Development and internal validation of a gradientboosted trees model for prediction of delirium after surgery and anesthesia (the BioCog study)

Florian Lammers-Lietz, MD^{1,2}, Levent Akyuez, PhD^{3,4}, Diana Boraschi, PhD⁵, Friedrich 5 Borchers, MD¹, Jeroen de Bresser, PhD⁶, Sreyoshi Chatterjee, PhD^{7,8}, Marta M. Correia⁹, Nikola M. de Lange⁷, Thomas Bernd Dschietzig, PhD¹⁰, Soumyabrata Ghosh, PhD⁷, Insa Feinkohl, PhD^{11,12}, Izabela Ferreira da Silva⁷, Marinus Fislage¹, Anna Fournier, PhD^{7,13}, Jürgen Gallinat, PhD¹⁴, Daniel Hadzidiakos, MD¹, Sven Hädel, MSc², Fatima Halzl-Yürek, MD¹, Stefanie Heilmann-Heimbach, PhD¹⁵, Maria Heinrich, MD^{1,16}, Jeroen Hendrikse, PhD¹⁷, Per 10 Hoffmann, PhD^{15,18,19}, Jürgen Janke, PhD^{11,20}, Ilse M. J. Kant, PhD²², Angelie Kraft, MSc^{23,24}, Roland Krause, PhD7, Jochen Kruppa-Scheetz, PhD25,26, Simone Kühn, PhD1,14, Gunnar Lachmann, MD^{1,16}, Markus Laubach, MD, PhD, MBA^{1,24,27}, Christoph Lippert, PhD²⁸, David K. Menon^{29,30}, Rudolf Mörgeli, MD¹, Anika Müller, MD, PhD¹, Henk-Jan Mutsaerts, PhD^{32,33}, Markus Nöthen, MD¹⁵, Peter Nürnberg, PhD³⁴⁻³⁶, Kwaku Ofosu, MD¹, Malte Pietzsch, PhD³⁷, Sophie K. Piper, PhD^{25,39}, Tobias Pischon, MPH, PhD^{11,20,21}, Jacobus Preller, FRCP^{29,31}, 15 Konstanze Scheurer, PhD1, Reinhard Schneider, PhD7, Kathrin Scholtz, PhD1, Peter H. Schreier, PhD^{24,35}, Arjen J. C. Slooter, PhD²², Emmanuel A. Stamatakis, PhD^{30,39}, Clarissa von Haefen, PhD1, Simone J. T. van Montfort, PhD22, Edwin van Dellen, PhD22, Hans-Dieter Volk, MD, PhD^{3,4}, Simon Weber, PhD³⁷, Janine Wiebach^{25,41}, Anton Wiehe, MSc^{23,24}, Jeanne M. 20 Winterer, MSc^{2,42,43}, Alissa Wolf, MD¹, Norman Zacharias, PhD^{1,24,44}, Claudia Spies, MD, PhD*¹, Georg Winterer, MD, PhD*1,2,24, on behalf of the BioCog consortium

^{*} Dr. Claudia Spies and Dr. Georg Winterer are equally contributing senior authors

- 1. Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine | CCM | CVK, Augustenburger Platz 1, 13353 Berlin, Germany
 - 2. Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
 - 3. Berlin Institute of Health at Charité -Universitätsmedizin Berlin, BIH Center for Regenerative therapies (BCRT), and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, CVK, Augustenburger Platz 1, 13353 Berlin, Germany
 - 4. CheckImmune GmbH, Berlin, Germany

30

- 5. Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche (CNR) di Pisa, Pisa, Italy
- 35 6. Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
 - 7. Bioinformatics Core, Luxembourg Center for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
 - 8. Deutsches Zentrum für Luft und RaumFahrt (DLR), Cologne, Germay
 - 9. MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
 - 10. Immundiagnostik AG, Bensheim, Germany
 - 11. Molecular Epidemiology Research Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
 - 12. Faculty of Health at Department of Medicine, Witten/Herdecke University
- 45 13. Swiss Data Science Center (SDSC), ETH Zurich, Zurich, Switzerland
 - 14. Department of Psychiatry, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
 - 15. Institute of Human Genetics, University of Bonn, Bonn, Germany
 - Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Academy, (Digital)
- Clinician Scientist Program, Berlin, Germany 50

- 17. Department of Radiology and Brain Center Rudolf Magnus, University Medical Center Utrecht (UMC), Utrecht, Netherlands
- 18. Division of Medical Genetics, University Hospital, Basel, Switzerland
- 19. Human Genetics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
 - 20. Biobank Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
 - 21. Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Core Facility Biobank, Berlin, Germany
- 22. Department of Intensive Care Medicine and Brain Center, University Medical Center Utrecht (UMC), Utrecht University, Utrecht, the Netherlands
 - 23. AdaLab UG, Hamburg, Germany

- 24. Pharmaimage Biomarker Solutions Inc., Cambridge, USA
- 25. Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Charitéplatz 10117 Berlin
 - 26. Hochschule Osnabrück, University of Applied Sciences, Osnabrück, Germany
 - 27. Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
- 70 28. Hasso-Plattner Institute, University of Potsdam, Potsdam, Germany
 - 29. Neurosciences/Trauma Critical Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom

- 30. Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- 75 31. Department of Medicine, University of Cambridge
 - 32. Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
 - 33. Amsterdam Neuroscience, Amsterdam, The Netherlands
 - 34. Cologne Center for Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
 - 35. Institute for Genetics of the University of Cologne, Cologne, Germany
 - 36. Atlas Biolabs GmbH, Berlin, Germany

85

90

- 37. Cellogic GmbH (Cellogic), Berlin, Germany
- 38. Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Informatics, Charitéplatz 10117 Berlin
 - 39. Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- 40. Department of Psychiatry and UMC Utrecht Brain Center, University Medical Center Utrecht (UMC), Utrecht, Netherlands
 - 41. BIH Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany, Core Unit Metabolomics
 - 42. Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry | CCM, Charitéplatz 1, 10117 Berlin, Berlin, Germany

43. Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany

44. Department Otorhinolaryngology, of Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany

Corresponding author:

100

105

110

115

Florian Lammers-Lietz, MD

Charité-Universitätsmedizin Berlin, corporate member of Freie

Universität Berlin and Humboldt-Universität zu Berlin,

Department of Anesthesiology and Intensive Care Medicine |

CCM | CVK

Augustenburger Platz 1, 13353 Berlin

Phone: +49 30 450 651 458 (Dr. Lammers-Lietz)

E-mail: florian.lammers@charite.de

IMPORTANCE: Postoperative delirium (POD) is a multietiological condition and affects 20%

120 of older surgical patients. It is associated with poor clinical outcome and increased mortality.

OBJECTIVE: We aimed to develop and validate a risk prediction algorithm for POD based on

a multimodal biomarker database exploiting preoperative data (predisposing factors) and

procedural factors as well as perioperative molecular changes associated with POD

(precipitating factors).

125 **DESIGN:** BioCog is a prospective cohort study conducted from November 2014 to April 2017.

Patients were followed up for seven postoperative days after surgery for POD. Gradient-

boosted trees (GBT) with nested cross-validation was used for POD prediction.

SETTING: Patients aged ≥65 years were enrolled at the anesthesiologic departments of two

tertiary care centers.

130 **EXPOSURE:** All patients underwent surgery with an expected duration of at least 60min.

Clinical, neuropsychological, neuroimaging data and blood were collected and clinically well

established as well as non-established biomarkers (e.g., gene expression profiling) were

measured pre- and postoperatively.

MAIN OUTCOME: POD according to DSM 5 until the seventh postoperative day

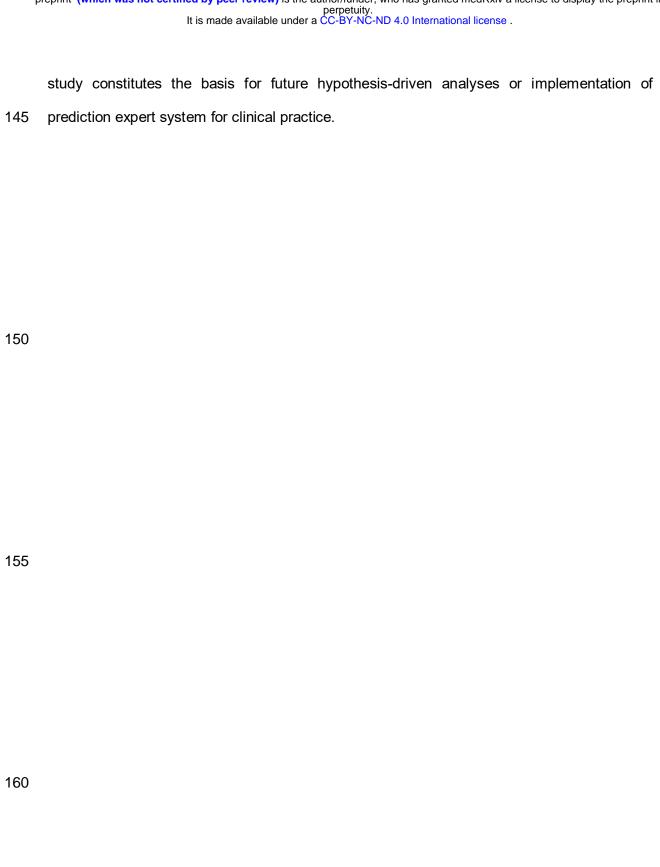
RESULTS: 184 of 929 (20%) patients experienced POD. A GBT algorithm using both 135

preoperative data, characteristics of the intervention and postoperative changes in laboratory

parameters achieved the highest area under the curve (0.83, [0.79; 0.86]) with a Brier score of

0.12 (0.12; 0.13).

140


CONCLUSIONS AND RELEVANCE: Models combining predisposing factors with

precipitating factors predict POD best. Non-routine laboratory data provide useful information

for POD risk prediction, providing relevant results for future studies on the molecular factors of

POD. In addition, possibly relevant molecular mechanisms contributing to the development of

POD were identified, mostly indicating a dysregulated postoperative immune response. This

KEYWORDS: postoperative delirium, postoperative complications, anesthesia, cohort study, neuroimaging, risk factors, transcriptome, blood specimen collection

1 Background

165

170

175

180

185

Delirium is an acute disturbance in attention, awareness, cognition, psychomotor behavior and

emotional state because of another medical condition. The incidence of postoperative delirium

(POD) ranges from 5-50% (1), but is most frequent in older patients (2, 3). POD incidence is

assumed to rise in aging populations (4), challenging healthcare systems since it is associated

with poor cognitive outcome, hospitalization, treatment costs, re-institutionalization, and

mortality (3, 5).

Prehabilitation effectively mitigates postoperative neurocognitive disorders but is time

consuming and prediction algorithms are necessary to carefully weigh POD risk against a delay

of surgery (6).

Various previous studies have tried to build machine learning-based prediction tools for POD,

usually based on retrospective analyses (7-11). The only two prospective studies achieved

AUC values of 71% (12) and 74% (13). The prospective Biomarker Development for Postop-

erative Cognitive Impairment in the Elderly (BioCog) study was conducted with the main goal

to improve POD-prediction. We were taking a systems medicine approach with focus on in-

flammatory alterations and the immune system, the cholinergic system and metabolic changes

as well as indicators for early dementia based on an in-depth systematic review (1). Investiga-

tions included a wide range of perioperative clinical and neuropsychological parameters, neu-

roimaging, laboratory investigations and gene expression. Furthermore, the incorporation of

precipitating factors may have additional value to predisposing factors.

The primary aim of this study was to develop and internally validate a POD risk index based

on multimodal non-routine data intended for use by healthcare professionals to advise patients

8

during medical decision making and allocating healthcare resources.

2 Methods

2.1 Study design

190 BioCog (www.biocog.eu, clinicaltrials.gov: NCT02265263, study protocol: (5)) is a prospective

observational cohort study with the aim of identifying POD risk factors. The model was

developed and internally validated in this cohort. All procedures were approved by the local

ethics committees in Berlin, Germany (EA2/092/14) and Utrecht, Netherlands (14-469) and

conducted in line with the declaration of Helsinki. All participants gave written informed consent

195 prior to inclusion.

2.2 Participants

Male and female patients were enrolled in two tertiary care centers at the Charité-

Universitätsmedizin Berlin, Germany, and the University Medical Center Utrecht, Netherlands.

Consenting patients aged ≥65 years presenting for elective surgery with an expected

200 duration >60min were included. Patients meeting one of the following criteria were excluded:

positive screening for pre-existing major neurocognitive disorder defined as a Mini-

Mental Status Examination (MMSE) score ≤23 points

• any condition interfering with neurocognitive assessment (severe sensory impairment,

neuropsychiatric illness including alcohol and drug dependence, intracranial surgery)

unavailability for follow-up assessment

accommodation in an institution due to official or judicial order

inability to give informed consent

2.3 Study procedures

205

210

The preoperative data were collected at least one day before surgery including medical history

and clinical assessments, neuropsychological testing, blood collection and neuroimaging.

9

Postoperative study visits took place twice daily until the seventh postoperative day.

2.4 Outcome

POD during the first seven days after surgery was the primary endpoint. Independently of the routine hospital procedures, POD screening was started in the recovery room and repeated twice per day at 8:00am and 7:00pm (±1h) up to seven days after surgery, by or under supervision of a study physician. POD was defined according to DSM-5 criteria and assessed by prospective screening with three validated tools which were recorded at each visit in accordance with current guidelines (2, 3), to mitigate the known tendency of physicians to underdiagnose POD. Patients were considered delirious if at least one of the following criteria

220 was positive:

215

230

235

≥2 points on the Nursing Delirium Screening Scale (Nu-DESC),

• positive Confusion Assessment Method (CAM) score on a general ward,

 positive CAM for the Intensive Care Unit (CAM-ICU) score on an intensive care unit (ICU),

• chart review showing descriptions of delirium.

2.5 Clinical assessments

Before surgery, the study team recorded sociodemographic data and information on medication according to Carnahan's anticholinergic drug scale, health-related quality of life (EQ5D), Mini-Nutritional Assessment (MNA) and Body Mass Index (BMI), tobacco and hazardous alcohol consumption (AUDIT). A functional and physical assessment battery including frailty and walking speed was conducted. Precipitating factors were recorded: duration of surgery and anesthesia, type of anesthetic procedure (regional and/or general anesthesia), type of surgery (intracranial, intrathoracic/-abdominal/-pelvic surgery or peripheral), postoperative pain, prescription of anticholinergic medication daily until the seventh postoperative day, length of hospital and ICU stay as well as complications and postoperative mortality until the 90th postoperative day (eChapters 1.1-1.6).

2.6 Neuropsychological data

240

245

250

255

260

The preoperative cognitive assessment consisted of a comprehensive screen-based

neuropsychological test battery (CANTAB, Cambridge Cognition Ltd., Cambridge, UK) and

additional tests (Trail-Making-Test Parts A and B). MMSE score at the screening visit, CANTAB

test scores and overall preoperative cognitive impairment (PreCI) were analyzed as risk factors.

PreCl is a dichotomous variable defined through comparison of cognitive test performance

with a control group. We used multiple cognitive test parameters with moderate-to-good retest-

reliability in the control group (14) and calculated z-scores of the baseline measurement in

each test parameter assessed in the control group. The same z-transformation was then

applied to the surgical cohort. Z-scores <-1.96 in at least two cognitive test parameters or an

averaged z-score <-1.96 was used to define PreCl (eTable 2, eChapter 1.7).

2.7 Laboratory parameters

Preoperative serum and plasma samples were collected in supine position immediately before

induction of anesthesia after eight hours of fasting and on the morning of the first postoperative

day. Blood sampling was performed by trained clinic staff according to a standard operating

procedure adapted from the German National Cohort Study (15). Samples were immediately

sent to laboratories adjacent to the respective hospital site for analysis, or frozen at -80 °C and

shipped to a central biobank at the Molecular Epidemiology Group, Max-Delbrück Center

(MDC), Berlin for sample processing and storage. This group distributed samples for additional

analyses to Atlas Biolabs GmbH as well as to several partners (Immundiagnostik AG in

Bernsheim, Germany, Institute of Protein Biochemistry at Consiglio Nazionale delle Ricerche

di Pisa, Immune Study Lab of Institute of Medical Immunology and BIH Center for

Regenerative therapies at Charité-Universitätsmedizin Berlin). See eChapter 1.8 for a list of

11

measured molecules. Whenever necessary, values were adjusted for laboratory.

2.8 Transcriptomics

Samples for transcriptomic analysis were collected in PAXgene tubes (Qiagen) at the same

timepoints as other blood samples. Analyses were performed with Affymetrix Clariom S human

microarray for RNA and Affymetrix® Flash Tag™ Biotin HSR (miRNA 4.1 Array Plates) for

microRNA analyses (Thermo Fischer, Santa Clara, CA, USA) in a GeneTitan™ Multi-Channel

Instrument by Atlas Biolabs GmbH (Berlin).

2.9 Neuroimaging

265

270

275

280

The magnetic resonance imaging (MRI) protocol included whole brain T1-weighted and T2-

weighted high-resolution hippocampus imaging and diffusion tensor imaging (DTI). In addition,

functional MRI and arterial spin labeling, but have not been considered for prediction due to

low between-scanner agreement (inter-class correlation coefficient of 0·36-0·54 for functional

connectivity in default mode, salience executive and dorsal attention networks and 0·17-0·39

for quantified cerebral blood flow). We calculated global and regional brain volumes including

hippocampal subregions, cortical thickness and curvature from T1-weighted imaging, mean

diffusivity, kurtosis and fractional anisotropy from DTI (eChapter 1.10).

2.10 Statistics

2.10.1 Estimation of sample size

The rule of thumb of Harrell was used to plan an appropriate number of POD events for a

stable prediction model, i.e., ≥10 events per independent variable in logistic regression (16),

which was considered adequate for machine learning. Requiring 260 patients with POD for

analysis of up to 26 independent predictor variables and expecting a 25% incidence of POD,

number of required patients was N=1040. Assuming a drop-out rate of 15%, a total number of

N=1200 patients was planned. The initial analysis plan stipulated a training/test split approach

for internal validation due to its computational efficiency. Since the study finally achieved a

lower cohort size, nested k-fold cross validation was used instead which works more efficiently on small samples.

2.10.2 Analysis of single parameters

285

290

295

300

305

310

For descriptive purposes, associations of pre-/perioperative parameters with POD were analyzed using simple logistic regression. We report odds ratios (OR) with 95% confidence intervals (CI) for the depending variable POD (reference category: no POD). To improve the interpretability of single parameter analyses, standardizing transformations were applied to the raw variables (eChapter 1.11.1) or dichotomized according to clinically relevant cut-off values for presentation of interpretable ORs. Analyses were conducted in R (R Core Team, R Foundation for Statistical Computing, Vienna, Austria) and SPSS (IBM, Armonk, NY). No adjustments for multiple testing were made and therefore, results should be considered exploratory, and we abstain from reporting p-values.

2.10.3 Machine learning

We applied machine learning (gradient boosted trees, GBT) to explore how the interplay of a larger set of predictors would benefit the prediction of POD risk in a bottom-up, data-driven fashion to allow unforeseen predictor-prediction relationships. Data available before surgery as well as data available on the first postoperative day by the latest were eligible for inclusion in machine learning, since these data were deemed useful for preoperative POD risk prediction as well as postoperative re-evaluation of further management.

Variables were assembled into blocks, i.e., preoperative data from the clinical assessment ("Clinical"), characteristics of the surgical intervention ("Precipitants" an "Pain"), preoperative neuroimaging data ("Imaging"), preoperative values) and perioperative difference in laboratory parameters measured in whole blood, plasma or serum ("Blood" and "Blood periop."), preoperative RNA and µRNA abundance ("RNA" and "µRNA"), as well as perioperative difference in transcript abundance ("RNA periop."). Different GBT models were built on combinations of various variable blocks. Combinations were selected sequentially, starting with

simple models (i.e., using only variables from one block) and then adding further blocks based

on the AUC, assumptions on feasibility and relevance for clinical routine. Models using RNA

data were evaluated separately since transcript abundance was only available for a subgroup

of patients.

315

320

325

330

335

The GBT algorithm takes a set of decision trees as weak classifiers and combines them to

form a strong classifier. It does so by incrementally adding decision trees during training to

steadily improve its previous performance. The sampling of input cases is focused on those

cases that were hard to classify before training and individual tree predictions are weighted.

During inference, the output is computed through sequential application of each tree. GBT

provides a continuous output parameter bounded between 0 and 1, allowing the choice of a

clinically relevant cut-off which can be flexibly adapted to address various clinical questions

and is inherently able to handle missing data. Area under the receiver operating curve and the

Brier score with 95% CI are provided. The Brier score measures the difference between

predicted probabilities and actual outcomes, ranging between 0, for perfect prediction, and 1.

Models were validated using nested cross-validation. This approach allows model

hyperparameter optimization and model selection while avoiding model overfitting. While each

of the training datasets is provided to a hyperparameter optimized procedure, the evaluation

of hyperparameters is performed using another cross-validation procedure that splits up the

each of the provided train dataset into another set of k-folds (see eChapter 1.11.2). Sex-

specific analyses have been conducted for the best-performing model. The funding source was

not involved in study design, data collection, analysis, interpretation, writing or submitting the

manuscript.

3 Findings

We recruited 933 patients between November 2014 and April 2017. Table 1 characterizes the

sample. The patient flow chart is given in figure 1. Additional details on excluded patients are

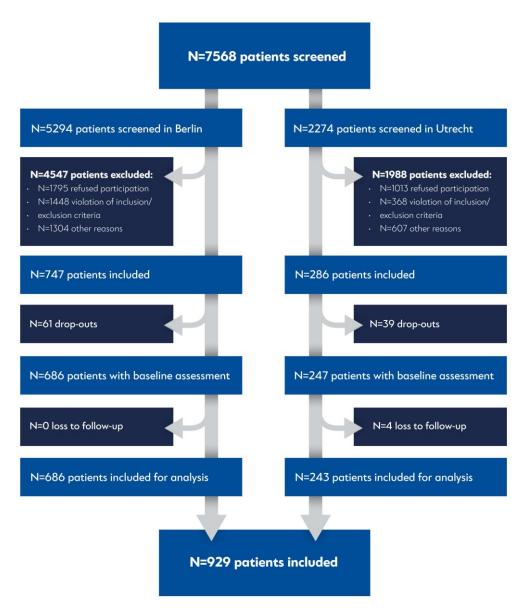
given in eChapter 2.1. POD assessments were available for 929 patients. 184/929 (20%) patients developed POD.

83/184 (45%) cases of POD were identified in the bedside screening only, 13/184 (7%) cases of POD were diagnosed from chart review only, and 88/184 (48%) cases were proven in both chart review and bedside screening. eFigure 4 and eTable 3 give an overview of daily POD incidence.

Table 1: Sample description (N=929)

	ı	All	Women		Men	
	Median (IQR)	Minmax.	Median (IQR)	Minmax.	Median (IQR)	Minmax.
Age (years)	72	65-91	72	65-87	72	65-91
	(69-76)		(68-76)		(68-76)	
BMI (kg/m²)	26.6	14.7-46.8	27.0	16.0-46.8	26.3	14.7-44.3
	(24.0-		(23.6-		(24.2-	
	29.4)		30.5)		28.7)	
MMSE score (points)	29	24-30	29	24-30	29	24-30
	(28-30)		(28-30)		(28-30)	
GDS	1	0-13	2	0-13	1	0-10
	(0-3)		(1-3)		(0-2)	
EQ5D	0.88	-0.14-1.00	0.83	0.17-1.00	0.91	-0.14-1.00
	(0.76-		(0.69-		(0.79-1.0)	
	1.00)		0.92)			
Charlson's comorbidity	1	0-10	1	0-7	1	0-10
index (p)	(0-2)		(0-2)		(0-2)	
Hemoglobin (g/dL)	13.1	5.4-17.9	12.6	7.0-16.2	13.5	5.4-17.9
	(11.9-14.3)		(11.6-13.6)		(12.3-	
					14.7)	
CRP (mg/L)	3.4	0.1-232.0	4.4	0.1-232.0	2.9	0.1-174.4
	(1.4-8.3)		(1.7-10.0)		(1.1-7.2)	
Leukocytes (nL ⁻¹)	6.2	1.6-24.6	6.2	2.7-19.4	6.2	1.6-24.6
	(5.0-7.5)		(5.9-7.3)		(5.1-7.7)	
Albumine (g/L)	40.7	15.5-51.7	40.1	22.2-51.7	41.0	15.5-51.6
	(37.8-		(37.1-		(38.3-	
	43.2)		43.0)		43.3)	
Creatinine (µmol/L)	76.0	32.7-529.5	66.3	35.4-251.9	82.2	32.7-529.5
	(64.5-		(58.3-		(71.6-	
	90.2)		79.1)		95.0)	
NT-proBNP (pmol/L)	6.1	2.9-617.2	6.9	2.9-617.2	5.4	2.9-397.8
	(2.9-21.4)		(2.9-23.7)		(2.9-18.9)	
LDL cholesterol	3.0	0.1-7.7	3.1	0.1-7.7	2.9	0.5-6.4
(mmol/L)	(2.3-3.7)		(2.5-3.8)		(2.3-3.6)	
Duration of anesthesia	265	10-1669	265	39-1663	260	10-1669
(Utrecht, min) ^a	(213-390)		(225-400)		(209-384)	
Duration of anesthesia	167	25-753	169	30-676	162	25-753
(Berlin, min) ^a	(106-279)		(110-285)		(103-269)	
Duration of surgery	102	3-594	105	3-543	100	6-594
(Berlin, min) ^b	(55-191)		(58-191)		(55-140)	
Duration of hospital	7	1-131	7	1-87	6	1-131

stay (days	s)	(4-11)		(4-12)		(3-9)	
Duration o	of ICU stay	0 (0-0)	0-55	0 (0-0)	0-55	0 (0-0)	0-45
(days)							
		Absolute	Relative	Absolute	Relative	Absolute	Relative
		n ^b	freq.b	n ^b	freq.b	n ^b	freq.b
PreCl		122/924	13%	60/391	15%	62/533	12%
POD		184/929	20%	85/394	22%	99/535	19%
Mortality a	at 3 months	29/683	4%	19/316	6%	10/367	3%
(Berlin) ^c							
Compli-	death	17/684	3%	10/316	3%	7/368	2%
cations	non-fatal	351/684	51%	167/316	53%	184/368	50%
(Berlin) ^c							
Site of	Intracraniald	10/911	1%	3/388	1%	7/523	1%
surgery	Intratho-	397/91	44%	166/388	43%	231/523	44%
	racic, -ab-						
	dominal, -						
	pelvic						
	peripheral	505/911	55%	219/388	56%	286/523	55%
Type of	general	687/912	75%	283/385	74%	404/527	77%
anesthe-	regional	57/912	6%	22/385	6%	35/527	7%
sia	combined	168/912	18%	80/385	21%	88/527	17%
ASA-PS	ı	36/929	4%	14/394	4%	22/535	4%
	II	557/929	60%	241/394	62%	316/535	59%
	III	335/929	36%	138/394	35%	197/535	37%
	IV	1/929	<1%	1/394	<1%	0/535	0%
Women		394/929	42%	n.a.	n.a.	n.a.	n.a.
MNA	Normal	662/911	73%	266/382	70%	396/529	75%
	At risk	200/911	22%	91/382	24%	109/529	21%
	Malnour-	49/911	5%	25/382	7%	24/529	5%
	ishement						
Frailty	robust	354/631	56%	139/277	50%	215/354	61%
(Fried)	prefrail	175/631	28%	80/277	29%	95/354	27%
	frail	102/631	16%	58/277	21%	44/354	12%
Smoker		90/903	10%	39	10%	51	10%
	s alcohol con-	62/862	7%	21	6%	41	8%
sumption							
ISCED	1+2	150/839	18%	80/358	22%	70/481	15%
level							
	3+4	343/839	41%	177/358	49%	166/481	35%
							2-1-
	5+6	346/839	41%	101/358	28%	245/481	51%


BMI: body mass index; IQR: interquartile range; MMSE: Mini-Mental Status Examination; GDS: geriatric depression scale; CRP: C-reactivel protein; LDL: low-density lipoprotein; NT-proBNP: N-terminal pro-brain natriuretic peptide; freq.: frequency; ICU: intensive care unit; PreCI: preoperative cognitive impairment; POD: postoperative delirium; ASA-PS: American Society of Anesthesiologists Physical Status; MNA: Mini-nutritional assessment; ISCED: International Standard Classification for Education

^a end of anesthesia was assessed differentially in both study centers

^b relative frequencies are calculated after correction for missing values

^c data are only available for the study center in Berlin

^d intracranial surgery not affecting brain parenchyma (e.g. meningioma)

345 Figure 1: Patient flow chart.

3.1 POD risk factors

350

360

365

370

Figure 2 displays unadjusted OR with 95% Cls for preoperative parameters with Cls excluding unity. Sample and effect sizes for all parameters are given in the online-only material.

Age was directly associated with POD. Among age-related conditions, frailty had the strongest association with POD (OR 1·90 [1·49; 2·44] for category change in Fried's phenotype), as well as slow walking speed (1·80 [1·22; 2·63] for TUG>10s), malnutrition (OR 1·67 [1·29; 2·16] for category change in MNA-SF), any functional impairment according to Barthel index or IADL assessment (OR 1·59 [1·12; 2·24]) and depressive symptoms (OR 1·57 (1·05; 2·41) for GDS>0).

An MMSE score <27points had a higher OR (3·10 [1·96; 4·85]) for POD than PreCI (OR 2·57 [1·69; 3·88], see also eTable 8 and eFigure 5)

Preoperatively higher levels of cholesterol (standardized, adjusted OR 0·79 [0·65; 0·95]) and associated lipoproteins (HDL and LDL) were protective against POD. A postoperative decrease in triglycerides, cholesterol and LDL were associated with higher POD incidence.

Four inflammatory parameters were positively associated with POD: IL6 (standardized OR 1·19 [1·03; 1·38]), whole blood IL8 (standardized OR 1·42 [1·02; 1·98]) (17), CRP (standardized, adjusted OR 1·20 [1·03; 1·41]), immature granulocyte fraction (standardized OR=1·34 [1·10; 1·63]) and neutrophil count (standardized, adjusted OR 1·22 [1·03; 1·46]). An increase of inflammatory parameters on the first postoperative assessment was associated with higher likelihood of POD (CRP: standardized, adjusted OR 1·59 [1·14; 2·21], IL6: standardized OR 1·76 [1·48; 2·09], and IL8: standardized OR 1·96 [1·18; 3·24]). Cellular immune response showed a more complex association with POD: Whereas a postoperative increase in leukocytes (standardized, adjusted OR 1·36 [1·12; 1·64]) and neutrophiles (standardized, adjusted OR 1·47 [1·2; 1·81]) was associated with POD, an increase in lymphocytes lowered the odds for POD (standardized, adjusted OR 0·66 [0·54; 0·81]).

Higher levels tryptophan (standardized, laboratory-adjusted OR 0.74 [0.62; 0.89]) and albumin (standardized, adjusted OR 0.68 [0.56; 0.81]) also lowered the odds for POD. A higher plasma β -amyloid 42/40-ratio was found to be related to a lower POD likelihood (standardized, adjusted OR 0.74 [0.56; 0.93]), but this association seemed to be driven by increased POD

risk in patients with higher levels of β-amyloid 40 (standardized, adjusted OR 1·20 [1·02; 1·41]).

375

380

385

390

395

Both higher preoperative γ -glutamyltransferase levels (standardized, adjusted OR 1·24 [1·06; 1·47]) and a postoperative decrease (standardized, adjusted OR 0·81 [0·68; 0·98]) were associated with POD. A postoperative increase in transaminases was associated with POD. Postoperatively decreasing levels of oxidative stress indicated by nitrotyrosine levels (standardized OR 0·72 [0·53; 0·98]) and nitrous oxide production indicated by homoarginine levels (standardized OR 0·48 [0·31; 0·73]) were associated with increased POD risk.

Longer duration of anesthesia (OR 4·42 [3·15; 6·27] for >4h) and surgery (OR 7·44 [4·84; 11·50] for >4h) as well as blood loss (standardized, adjusted OR for perioperative changes in Hb: 0·76 [0·63; 0·91], thrombocytes: 0·57 [0·46; 0·69], and albumin: 0·66 [0·54; 0·81]) were associated with POD. Compared to general anesthesia, surgery performed in regional anesthesia was associated with lower rates of POD (0·29 [0·09; 0·72]). Surgery with opening of thorax, abdomen or pelvis was associated with increased rates of POD compared to peripheral surgery (OR 3·00 [2·13; 4·25]). Pain (OR 2·16 [1·55; 3·01]) or intake of any anticholinergic medication (OR 2·35 [1·50; 3·84]) at least once during follow-up until the seventh postoperative day were both associated with POD (see also eTables 11-12, eFigures 6 and 7).

Various associations of structural MRI-derived parameters were observed (complete results: eFigure 8, eTable 15), we would like to emphasize a protective association of POD with global brain volume (standardized OR 0·71 [0·55; 0·92]) as well as hippocampus volume (standardized OR [0·67 (0·53; 0·86]).

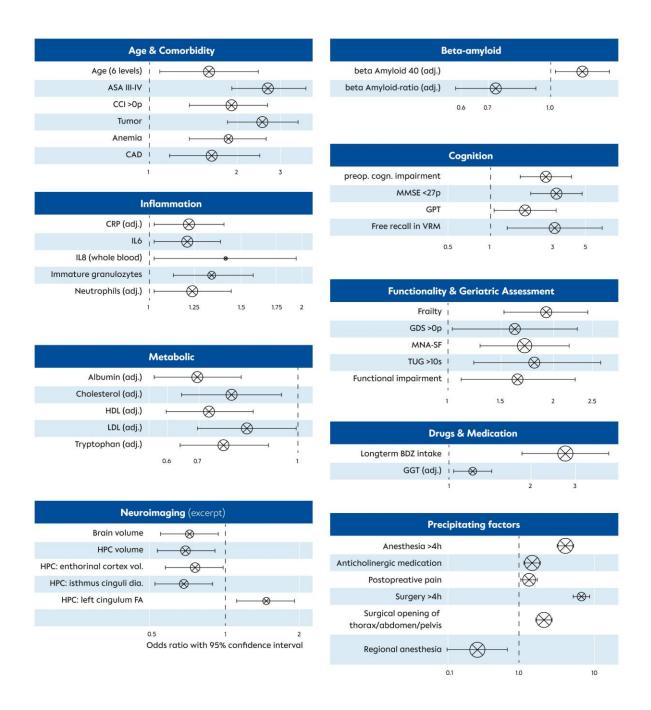


Figure 2: Summary of parameters that were significantly associated with POD. Odds ratios (OR) with 95% confidence interval (95% CI) are shown (only parameters are depicted with CI excluding unity). The diameter of the circle corresponds to the number of available datasets. See also supplementary material 2.

The term tumor includes diagnoses of solid malignoma, leukemia and lymphoma.

Abbreviations:

400

adj.: adjusted for assessment in different study centers, p: points

age & comorbidity: ASA: American Society of Anesthesiologists Physical Status, CAD: coronary artery disease CCI: Charlson comorbidity index

inflammation: CRP: C-reactive protein, IL: interleukin

cognition: GPT: Grooved Pegboard Test (completion time), MMSE: Mini-mental status examination, preop. cogn. impairment: preoperative cognitive impairment, VRM: Verbal Recognition Memory

functionality & geriatric assessment: GDS: Geriatric depression scale, MNA-SF: Mini-nutritional assessment short

410 form, TUG: Timed up-and-go test, frailty refers to Fried's frailty phenotype

metabolic: BMI: body mass index, HDL: high density lipoprotein, LDL: low density lipoprotein

drugs & medication: GGT: γ-glutamyltransferase, BDZ: preoperative longterm prescription of benzodiazepines

neuroimaging: CA: cornu ammonis, dia.: diameter (cortical thickness), FA: fractional anisotropy, HPC: hippocampus,

vol.: volume

405

3.2 Machine learning-prediction of POD

Figure 3 displays AUC for the GBT models built from the most relevant combinations of variable

blocks and eTable 16 provides details on the model performance. Among the models using

only preoperative data, the model using only clinical data performed best (AUC 0.76 [0.69;

0.81], Brier score: 0.14 [0.13; 0.16]). Adding preoperative blood or RNA data to the model did

not improve the AUC.

420

425

430

435

The model AUC was increased considerably by adding characteristics of the intervention

("Precipitants") and perioperative changes in laboratory parameters ("Blood periop.") to the

clinical data, and the highest overall AUC was achieved by a model using these three blocks

of data (AUC 0.83 [0.79; 0.86], Brier score 0.12 [0.12; 0.13]). The most important variables in

this model are displayed in figure 4, and eFigure 10 displays sex-stratified Receiver-Operating

Curves. This model also provided the highest performance in the subgroup of patients with

RNA data (AUC 0.78 [0.73; 0.83], Brier score 0.15 [0.14; 0.16]), and adding transcript data to

the model did not improve AUC. However, a model exploiting only pre- and and postoperative

RNA data ("RNA+RNA periop.") showed almost identical performance (AUC 0.77 [0.71; 0.78],

Brier Score 0·15 [0·14; 0·16]).

eFigure 10 displays the relevant transcripts from the "RNA+RNA periop." model: The

perioperative changes in mRNA abundance were more often predictive of POD than

preoperative abundance. Most important transcripts were BTN3A1, LAP3, DSN1, HPGD and

KIF4B. Notably, both preoperative JAK2 and circular JAK2 mRNA were predictive of POD. In

an exploratory Cox regression analysis, we found that a considerable number of transcripts

(HPGD, BTN3A1, LAP3, JAK2 and circular JAK2) were also associated with postoperative

24

mortality (eTable 17, eFigure 11).

Figure 3: Boxplot displaying area under the curve (AUC) of the receiver-operating characteristic (ROC). A value of 1 indicates 100% sensitivity at 100% specificity, whereas a value of 0.5 indicates indiscriminability of the model for POD. Each model evaluates a different combination of available datasets, as indicated on the y-axis.

Abbreviations: periop: perioperative (referring to precipitating factors, e.g., pain or medication, and perioperative changes in molecule abundance), RNA: transcriptomic data features.

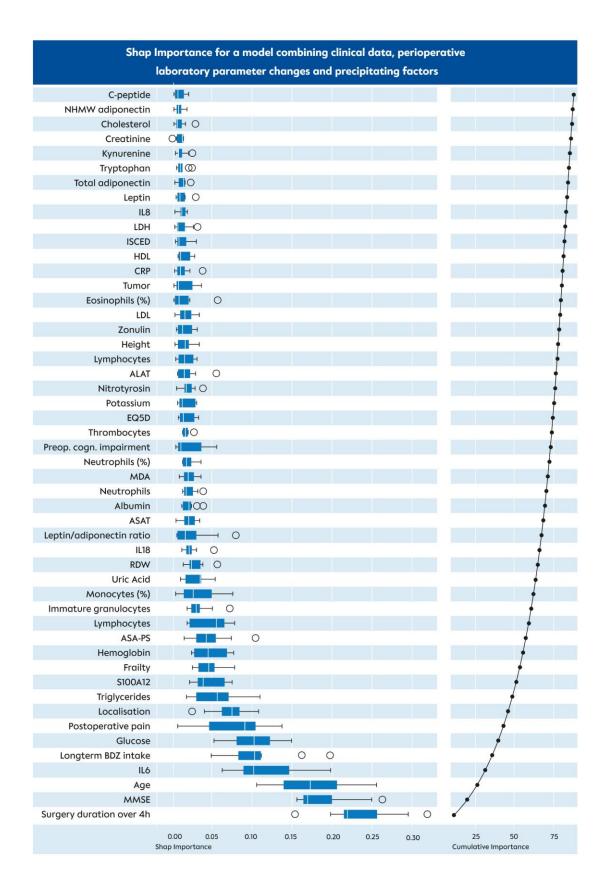


Figure 4: Feature importance of the model with the highest predictive performance.

Tumor diagnosis includes solid malignancies, lymphoma and leukemia. Abbreviations: ALAT: alaninaminotransferase, ASAT: aspartat-aminotransferase, BDZ: benzodiazepine, CRP: C-reactive protein, HDL: highdensity lipoprotein, IL: interleukin, ISCED: International Standard Classification of Education, LDH: lactate
dehydrogenase, LDL: low-density lipoprotein, MDA: malondialdehyde MMSE: Mini-mental status examination,
NHWM: non-high molecular weight, postop.: postoperative, preop. cogn. impairment: preoperative cognitive
impairment, RDW: red cell distribution width

4 Discussion

455

460

465

470

475

We estimated POD prediction algorithms based on clinical, neuropsychological, blood-based

and neuroimaging data. This is the first approach to POD prediction using data-driven analysis

of a prospectively collected multimodal dataset. By aggregating clinical preoperative data,

precipitating factors with preoperative laboratory values and postoperative changes, the model

achieved good discriminability (AUC 83%) with good model fit.

Previous approaches used retrospectively collected data or merged heterogenous data from

multiple studies (9, 11, 13). The only prospective study (SAGES) achieved an AUC of 71%

using machine learning in preoperatively available clinical data (12). Our model solely relying

on preoperative clinical data achieved similar performance (AUC 76%), and no improvement

by adding preoperative non-routine data was achieved. Hence, thorough preoperative clinical

evaluation to identify patients at risk can be considered a suitable approach in clinical routine.

However, using algorithms as a diagnostic expert device can support quantifying POD risk and

drive the establishment of POD risk assessment in routine clinical practice. Results suggest

that information about intervention and postoperative course can improve the model to an AUC

of 80%. Although models using precipitating data are intended for risk monitoring rather than

prediction, relevant information is usually available before surgery, i.e., estimated duration of

intervention and expected postoperative pain, and may be used for prediction as well.

Our analyses suggest that models exploiting precipitating factors and perioperative laboratory

assessments can considerably improve POD risk monitoring, but neuroimaging and

transcriptomic data do not. However, gene expression data may be of particular interest for

further studies, since in the subgroup of patients with RNA data, a model exploiting only mRNA

achieved a similar AUC (77%) compared to the best performing model (78%). A perioperative

risk monitoring algorithm based on two gene expression analyses could relieve medical staff

from extensive clinical assessments, be more cost-effective than using multiple independent

laboratory assays and avoids data aggregation from different sources.

485

490

495

500

505

Many of the most predictive transcripts were mRNA of ubiquitously expressed genes involved in major molecular mechanisms such as cell proliferation (e.g., *DSN1*, *LAP3*, *KIF4B* and *JAK*). This may suggest that POD is a heterogeneous phenomenon originating via distinct molecular pathways. These central molecular nodes may be the common denominator among different POD subgroups, but nevertheless suitable for prediction. Certain transcripts suggest involvement of γδT-cells in neuroinflammation and neuroplasticity (*BTN3A1*)(18), metabolic dysregulation and autophagy (*LAP3*)(19), proliferation (*DSN1*, *KIF4B*)(20), interaction with the immune system (*JAK*)(21, 22), and senescence (*HPGD*)(23). These transcripts are also associated with 3-month mortality (eChapter 2.3). Above-mentioned molecules S100A12 (24), interleukins and zonulin (25) point to certain immune response pathways, which may be related to neurotransmitter dysbalance by tryptophan and kynurenine metabolism (26). Some of the identified molecular targets have already been discussed with respect to neurodegeneration, i.e., malondialdehyde, nitrotyrosine (27), metabolites of the kynurenine pathway (28), S100A12 (24) and zonulin (25).

The BioCog study is small in relation to the wide spectrum of parameters included in our database. To fully exploit the potential of machine learning, larger samples are necessary. The current sample excluded patients with MMSE score ≤23, but brain atrophy may be relevant biomarker in patients with preoperative cognitive impairment. Since external validation in an independent dataset is pending, we have used nested cross validation as an internal validation procedure, which is robust against overfitting. The focus of this manuscript is prediction, whereas a molecular causal model cannot be addressed here. E.g., single variable analyses have not been adjusted for confounders, warranting further analysis. The best model was chosen by ROC-AUC, which is a measure of discrimination in diagnostic testing. For prognostic questions, outcome probability estimation is preferable and more evaluations are needed (29).

POD screening was performed according to the evidence-based standard that measure POD

at least twice a day and has a comprehensive geriatric assessment included to describe the

clinical entity of this population. The clinical phenomenology was structured and annotated

according to this standard (2).

510

515

520

525

BioCog has made advancements towards POD prediction and will facilitate comprehensive

hypothesis-driven analyses including subgrouping of patients for better understanding of

pathophysiological processes and conception of interventional studies. Our dataset can guide

prevention strategies to reduce POD, e.g., via the JAK-pathway (22).

5 Acknowledgements

We thank the Koordinierungszentrum für Klinische Studien (KKS Berlin), and especially

Alexander Krannich, and ALTA (Siena, Italy) who provided additional administrative and

coordinating services throughout the study. Multimodal data management was conducted by

Pharmaimage Biomarker Solutions GmbH. We thank our colleagues who participated as MD

students and team of study nurses, especially Tuba Gülmez, Emmanuel Keller, Mario Lamping,

Helene Michler, Juliane Dörfler, Zdravka Bosancic, Fieras Nosierat, Irene Mergele, Victoria

Windmann and Anna Nottbrock. The authors further wish to thank the team of the student

apprentices/interns of the Department of Anesthesiology at the Charité-Universitätsmedizin

Berlin. Magnet resonance imaging has been supported by the Berlin Center for Advanced

Neuroimaging core staff, especially Stefan Hetzer. Henning Krampe supported the study by

recruiting and supervising students for neuropsychological testing.

6 Funding

The research leading to these results has received funding from the European Union Seventh

Framework Program [FP7/2007-2013] under grant agreement n° 602461.

7 Data availability

Due to the protection of intellectual property, machine learning algorithms will not be made

publicly available, but can be obtained from Dr. Winterer (georg.winterer@pi-

pharmaimage.com) after signing a confidentiality agreement. Participant data may be made

available upon request following publication to researchers who provide a methodologically

sound proposal in accordance with applicable legal and regulatory restrictions. Proposals for

data analysis must be directed to both claudia.spies@charite.de and georg.winterer@pi-

pharmaimage.com. To gain access, requesting researchers will need to sign a data access

agreement. Analyses will be limited to those approved in appropriate ethics and governance

arrangements. All study documents which do not identify individuals (e.g. study protocol,

informed consent form) will be freely available on request.

Statement on sex and gender equity in research

Data on the patients' gender have not been collected, and we refer to "sex" throughout the

manuscript. Although the best-performing model was found to have similar discriminability in

women and men, analyses in the online-only material have neither been adjusted nor

disaggregated for sex, although further in-depth analyses would require this step to yield valid

results.

530

535

540

550

Protein products of mentioned genes

545 BTN3A1 butyrophilin

> LAP3 leucine aminopeptidase 3

DSN1 DSN1 component of MIS12 kinetochore complex

HPGD 15-hydroxyprostaglandin dehydrogenase

KIF4B kinesin family member 4B

10 Author contributions

Florian Lammers-Lietz: Writing – Original Draft, Investigation, Validation, Visualization; Levent

Akyuez; Methodology, Investigation, Resources; Diana Boraschi: Methodology, Formal

560

565

570

575

Analysis, Writing – Review & Editing; Friedrich Borchers: Conceptualization, Investigation, Formal Analysis, Validation, Data Curation, Writing – Review and Editing; Jeroen de Bresser: Methodology, Investigation, Formal Analysis; Sreyoshi Chatterjee: Investigation, Formal Analysis; Marta M. Correia: Formal Analysis; Nikola M. de Lange: Methodology, Investigation, Formal Analysis; Thomas Bernd Dschietzig: Conceptualization, Methodology, Investigation, Formal Analysis, Supervision, Funding Acquisition; Soumyabrata Ghosh: Methodology, Investigation, Formal Analysis; Insa Feinkohl: Conceptualization, Methodology, Formal Analysis, Data Curation; Izabela Ferreira da Silva: Investigation, Formal Analysis; Marinus Fislage: Investigation, Writing – Original Draft, Formal Analysis; Anna Fournier: Methodology, Investigation, Formal Analysis; Jürgen Gallinat: Methodology, Investigation, Formal Analysis, Supervision; Daniel Hadzidiakos: Conceptualization, Methodology, Investigation, Data Curation, Validation; Sven Hädel: Software, Data Curation; Fatima Halzl-Yürek: Investigation; Stefanie Heilmann-Heimbach: Methodology, Investigation, Formal Analysis; Maria Heinrich: Investigation, Data Curation, Validation; Jeroen Hendrikse: Methodology, Investigation, Formal Analysis; Per Hoffmann: Methodology, Investigation, Formal Analysis; Jürgen Janke: Data Curation; Ilse M. J. Kant: Investigation, Methodology, Validation; Angelie Kraft: Formal Analysis; Roland Krause: Methodology, Investigation, Formal Analysis, Supervision; Jochen Kruppa-Scheetz: Methodology, Formal Analysis, Data Curation; Simone Kühn: Conceptualization, Methodology, Investigation, Formal Analysis, Supervision, Funding Acquisition; Gunnar Lachmann: Investigation, Methodology; Markus Laubach: Investigation; Christoph Lippert: Methodology, Investigation, Formal Analysis; David K. Menon: Conceptualization, Resources, Supervision, Writing – Review and Editing; Rudolf Mörgeli: Methodology, Investigation; Anika Müller: Methodology, Investigation; Henk-Jan Mutsaerts: Methodology, Investigation, Formal Analysis; Markus Nöthen: Methodology, Investigation, Formal Analysis; Peter Nürnberg: Conceptualization, Methodology, Supervision, Project Administration, Funding Acquisition; Kwaku Ofosu: Investigation; Malte Pietzsch: Conceptualization, Funding Acquisition, Methodology; Sophie K. Piper: Methodology, Formal Analysis; Pischon: Tobias

580 Conceptualization, Methodology, Resources, Data Curation, Writing – Original Draft, Supervision, Project Administration, Funding Acquisition; Jacobus Preller: Supervision, Conceptualization, Methodology, Investigation, Formal Analysis, Writing – Review and Editing, Project Administration; Konstanze Scheurer: Project Administration; Reinhard Schneider: Methodology, Investigation, Formal Analysis; Kathrin Scholtz: Project Administration; Peter H. 585 Schreier: Writing - Review and Editing; Arjen J. C. Slooter: Conceptualization, Funding Acquisition, Methodology, Writing – Review and Editing, Administration; Emmanuel A. Stamatakis: Supervision, Conceptualization, Funding Acquisition, Investigation, Methodology, Writing – Review and Editing, Project Administration; Clarissa von Haefen: Data Curation, Project Administration; Simone J. T. van Montfort: Investigation, Validation; Edwin van Dellen: 590 Methodology, Investigation; Hans-Dieter Volk: Resources, Writing – Review and Editing; Simon Weber: Conceptualization, Funding Acquisition, Methodology; Janine Wiebach: Methodology, Formal Analysis, Software, Data Curation; Anton Wiehe: Methodology, Formal Analysis, Visualization, Software; Jeanne M. Winterer: Investigation; Alissa Wolf: Methodology, Formal Analysis, Project Administration; Norman Zacharias: Methodology, Formal Analysis, 595 Investigation: Claudia Spies: Conceptualization. Methodology. Validation. Resources, Data Curation, Writing – Original Draft, Supervision, Project Administration, Funding Acquisition; Georg Winterer: Conceptualization, Methodology, Software, Resources, Data Curation, Writing - Original Draft, Supervision, Project Administration, Funding Acquisition; Florian Lammers-Lietz and Georg Winterer have verified the underlying data.

11 Assistance in scientific writing

600

Neither artificial intelligence tools nor a professional medical writer has assisted in manuscript preparation.

12 Conflict of interest

605

610

615

620

625

Georg Winterer is currently licensing a Class IIa medical device (web-based software tool for

risk prediction of POD and POCD in clinical practice). Dr. Winterer is CEO of Pharmalmage

Biomarker Solutions GmbH Berlin (Germany) and President of its subsidiary Pharmaimage

Biomarkers Incl. (Cambridge, MA, USA).

Dr. Spies, Dr. Winterer, Dr. Boraschi, Dr. Dschietzig, Dr. Kühn, Dr. Nürnberg, Dr. Pischon, Dr.

Pietzsch, Dr. Slooter, Dr. Stamatakis, Dr. Weber, report grants from the European Commission

during the conduct of the study. Dr. Winterer reports grants from the Deutsche

Forschungsgemeinschaft (DFG)/German Research Society and from the German Ministry of

Health. Dr. Spies reports grants from DFG/German Research Society, Einstein Foundation

Berlin, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/German Aerospace Center,

Projektträger im DLR/Projec Management Agency, Gemeinsamer Bundesausschuss

(GBA)/Federal Joint Committee, inneruniversity grants, Stifterverband/Non-Profit Society

Promoting Science and Education, European Society of Anesthesiology and Intensive Care,

BMWI – Federal Ministry of Economic Affairs and Climate Action, Dr. F. Köhler Chemie GmbH,

Sintetica GmbH, Max-Planck-Gesellschaft zur Förderung der Wissenschaft e.V., Metronic,

BMBF – Federal Ministry of Education and Research, Robert Koch Institute and payments by

Georg Thieme Verlag, board activity for Prothor, Takeda Pharmaceutical Company Ltd., Lynx

Health Science GmbH, AWMF (Association of the Scientific Medical Societies in Germany),

DFG, Deutsche Akademie der Naturforscher Leopoldina e.V. (German National Academy of

Sciences Leopoldina), Berliner Medizinische Gesellschaft, European Society of Intensive Care

Medicine (ESICM), European Society of Anaesthesiology and Intensive Care (ESAIC),

Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI)/German Society of

Anaesthesiology and Intensive Care Medicine, German Interdisciplinary Association for

Intensive Care and Emergency Medicine (DIVI) as well as patents 15753 627.7, PCT/EP

2015/067731, 3 174 588, 10 2014 215 211.9, 10 2018 114 364.8, 10 2018 110 275.5, 50 2015 010 534.8, 50 2015 010 347.7, 10 2014 215 212.7.

630 Gunnar Lachmann and Maria Heinrich report grants from the BIH Charité Clinician Scientist Program during conduct of the study. Dr. Dschietzig reports personal fees from Immundiagnostik AG during the conduct of the study. Dr. Lammers-Lietz and Anton Wiehe report personal fees from Pharmaimage Biomarker Solutions GmbH during the conduct of the study. Dr. Lachmann reports personal fees from Sobi, the University of Zurich and Thieme 635 outside the submitted work. Dr. Wolf receives fees from the Kompetenz-Centrum Qualitätssicherung. Dr. Stamatakis reports funding from Stephen Erskine Fellowship from Queens' College of the University of Cambridge, UK outside the BioCog study. Dr. Bresser reports funding from Alzheimer Nederland outside of the study. Dr. Gallinat received funding from the German Research Foundation (DFG), Federal Ministry of Education and Research 640 (BMBF) and received payment for five lectures and presentations with about 1.500 € per presentation sponsored by Lundbeck, Janssen-Cilag and Boehringer. Dr. Heilmann-Heimbach receives personal fees from Life&Brain GmbH.

None of the other authors have a conflict of interest to declare.

References

- Androsova G, Krause R, Winterer G, Schneider R. Biomarkers of postoperative delirium and cognitive dysfunction. Front Aging Neurosci. 2015;7:112.
 - Aldecoa C, Bettelli G, Bilotta F, Sanders RD, Aceto P, Audisio R, et al. Update of the European Society of Anaesthesiology and Intensive Care Medicine evidence-based and consensus-based guideline on postoperative delirium in adult patients. Eur J Anaesthesiol. 2024;41(2):81-108.
 - 3. Aldecoa C, Bettelli G, Bilotta F, Sanders RD, Audisio R, Borozdina A, et al. European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesthesiol. 2017;34(4):192-214.
- 4. World report on Ageing and Health. Geneva, Switzerland: World Health Organisation;6552015 2015.
 - Winterer G, Androsova G, Bender O, Boraschi D, Borchers F, Dschietzig TB, et al.
 Personalized risk prediction of postoperative cognitive impairment rationale for the
 EU-funded BioCog project. Eur Psychiat. 2018;50:34-9.
- Humeidan ML, Reyes JC, Mavarez-Martinez A, Roeth C, Nguyen CM, Sheridan E, et
 al. Effect of Cognitive Prehabilitation on the Incidence of Postoperative Delirium Among
 Older Adults Undergoing Major Noncardiac Surgery: The Neurobics Randomized
 Clinical Trial. JAMA Surg. 2021;156(2):148-56.
 - 7. Yang T, Yang H, Liu Y, Liu X, Ding YJ, Li R, et al. Postoperative delirium prediction after cardiac surgery using machine learning models. Comput Biol Med. 2024;169.
- 8. Zhao XX, Li JL, Xie XH, Fang ZJ, Feng Y, Zhong Y, et al. Online interpretable dynamic prediction models for postoperative delirium after cardiac surgery under cardiopulmonary bypass developed based on machine learning algorithms: A retrospective cohort study. Journal of Psychosomatic Research. 2024;176.

- Oosterhoff JHF, Karhade AV, Oberai T, Franco-Garcia E, Doornberg JN, Schwab JH.
 Prediction of Postoperative Delirium in Geriatric Hip Fracture Patients: A Clinical Prediction Model Using Machine Learning Algorithms. Geriatr Orthop Surg Rehabil. 2021;12:21514593211062277.
 - Rossler J, Shah K, Medellin S, Turan A, Ruetzler K, Singh M, et al. Development and validation of delirium prediction models for noncardiac surgery patients. J Clin Anesth. 2024;93:111319.

685

- 11. Bishara A, Chiu C, Whitlock EL, Douglas VC, Lee S, Butte AJ, et al. Postoperative delirium prediction using machine learning models and preoperative electronic health record data. BMC Anesthesiol. 2022;22(1):8.
- 12. Racine AM, Tommet D, D'Aquila ML, Fong TG, Gou Y, Tabloski PA, et al. Machine

 Learning to Develop and Internally Validate a Predictive Model for Post-operative

 Delirium in a Prospective, Observational Clinical Cohort Study of Older Surgical

 Patients. J Gen Intern Med. 2021;36(2):265-73.
 - 13. Dodsworth BT, Reeve K, Falco L, Hueting T, Sadeghirad B, Mbuagbaw L, et al. Development and validation of an international preoperative risk assessment model for postoperative delirium. Age Ageing. 2023;52(6).
 - 14. Feinkohl I, Borchers F, Burkhardt S, Krampe H, Kraft A, Speidel S, et al. Stability of neuropsychological test performance in older adults serving as normative controls for a study on postoperative cognitive dysfunction. BMC Res Notes. 2020;13(1):55.
- 15. German National Cohort C. The German National Cohort: aims, study design and organization. Eur J Epidemiol. 2014;29(5):371-82.
 - 16. Harrell F. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. New York: Springer; 2015.
 - 17. Gaudreau JD, Gagnon P, Harel F, Tremblay A, Roy MA. Fast, systematic, and continuous delirium assessment in hospitalized patients: the nursing delirium screening scale. J Pain Symptom Manage. 2005;29(4):368-75.

- 18. Ribot JC, Lopes N, Silva-Santos B. gammadelta T cells in tissue physiology and surveillance. Nat Rev Immunol. 2021;21(4):221-32.
- 19. Feng L, Chen Y, Xu K, Li Y, Riaz F, Lu K, et al. Cholesterol-induced leucine aminopeptidase 3 (LAP3) upregulation inhibits cell autophagy in pathogenesis of NAFLD. Aging (Albany NY). 2022;14(7):3259-75.

- 20. Zhu C, Zhao J, Bibikova M, Leverson JD, Bossy-Wetzel E, Fan JB, et al. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell. 2005;16(7):3187-99.
- Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, et al. Evolving cognition of the JAK-STAT
 signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther.
 2023;8(1):204.
 - 22. Rodriguez S, Hug C, Todorov P, Moret N, Boswell SA, Evans K, et al. Machine learning identifies candidates for drug repurposing in Alzheimer's disease. Nat Commun. 2021;12(1):1033.
- 710 23. Sun CC, Zhou ZQ, Yang D, Chen ZL, Zhou YY, Wen W, et al. Recent advances in studies of 15-PGDH as a key enzyme for the degradation of prostaglandins. Int Immunopharmacol. 2021;101(Pt B):108176.
 - 24. Lai Y, Lin P, Lin F, Chen M, Lin C, Lin X, et al. Identification of immune microenvironment subtypes and signature genes for Alzheimer's disease diagnosis and risk prediction based on explainable machine learning. Front Immunol. 2022;13:1046410.
 - 25. Boschetti E, Caio G, Cervellati C, Costanzini A, Rosta V, Caputo F, et al. Serum zonulin levels are increased in Alzheimer's disease but not in vascular dementia. Aging Clin Exp Res. 2023;35(9):1835-43.
- 26. Romer TB, Jeppesen R, Christensen RHB, Benros ME. Biomarkers in the cerebrospinal fluid of patients with psychotic disorders compared to healthy controls: a systematic review and meta-analysis. Mol Psychiatry. 2023;28(6):2277-90.

- 27. Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010;345(1-2):91-104.
- 28. Giil LM, Midttun O, Refsum H, Ulvik A, Advani R, Smith AD, et al. Kynurenine Pathway

 725 Metabolites in Alzheimer's Disease. J Alzheimers Dis. 2017;60(2):495-504.
 - 29. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128-38.