rials) to obtain improvements over the conditioned case by using a physical
prior. However, one cannot access K during inference in several cases. To
remediate this, we suggest learning the shifted mean of a guided DDPM by
the physicalmodel. In this sense, we incorporate the gradient of the solution
of the physical problem as a shift of the mean of the unconditioned case.

Wedescribe thePIModelbasedon the frameworkofGuidedDiffusion
Models33. We recall that the gradient of the data likelihood denoted as
g ¼ ∇yt

log pðxjytÞ guides the sampling through the chain. We approx-
imate the transition p(yt∣yt+1)p(x∣yt) with the expression:

pðytjytþ1ÞpðxjytÞ � N ðyt ; μþ σ2t g; σ
2
t IÞ ð6Þ

For our specific problem of Microscopy image reconstruction, the
conditioning variable x represents the measured data and follows the
measurement model x = Ay + n, n ~ N(n; ξ, ξI), and A represents the
convolution operation with themicroscope PSF. Therefore, considering the
posterior of the forward process q(yt∣yt+1, y0), we express the target posterior
as:

qðyt jytþ1; y0; xÞ � qðyt jytþ1; y0ÞpðxjytÞ � N ðyt ;eμþ σ2t g; σ
2
t IÞ ð7Þ

Here, eμ is defined as eμ ¼
ffiffiffiffiffiffi
γt�1

p
βt

1�γt
y0 þ

ffiffiffi
αt

p ð1�γt�1Þ
1�γt

yt .
To train the transition pθ(yt∣yt+1, x), analogous to regular DDPMs, we

define pθðyt jytþ1; xÞ ¼ N ðyt ; μθðyt ; xÞ; σ2t IÞ, and optimise it using the fol-
lowing mean squared error loss:

Lmean :¼ E
1
2σ2t

jjeμðy0; ytÞ þ σ2t g � μθðyt ; xÞjj22
� �

ð8Þ

Using the reparametrisation trick, we can rewrite the loss function as:

E
1
2σ2t

1ffiffiffiffi
αt

p ytðy0; x; ϵÞ �
βtffiffiffiffiffiffiffiffiffiffiffiffi
1� γt

p ϵ

 !
þ σ2t g þ μθðyt ; xÞ

�����
�����

�����
�����
2

2

" #
ð9Þ

Here, we reparametrise the neural network prediction with ϵθ(x, yt),
leading to:

E
1
2σ2t

1ffiffiffiffi
αt

p ytðy0; x; ϵÞ �
βtffiffiffiffiffiffiffiffiffiffiffiffi
1� γt

p ϵ

 !
þ σ2t g �

1ffiffiffiffi
αt

p ytðy0; x; ϵÞ �
βtffiffiffiffiffiffiffiffiffiffiffiffi
1� γt

p ϵθðx; ytÞ
 !�����

�����
�����

�����
2

2

" #
ð10Þ

To further simplify, we introduce a factorisation term C ¼ β2t
2σ2t αt ð1�γt Þ,

resulting in:

Lpi-simple ¼ Eϵ;t;ðx;y0Þ C ϵ� ϵθð
ffiffiffiffi
γt

p
y0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� γt

p
ϵ; x; γtÞ þ

σ2tffiffiffiffi
C

p g

���� �������� ����2
2

" #
ð11Þ

We use a simplification of the loss function and set C = 1 to train our
model.30 One remaining challenge is defining the gradient term
∇yt

log pðxjytÞ. In the context of linear inverse problems, particularly in
linear inverse problems tasks, such as microscopy image super-resolution,
that solve the following optimisation problem:

min
y

jjAy � xjj22 þ λRðyÞ; ð12Þ

several approaches have been proposed to approximate∇yt
log pðxjytÞ. One

line of work suggests an approximation of ∇yt
log pðxjytÞ � AT ðx�Ayt Þ

σ2
43.

This approximation assumes white Gaussian noise in the measurement
process, with variance σ2, and utilises the conversion of the convolution
operation into its matrix representation A.

Another approach aims to approximate the gradient by evaluating the
measurement model in the model estimation at timestep t42. Specifically,
theydefine that thedistributionp(x∣yt) canbe approximated in the following
manner:

pðxjytÞ � pðxjby0Þ ð13Þ

Where, by0 ¼ E½y0jyt�, and can be sampled with by0 ¼ yt�
ffiffiffiffiffiffiffi
1�γt

p
ϵθðyt ;x;γt Þffiffiffi
γt

p .
While this second approximation exhibits improved accuracy over the

first one, it introduces a dependency on the model prediction, thereby
generating a learning gradient through the function g. As our method seeks
to avoid any learning signal through the function g, we find the second
approximation unsuitable for our purposes. Introducing a dependency on
model predictions may lead to deviations from the intended objective of
learning the shifted mean of the forward process posterior.

We adopt the ∇yt
log pðxjytÞ � AT ðx�Ayt Þ

σ2 approximation and adapt it
to account for noise following a distribution n ~ N(n; ξ, ξI), where the
measurement is given by x = Ay + n. Under this measurement model the
approximation of ∇yt

log pðxjytÞ is

∇yt
log pðxjytÞ �

AT ðx � ξ � AytÞ
ξ2

ð14Þ

Sincewe trainwith synthetic data,we can access thenoiseless versionof
themeasurement, enabling us to replace x− ξwith its noiseless counterpart.
Using the same strategy described in43, we employed annealing on the
gradient of Eq. (14) with a variable νt that increases as t→ 0. Then the final
gradient term is:

∇yt
log pðexjytÞ � νt∇yt

jjAyt � exjj22 ð15Þ

We find in our experiments that the best results were obtained with

νt ¼ η
ffiffiffi
γt

p

jj∇yt
log pðexjyt Þjj2, where η is set to 10. Detailed algorithms of training
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and sampling are provided in the Methods section in Algorithm 1 and
Algorithm 2 respectively.

Training dataset
To ensure that a large dataset is available for training, we simulated the
microscopy images (see Fig. 1c, Methods). For this, we have processed
images derived from two large datasets ImageNet44 and the biological image
dataset for super-resolution microscopy (BioSR)29 using our image acqui-
sition model (IAM, see Methods, Supplement). Changes that such proces-
sing inflictson the images are demonstrated inFigs. 1c and 2a.These images
used for training bore a strong resemblance to images obtained using LM.

Model training and benchmark evaluation
OnceourPIDenoisingDiffusionProbabilisticModel (PI-DDPM, seeFig. 1d,
e, Methods) was trained, we compared the PI-DDPMmodel’s performance
against other mainstream models, including U-Net, DDPM, and the
Richardson-Lucy (RL) algorithm (Fig. 2b, c, Sup. Table 1). For this purpose,
we trained U-Net and DDPM alongside PI-DDPM and included RL for
comparison. Our visual assessment indicated that both DDPM and PI-
DDPM exhibited fewer noise and processing artefacts than RL and U-Net.
Notably, PI-DDPM excelled in preserving high-frequency details in both
ImageNet and BioSR-derived images. To quantify this difference, we eval-
uated the performance with threemetrics: peak single-to-noise ratio45, multi-
scale structural similarity index measure (MS-SSIM)46, and normalised root
mean square error (NRMSE). The results demonstrate the superiority of
DDPM and PI-DDPM in image restoration (Table 1, BioSR, Sup. Table 1).
Furthermore, applying themodels tomicroscopy images from the BioSR test
set further established the superiority of both DDPM and PI-DDPM over
U-Net across allmetrics (Table 1, BioSR).Notably, PI-DDPMimproved over
DDPMin thismore realistic scenario.Additionally,we visually compared the
reconstruction results on the BioSR dataset between DDPM and its PI
counterpart proposed here. Crucially, DDPM hallucinated non-existent
structures, while PI-DDPM remained close to the GT (Sup. Fig. S1a)

Next, to evaluate the model on another benchmark dataset we have
employed widefield to structured illumination microscopy (W2S)
benchmark47. Results suggested that the performance of our PI-DDPMwas
superior over DDPM and U-Net in PSNR, MS-SSIM and NRMSE metrics
(Table 1, W2S).

To expand our choice of metrics, we have computed Fourier ring
correlation (FRC) and decorrelation-based resolution48 on the individual
subcellular structures of the BioSR dataset. These structures included
clathrin-coated pits (CCP), endoplasmic reticulum (ER), microtubules
(MT) and F-actin. Furthermore, we expanded our comparison to theGAN-
based state-of-the-art specialist SR models including DFGAN28 and
DFCAN29 (Sup. Fig. S1b). Results suggested that while the specialist
DFGAN model often performed best, PI-DDPM performed second-best
outperforming the baseline DDPM. Remarkably, when the FRC of high-
resolution details was compared on MT and ER, PI-DDPM either out-
performed the rest or performed comparably to DFGAN, outperforming
the baseline DDPM by a margin.

Finally, we compared how DDPM and PI-DDPM perform in the
presence of noise and with only limited data (Sup. Fig. S2). In this experi-
ment, using the F-actin images from the BioSR dataset, we randomly
sampled 100 images from the test set and simulated low-quality widefield
acquisitions by introducing the increasing amount of controlled Poisson-
Gaussian noise. Results suggested that PI-DDPMreconstructions preserved
the triangular shape of the filamentous structures of F-actin more reliably
than DDPM in high noise conditions (Sup. Fig. S2a, zoomed-in insets).
Furthermore, PI-DDPMmetrics deteriorated lesswith increasednoise (Sup.
Fig. S2b), suggesting higher robustness.

Model evaluation on non-benchmark superresolution
microscopy
To assess the models’ adaptability, we employed a published non-
benchmark real-world microscopy dataset of Direct Stochastic Optical

Reconstruction Microscopy (dSTORM)49. This dataset was previously
unseen by ourmodel and unprocessed. In this dSTORMdataset, authors
provide widefield (low-resolution) and dSTORM (superresolved)
microscopy paired images containing mid-zygotene nucleus immu-
nostained for SYCP3 (red), DMC1 (green) and RAD51 (blue) proteins.
PI-DDPM demonstrated exceptional performance on the dSTORM
dataset, producing results closely aligned with the ground truth (Fig. 3a,
b,Methods). As previously the quantitative evaluationwas performed by
computing metrics on images reconstructed from the widefield images
and compared the actual dSTORM reconstruction as GT. The model
surpassed both U-Net and DDPM by yielding sharper reconstructions
and exhibiting fewer artefacts in low-signal scenarios. Remarkably, PI-
DDPM produces visibly fewer artefacts in low signal (Fig. 3b, red
channel, upper row) compared to DDPM. Additionally, PI-DDPM
preserved the continuity of the filament structures better (Fig. 3b, red
channel, lowest row) compared to DDPM. Interestingly, DDPM seems
to overemphasise the green channel (DMC1) possibly due to the high
signal-to-noise. However, all models struggled to capture low signal-to-
noise punctae in RAD51 (blue channel). A thorough quantitative eva-
luation across different channels indicated that both DDPM and PI-
DDPM consistently outperformed othermodels, with PI-DDPMhaving
a slight edge in PSNR and NRMSE metrics and showing comparable
results in MS-SSIM to DDPM (Table 1, dSTORM).

Model evaluation on real-world prospectively acquired
microscopy
We further tested our model using a correlative widefield-confocal
microscopy dataset of cell nuclei, which we acquired prospectively to test
our model (Fig. 4)50. In this dataset, both confocal and widefield stacks of
the same region were taken by automated microscopy (see Methods).
Since confocal microscopy (Fig. 4b) is known to have better resolution
compared to widefield microscopy (Fig. 4a) it can serve as a guide on the
correctness of image restoration in the absence of bona fide ground truth.
Consistent with our previous observations, we noted that DDPM and PI-
DDPM have shown significantly lower blur in the reconstructions
(Fig. 4a, top row). Remarkably, comparing correlated fields of view
(Fig. 4a,b, white asterisk) PI-DDPM reconstructions show more con-
sistency with the confocal image than the conventional DDPM or U-Net
irrespective of whether the input image comes from widefield or confocal
microscopy. Furthermore, PI-DDPM showed more consistent output in
the case of a low signal-to-noise ratio beyond the edge of the speci-
men(Fig. 4b, bottom).

Ablation study: the importance of regularisation and parameter η
Toevaluate the importanceof the regularisation termand theparameterη in
our model, we conducted a series of experiments on a randomly selected
subset of theBioSR test dataset (Fig. 5). This ablation study aimed to provide
insights into the contributions and effects of these components on the
overall performanceof ourproposedapproach.Results arepresented inSup.
Table S2 and S3, as well as Fig. 5.

One fundamental aspect under investigation is the impact of the reg-
ularisation term applied to the learning process. In the context of condi-
tioned DDPMs (DDPM baseline), we follow the next regularisation
formulation:

∇yt
log pðytÞ � ∇yt

λtRðytÞ; ð16Þ

where∇yt
log pðytÞ denotes the gradient of the log-likelihoodwith respect to

the perturbed latent variable yt,λt is the regularisation coefficient at time step
t, and R(yt) represents the regularisation term.

In contrast, our proposed model introduces the learned gradient and
the regularisation term as follows:

∇yt
log pð~xjytÞ � ∇yt

jjAyt � ~xjj22 þ λtRðytÞ
� �

; ð17Þ
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Fig. 2 | Proposedmodel with physics-informed probabilistic denoising diffusion
for Microscopy image reconstruction. a Examples of processing performed using
Image Acquisition Model (IAM) on (left-to-right) Shepp-Logan phantom, ImageNet
and BioSR images. Simulated examples. b Examples of input (Widefield) and recon-
structed images using Richardson-Lucy (RL), U-Net, Denoising Diffusion Probabilistic

Models (DDPM) and physics-informed DDPM (PI-DDPM) in ImageNet and BioSR-
derived images, respectively. Simulated dataset based on ImageNet dataset. cDenoising
Diffusion Probabilistic Models (DDPM) and Physics-informed DDPM (PI-DDPM) in
BioSR images. BioSR is a dataset of real widefield and SIMmicrographs. GT stands for
ground truth. MT stands for microtubules. Scale bar in micrographs is 2 μm.
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where A is the linear operator of the forward problem, ~x represents the
measured image without noise, and the term jjAyt � ~xjj22 captures the
reconstruction error between the transformed latent variable Ayt and the
observation ~x. For our evaluation, we employed two common regularisers:
L1,L2. These regularisers emphasise commoncharacteristics of images, such
as sparsity and smoothness.

We also investigate the influence of the parameter η on the learning
process (Sup. Fig. 1). The parameter η acts as a weight for the learned
gradient, influencing how it contributes to optimisation. We observe as the
parameter increases that the metrics improve especially in the case of
NRMSE.However, beyondη=25, the performancemetrics startworsening.
This effect is because the learned gradient is not perfect, as the method
implicitly has to learn the PSF K. Furthermore, since we are also using an
approximation of ∇yt

log pð~xjytÞ which becomes worse as t approaches T,
having a constant η will propagate errors further when obtaining the
reconstruction.

Discussion
Despite the immense progress in microscopy, the ability to visualise the
microscopic world remains limited due to hardware imperfections and phy-
sics boundaries8.While recent advances inDLandgenerativemodels promise
to assist in overcoming these barriers, thesemodels comewith their own set of
limitations.DDPMshave shown great promise for generativemodelling30,51,52.

In applications such as biomedical image restoration and superresolution
microscopy, the primary focus is on preventing hallucinations, eliminating
artefacts, and ensuring the accuracy of the produced structures.

In this work, we demonstrate that incorporating the optical physical
prior into the DDPM model enhances stability and yields more realistic
reconstruction results. We achieve this by introducing a novel Physics-
Informed Diffusion Model (PI-DDPM), a framework designed to enhance
Diffusion Probabilistic Models (DDPM) by incorporating physics-based
terms. We demonstrate meaningful improvements over the traditional
DDPM framework by integrating domain-specific physical knowledge.Our
detailed contributions are as follows. Firstly, we propose a method to
incorporate a physics-informed (PI) term directly into the DDPM frame-
work, enabling the model to account for domain-specific physical con-
straints during generation.This formulation is applicable to scenarioswhere
physical knowledge, such as point spread functions (PSFs), is otherwise
unavailable. Secondly, we demonstrate that our model can effectively learn
the forward operator during training, leveraging this knowledge to apply a
PI term dynamically during inference. This allows the model to remain
physics-aware evenwhen key imaging parameters are unknown, improving
interpretability and robustness. Finally, we introduce a regularisation
strategy for the inference process that consistently enhances performance
compared to traditional DDPM approaches. Our results show that adding
the PI term and regularising the inference process leads to improvements in

Fig. 3 | Model performance on unseen super-
resolution dataset. a Image containing mid-
zygotene nucleus immunostained for SYCP3 (red),
DMC1 (green) and RAD51 (blue) proteins from
ref. 49. b Examples of input (Widefield) and
reconstructed images using U-Net, Denoising Dif-
fusion Probabilistic Models (DDPM) and physics-
informed DDPM (PI-DDPM) in dSTORM images.
The scale bar is 2 μm.
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model accuracy and consistency, especially in scenarios with limited data or
high noise.

While the PI-DDPM we propose may not outperform specialist
models like DFGAN28, it significantly outperforms its baseline DDPM in
various metrics and in producing outputs closer to GT. Using various
benchmarks and real datasets, we demonstrate that introducing a phy-
sical prior lowers the hallucinations of generative models like DDPM.
Our approach extends a recently introduced paradigm of PI neural
networks36 and extends the applicability of these methods to microscopy.
Furthermore, since our model learns the distribution from the data, it
estimates the mean and variance of the obtained reconstructions
directly. This offers a convenient way to obtain confidence in the
reconstructions, potentially facilitating broader adoption by the biome-
dical community.

Methods
Denoising diffusion probabilistic models
Unconditioned DDPMs start by setting a data distribution y0 ~ q(y0) and a
Markovian noising process q, which incrementally injects noise, resulting in
noised samples y1 to yT. Each step of the noising process introduces
Gaussian noise according to a variance schedule denoted by βt:

qðyt jyt�1Þ ¼ Nðyt ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
yt�1; βt IÞ ð18Þ

It is unnecessary to apply q repeatedly to sample from yt ~ q(yt∣y0).
Instead, q(yt∣y0) can be represented as a Gaussian distribution. Defining

Fig. 4 | Model performance on prospective corre-
lative widefield-confocal microscopy. a Examples
of widefield images of cell nuclei and their recon-
structions using U-Net, Denoising Diffusion Prob-
abilistic Models (DDPM) and physics-informed
DDPM (PI-DDPM). b Examples of confocal images
and their reconstructions. Top, centre and bottom
refer to the Z-positions of the slices. The bottom lies
beyond the edge of the specimen. The scale bar is 10
μm. Asterisk (*) marks correlated images of the
same cell and focal plane.
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αt = 1 − βt and γt ¼
Qt

s¼0αs, we have:

qðyt jy0Þ ¼ Nðyt;
ffiffiffiffi
γt

p
y0; ð1� γtÞIÞ ð19Þ

¼ ffiffiffiffi
γt

p
y0 þ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� γt

p
; ϵ � Nð0; IÞ ð20Þ

Here, 1− γt indicates the noise variance at any given time step, which
could also define the noise schedule instead of βt.

Applying Bayes’ theorem, the posterior q(yt−1∣yt, y0) is also a Gaussian
with mean ~μtðyt ; y0Þ and variance ~βt :

~μtðyt ; y0Þ ¼
ffiffiffiffiffiffiffiffi
γt�1

p
βt

1� γt
y0 þ

ffiffiffiffi
αt

p ð1� γt�1Þ
1� γt

yt ð21Þ

~βt ¼
1� γt�1

1� γt
βt ð22Þ

qðyt�1jyt; y0Þ ¼ Nðyt�1; ~μðyt ; y0Þ; ~βt IÞ ð23Þ

To sample from the data distribution q(y0), one begins with q(yT) and
sequentially samples reverse steps q(yt−1∣yt) until reaching y0. Given
appropriate settings for βt and T, q(yT) approximates an isotropic Gaussian,
making the sampling of yT straightforward. The subsequent step involves
approximating q(yt−1∣yt) using a neural network to estimate its parameters:

mean μθ and a covariance matrix Σθ:

pθðyt�1jytÞ ¼ Nðyt�1; μθðyt ; tÞ;Σθðyt ; tÞÞ ð24Þ

To ensure p(y0) aligns with the true data distribution q(y0), one can
optimise the variational lower-bound Lvlb for pθ(y0):

Lvlb ¼ L0 þ L1 þ . . .þ LT�1 þ LT

L0 ¼ � log pθðy0jy1Þ

Lt�1 ¼ DKLðqðyt�1jyt ; y0Þjjpθðyt�1jytÞÞ

LT ¼ DKLðqðyT jy0ÞjjpðyT ÞÞ

However, an alternative objective yields better practical results. Instead
of directly parameterizing μθ(yt, t) as a neural network, they trained amodel
ϵθ(yt, t) to predict ϵ from the aforementioned equation. The simplified
objective is defined as:

Lsimple ¼ Et�½1;T�;y0�qðy0Þ;ϵ�Nð0;IÞ½jjϵ� ϵθðyt ; tÞjj2� ð25Þ

Fig. 5 | Influence of the parameter η, and different regularisers on the learning
process. a Influence of decreasing η measured by Multi-Scale Structural Similarity
(MS-SSIM) for L1 regularisation. b Influence Influence of decreasing ηmeasured by

MS-SSIM for L2 regularisation. c Influence of decreasing η measured by the peak
signal-to-noise ratio (PSNR) for L1 regularisation. d Influence of decreasing η
measured by PSNR for L2 regularisation.
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For sampling, μθ(yt, t) can be derived from ϵθ(yt, t) via substitution:

μθðyt; tÞ ¼
1ffiffiffiffi
αt

p yt �
βtffiffiffiffiffiffiffiffiffiffiffiffi
1� γt

p ϵθðyt ; tÞ
 !

ð26Þ

and sample using the following recurrence:

yt�1 ¼ μθðyt; tÞ þ
ffiffiffiffiffi
Σθ

p
ϵt ; ϵt � N ð0; IÞ

It is feasible to fix Σθ(yt, t) to a constant value, such as βtI or ~βtI,
representing upper and lower bounds for the true reverse step variance,
instead of learning the covariance30.

Conditioned denoising probabilistic diffusion models
In the conditioned case, samples are drawn from an unknown distribution
p(y∣x). This is referred to as distribution because conditioned image
synthesis is, by nature, ill-posed. Specifically, there are many possible
solutions y for any given input x. In the conditioned process, we want to
learn an approximation of this distribution. To achieve that, it is possible to
condition DDPMs in two ways.

The first way is to redefine the Markov chain. Given an image y and
some corruption process p(x∣y), we want to learn p(y∣x). To achieve this, the
diffusion Markov chain states are concatenated by the respective con-
ditioning image x32. Specifically, the distributions of the states of the
Markov chain are generated by the diffusion process q(yt∣yt−1) and con-
catenated to the conditioning image x. Where yi ¼

ffiffiffiffi
γt

p
y0 þ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� γt

p
;

ϵ � N ðϵ; 0; IÞ. To learn the reverse process, a reverse Markov chain is
established, where pðyT Þ ¼ N ðyT ; 0; IÞ:

pθðyt�1jyt ; xÞ ¼ N ðyt�1jμθðx; yt ; γtÞ; σ2t IÞ: ð27Þ

Using the same formulation as in regular DDPMs32, the model is
trained to predict ϵ at each time step:

min
θ

Lsimple :¼ Et;ðx;y0Þ;ϵjjϵ� ϵθðyt ; x; γtÞjj22: ð28Þ

Finally, to obtain y0, the same iterative denoising as in the regular
DDPMs is applied.

yt�1 ¼
1ffiffiffiffi
αt

p yt �
βtffiffiffiffiffiffiffiffiffiffiffiffi
1� γt

p ϵθðx; yt ; γtÞ
 !

þ
ffiffiffiffi
βt

p
ϵt : ð29Þ

Model-guided denoising probabilistic diffusion models
The second way to obtain conditioned samples from a diffusionmodel is to
condition an unconditioned reverse process33. Given an unconditional
reverse process pθ(yt∣yt+1), to condition on label x we can factorise

pθ;ϕðyt jytþ1; xÞ ¼ Zpθðyt jytþ1ÞpϕðxjytÞ; ð30Þ

whereZ is a normalizing constant. This expression canbe approximated as a
perturbedGaussian distribution. Since our unconditioned reverse process is
a Gaussian, we have:

pθðyt jytþ1Þ ¼ N ðμ; σ2t IÞ ð31Þ

log pθðyt jytþ1Þ ¼ � 1
2σ2t

ðyt � μÞT ðyt � μÞ þ C: ð32Þ

Since, at infinity, the distribution of the reverse process tends to a delta
distribution, then it is reasonable to approximate pϕ(x∣yt) by its Taylor

expansion around the mean.

log pϕðxjytÞ � log pϕðxjytÞjyt¼μ þ ðyt � μÞ∇yt

log pϕðxjytÞjyt¼μ ¼ ðyt � μÞg þ C1

ð33Þ

where g ¼ ∇yt
log pϕðxjytÞ

Finally, by replacing and rearranging, we get:

pθðyt jytþ1ÞpϕðxjytÞ � N ðμþ σ2t g; σ
2
t IÞ: ð34Þ

Thus, the reverse conditioned process approximates the uncondi-
tioned Gaussian transition with its mean shifted by σ2t g.

Physics-informed denoising probabilistic diffusion models
training
We trained our PI-DDPM employing the algorithm DDPM as outlined in
Algorithm 1. For inference, we used the algorithm outline in Algorithm 2.

Algorithm 1. Physics-Informed Denoising Diffusion Model (PI-DDPM)
Training

Algorithm 2. Physics-Informed Denoising Diffusion Model (PI-DDPM)
Sampling

Metrics
To assess the performance of all themodels in this studywe usedmulti-scale
structural similarity index measure (MS-SSIM)46, normalised root mean

square error NRMSE :¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
ymax�ymin

, and peak single-to-noise ratio (PSNR).

MS-SSIM metric is defined as:

MS-SSIM ðx; yÞ :¼ ½lMðx; yÞ�αM
YM

j¼1
½cjðx; yÞ�βj ½sjðx; yÞ�γj ; ð35Þ

where lj, cj, and sj are the measures of luminance, contrast, and structure
corresponding to scale j.We used five scales and αj = βj= γj for

PM
j¼1 γj ¼ 1

in accordance with the parameters reported in46. PSNR was defined as:
PSNR :¼ 20log10ðMAXIÞ � 10log10ðMSEÞ;whereMAXI is themaximum
pixel value of the image and MSE is the mean square error.
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Training details
DDPM and PI-DDPMwere trained in a cluster environment employing a
singleNvidiaA100with 40GBof vRAM.The batch sizewas 16. Pre-training
continued for 1 million iterations using an ImageNet-derived dataset and
fine-tuned for 800,000 iterations on the mixed dataset. The U-Net model
was trained in a cluster environment using a single Nvidia V100 GPU
equipped with 32GB of vRAM. Pre-training continued for 800,000 itera-
tions, and fine-tuning for 100,000.

Simulated dataset generation
To generate a simulated dataset for training our models, we utilised two
primary sources of images: photographs from the ImageNet database44 and
structured illumination microscopy (SIM) images from the BioSR dataset29.
Our approach involvedprocessing each image througha forwardmicroscopy
model, termed the Image AcquisitionModel (seeMethods and Fig. 1c). This
model simulates the effects of different microscopes by convolving each
image with a Point Spread Function (PSF) and then applying Poisson noise.

For the ImageNet-derived dataset, which comprises 1.2 million
training images and 100,000 test images, we generated 30,000 unique PSFs.
The generation of each PSF involved random sampling of physically
plausible parameters for microscopy systems: numerical aperture (0.4 to
1.0), excitation wavelength (320 to 400 μm), emission wavelength (450 to
550 μm), and pinhole size (0.1 to 1000 μm). The focal plane was centered in
the volume object with a refractive index of 1.33, corresponding to air. We
then convolved the ImageNet images with these PSFs to create a training
dataset that mimics microscopy images.

Additionally, we incorporated a simulated dataset derived from the
publicly available BioSR dataset29. BioSR contains approximately 20,000
SIM fluorescence images of various subcellular structures, such as clathrin-
coated pits (CCPs), endoplasmic reticulum (ER), microtubules (MT), and
F-actin, imaged at different fluorescence levels. For this part of the dataset,
we took all high-resolution images from BioSR and processed them using
the Image Acquisition Model to simulate low-resolution images. These
simulated BioSR images, adhering to the original dataset’s train-test split,
were used for fine-tuning our models. The high-resolution BioSR images
served as the ground truth during training, while the simulated low-
resolution images were used as input. At test time, we employed BioSR’s
low-resolution (widefield) images as inputs.

This combined, processed dataset from ImageNet and BioSR, which
includes both training and test images, was employed for training and fine-
tuning various models, including U-Net27, DDPM30, and our proposed PI-
DDPMmodel. The goal was to reconstruct high-resolution images from the
simulated blurred micrographs.

Direct stochastic optical reconstruction microscopy dataset
To test how our method compares to the state-of-the-art single-molecule
localisation microscopy (SMLM) we have employed a publicly available
three-color Direct Stochastic Optical Reconstruction Microscopy
(dSTORM)dataset49. In this dataset authors provide aWidefield andSMLM
reconstructed high-resolution image containing mid-zygotene nucleus
immunostained for SYCP3 (red), DMC1 (green) and RAD51 (blue) pro-
teins. Images in this dataset were acquired by Zeiss Elyra PS1 microscope
using a 100x 1.46NA oil immersion objective. Further imaging details are
provided by the authors in the following publication53.

Prospective correlative widefield-confocal microscopy dataset
Finally, to test how our model would perform on a prospectively acquired
dataset, we have obtained a correlated widefield-confocal microscopy
dataset. For this, A549 lung carcinoma cell line cells were seeded in 96-well
imaging plates a night prior to imaging, then fixed with 4% paraf-
ormaldehyde (Sigma) and stained forDNAwithHoechst 33342 fluorescent
dye (Sigma). Cell culture was maintained similarly to the procedures
described in54. Next, stained cell nuclei were imaged using ImageXpress
Confocal system (Molecular Devices) in either confocal or widefield mode
employing Nikon 20X Plan Apo Lambda objective. To obtain 3D

information images in both modes were acquired as Z-stacks with 0.3 μm
and 0.7 μm for confocal and widefield modes respectively. Confocal z-stack
was Nyquist sampled. The excitation wavelength was 405 nm and the
emission 452nm.Using these settingswehave obtained 72 individual stacks
for both modalities, with each stack covering 2048 by 2048 pixels or 699 by
699 μm.

Widefield to SIM (W2S) dataset
Widefield to SIM (W2S)47 is a collection obtained through conventional
fluorescence widefield and SIM (Structured Illumination Microscopy)
imaging techniques. This dataset encompasses 144,000 authentic fluores-
cencemicroscopy images, aggregating into a total of 360 distinct image sets.
Each set consists of low-resolution (LR) widefield images exhibiting various
levels of noise, an accompanying noise-free LR image, and a corresponding
high-resolution (HR) SIM image of superior quality.

Source code
The source code for this work is available onGitHub (see Code availability).
To train the model place your data generated by the dataset_generation
script (if you are generating simulated data) or the STORM script if you are
generating the respective dSTORM dataset. In the train_ddpm or trai-
n_unet script change the paths of the loading data to the ones that you
generated. Next, choose a training modality, either widefield or confocal.
Finally, run the script.

To test the model generate your testing dataset using the dataset_-
generation script. Change the paths corresponding to your data. Next,
change the paths to theweightsfiles that youwish to use. Finally, run the test
script. Due to the size limitation of the submission for the prospective
dataset containing correlative widefield-confocal fluorescence microscopy,
we provide only a single stack as an example (data/teaser_c_w_test.npz).

Data availability
The correlated widefield confocal microscopy dataset acquired pro-
spectively in thiswork is available under aCreative Commons license on the
RODARE data repository50. All other datasets used in this work are pub-
lished and available from their respective sources.

Code availability
The source code for this work is available on GitHub under GNU General
Public License v3.0 and can be accessed at55 and https://github.com/casus/
pi-ddpm. Additionally, the code for decorrelation-based resolution mea-
surement can be found in48 and https://github.com/casus/pyres. See
Methods for details required to reproduce the results.
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