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IMPORTANCE: Postoperative delirium (POD) is a multietiological condition and affects 20% 

of older surgical patients. It is associated with poor clinical outcome and increased mortality. 120 

OBJECTIVE: We aimed to develop and validate a risk prediction algorithm for POD based on 

a multimodal biomarker database exploiting preoperative data (predisposing factors) and 

procedural factors as well as perioperative molecular changes associated with POD 

(precipitating factors). 

DESIGN: BioCog is a prospective cohort study conducted from November 2014 to April 2017. 125 

Patients were followed up for seven postoperative days after surgery for POD. Gradient-

boosted trees (GBT) with nested cross-validation was used for POD prediction. 

SETTING: Patients aged ≥65 years were enrolled at the anesthesiologic departments of two 

tertiary care centers. 

EXPOSURE: All patients underwent surgery with an expected duration of at least 60min. 130 

Clinical, neuropsychological, neuroimaging data and blood were collected and clinically well 

established as well as non-established biomarkers (e.g., gene expression profiling) were 

measured pre- and postoperatively.   

MAIN OUTCOME: POD according to DSM 5 until the seventh postoperative day 

RESULTS: 184 of 929 (20%) patients experienced POD. A GBT algorithm using both 135 

preoperative data, characteristics of the intervention and postoperative changes in laboratory 

parameters achieved the highest area under the curve (0.83, [0.79; 0.86]) with a Brier score of 

0.12 (0.12; 0.13).  

CONCLUSIONS AND RELEVANCE: Models combining predisposing factors with 

precipitating factors predict POD best.  Non-routine laboratory data provide useful information 140 

for POD risk prediction, providing relevant results for future studies on the molecular factors of 

POD. In addition, possibly relevant molecular mechanisms contributing to the development of 

POD were identified, mostly indicating a dysregulated postoperative immune response. This 
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study constitutes the basis for future hypothesis-driven analyses or implementation of 

prediction expert system for clinical practice. 145 
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1 Background 165 

Delirium is an acute disturbance in attention, awareness, cognition, psychomotor behavior and 

emotional state because of another medical condition. The incidence of postoperative delirium 

(POD) ranges from 5-50% (1), but is most frequent in older patients (2, 3). POD incidence is 

assumed to rise in aging populations (4), challenging healthcare systems since it is associated 

with poor cognitive outcome, hospitalization, treatment costs, re-institutionalization, and 170 

mortality (3, 5). 

Prehabilitation effectively mitigates postoperative neurocognitive disorders but is time 

consuming and prediction algorithms are necessary to carefully weigh POD risk against a delay 

of surgery (6). 

Various previous studies have tried to build machine learning-based prediction tools for POD, 175 

usually based on retrospective analyses (7-11). The only two prospective studies achieved 

AUC values of 71% (12) and 74% (13). The prospective Biomarker Development for Postop-

erative Cognitive Impairment in the Elderly (BioCog) study was conducted with the main goal 

to improve POD-prediction. We were taking a systems medicine approach with focus on in-

flammatory alterations and the immune system, the cholinergic system and metabolic changes 180 

as well as indicators for early dementia based on an in-depth systematic review (1). Investiga-

tions included a wide range of perioperative clinical and neuropsychological parameters, neu-

roimaging, laboratory investigations and gene expression. Furthermore, the incorporation of 

precipitating factors may have additional value to  predisposing factors.  

The primary aim of this study was to develop and internally validate a POD risk index based 185 

on multimodal non-routine data intended for use by healthcare professionals to advise patients 

during medical decision making and allocating healthcare resources. 
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2 Methods 

2.1 Study design 

BioCog (www.biocog.eu, clinicaltrials.gov: NCT02265263, study protocol: (5)) is a prospective 190 

observational cohort study with the aim of identifying POD risk factors. The model was 

developed and internally validated in this cohort. All procedures were approved by the local 

ethics committees in Berlin, Germany (EA2/092/14) and Utrecht, Netherlands (14-469) and 

conducted in line with the declaration of Helsinki. All participants gave written informed consent 

prior to inclusion. 195 

2.2 Participants 

Male and female patients were enrolled in two tertiary care centers at the Charité–

Universitätsmedizin Berlin, Germany, and the University Medical Center Utrecht, Netherlands. 

Consenting patients aged ≥65 years presenting for elective surgery with an expected 

duration >60min were included. Patients meeting one of the following criteria were excluded: 200 

• positive screening for pre-existing major neurocognitive disorder defined as a Mini-

Mental Status Examination (MMSE) score ≤23 points 

• any condition interfering with neurocognitive assessment (severe sensory impairment, 

neuropsychiatric illness including alcohol and drug dependence, intracranial surgery) 

• unavailability for follow-up assessment 205 

• accommodation in an institution due to official or judicial order 

• inability to give informed consent 

2.3 Study procedures 

The preoperative data were collected at least one day before surgery including medical history 

and clinical assessments, neuropsychological testing, blood collection and neuroimaging. 210 

Postoperative study visits took place twice daily until the seventh postoperative day. 
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2.4 Outcome 

POD during the first seven days after surgery was the primary endpoint. Independently of the 

routine hospital procedures, POD screening was started in the recovery room and repeated 

twice per day at 8:00am and 7:00pm (±1h) up to seven days after surgery, by or under 215 

supervision of a study physician. POD was defined according to DSM-5 criteria and assessed 

by prospective screening with three validated tools which were recorded at each visit in 

accordance with current guidelines (2, 3), to mitigate the known tendency of physicians to 

underdiagnose POD. Patients were considered delirious if at least one of the following criteria 

was positive: 220 

• ≥2 points on the Nursing Delirium Screening Scale (Nu-DESC), 

• positive Confusion Assessment Method (CAM) score on a general ward, 

• positive CAM for the Intensive Care Unit (CAM-ICU) score on an intensive care unit 

(ICU), 

• chart review showing descriptions of delirium. 225 

2.5 Clinical assessments 

Before surgery, the study team recorded sociodemographic data and information on 

medication according to Carnahan’s anticholinergic drug scale, health-related quality of life 

(EQ5D), Mini-Nutritional Assessment (MNA) and Body Mass Index (BMI), tobacco and 

hazardous alcohol consumption (AUDIT). A functional and physical assessment battery 230 

including frailty and walking speed was conducted. Precipitating factors were recorded: 

duration of surgery and anesthesia, type of anesthetic procedure (regional and/or general 

anesthesia), type of surgery (intracranial, intrathoracic/-abdominal/-pelvic surgery or 

peripheral), postoperative pain, prescription of anticholinergic medication daily until the 

seventh postoperative day, length of hospital and ICU stay as well as complications and 235 

postoperative mortality until the 90th postoperative day (eChapters 1.1-1.6). 
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2.6 Neuropsychological data 

The preoperative cognitive assessment consisted of a comprehensive screen-based 

neuropsychological test battery (CANTAB, Cambridge Cognition Ltd., Cambridge, UK) and 

additional tests (Trail-Making-Test Parts A and B). MMSE score at the screening visit, CANTAB 240 

test scores and overall preoperative cognitive impairment (PreCI) were analyzed as risk factors.  

PreCI is a dichotomous variable defined through comparison of cognitive test performance 

with a control group. We used multiple cognitive test parameters with moderate-to-good retest-

reliability in the control group (14) and calculated z-scores of the baseline measurement in 

each test parameter assessed in the control group. The same z-transformation was then 245 

applied to the surgical cohort. Z-scores <-1·96 in at least two cognitive test parameters or an 

averaged z-score <-1·96 was used to define PreCI (eTable 2, eChapter 1.7).  

2.7 Laboratory parameters 

Preoperative serum and plasma samples were collected in supine position immediately before 

induction of anesthesia after eight hours of fasting and on the morning of the first postoperative 250 

day. Blood sampling was performed by trained clinic staff according to a standard operating 

procedure adapted from the German National Cohort Study (15). Samples were immediately 

sent to laboratories adjacent to the respective hospital site for analysis, or frozen at -80 °C and 

shipped to a central biobank at the Molecular Epidemiology Group, Max-Delbrück Center 

(MDC), Berlin for sample processing and storage. This group distributed samples for additional 255 

analyses to Atlas Biolabs GmbH as well as to several partners (Immundiagnostik AG in 

Bernsheim, Germany, Institute of Protein Biochemistry at Consiglio Nazionale delle Ricerche 

di Pisa, Immune Study Lab of Institute of Medical Immunology and BIH Center for 

Regenerative therapies at Charité-Universitätsmedizin Berlin). See eChapter 1.8 for a list of 

measured molecules. Whenever necessary, values were adjusted for laboratory. 260 
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2.8 Transcriptomics 

Samples for transcriptomic analysis were collected in PAXgene tubes (Qiagen) at the same 

timepoints as other blood samples. Analyses were performed with Affymetrix Clariom S human 

microarray for RNA and Affymetrix® Flash Tag™ Biotin HSR (miRNA 4.1 Array Plates) for 

microRNA analyses (Thermo Fischer, Santa Clara, CA, USA) in a GeneTitan™ Multi-Channel 265 

Instrument by Atlas Biolabs GmbH (Berlin).  

2.9 Neuroimaging 

The magnetic resonance imaging (MRI) protocol included whole brain T1-weighted and T2-

weighted high-resolution hippocampus imaging and diffusion tensor imaging (DTI). In addition, 

functional MRI and arterial spin labeling, but have not been considered for prediction due to 270 

low between-scanner agreement (inter-class correlation coefficient of 0·36-0·54 for functional 

connectivity in default mode, salience executive and dorsal attention networks and 0·17-0·39 

for quantified cerebral blood flow). We calculated global and regional brain volumes including 

hippocampal subregions, cortical thickness and curvature from T1-weighted imaging, mean 

diffusivity, kurtosis and fractional anisotropy from DTI (eChapter 1.10). 275 

2.10 Statistics 

2.10.1 Estimation of sample size 

The rule of thumb of Harrell was used to plan an appropriate number of POD events for a 

stable prediction model, i.e., ≥10 events per independent variable in logistic regression (16), 

which was considered adequate for machine learning. Requiring 260 patients with POD for 280 

analysis of up to 26 independent predictor variables and expecting a 25% incidence of POD, 

number of required patients was N=1040. Assuming a drop-out rate of 15%, a total number of 

N=1200 patients was planned. The initial analysis plan stipulated a training/test split approach 

for internal validation due to its computational efficiency. Since the study finally achieved a 
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lower cohort size, nested k-fold cross validation was used instead which works more efficiently 285 

on small samples.  

2.10.2 Analysis of single parameters 

For descriptive purposes, associations of pre-/perioperative parameters with POD were 

analyzed using simple logistic regression. We report odds ratios (OR) with 95% confidence 

intervals (CI) for the depending variable POD (reference category: no POD). To improve the 290 

interpretability of single parameter analyses, standardizing transformations were applied to the 

raw variables (eChapter 1.11.1) or dichotomized according to clinically relevant cut-off values 

for presentation of interpretable ORs. Analyses were conducted in R (R Core Team, R 

Foundation for Statistical Computing, Vienna, Austria) and SPSS (IBM, Armonk, NY). No 

adjustments for multiple testing were made and therefore, results should be considered 295 

exploratory, and we abstain from reporting p-values. 

2.10.3 Machine learning 

We applied machine learning (gradient boosted trees, GBT) to explore how the interplay of a 

larger set of predictors would benefit the prediction of POD risk in a bottom-up, data-driven 

fashion to allow unforeseen predictor-prediction relationships. Data available before surgery 300 

as well as data available on the first postoperative day by the latest were eligible for inclusion 

in machine learning, since these data were deemed useful for preoperative POD risk prediction 

as well as postoperative re-evaluation of further management. 

Variables were assembled into blocks, i.e., preoperative data from the clinical assessment 

(“Clinical”), characteristics of the surgical intervention (“Precipitants” an “Pain”), preoperative 305 

neuroimaging data (“Imaging”), preoperative values) and perioperative difference in laboratory 

parameters measured in whole blood, plasma or serum (“Blood” and “Blood periop.”), 

preoperative RNA and µRNA abundance (“RNA” and “µRNA”), as well as perioperative 

difference in transcript abundance (“RNA periop.”). Different GBT models were built on 

combinations of various variable blocks. Combinations were selected sequentially, starting with 310 
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simple models (i.e., using only variables from one block) and then adding further blocks based 

on the AUC, assumptions on feasibility and relevance for clinical routine. Models using RNA 

data were evaluated separately since transcript abundance was only available for a subgroup 

of patients. 

The GBT algorithm takes a set of decision trees as weak classifiers and combines them to 315 

form a strong classifier. It does so by incrementally adding decision trees during training to 

steadily improve its previous performance. The sampling of input cases is focused on those 

cases that were hard to classify before training and individual tree predictions are weighted. 

During inference, the output is computed through sequential application of each tree. GBT 

provides a continuous output parameter bounded between 0 and 1, allowing the choice of a 320 

clinically relevant cut-off which can be flexibly adapted to address various clinical questions 

and is inherently able to handle missing data. Area under the receiver operating curve and the 

Brier score with 95% CI are provided. The Brier score measures the difference between 

predicted probabilities and actual outcomes, ranging between 0, for perfect prediction, and 1. 

Models were validated using nested cross-validation. This approach allows model 325 

hyperparameter optimization and model selection while avoiding model overfitting. While each 

of the training datasets is provided to a hyperparameter optimized procedure, the evaluation 

of hyperparameters is performed using another cross-validation procedure that splits up the 

each of the provided train dataset into another set of k-folds (see eChapter 1.11.2). Sex-

specific analyses have been conducted for the best-performing model. The funding source was 330 

not involved in study design, data collection, analysis, interpretation, writing or submitting the 

manuscript. 

3 Findings 

We recruited 933 patients between November 2014 and April 2017. Table 1 characterizes the 

sample. The patient flow chart is given in figure 1. Additional details on excluded patients are 335 
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given in eChapter 2.1. POD assessments were available for 929 patients. 184/929 (20%) 

patients developed POD. 

83/184 (45%) cases of POD were identified in the bedside screening only, 13/184 (7%) cases 

of POD were diagnosed from chart review only, and 88/184 (48%) cases were proven in both 

chart review and bedside screening. eFigure 4 and eTable 3 give an overview of daily POD 340 

incidence. 
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Table 1: Sample description (N=929) 

 All Women Men 

 Median 

(IQR) 

Min.-max. Median 

(IQR) 

Min.-max. Median 

(IQR) 

Min.-max. 

Age (years) 72 

(69-76) 

65-91 72 

(68-76) 

65-87 72 

(68-76) 

65-91 

BMI (kg/m²) 26.6 

(24.0-

29.4) 

14.7-46.8 27.0 

(23.6-

30.5) 

16.0-46.8 26.3 

(24.2-

28.7) 

14.7-44.3 

MMSE score (points) 29 

(28-30) 

24-30 29 

(28-30) 

24-30 29 

(28-30) 

24-30 

GDS 1 

(0-3) 

0-13 2 

(1-3) 

0-13 1 

(0-2) 

0-10 

EQ5D 0.88 

(0.76-

1.00) 

-0.14-1.00 0.83 

(0.69-

0.92) 

0.17-1.00 0.91 

(0.79-1.0) 

-0.14-1.00 

Charlson’s comorbidity 

index (p) 

1 

(0-2) 

0-10 1 

(0-2) 

0-7 1 

(0-2) 

0-10 

Hemoglobin (g/dL) 13.1 

(11.9-14.3) 

5.4-17.9 12.6 

(11.6-13.6) 

7.0-16.2 13.5 

(12.3-

14.7) 

5.4-17.9 

CRP (mg/L) 3.4 

(1.4-8.3) 

0.1-232.0 4.4 

(1.7-10.0) 

0.1-232.0 2.9 

(1.1-7.2) 

0.1-174.4 

Leukocytes (nL-1) 6.2 

(5.0-7.5) 

1.6-24.6 6.2 

(5.9-7.3) 

2.7-19.4 6.2 

(5.1-7.7) 

1.6-24.6 

Albumine (g/L) 40.7 

(37.8-

43.2) 

15.5-51.7 40.1 

(37.1-

43.0) 

22.2-51.7 41.0 

(38.3-

43.3) 

15.5-51.6 

Creatinine (µmol/L) 76.0 

(64.5-

90.2) 

32.7-529.5 66.3 

(58.3-

79.1) 

35.4-251.9 82.2 

(71.6-

95.0) 

32.7-529.5 

NT-proBNP (pmol/L) 6.1 

(2.9-21.4) 

2.9-617.2 6.9 

(2.9-23.7) 

2.9-617.2 5.4 

(2.9-18.9) 

2.9-397.8 

LDL cholesterol 

(mmol/L) 

3.0 

(2.3-3.7) 

0.1-7.7 3.1 

(2.5-3.8) 

0.1-7.7 2.9 

(2.3-3.6) 

0.5-6.4 

Duration of anesthesia 

(Utrecht, min)a 

265 

(213-390) 

10-1669 265 

(225-400) 

39-1663 260 

(209-384) 

10-1669 

Duration of anesthesia 

(Berlin, min)a 

167 

(106-279) 

25-753 169 

(110-285) 

30-676 162 

(103-269) 

25-753 

Duration of surgery 

(Berlin, min)b 

102 

(55-191) 

3-594 105 

(58-191) 

3-543 100 

(55-140) 

6-594 

Duration of hospital 7 1-131 7 1-87 6 1-131 
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stay (days) (4-11) (4-12) (3-9) 

Duration of ICU stay 

(days) 

0 (0-0) 0-55 0 (0-0) 0-55 0 (0-0) 0-45 

 Absolute 

nb 

Relative 

freq.b 

Absolute 

nb 

Relative 

freq.b 

Absolute 

nb 

Relative 

freq.b 

PreCI 122/924 13% 60/391 15% 62/533 12% 

POD 184/929 20% 85/394 22% 99/535 19% 

Mortality at 3 months 

(Berlin)c 

29/683 4% 19/316 6% 10/367 3% 

Compli-

cations 

(Berlin)c 

death 17/684 3% 10/316 3% 7/368 2% 

non-fatal 351/684 51% 167/316 53% 184/368 50% 

Site of 

surgery 

Intracraniald 10/911 1% 3/388 1% 7/523 1% 

Intratho-

racic, -ab-

dominal, -

pelvic 

397/91 44% 166/388 43% 231/523 44% 

peripheral 505/911 55% 219/388 56% 286/523 55% 

Type of 

anesthe-

sia 

general 687/912 75% 283/385 74% 404/527 77% 

regional 57/912 6% 22/385 6% 35/527 7% 

combined 168/912 18% 80/385 21% 88/527 17% 

ASA-PS I 36/929 4% 14/394 4% 22/535 4% 

II 557/929 60% 241/394 62% 316/535 59% 

III 335/929 36% 138/394 35% 197/535 37% 

IV 1/929 <1% 1/394 <1% 0/535 0% 

Women 394/929 42% n.a. n.a. n.a. n.a. 

MNA Normal 662/911 73% 266/382 70% 396/529 75% 

At risk 200/911 22% 91/382 24% 109/529 21% 

Malnour-

ishement 

49/911 5% 25/382 7% 24/529 5% 

Frailty 

(Fried) 

robust 354/631 56% 139/277 50% 215/354 61% 

prefrail 175/631 28% 80/277 29% 95/354 27% 

frail 102/631 16% 58/277 21% 44/354 12% 

Smoker 90/903 10% 39 10% 51 10% 

Hazardous alcohol con-

sumption (AUDIT) 

62/862 7% 21 6% 41 8% 

ISCED 

level 

1+2 150/839 18% 80/358 22% 70/481 15% 

 3+4 343/839 41% 177/358 49% 166/481 35% 

 5+6 346/839 41% 101/358 28% 245/481 51% 
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BMI: body mass index; IQR: interquartile range; MMSE: Mini-Mental Status Examination; GDS: geriatric de-

pression scale; CRP: C-reactiveI protein; LDL: low-density lipoprotein; NT-proBNP: N-terminal pro-brain na-

triuretic peptide; freq.: frequency;  ICU: intensive care unit; PreCI: preoperative cognitive impairment; POD: 

postoperative delirium; ASA-PS: American Society of Anesthesiologists Physical Status; MNA: Mini-nutritional 

assessment; ISCED: International Standard Classification for Education 

a end of anesthesia was assessed differentially in both study centers 

b relative frequencies are calculated after correction for missing values 

c data are only available for the study center in Berlin 

d intracranial surgery not affecting brain parenchyma (e.g. meningioma) 
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Figure 1: Patient flow chart.  345 
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3.1 POD risk factors 

Figure 2 displays unadjusted OR with 95% CIs for preoperative parameters with CIs excluding 

unity. Sample and effect sizes for all parameters are given in the online-only material. 

Age was directly associated with POD. Among age-related conditions, frailty had the strongest 

association with POD (OR 1·90 [1·49; 2·44] for category change in Fried’s phenotype), as well 350 

as slow walking speed (1·80 [1·22; 2·63] for TUG>10s), malnutrition (OR 1·67 [1·29; 2·16] for 

category change in MNA-SF), any functional impairment according to Barthel index or IADL 

assessment (OR 1·59 [1·12; 2·24]) and depressive symptoms (OR 1·57 (1·05; 2·41) for 

GDS>0). 

An MMSE score <27points had a higher OR (3·10 [1·96; 4·85]) for POD than PreCI (OR 2·57 355 

[1·69; 3·88], see also eTable 8 and eFigure 5) 

Preoperatively higher levels of cholesterol (standardized, adjusted OR 0·79 [0·65; 0·95]) and 

associated lipoproteins (HDL and LDL) were protective against POD. A postoperative decrease 

in triglycerides, cholesterol and LDL were associated with higher POD incidence. 

Four inflammatory parameters were positively associated with POD: IL6 (standardized OR 360 

1·19 [1·03; 1·38]), whole blood IL8 (standardized OR 1·42 [1·02; 1·98]) (17), CRP 

(standardized, adjusted OR 1·20 [1·03; 1·41]), immature granulocyte fraction (standardized 

OR=1·34 [1·10; 1·63]) and neutrophil count (standardized, adjusted OR 1·22 [1·03; 1·46]). An 

increase of inflammatory parameters on the first postoperative assessment was associated 

with higher likelihood of POD (CRP: standardized, adjusted OR 1·59 [1·14; 2·21], IL6: 365 

standardized OR 1·76 [1·48; 2·09], and IL8: standardized OR 1·96 [1·18; 3·24]). Cellular 

immune response showed a more complex association with POD: Whereas a postoperative 

increase in leukocytes (standardized, adjusted OR 1·36 [1·12; 1·64]) and neutrophiles 

(standardized, adjusted OR 1·47 [1·2; 1·81]) was associated with POD, an increase in 

lymphocytes lowered the odds for POD (standardized, adjusted OR 0·66 [0·54; 0·81]). 370 
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Higher levels tryptophan (standardized, laboratory-adjusted OR 0·74 [0·62; 0·89]) and albumin 

(standardized, adjusted OR 0·68 [0·56; 0·81]) also lowered the odds for POD. A higher plasma 

β-amyloid 42/40-ratio was found to be related to a lower POD likelihood (standardized, 

adjusted OR 0·74 [0·56; 0·93]), but this association seemed to be driven by increased POD 

risk in patients with higher levels of β-amyloid 40 (standardized, adjusted OR 1·20 [1·02; 1·41]). 375 

Both higher preoperative γ-glutamyltransferase levels (standardized, adjusted OR 1·24 [1·06; 

1·47]) and a postoperative decrease (standardized, adjusted OR 0·81 [0·68; 0·98]) were 

associated with POD. A postoperative increase in transaminases was associated with POD. 

Postoperatively decreasing levels of oxidative stress indicated by nitrotyrosine levels 

(standardized OR 0·72 [0·53; 0·98]) and nitrous oxide production indicated by homoarginine 380 

levels (standardized OR 0·48 [0·31; 0·73]) were associated with increased POD risk. 

Longer duration of anesthesia (OR 4·42 [3·15; 6·27] for >4h) and surgery (OR 7·44 [4·84; 

11·50] for >4h) as well as blood loss (standardized, adjusted OR for perioperative changes in 

Hb: 0·76 [0·63; 0·91], thrombocytes: 0·57 [0·46; 0·69], and albumin: 0·66 [0·54; 0·81]) were 

associated with POD. Compared to general anesthesia, surgery performed in regional 385 

anesthesia was associated with lower rates of POD (0·29 [0·09; 0·72]). Surgery with opening 

of thorax, abdomen or pelvis was associated with increased rates of POD compared to 

peripheral surgery (OR 3·00 [2·13; 4·25]). Pain (OR 2·16 [1·55; 3·01]) or intake of any 

anticholinergic medication (OR 2·35 [1·50; 3·84]) at least once during follow-up until the 

seventh postoperative day were both associated with POD (see also eTables 11-12, eFigures 390 

6 and 7). 

Various associations of structural MRI-derived parameters were observed (complete results: 

eFigure 8, eTable 15), we would like to emphasize a protective association of POD with global 

brain volume (standardized OR 0·71 [0·55; 0·92]) as well as hippocampus volume 

(standardized OR [0·67 (0·53; 0·86]). 395 
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Figure 2: Summary of parameters that were significantly associated with POD. Odds ratios (OR) with 95% 

confidence interval (95% CI) are shown (only parameters are depicted with CI excluding unity). The diameter of the 

circle corresponds to the number of available datasets. See also supplementary material 2.  400 

The term tumor includes diagnoses of solid malignoma, leukemia and lymphoma. 

Abbreviations: 

adj.: adjusted for assessment in different study centers, p: points 
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age & comorbidity: ASA: American Society of Anesthesiologists Physical Status, CAD: coronary artery disease CCI: 

Charlson comorbidity index 405 

inflammation: CRP: C-reactive protein, IL: interleukin 

cognition: GPT: Grooved Pegboard Test (completion time), MMSE: Mini-mental status examination, preop. cogn. 

impairment: preoperative cognitive impairment, VRM: Verbal Recognition Memory 

functionality & geriatric assessment: GDS: Geriatric depression scale, MNA-SF: Mini-nutritional assessment short 

form, TUG: Timed up-and-go test, frailty refers to Fried’s frailty phenotype 410 

metabolic: BMI: body mass index, HDL: high density lipoprotein, LDL: low density lipoprotein 

drugs & medication: GGT: γ-glutamyltransferase, BDZ: preoperative longterm prescription of benzodiazepines 

neuroimaging: CA: cornu ammonis, dia.: diameter (cortical thickness), FA: fractional anisotropy, HPC: hippocampus, 

vol.: volume 

  415 
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3.2 Machine learning-prediction of POD 

Figure 3 displays AUC for the GBT models built from the most relevant combinations of variable 

blocks and eTable 16 provides details on the model performance. Among the models using 

only preoperative data, the model using only clinical data performed best (AUC 0·76 [0·69; 

0·81], Brier score: 0·14 [0·13; 0·16]). Adding preoperative blood or RNA data to the model did 420 

not improve the AUC. 

The model AUC was increased considerably by adding characteristics of the intervention 

(“Precipitants”) and perioperative changes in laboratory parameters (“Blood periop.”) to the 

clinical data, and the highest overall AUC was achieved by a model using these three blocks 

of data (AUC 0·83 [0·79; 0·86], Brier score 0·12 [0·12; 0·13]). The most important variables in 425 

this model are displayed in figure 4, and eFigure 10 displays sex-stratified Receiver-Operating 

Curves. This model also provided the highest performance in the subgroup of patients with 

RNA data (AUC 0·78 [0·73; 0·83], Brier score 0·15 [0·14; 0·16]), and adding transcript data to 

the model did not improve AUC. However, a model exploiting only pre- and and postoperative 

RNA data (“RNA+RNA periop.”) showed almost identical performance (AUC 0·77 [0·71; 0·78], 430 

Brier Score 0·15 [0·14; 0·16]). 

eFigure 10 displays the relevant transcripts from the “RNA+RNA periop.” model: The 

perioperative changes in mRNA abundance were more often predictive of POD than 

preoperative abundance. Most important transcripts were BTN3A1, LAP3, DSN1, HPGD and 

KIF4B. Notably, both preoperative JAK2 and circular JAK2 mRNA were predictive of POD. In 435 

an exploratory Cox regression analysis, we found that a considerable number of transcripts 

(HPGD, BTN3A1, LAP3, JAK2 and circular JAK2) were also associated with postoperative 

mortality (eTable 17, eFigure 11). 
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 440 

Figure 3: Boxplot displaying area under the curve (AUC) of the receiver-operating characteristic (ROC). A value of 

1 indicates 100% sensitivity at 100% specificity, whereas a value of 0.5 indicates indiscriminability of the model for 

POD. Each model evaluates a different combination of available datasets, as indicated on the y-axis. 

Abbreviations: periop.: perioperative (referring to precipitating factors, e.g., pain or medication, and perioperative 

changes in molecule abundance), RNA:  transcriptomic data features. 445 
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Figure 4: Feature importance of the model with the highest predictive performance. 
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Tumor diagnosis includes solid malignancies, lymphoma and leukemia. Abbreviations: ALAT: alanin-

aminotransferase, ASAT: aspartat-aminotransferase, BDZ: benzodiazepine, CRP: C-reactive protein, HDL: high-

density lipoprotein, IL: interleukin, ISCED: International Standard Classification of Education, LDH: lactate 450 

dehydrogenase, LDL: low-density lipoprotein, MDA: malondialdehyde MMSE: Mini-mental status examination, 

NHWM: non-high molecular weight, postop.: postoperative, preop. cogn. impairment: preoperative cognitive 

impairment, RDW: red cell distribution width  
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4 Discussion 

We estimated POD prediction algorithms based on clinical, neuropsychological, blood-based 455 

and neuroimaging data. This is the first approach to POD prediction using data-driven analysis 

of a prospectively collected multimodal dataset. By aggregating clinical preoperative data, 

precipitating factors with preoperative laboratory values and postoperative changes, the model 

achieved good discriminability (AUC 83%) with good model fit. 

Previous approaches used retrospectively collected data or merged heterogenous data from 460 

multiple studies (9, 11, 13). The only prospective study (SAGES) achieved an AUC of 71% 

using machine learning in preoperatively available clinical data (12). Our model solely relying 

on preoperative clinical data achieved similar performance (AUC 76%), and no improvement 

by adding preoperative non-routine data was achieved. Hence, thorough preoperative clinical 

evaluation to identify patients at risk can be considered a suitable approach in clinical routine. 465 

However, using algorithms as a diagnostic expert device can support quantifying POD risk and 

drive the establishment of POD risk assessment in routine clinical practice. Results suggest 

that information about intervention and postoperative course can improve the model to an AUC 

of 80%. Although models using precipitating data are intended for risk monitoring rather than 

prediction, relevant information is usually available before surgery, i.e., estimated duration of 470 

intervention and expected postoperative pain, and may be used for prediction as well.  

Our analyses suggest that models exploiting precipitating factors and perioperative laboratory 

assessments can considerably improve POD risk monitoring, but neuroimaging and 

transcriptomic data do not. However, gene expression data may be of particular interest for 

further studies, since in the subgroup of patients with RNA data, a model exploiting only mRNA 475 

achieved a similar AUC (77%) compared to the best performing model (78%). A perioperative 

risk monitoring algorithm based on two gene expression analyses could relieve medical staff 

from extensive clinical assessments, be more cost-effective than using multiple independent 

laboratory assays and avoids data aggregation from different sources. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 30, 2024. ; https://doi.org/10.1101/2024.12.30.24319760doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.30.24319760
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

Many of the most predictive transcripts were mRNA of ubiquitously expressed genes involved 480 

in major molecular mechanisms such as cell proliferation (e.g., DSN1, LAP3, KIF4B and JAK). 

This may suggest that POD is a heterogeneous phenomenon originating via distinct molecular 

pathways. These central molecular nodes may be the common denominator among different 

POD subgroups, but nevertheless suitable for prediction. Certain transcripts suggest 

involvement of γδT-cells in neuroinflammation and neuroplasticity (BTN3A1)(18), metabolic 485 

dysregulation and autophagy (LAP3)(19), proliferation (DSN1, KIF4B)(20), interaction with the 

immune system (JAK)(21, 22), and senescence (HPGD)(23). These transcripts are also 

associated with 3-month mortality (eChapter 2.3). Above-mentioned molecules S100A12 (24), 

interleukins and zonulin (25) point to certain immune response pathways, which may be related 

to neurotransmitter dysbalance by tryptophan and kynurenine metabolism (26). Some of the 490 

identified molecular targets have already been discussed with respect to neurodegeneration, 

i.e., malondialdehyde, nitrotyrosine (27), metabolites of the kynurenine pathway (28), S100A12 

(24) and zonulin (25). 

The BioCog study is small in relation to the wide spectrum of parameters included in our 

database. To fully exploit the potential of machine learning, larger samples are necessary. The 495 

current sample excluded patients with MMSE score ≤23, but brain atrophy may be relevant 

biomarker in patients with preoperative cognitive impairment. Since external validation in an 

independent dataset is pending, we have used nested cross validation as an internal validation 

procedure, which is robust against overfitting. The focus of this manuscript is prediction, 

whereas a molecular causal model cannot be addressed here. E.g., single variable analyses 500 

have not been adjusted for confounders, warranting further analysis. The best model was 

chosen by ROC-AUC, which is a measure of discrimination in diagnostic testing. For prognostic 

questions, outcome probability estimation is preferable and more evaluations are needed (29). 

POD screening was performed according to the evidence-based standard that measure POD 

at least twice a day and has a comprehensive geriatric assessment included to describe the 505 
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clinical entity of this population. The clinical phenomenology was structured and annotated 

according to this standard (2). 

BioCog has made advancements towards POD prediction and will facilitate comprehensive 

hypothesis-driven analyses including subgrouping of patients for better understanding of 

pathophysiological processes and conception of interventional studies. Our dataset can guide 510 

prevention strategies to reduce POD, e.g., via the JAK-pathway (22).  
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