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ABSTRACT
In this review, we provide an overview of food allergy genetics and epigenetics aimed at clinicians and researchers. This includes 
a brief review of the current understanding of genetic and epigenetic mechanisms, inheritance of food allergy, as well as a dis-
cussion of advantages and limitations of the different types of studies in genetic research. We specifically focus on the results of 
genome-wide association studies in food allergy, which have identified 16 genetic variants that reach genome-wide significance, 
many of which overlap with other allergic diseases, including asthma, atopic dermatitis, and allergic rhinitis. Identified genes 
for food allergy are mainly involved in epithelial barrier function (e.g., FLG, SERPINB7) and immune function (e.g., HLA, IL4). 
Epigenome-wide significant findings at 32 loci are also summarized as well as 14 additional loci with significance at a false dis-
covery of < 1 × 10−4. Integration of epigenetic and genetic data is discussed in the context of disease mechanisms, many of which 
are shared with other allergic diseases. The potential utility of genetic and epigenetic discoveries is deliberated. In the future, 
genetic and epigenetic markers may offer ways to predict the presence or absence of clinical IgE-mediated food allergy among 
sensitized individuals, likelihood of development of natural tolerance, and response to immunotherapy.

Immunoglobulin-E-mediated food allergy (FA) is an improper 
immune response to food allergens. Symptoms vary from mild 
reactions to anaphylaxis, and FA is associated with decreased 
quality of life [1]. Atopic diseases are often co-expressed, 

including FA, atopic dermatitis (AD), asthma, eosinophilic 
esophagitis (EoE), and allergic rhinitis (AR) [2, 3]. Prevalence 
of FA varies, reflecting differences in populations, diet, and en-
vironment [1]. Heritability estimates and concordance rates for 
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FA traits from twin studies vary (51%–82%), but are higher in 
monozygous compared to dizygous twins (Table 1) [4–7]. There 
is strong aggregation of FA within families [8] and population-
based studies show a family history of allergic disease modestly 
increases the risk of FA in the offspring (odds ratio (OR) 1.4 for 
one family member; OR 1.8 for ≥ two family members with al-
lergic disease) [2]. These observations have motivated research-
ers to identify genetic and epigenetic factors of FA, which is 
thought to be a complex polygenic disorder with low penetrance 
rather than a Mendelian disorder. However, the role of rare 
variants has not been studied outside of primary immunodefi-
ciency disorders that have FA as part of their clinical phenotype 
(Table S1). Key concepts in genetics and epigenetics are provided 
in Figure 1 [9–11].

1   |   Genetic Risk Factors for Food Allergy and 
Their Relationship With Other Atopic Diseases

Many loci for FA have been identified through large-scale ge-
netic studies, candidate gene studies, family studies, and inves-
tigation of rare (< 5%) [12] monogenic disorders that feature FA 
as a primary clinical feature; each study type has advantages 
and disadvantages (Table 2) [11–18]. High throughput genome-
wide association studies (GWAS) can be powerful tools for 
identifying variant-trait associations and for the discovery of 
new biological mechanisms through an unbiased survey of the 
genome. However, these may be limited in the identification of 

rare variants and common variants not captured in the chip de-
sign [14], and direct causal links cannot be made due to linkage 
disequilibrium (i.e., nonrandom association of alleles at differ-
ent loci) [18]. Many tests for association are conducted, neces-
sitating correction for multiple testing. Large samples sizes are 
therefore needed to achieve statistical significance, which can 
make rigorous diagnosis of food allergic cases by oral food chal-
lenge (OFC) less feasible. Many studies rely on self-report or doc-
tor's diagnosis in order to accrue these samples [19], which may 
lead to misclassification and reduction of power. Replication of 
GWAS findings are crucial to provide convincing statistical evi-
dence for association, and to rule out association due to artifact 
[20]. Candidate gene studies involve the selection of a specific 
gene or genes to investigate a priori based on current knowl-
edge, and may have higher power, particularly in founder pop-
ulations, but may miss genetic factors that are yet unidentified 
in association with the disease, meaning that novel pathways 
and genes may be overlooked [11]. GWAS are often referred to 
as hypothesis-generating studies, while candidate gene studies 
are sometimes considered confirmatory studies. Family studies 
may have higher statistical power to discover genes, as there is 
generally a more homogeneous phenotype and probably a more 
limited set of contributing genes and pathways, but this relies 
on the ability to find willing participants with the appropriate 
phenotype; this design has been combined with genome-wide 
approaches [15, 20]. Animal studies of FA allow for more en-
vironmental controls, genetic manipulation, and specific en-
vironmental interventions, but no animal model completely 

TABLE 1    |    Estimation of the heritability of food allergy from twin studies.

Twin pairs Median age (range) Diagnostic criteria
Concordance 

rate
Heritability 
estimation Reference

14 MZ
44 DZ

5 years (1–58 years) Clinical history AND 
peanut sIgE (level n/r)

64.3% (peanut 
allergy MZ)

6.8% (peanut 
allergy DZ)

81.6% (peanut 
allergy)

Sicherer [5]

34 MZ
46 DZ

4.8 years (0.59–35.8 years) At least one twin with 
allergist-diagnosed food 
allergy, AND convincing 

history AND positive SPT/
sIgE/food challenge

59% (peanut 
allergy MZ)
29% (peanut 
allergy DZ)

— Kivisto [6]

55% (pistachio 
allergy MZ)

0% (pistachio 
allergy DZ)

1315
(# MZ/DZ not 
listed)

NR Parental report of 
“food allergy ever”

78% (MZ)
40% (DZ)

— Ullemar [4]

472 MZ
354 DZ

17.5 (12–28 years) No clinical history
Positive SPT to cow milk, 

egg white, soybean, wheat, 
peanut, walnut, fish mix, 

shellfish mix, sesame 
seed (MultiTest II)

53% (peanut 
sensitization MZ)

29% (peanut 
sensitization DZ)

51% (peanut 
sensitization)

Liu [7]

58% (shellfish MZ)
45% (shellfish DZ)

68% (shellfish 
sensitization)

Abbreviations: DZ, dizygotic; MZ, monozygotic; n/r, not reported; sIgE, specific IgE; SPT, skin prick test.
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recapitulates the human pathology of FA [16]. In this review, 
we will focus on statistically-significant genetic risk loci for FA 
found in a genome-wide approach, as identified through the 
Open Targets Genetics resource (last updated October 2022), 
and cross-verified with PubMed searches and the GWAS cat-
alog September 2024 (Table 3) [21]. Currently, these primarily 
fall within two major groupings—immune and epithelial barrier 
function.

To date, 16 loci have been associated with clinically diagnosed 
FA at genome-wide significance (p < 5 × 10−8) with 10 of these 
shared with other atopic diseases suggesting a common genetic 
etiology (Table  3) [28–30]. These single nucleotide polymor-
phisms (SNPs) are identified by their position on a chromosome 
and their reference SNP cluster ID (rs) number. Filaggrin (FLG) 
loss-of-function (LoF) mutations at Chromosome (Chr) 1q and 
variants on Chr11q13.5 [29, 31] are significantly associated with 
FA, AD, asthma, and AR [32–36]. FLG encodes a skin barrier 
protein, and its role in multiple atopic diseases is discussed fur-
ther below. The Chr11q13.5 region has additionally been iden-
tified as a risk locus for EoE [37, 38]. It contains 2 genes, leucin 
rich repeat containing 32 (LRRC32), which tethers transforming 
growth factor beta (TGFB) to the surface of FOXP3+ regulatory 
T-cells (Tregs) [39], and the histone-modification protein EMSY 
(encoded by the c11orf30 gene) [40]. EMSY polymorphisms are 
a risk factor for asthma in the Chinese Han population [41]. 
Similarly, two other loci, one located in the cytokine gene cluster 
on Chr5q31 near IL4, and one on Chr18 in SERPINB7 are also 
associated with multiple allergic diseases [30, 42–45]. Additional 

loci shared between FA and asthma are found in the human leu-
kocyte antigen (HLA) region [46]. The SERPINB cluster initially 
identified by a GWAS on FA was also associated with early onset 
of allergic diseases [30, 47]. Thus, there is considerable genetic 
overlap of FA genetic variants with asthma, AD, AR, EoE, and 
early onset of allergic diseases; the identified genes for FA are 
discussed in further detail below.

2   |   Genetic Loci Related to Epithelial Barrier 
Function in Food Allergy

FLG LoF mutations result in complete lack of protein expression 
of filaggrin, a skin barrier protein. FLG mutations are associated 
with early onset, severity, and persistence of AD [48]. FLG mu-
tations were detected with similar cumulative allele frequencies 
(~5%–5.5%) in groups of different genetic ancestries but exhibit 
population-specific mutation patterns [49]. An association be-
tween FLG and FA was found in both GWAS and candidate gene 
studies [50, 51], first identified for peanut allergy (PA) [51], but 
now with similar risk estimates for multiple types of FA [49]. 
FLG mutations were associated with the persistence of hen's egg 
and cow's milk allergy [49] and severe FA in AD [52].

High levels of environmental exposure to peanut allergen are 
associated with increased risk of PA in individuals with known 
FLG LoF mutations [53, 54], which may suggest the skin acts as 
the route of sensitization in FLG-deficient children. While FLG 
LoF mutations were not genotyped on any of the commercial 

FIGURE 1    |    Review of genetic and epigenetic mechanisms. Double-stranded DNA makes up the genome and is coiled to make chromatin fibers 
and then wrapped around histones to make chromosomes. Genomic changes called single nucleotide polymorphisms (SNP) are a one base-pair 
change in germline DNA. These can occur both in exons (protein coding) and introns (non-coding regions, which often have regulatory function). 
Changes in DNA that involve a change in repetition of sections of the genome are known as copy number variants (CNV). DNA must be accessible 
in order to be transcribed into messenger RNAs (mRNA), which constitute the transcriptome. mRNA are then translated into proteins which collec-
tively make up the proteome. Epigenetic mechanisms—shaped by external factors—include DNA methylation, histone modification and non-coding 
RNA. Long non-coding and micro RNAs (miRNA; short single strands of RNA) can bind to transcribed mRNA affecting translation. Genetic and 
epigenetic modifications can impact protein expression, including a complete lack of protein production, a change in protein levels, or a change in 
protein sequence that leads to a truncated protein or a protein with impaired function. This figure has been created with BioRender.com.
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GWAS arrays, rs12123821 in the 1.9 Mb region containing 
the epidermal differentiation complex on Chr1q21 exhibited 
genome-wide significance for FA [22]; this area contains multi-
ple genes involved in regulation and function of the skin barrier 
[55]. A conditional analysis revealed that this association was 
due to the two most common FLG mutations. However, a resid-
ual association was still detectable between FLG and the repetin 
gene (RPTN), suggesting additional genetic risk factors in this 
region, which is unsurprising as the epidermal differentiation 
complex contains over 50 genes that direct the development and 
regulation of the skin [56]. FLG also contains an intragenic copy 
number variant (CNV) due to its repeated FLG motif, which en-
codes the portion that becomes natural moisturizing factor [57]; 
low copy number is correlated with increased risk of AD and 
chemical penetration through the skin barrier [58], but has not 
yet been evaluated in FA.

Additional risk loci for FA have been identified in or near genes 
with epithelial barrier function, including an intronic variant 
in the SERPINB cluster on Chr18q22 [22]. Although most other 
serpins are protease inhibitors that circulate in the bloodstream, 

clade B serpins are intracellular and may protect cells from pro-
teolysis [59]. The associated FA gene, serpin family B member 7 
(SERPINB7) is implicated in Nagashima-type autosomal reces-
sive palmoplantar keratosis, a disease with a skin barrier defect 
[60]. An intergenic locus near SERPINB2, also known as plas-
minogen activator inhibitor-2 (PAI2), has also been identified in 
egg allergy [22]. PAI2 is a serine protease inhibitor involved in 
apoptosis, cell differentiation, and the innate immune response 
[61]. Leukocyte expression of SERPINB10, which inhibits apop-
tosis of allergenic T-cells in asthma [62], is correlated to GWAS 
variants in the SERPINB7 and SERPINB2 genes in the cluster 
described above [22].

Other novel loci identified may also be epithelial barrier-related. 
An intergenic variant near integrin alpha 6 gene (ITGA6), in-
volved in barrier function [63], reached genome-wide signifi-
cance for PA but remains to be replicated in independent data 
sets [23]. The other flanking gene for this locus, DLX2, is a ho-
meobox protein with roles in placental formation and neural 
crest migration [64]. Three SNPs in an intergenic region be-
tween two genes on Chr11 (EMSY, LRRC32) have been identified 

TABLE 2    |    Advantages and disadvantages of types of genetic studies for food allergy.

Study type Advantages Disadvantages

Genome-wide 
association study

•  Powerful when performed in large study 
populations

•  Unbiased by a priori selection of genes
•  Can identify new biological mechanisms and 

novel pathways
•  “Hypothesis-generating” study

•  Initially more costly, but now more affordable
•  Larger sample size needed

•  Phenotype may be what is available if samples 
taken from larger cohort study

•  Initially limited in identification of rare 
variants; higher density chips and imputation 

now used
•  Variants depend on chip design/coverage

•  Direct causal links difficult to establish due to 
linkage disequilibrium

•  Chips may lack ethnic diversity in the design, 
which may result in loss of power when used on 

admixed populations

Candidate gene 
studies

•  “Confirmatory” study
•  Less complication by surrounding SNPs in LD

•  Selection of gene(s) to investigate a priori based 
on current knowledge; may miss unidentified 

genetic factors

Family studies •  Less confounding due to more controlled genetic 
and non-genetic factors

•  Higher statistical power to discover genes for 
monogenic/oligogenic traits

•  Can be combined with genome-wide approach

•  Requires sufficient families with affected 
members to be recruited

Monogenic 
Mendelian disorders 
that feature food 
allergy as a primary 
presenting clinical 
feature

•  High penetrance of genetic effects aids in 
interpretation of pathophysiology

•  23% of genes that are linked to highly penetrant 
Mendelian disease are associated with at least one 
complex disorder; may help to identify pathways 

within complex common diseases
•  May show systemic relevance of a gene or protein

•  Specific mutation in Mendelian disorder 
is unlikely to be carried by individuals with 

common complex diseases
•  Phenotype may be rare

Animal studies •  Precise control over genetic and environmental 
factors

•  Intervention at different time points possible
•  Genetic manipulation possible

•  No animal model completely recapitulates 
human disease

References: Musunuru et al., Chakravarti, Carter et al., Tam et al., Kanzi et al., Schulke et al., Spataro et al., Uffelmann et al. [11–18].
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associated with FA in two separate GWAS [22, 23]. LRRC32 is 
discussed further below [65]. Knockdown of EMSY expression is 
correlated with increased expression of skin barrier proteins in 
cell culture [66]. Additional loci for epithelial barrier genes have 
been identified in candidate gene studies and primary immuno-
deficiency disorders (Tables S1, S2).

3   |   Genetic Loci Related to Immunity in Food 
Allergy

The most consistent genetic evidence for FA has been observed 
in the human leukocyte antigen (HLA) region on Chr6, which 
encodes the major histocompatibility complex responsible for 
presentation of antigenic peptides. HLA genes are implicated 
in many immunologically-mediated conditions and are imper-
ative for antibody generation and IgE production [67]. Evidence 
for the involvement of HLA genes in FA is longstanding and 
includes both genome-wide and candidate gene studies [68]. 
HLA loci for FA that have been identified include HLA-DPB1, 
HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, and HLA-
DRB1 [69]. Although the mechanism through which HLA in-
fluences FA is unknown, HLA variants affect the presentation 
of non-self antigens or influence thymic selection for class II 
restricted T cell receptors [70, 71]. Interestingly, different as-
sociation signals in the HLA class II gene cluster were found 
for two distinct wheat allergy phenotypes in the same popula-
tion: iterative conditional analysis in the HLA region revealed 
three independent association signals for allergy to hydrolyzed 
wheat proteins with a coding variant in HLA-DQA1 (rs9271588), 
the HLA-DQA1*03:03 allele, and rs9263827 near HLA-C [27]. 
Conversely, wheat-dependent exercise-induced anaphylaxis 
was most strongly associated with the HLA-DPB1*02:01:02 al-
lele in the Japanese population [26]. HLA-DPA1 is associated 
with wheat-dependent exercise-induced anaphylaxis [27]. HLA-
DPA1 has been also associated with AD [72]. Genome-wide sig-
nificant association for self-reported shrimp and peach allergy 
was found upstream of HLA-DQA1 in a large GWAS in 11,000 
Japanese women [73]. Furthermore, the HLA-DQB1 locus was 
linked to PA in four GWAS [22, 25, 50, 74]. However, the as-
sociation in one of these studies did not meet the threshold of 
genome-wide significance, likely attributable to small sample 
size [50]. Due to the strong linkage disequilibrium at this locus, 
fine-mapping to pinpoint causal variants remains a challenge. 
Specific HLA haplotypes—a set of DNA variants that tend to 
be inherited together—may confer increased risk and are dis-
cussed elsewhere [75]. Hong et al. performed a detailed analy-
sis of the region for PA and identified two functional variants 
that were associated with differential DNA methylation levels at 
multiple cytosine-phosphate-guanine (CpG) sites (p < 5 × 10−8), 
and differential DNA methylation of the HLA-DQB1 and HLA-
DRB1 genes [25]. These results await replication, but provide a 
potential epigenetic mechanism through which genetic variants 
in the HLA region affect FA risk.

The same risk alleles at the LRRC32 locus were associated with 
FA at genome-wide significance in two studies [22, 23] and were 
also associated with multiple atopic diseases, blood eosinophil 
counts, and other inflammatory disorders including ulcerative 
colitis (Table 3). The associated variant is located in an enhancer 
element that upon deletion in the syntenic chromosomal region 

in a mouse model abolished the expression of LRRC32 in Tregs, 
rendering them incapable of suppressing colitis in the mouse 
[65]. Impaired Treg function is found in some Mendelian disor-
ders with FA as a symptom (Table S1) [76].

Loci in the cytokine gene cluster at Chr5q31.1 are significantly 
associated with FA [22]. This region is also associated with AD, 
asthma, and the atopic march [77, 78]. The SNP rs11949166 is an 
intergenic variant flanked by IL4 and kinesin family member 
3A (KIF3A). IL-4 is a key cytokine in allergic diseases and up-
regulates IgE [79]; IL-4 is secreted by T-helper and type-2 innate 
lymphoid cells (ILC2), which leads to reduced allergen-specific 
Tregs [80, 81]. IL-4 production by ILC2s and splenocytes is en-
hanced by allergen sensitization through skin [82, 83]. ILC2s 
provide a link between innate and adaptive immunity, and are 
found in epidermal, gastrointestinal, and respiratory epithelial 
barriers [84]. KIF3A encodes a subunit of kinesin 2, a trans-
porter protein [85]. KIF3A variants have been previously associ-
ated with both AD [86] and EoE [87].

Additional significant GWAS findings in novel genetic regions 
include an intronic variant found in angiopoietin 4 (ANGPT4), a 
pro-angiogenic factor [23] that stimulates eosinophil migration 
[88]. An intronic variant in the RNA binding fox-1 homolog 1 
(RBFOX1) gene is a susceptibility locus in hydrolyzed wheat pro-
tein allergy [26] and CNVs in RBFOX1 as well as catenin alpha 3 
(CTNNA3) have been associated with FA in children [89].

Many additional candidate genes for FA exist based on diagnos-
tic criteria that are difficult to differentiate from sensitization to 
food allergens, or have reached levels suggestive of significance 
(p < 1 × 10−5) but may have been impacted by sample size or 
other methodological limitations. These additional candidates 
have been covered in a previous systematic review of genetic de-
terminants of FA and are shown in Table S2 [69, 90].

4   |   Epigenetic Modifications Associated With Food 
Allergy

Epigenetic mechanisms affect gene expression without a change 
in the DNA sequence and can be inherited or acquired. Inherited 
epigenetic changes can be intergenerational (parent's germline 
is exposed to an environmental cue leading to offspring with 
same change), or transgenerational (change is inherited in fur-
ther generations without direct contact with the environmen-
tal cue) [91]. Currently known epigenetic mechanisms include 
(Figure 1): (1) DNA methylation—addition of methyl groups to 
CpG sites (a cytosine nucleotide is followed by a guanine sepa-
rated by a phosphate), (2) histone modification—modification of 
histones, often on the tail or the globular portion, changes the 
configuration of the histones to allow or deny access to DNA; (3) 
non-coding RNA (ncRNA)—RNA which does not make protein, 
but activates or represses genes, regulates post-translational pro-
cesses, or acts on chromatin or methylation. Epigenetic changes 
can be regulated by DNA variants but also can be shaped by ex-
ternal factors, which may provide a mechanism through which 
FA is influenced by the environment [92–94].

Epigenetic research is affected by phenotyping issues as in all 
studies of FA [19], with some studies focusing on self-reported 
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FA [95], and others concentrating on general atopy [96]. 
Epigenetic studies have additional complexity as epigenetic sig-
natures are dynamic and can be influenced by cell types, cell ac-
tivation, sex, age [97], and exposures such as diet [98], and may 
represent causes but also consequences of FA [99]. Epigenetic 
marks are also contextual; their influence on gene expression 
depends on localization to promoters, gene bodies, CpG islands, 
or non-coding regions; this is particularly true for DNA methyl-
ation. These factors complicate interpretation of cross-sectional 
studies as well as comparisons across studies.

An increasing body of evidence highlights the association of 
epigenetic markers with disease risk, including candidate gene 
and epigenome-wide studies [100]. Most studies have focused on 
DNA methylation in easily accessible tissues (blood or blood-
derived cells). Similar to genetic studies of FA, some have ex-
amined specific candidate genes for differential methylation 
(Table  S3); few have taken an epigenome-wide approach. Two 
previous reviews identified candidate genes and epigenome-
wide association studies (EWAS) of FA phenotype, without 
specific cut-offs for significance [100, 101]. Table  4 indicates 
the methylation sites that showed epigenome-wide significant 
association with FA according to the analysis method used 
(p < 2.4 × 10−7 for analyses with 450 k arrays and p < 9 × 10−8 for 
analyses with EPIC arrays) [102, 103]; only four studies showed 
CpGs associated with p-values under this threshold and also 
fulfilled phenotype criteria for this review (clinically diagnosed 
FA; sensitization-only phenotype excluded). Twenty CpG sites 
in CD4+ T-cells were associated with FA for pediatric hen's egg, 
cow's milk, or PA in one study that showed stability in methyl-
ation levels in the first 12 months of life [104]. Two of the other 
studies utilized peripheral blood DNA samples and examined 
pediatric cow's milk allergy. Of these, one study of cow's milk al-
lergy defined by clinical history and laboratory testing identified 
10 associated CpG sites [105], while the other with OFC criteria 
for FA identified a single CpG site that met the criteria outlined 
in this review, but this association was observed exclusively in 
females [106]. The fourth study analyzed methylation sites from 
peripheral blood mononuclear cells (PBMCs) and identified one 
CpG site associated with PA. The concern that employment of 
strict p-value thresholds in EWAS is overly conservative, com-
bined with the small number of studies and the use of false dis-
covery rate for correction of multiple testing [107, 108], has led 
us to include results that did not reach epigenome-wide signifi-
cant associations, but used FA phenotypes with a false discovery 
rate (FDR) < 1 × 10−4. These have been included in Table 4. The 
functions of genes associated with the closest transcription start 
sites to these CpG sites are discussed below.

5   |   Epigenetic Loci Related to Epithelial Barrier 
Function in Food Allergy

Several CpG sites identified in EWAS studies of FA are linked 
to epithelial barrier or skin integrity, including a CpG in the 
promoter region of late cornified envelope 3A (LCE3A) and 
two in the 3′UTR region of delta 4-desaturase, sphingolipid 
2 (DEGS2) [104, 105]. Part of the antimicrobial barrier [112], 
LCE3A expression is induced by skin injury or inflammation 
[113, 114]. DEGS2 is involved in the sphingolipid synthesis in 
skin and other sphingolipid-containing tissues [115]. Disruption 

of metabolism [116, 117] or altered response to sphingolipid me-
tabolites has been noted in FA [118], EoE [119], and asthma-risk 
genotypes [120].

Some FA-associated CpG sites appear related to cell migra-
tion, including those in the genes of Enah/Vasp-like (EVL), 
cell division cycle associated 7 (CDCA7), and prostaglandin 
F2 receptor inhibitor (PTGFRN), and one upstream from the 
transcription site of pleckstrin homology and RhoGEF domain 
containing G4B (PLEKHG4B) [104, 105]. EVL is involved in 
epithelial and immune cell migration [121] and along with 
PLEKHG4B [122] has a role in actin assembly [123] CDCA7 
inhibits epithelial-mesenchymal transition [124]; it also has 
a CNV [125]. Contactin 6 (CNTN6) [126], cell adhesion mole-
cule L1 like (CHL1) [127], and PTGFRN encode cell adhesion 
molecules [128]. EDARADD defects cause ectodermal dyspla-
sia, with abnormal development of hair, teeth, and nails, and 
may be accompanied by dry skin and eczema [129]. Another 
locus with FDR < 1 × 10−4, FERM domain containing kindlin 
3 (FERMT3), has been identified as a cause of leukocyte adhe-
sion deficiency III [130].

Other significant CpGs linked to genes involving skin or epithe-
lial function include those in the promoter region of keratin as-
sociated protein 5–7 (KRTAP5-7) and the gene body of zinc finger 
FYVE-type containing 28 (ZFYVE28) [104], which encodes a 
protein that modulates epidermal growth factor signaling [131]. 
Genes in the KRTAP family are involved in hair formation; how-
ever, KRTAP homologs are present in hairless organisms, sug-
gesting KRTAP5-7 could have a more complex role [132].

6   |   Epigenetic Loci Related to Immunity in Food 
Allergy

Several CpGs identified with genome-wide significance for FA 
occur in or near important cytokines, including CpG sites up-
stream of the transcription start sites of IL4 and IL1 receptor like 
1 (IL1RL1), in the 5′UTR of IL-5 receptor alpha subunit (IL5RA), 
and in the gene body of C-C motif chemokine ligand 18 (CCL18) 
[105]. IL4 is of particular interest as this gene also achieved 
genome-wide significance in GWAS of FA [22]. IL4, and its 
flanking gene IL13, are key cytokines in AD [133], asthma [134], 
EoE [135], and AR [136]. A CpG site significant for FA was also 
identified in the nedd4 family interacting protein 2 (NDFIP2) 
gene [105], the expression of which is regulated by IL-4 during 
Th2 cell differentiation [137]. NDFIP2 promotes interferon 
gamma (IFNγ; IFNG) production by Th1 cells [137].

Support for the IL5RA locus in FA primarily exists through stud-
ies of its ligand, IL-5, which is important in eosinophil function 
[138]. Methylation of IL5RA in blood of asthmatic children was 
correlated with eosinophilia [139]. Differential expression of 
IL5 was found in PBMCs of children with egg allergy [140]. IL5 
was consistently overexpressed in children and adolescents who 
have concomitant comorbidities of asthma, AD, and AR [141] 
and was differentially methylated in a study of allergic diseases 
[142]. Elevated childhood plasma levels of CCL18 precede the 
development of allergy and asthma [143] and CCL18, along with 
many other Th2-related cytokines, was upregulated in skin bi-
opsies of AD patients [144].
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The toll-like receptor IL1RL1 and its ligand IL-33 are associated 
with FA [145]. These play a role in airway exposure-induced 
PA in mouse models [146] and anaphylaxis to food in epicuta-
neously sensitized mice [147]. However, the functional role of 
this ligand and receptor in FA is unclear. IL1RL1 SNPs were 
associated with peanut and hen's egg sensitization but not FA, 
and disease-associated SNPs in IL1RL1 correlate with IL1RL1 
messenger RNA (mRNA) and serum protein levels of IL-1RL1a 
in asthma [148] but not in FA [149]. In a novel hyper-IgE syn-
drome characterized by FA, EoE, and asthma, duplication of the 
IL33 region was not associated with any changes in circulating 
peripheral IL-33 or soluble IL1RL1 levels, despite increased IL33 
gene expression [150].

Other loci reaching epigenome-wide significance for FA include 
a CpG site located in the gene body of the signal transducer and 
activator of transcription 4 (STAT4) gene, near the transcrip-
tion site for STAT1. STAT4 skews toward Th1 expression, and 
binds multiple target sites on the genome [151]. STAT1 is over-
expressed in ileal mucosa of patients with asthma [152] and has 
been implicated in steroid resistance in murine models of air-
way inflammation [153] and AR [154]. STAT1 gain of function 
can cause chronic mucocutaneous candidiasis [155].

Ribosomal protein S6 kinase A2 (RPS6KA2) encodes a ser-
ine–threonine kinase, and a methylation site in this gene 
(cg15090899) reached epigenome-wide significance for cow's 
milk allergy [105]. The same locus, but a different CpG site 
(cg05068730), was also observed in an EWAS of food sensi-
tization in mid-childhood [95], but this locus had increased 
methylation compared to controls whereas less methylation 
was significant at cg15090899 in FA. Other CpG sites at this 
locus (cg06330797, cg03120116) have been identified in rela-
tion to food sensitization [104] and FA at 12 months of age [110]. 
Another significant locus, trafficking protein particle complex 
subunit 9 (TRAPPC9), was associated with FA in two EWAS 
[105, 110], highlighting its possible role in FA, although its func-
tion is unknown [105].

Significant CpGs for FA have been identified near genes for a 
metalloproteinase (ADAM metallopeptidase with thrombos-
pondin type 1 motif 12; ADAMTS12) and an inhibitor of matrix 
metalloproteinase (TIMP metallopeptidase inhibitor 3; TIMP3) 
[104]. ADAMTS12 is a disintegrin with a role in asthma and al-
lergic inflammation [156, 157] TIMP3 encodes a protease that 
targets extracellular matrix [158], a process important to air-
way remodeling in asthma [159, 160]. TIMP3 gene expression 
was increased in sputum samples of patients with mild to mod-
erate asthma compared to controls [161]. Two EWAS identified 
11 PA-associated CpG sites [110] and 4 egg allergy-associated 
CpG sites with FDR < 1 × 10−4 [111]. Six of the 15 genes with the 
nearest transcription site are linked to atopic diseases, likely 
through immune response mechanisms or regulation of lym-
phocyte function. These conditions include (1) asthma: ETS 
proto-oncogene 1, transcription factor (ETS1) [162], major his-
tocompatibility complex, class I, F (HLA-F) [163], pannexin 1 
(PANX1) [164], regulatory associated protein of MTOR complex 
1 (RPTOR) [165], and spondin 2 (SPON2) [166]; (2) AR: ETS1 
[167], nuclear receptor subfamily 4 member a2 (NR4A2) [168], 
and (3) AD: ETS1, NR4A2 [169, 170].

Several genes linked to methylation sites are relatively unknown 
in the FA literature but are related to other allergic diseases or 
immune function, such as response to bacteria [171, 172]; these 
include CpGs in the 5′UTR of ribosomal protein L9 (RPL9), and 
near coagulation factor III, tissue factor (F3) [104]. Expression 
of family with sequence similarity 180 member A (FAM180A) 
is regulated by TGFB [173]; an intergenic CpG near FAM180A 
was significantly associated with PA [109]. The mitochondrial 
ribosomal protein L28 (MRPL28) [174] has a FA-associated CpG 
located in its 5′UTR [104]; a different CpG in the first exon had 
increased methylation in infants exposed to maternal asthma 
during pregnancy [175]. A CpG located near the transcription 
start site of branched chain amino acid transaminase 1 (BCAT1) 
is significant for FA [104]. Its gene expression and protein lev-
els were increased in OVA-challenged mice, and inhibition of 
BCAT1 decreased airway remodeling and levels of autophagy 
markers [176, 177]. RPTOR and NR4A2 may be involved in auto-
phagy [178, 179], Autophagy genes are associated with asthma 
prognosis, progression, and remodeling [180, 181], and inter-
twined with apoptosis [182, 183]. CpG sites in genes associated 
with apoptosis are also significant in FA, including a CpG in the 
promoter region of lipoic acid synthetase (LIAS) [184], and the 
gene body of bridging integrator 1 (BIN1) [104, 185], as well as 
RPS6KA2 [105, 186].

7   |   Epigenetic Loci Currently Unrelated to 
Immunity and Barrier Function

The remaining CpGs associated with FA correspond with genes 
that have no known relationship to barrier, immunity or atopy. 
Many of these loci are involved in growth, development, and cell 
division or proliferation, or have roles in metabolism or signal-
ing [187–200].

8   |   Integration of Genetic and Epigenetic Findings 
in Food Allergy and Knowledge Gaps

Some identified risk loci have both genetic and epigenetic as-
sociations with FA (Tables 3, 4), including IL4 which was a sig-
nificant locus both in EWAS and GWAS of FA [22, 105]. Other 
loci, including HLA and FLG have genome-wide or epigenome-
wide significance with candidate gene or longitudinal studies 
supporting their role in FA (Tables  S2, S3). HLA has multiple 
significant risk loci from GWAS and candidate gene studies, 
with smaller studies showing DNA methylation at HLA-DQB1 
and HLA-DRB [104, 105]. DNA methylation may regulate FLG 
transcription [201], although this has not yet been shown in FA 
[202]. DNA methylation has been the main focus of epigenetic 
studies of FA, but other mechanisms may play a role, includ-
ing histone modification [196], and ncRNA [203–206], which 
have links to loci identified through GWAS [22–24]. Alternative 
splicing can be influenced by epigenetic marks [207, 208]; and 
RBFOX1, a GWAS locus [26], belongs to a family of proteins 
that regulates tissue-specific alternative splicing [209]. Work on 
desensitization and development of natural tolerance may also 
provide insight into epigenetic mechanisms in the pathogenesis 
of FA [104, 111, 210–212]. However, it may be unclear whether 
observed changes are cause or effect.
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9   |   Gene–Environment Interactions in Food 
Allergy

Gene–environment interactions are key to development of FA, 
sensitization to food, or tolerance. This has primarily been in-
vestigated with regards to diet, peanut allergen exposure, and 
vitamin D. Children with high levels of environmental cutane-
ous exposure to peanut allergen, as measured by peanut dust, 
had an incremental increased risk of sensitization to peanut in 
individuals with known FLG LoF mutations [53, 54]; this dose–
response relationship was not seen in individuals with wildtype 
FLG. MALT1 risk allele carriers who avoided oral peanut expo-
sure were more likely to develop PA, indicating it may be an in-
dependent risk factor for PA in individuals who avoid peanut. 
This carrier effect was abrogated by the intervention of early 
oral peanut exposure [213]. Polymorphisms that lower vitamin 
D binding protein (and thus increase vitamin D serum levels) 
have also been studied in infants, with maternal antenatal vi-
tamin D supplementation associated with less FA, particularly 
with the GT/TT genotype, which lowers vitamin D binding pro-
tein [214]. Further work is needed regarding gene–environment 
interactions in FA.

10   |   Population Differences and Diagnostic 
Criteria: Implications for Future Research

Ethnicity and socioeconomic status are correlated with FA 
[215]. Most genetic studies of FA were completed on individuals 
of self-identified Caucasian or Western European ancestry. HLA 
SNPs rs7192 and rs9275596 were significantly associated with 
PA in Caucasians, but not in individuals of non-European ances-
try [25]. While the sample size was small, the direction of the ef-
fect of the OR of rs9274496 was actually opposite, with an OR of 
0.6 in non-European compared to 1.7 in European ancestry [25]. 
This suggests that distinctions exist in genetic risk loci for FA in 
populations from different genetic ancestry, which may be due to 
difference in LD structure of these populations, a phenomenon 
that has also been described in other atopic diseases [216–220]. 
Epigenetic differences between populations can be caused by 
genetic factors or environmental exposures, or a combination of 
both [221], but the majority of ancestry-related DNA methyla-
tion variation is driven by genetic factors [222]. Seafood allergy 
is more common in Asian and Hispanic than in White popula-
tions [223]. This may be due to genetic variation, or could point to 
the role of different diets or other allergen exposures [224, 225], 
providing distinct gene by environment interactions across dif-
ferent populations. Approximately 25% of the variation in gene 
expression in a study of individuals sampled for human genome 
diversity panel could be attributed to population differences 
[226]. Differences in DNA methylation of populations of diverse 
ethnicity have been identified in several studies [227–229]; this 
may be attributed to both genetic and environmental influences 
[227]. A strong evidence base for FA genetics and epigenetics in 
diverse and admixed populations is lacking, which supports the 
call for more diversity in FA genetic research and should be re-
flected in GWAS and EWAS chip design [217, 230]. Increasing 
diversity in chip design is especially important given the rise of 
FA in developing nations [231] and the complexity of diagnosis 
and management of FA in regions subject to food insecurity and 
limited health care infrastructure [232].

Research has been complicated by difficulties in defining FA 
based on clinical history and laboratory cut-offs, including skin 
prick test (SPT) and specific immunoglobulin E (sIgE), in the ab-
sence of an oral food challenge, prompting us to create proposed 
groups of FA phenotypes for future large-scale genetic studies 
[19]. The interwoven nature of allergic diseases adds complexity 
that can limit the ability to detect specific genetic variants for FA 
versus general allergic disease risk. Researchers must also de-
cide on whether to combine all types of FA together or focus on 
allergies to a specific type of food. It is yet unknown if an allergy 
to a specific food is driven by an environmental exposure inter-
acting with a general susceptibility to FA, or if genetic and epi-
genetic risk factors for specific FA exist. Studies can be designed 
with the assumption that the underlying genetic model involves 
specific risk loci for specific foods, or that all FA are influenced 
by the same specific risk loci. Grouping all FA together, which 
is often done to maximize sample size and increase power, may 
favor identification of general susceptibility loci but obscure loci 
for specific food allergens.

11   |   Prevention and Treatment of Food Allergy 
and Role of (Epi)-genetics: Future Directions

Primary prevention of FA centers around timing of introduction 
to foods and regular ingestion during infancy [233–235], and has 
been shown to significantly reduce development of PA in chil-
dren both with and without AD [236, 237], with data support-
ing this premise for cow's milk [238–240], cashew [241] and egg 
[242]. Development of tolerance to one allergen does not prevent 
the development of FA to another food [243]. Current guidelines 
suggesting early oral introduction are suitable for the general 
population [244]. However, up to 12% of infants at higher risk 
may already be allergic at time of food introduction [245–247].

The mainstay of secondary prevention and treatment of FA is 
immunotherapy. Previously management relied on allergen 
avoidance and treatment of exposure with epinephrine [248]; it 
is now estimated that 80% of children [245–247, 249] can be de-
sensitized through gradual, medically supervised introduction 
of the allergen [247, 250]. Established protocols exist for oral im-
munotherapy (OIT) [247, 251] and further evidence for immu-
notherapy continues to accrue [252], including adjuvant therapy 
[253]. Immunotherapy is resource-intensive, requires access to 
allergists [254], and can have risks to patients [245, 255]. In ad-
dition to the influence HLA has on FA susceptibility, outlined 
above, specific HLA alleles have been investigated in PA desen-
sitization and maintenance of tolerance. HLA-DQA1*01:02 has a 
protective role against PA in the setting of peanut consumption, 
but is a risk allele if peanut is avoided [256]. A higher proportion 
of carriers of HLA-DQA1*01:02 receiving OIT were desensitized 
compared to non-carriers (93% vs. 78%; OR 5.74, p = 0.06) in a 
study of 126 children aged 12–< 48 months [257]. Other factors 
such as age and prior sensitization likely play a role in success 
of OIT; while not significant, HLA-DQA1*01:02 carriers more 
frequently attained continued desensitization and sustained 
unresponsiveness than non-carriers in a cohort aged 7–55 years 
(80% vs. 61% for continued desensitization and 52% vs. 31% for 
sustained unresponsiveness) [257]. Genetic or epigenetic risk 
scores [258] could be a tool to guide decisions regarding optimal 
management, such as identifying those at highest risk in order 
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to intervene earlier, those most likely to have side effects from 
oral immunotherapy such as severe reactions or EoE, and those 
most likely to achieve sustained unresponsiveness.

12   |   Conclusion

An improved ability to distinguish predict, diagnose, and char-
acterize FA would benefit clinical management and research. 
Evaluation of shared and distinct pathways in atopic diseases 
is necessary to reveal potential targets for future treatments. 
The pathways currently identified through large-scale studies 
on FA include epithelial barrier and immune function. Genetic 
and epigenetic markers may ultimately offer ways to predict the 
presence or absence of clinical IgE-mediated FA among sensi-
tized individuals [19, 259], or likelihood of development of natu-
ral tolerance and response to immunotherapy. Further research 
is required in specific populations and to elucidate the mecha-
nisms through which these markers elicit their effects.
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