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When infected with SARS-CoV-2, Syrian hamsters (Mesocricetus auratus) develop moderate disease 
severity presenting key features of human COVID-19. We here develop a biomathematical model of 
the disease course by translating known biological mechanisms of virus-host interactions and immune 
responses into ordinary differential equations. We explicitly describe the dynamics of virus population, 
affected alveolar epithelial cells, and involved relevant immune cells comprising for example CD4+ T 
cells, CD8+ T cells, macrophages, natural killer cells and B cells. We also describe the humoral response 
dynamics of neutralising antibodies and major regulatory cytokines including CCL8 and CXCL10. The 
model is developed and parametrized based on experimental data collected at days 2, 3, 5, and 14 post 
infection. Pulmonary cell composition and their transcriptional profiles were obtained by lung single-
cell RNA (scRNA) sequencing analysis. Parametrization of the model resulted in a good agreement 
of model and data. The model can be used to predict, for example, the time course of the virus 
population, immune cell dynamics, antibody production and regeneration of alveolar cells for different 
therapy scenarios or after multiple-infection events. We aim to translate this model to the human 
situation in the future.
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Due to continued high disease burden, there is pressing need to understand the pathomechanisms of SARS-
CoV-2. This includes mechanistic disease models to simulate and predict new therapy paradigms or schedules. 
Difficulties lie in the high complexity of immune responses following SARS-CoV-2 infection and the heterogeneity 
of disease manifestations in patients, reaching from no or mild symptoms to life-threatening disease conditions.

The quality and accuracy of prospective biomathematical models of virus-host interactions depend on the 
quality and level of detail provided by the input data. A challenge remains here that particularly human lung 
tissue, representing the site of infection, can usually only be sampled post mortem. Often, only viral load data are 
available from patients to inform model parameters. Despite these limitations, some in-host models have been 
developed since the disease emerged in 2019. For example, Hernandez-Vargas and Velasco-Hernandez1 reviewed 
existing work comprising models of target cells only or simple models of immune response. Model results were 
partly compared with patient’s viral load data from literature resources. Another target cell limited model can 
be found in Abuin et al.2, and the effect of different antivirals on viral load is modelled in3. Several modelling 
approaches were also discussed in Perelson and Ke4. The modelling of Sanche et al.5 considers infected cells 
carrying pathogen-associated molecular patterns and damaged cells producing damage-associated molecular 
patterns regarding severe or mild disease progression. Models of SARS-CoV-2, MERS-CoV, and SARS-CoV 
with different therapy approaches are analysed and compared with patient’s viral load data in Kim et al.6.

The model analysed by Almocera et al.7 describes interactions of the virus and effector T cells. Du and Yuan8 
proposed a model of COVID-19 including interactions between host innate and adaptive immune responses 
without experimental data and compared it with an influenza virus disease model. The impact of different virus-
host interactions on the outcome was also modelled in Sahoo et al.9 without supporting data.
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Mochan et al. study an ordinary differential equation model of interactions between virus, infected and 
healthy epithelial cells in the upper and lower respiratory tracts, global levels of pro-inflammatory and anti-
inflammatory mediators, and damage. The effects of anti-inflammatory and antiviral drugs were simulated. 
Parameters were fitted to experimental data (viral RNA levels in nasal cavity and lungs, IL-15, and clinical 
symptoms scores from rhesus macaques.

Reis et al.10 propose a comprehensive model of immune response and cytokine release in severe disease, 
supported by patient data of viral load, IL-6, IgG and IgM. Voutouri et al.11 developed a comprehensive model of 
SARS-CoV-2 infection, including the renin-angiotensin system and ACE2, viral load, immune cells, cytokines, 
oxygen saturation and the coagulation cascade. This model is compared with clinical data of serum Ang-2 and 
IL6 levels, neutrophils, CD8+ T cells, and viral load.

Li et al.12 developed a within-host viral dynamic model of SARS-CoV-2, compared results with chest 
radiograph score data and estimated the basic reproductive number in hosts. This model is further analysed by 
Nath et al.13. Sumi and Harada14 presented a comprehensive model of SARS-CoV-2 infection including innate 
and adaptive immunity. This model considers age-related risk factors for the development of severe COVID-19, 
supported by patients viral load and immunoglobulin concentration data from the literature. Another model 
of innate and adaptive immune response, antiviral treatment and vaccination is proposed by Ghosh15. Model 
results were again compared to viral load data from the literature.

Challenger et al.16 described a mechanistic model of the upper respiratory viral load dynamics during SARS-
CoV-2 based on viral load data from the literature. A model of interactions between susceptible epithelial cells, 
infected epithelial cells, viral load, natural killer cells, and T-lymphocytes is analysed by Chowdhury17. Chatterjee 
et al.18 modelled infected cells, the strength of CD8 T-cell response, the strength of the cytokine-mediated innate 
immune response, and tissue damage in mild or severe disease course. The model was adapted to time series 
of viral load data from human and can explain heterogeneity of infection outcomes. Sazonov et al.19 develop 
a stochastic model based on a Markov Chain Monte Carlo approach to analyze statistical characteristics of 
the SARS-CoV-2 life cycle, including the probability for a non-degenerate infection process and the effects of 
IFN and ACE2 binding affinity. Grebennikov et al.20 developed an ordinary differential equation model of the 
SARS-CoV-2 intracellular life cycle based on cell culture data, which provides a kinetic description of the major 
replication stages of SARS-CoV-2 and the identification of the life cycle stages that have the strongest impact 
on viral replication. An agent based model, supported by patients viral load data, is presented by Moses et al.21. 
Getz et al.22 present an open-source community approach to SARS-CoV-2 modelling including several immune 
cells and cytokines. Sego et al.23 build an open-source, extendable, multiscale platform for the modelling of tissue 
response to viral infections. The model was introduced using hepatitis C as an example and it was proposed that 
it could be adapted to other hosts and virus types.

In the present paper, we consider a specific experimental setting for which we aim at identifying a quantitative 
model that can be parametrized based on the collected data and which allows verifiable predictions. This requires 
a compromise between model complexity and considered model features for which quantitative information is 
available. In particular, we want to demonstrate how single-cell RNA sequencing (scRNA-Seq) data as a novel 
important data resource for systems-medicine applications can be utilized to establish such a quantitative model.

Several studies used Syrian hamsters as animal models for COVID-1924–29. Trimpert et al. compare the 
susceptibilities of three dwarf hamster species30 showing that Roborowski hamsters expressed the highest 
severity while Syrian hamsters express moderate infections. Other species were also considered, e.g., rhesus 
macaques31, 3 different non-human primates32, ferrets33,34, mice35,36 or cats37.

To generate high-quality data for modelling, we performed SARS-CoV-2 infection experiments and collected 
viral and cellular readouts at five time points. In particular, we applied scRNA-Seq to identify the dynamics 
of relevant cell populations at the site of infection. Data are used for model parametrization and validation. 
Our proposed model describes dynamics of the virus, alveolar epithelial cells, and cells and humoral factors of 
the innate and adaptive immune response to SARS-CoV-2 including important cytokine signalling feedbacks, 
where we pay particular attention to the early times post infection.

Results
We developed a biomathematical model of Sars-CoV-2 infection in Syrian hamsters based on mechanistic 
assumptions about the interplay between virus, epithelial cells, immune cells and humoral factors of the immune 
response including different types of chemokines and antibodies. Assumptions are explained and discussed in 
detail in the methods section. There, we also derive the model equations.

Major cell and cytokine compartments, feedbacks and actions of our model are presented in Fig. 1. Model 
components and their biological counterparts are summarized in Table 1.

Parameter estimates
Unknown parameters of the model were estimated to optimize the agreement of model predictions and 
experimental data. Data were collected at days 2, 3, 5, and 14 after infection and comprise viral loads, cell 
counts of CD4+ T cells, CD8+ T cells, macrophages, natural killer cells and B cells, as well as antibodies. 
Most importantly, lung homogenates were subjected to scRNA-sequencing analysis to determine immunce-cell 
fractions and their expression profiles. Readouts of the model and corresponding experimental data are shown 
in Table 1.

Estimated parameter values and initial values are presented in Tables S1-S2 in the supplement material (S1_
File). For model calculations, we considered dimensionless parameters. We use steady state values of “1” (or 
zero) for the model compartments. For the sake of comparisons with the data, model output is multiplied by the 
mean of respective measurements at time zero.
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Confidence intervals of parameter estimates are determined with bootstrapping. We created virtual random 
data points using the empirical distribution of measurements and fitted parameters to these virtual data. 
Resulting distributions of parameter values are used to define empirical confidence intervals (see Fig.  2, see 
methods for details). Since data are retrieved within the first two weeks of infection, specific antibody waning 
dAB could not be estimated with high precision, and the confidence interval is very large. Therefore, we decided 
to set the parameter to 0.01 and to study corresponding model behaviour in the results section. Confidence 
intervals of parameters kEA_NK  and kEA_CD8+  are also large because these parameters could compensate 
each other to some extent.

Results of sensitivity analysis are shown in S1_File, Figure S1. Parameters showed a reasonable identifiability 
(Figure S1). Parameters affecting growth, spread and degradation of virus or target cells are particularly sensitive. 
This comprises the parameters susceptible cells infection rate kEU_V, infected cells removal rate dEI, free virus 
degradation dV, and virus growth rate kV.

Finally, we analysed the correlations between the parameter estimates. As expected, a few parameter 
estimates are correlated because mechanisms acting in opposite directions can compensate each other to some 
extent. Estimates of correlations are displayed in Figure S2. The median of the absolute values of the correlations 
was 0.072 and the interquartile range was 0.030–0.14. Stronger correlations were observed for only four of our 

Model component Biological meaning Corresponding experimental readouts

EU
Unaffected alveolar epithelial –

Cells type 2 (AT2)

EA Activated AT2 cells –

EI Infected AT2 cells SARS-CoV-2 positive AT2 cells per lung lobe

IM Inflammatory macrophages Monocyte derived macrophages per lung lobe

CD8+
A Activated CD8+  T cells Gzma positive CD8+  T cells per lung lobe

CD4+
A Activated CD4+  T cells Ifng positive CD4+  T cells per lung lobe

NKA Activated natural killer cells Ifng positive natural killer cells per lung lobe

IgM Antibodies of IgM type Protein expression values for IgM heavy chains in lung

AB Neutralizing antibodies Serum neutralization titers

B B cells B cells per lung lobe

CCL8 Chemokine CCL8 No direct data available, production assumed to be proportional to gene-expression of AT2 cells (scRNAseq)

CXCL10 CXC chemokine ligand 10 (CXCL10) No direct data available, production assumed to be proportional to gene-expression of macrophages (scRNAseq)

V Virus Virus titers in lung homogenates

Table 1. Model compartments and data. We present major model compartments and respective available 
readouts from animal experiments. GzmA = Granzyme A, Gzma positive cells = cells expressing Granzyme A, 
IgM = Immunglobulin M, IFNγ = Interferon gamma, Ifng positive cells = cells expressing interferon gamma

 

Fig. 1. Structure of the model. The model describes the dynamics of epithelial cells (EU), activated epithelial 
cells (EA), infected epithelial cells (EI), activated CD4+ T cells (CD4+

A), activated CD8+ T cells (CD8+
A), 

monocyte-derived macrophages in lungs (IM), activated natural killer cells (NKA), neutralising antibodies 
of IgM type (IgM), neutralizing antibodies (AB), B cells (B), the chemokines C-C motif ligand 8 (CCL8), 
and C-X-C motif ligand 10 (CXCL10), and viral load (V). Type and direction of arrows indicate cell fluxes or 
actions.

 

Scientific Reports |        (2024) 14:30541 3| https://doi.org/10.1038/s41598-024-80498-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


parameters, namely dEI , dV , kEU_V  and kV , all relevant for the description of virus dynamics. Thus, it is 
possible to replace these parameter estimates by suitable literature findings if available. Correlations of all other 
parameters were low to moderate ensuring good identifiability.

General model behaviour
To analyse the general behaviour of our model, we simulate its dynamics over 100 days after infection. In this 
time frame, all model components return to normal values except for the specific antibodies, which continuously 
decrease but remain elevated until the end of the simulated period.

While the virus is removed after about five days, cell counts of activated CD8+ T cells, CD4+ T cells, 
monocyte derived macrophages and NK cells return to normal levels within about three to six weeks after 
infection. The numbers of B cells and antibodies remain elevated for a longer time. With our parameter setting, 
after about 10 to 12 weeks, 50% of neutralising antibodies are still present (see Fig. 3). However, it needs to be 
acknowledged that the specific antibody waning rate dAB  could not be estimated with sufficient accuracy since 
extrapolation is difficult and longer data time series were not available.

Comparison of model and data
Parameter estimates resulted in a good agreement of model and data (see Supplemental Table S3 for fitness 
values and information criteria, see also confidence bands of Figure 4). To compare model results and data, 
we use plaque-forming units (PFU) as a proxy for viral load. Starting the infection at day zero with 105 PFU, 
maximal viral load is reached at days two and three post infection. Early infection markers are rising levels 
of IgM and monocyte derived macrophages with maximum concentrations already achieved at day four. Cell 
counts of activated CD4+ T cells, CD8+ T cells and NK cells reach their maximum values at about day five 
and six, and neutralising antibodies peak at about day seven and eight. About two weeks after infection, the 
maximum number of B cells is predicted (see Fig. 4).

Model predictions
Since the antibody waning parameter dAB  could not be estimated with sufficient accuracy, we simulated 
reinfection scenario for different parameter settings providing predictions verifiable in future animal studies. 
Initial infection starts at day zero with 105 pfu, and a reinfection attempt with the same viral load was modelled 

Fig. 2. Estimates and confidence intervals of model parameters. We show parameters and corresponding 95 % 
confidence intervals derived from simulation. The parameter dAB  could not be estimated with a high accuracy, 
and therefore, was set to 0.01.
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at day 270. Waning rates are set to 0.001, 0.01 and 0.02, respectively. With a small waning rate of 0.001, antibody 
concentration is sufficiently high to prevent the reinfection. With waning rates of 0.01 and 0.02, we see an 
increasing immune response to the second infection attempt (see Fig. 5).

In another simulation analysis, we varied the time point of reinfection attempts to study the resulting immune 
response assuming an antibody waning of dAB = 0.1. For this purpose, we re-challenged our model with the 
same virus load, at 270, 300, or 330 days after first infection. In all simulations, immune response was reduced 
compared to the first infection. Peaks of activated T and NK cells, B cells, monocyte derived macrophages, 
CCL8—and CXCL10 production are clearly lower than at the initial infection event. This is mainly due to the 
neutralising antibodies remaining elevated for a longer time period, and with it, diminishing overall immune 
response. Accordingly, a trend towards higher immune response maxima was observed for later occuring 
secondary infection events Fig. 6.

Finally, we simulated repetitive reinfection events. For this purpose, we assumed infections with 105 pfu at 
day 0 and every 10 days after day 50. Antibody waning dAB is set to 0.1. Of note, a larger immune response is 
only evoked at time point 200 at which antibodies dropped below a critical limit of about 30, which is about 7% 
from its maximum value (Fig. 7).

Discussion
Understanding the mechanisms of SARS-CoV-2 infection and induced immune responses is important for the 
development of improved and individualized therapies of COVID-19. We here proposed a model of SARS-CoV-2 
in Syrian hamsters mirroring mild to moderate COVID-19. Our model was parametrized on the basis of our 
own experimental data obtained from SARS-CoV-2 or mock infected animals. Model parametrization resulted 

Fig. 3. Long-term behaviour. We present results of long term simulation (100 days) of our model of moderate 
SARS-CoV-2 in Syrian hamsters. Black curves represent model simulations of (a) unaffected epithelial cells, (b) 
infected epithelial cells, (c) virus load, (d) activated CD8+ T cells, (e) activated CD4+ T cells, (f) B cells, (g) 
activated NK cells, (h) monocyte derived macrophages, (i) antibodies of IgM type, (j) neutralizing antibodies, 
(k) CCL8 production by activated epithelial cells, (l) CXCL10 production by macrophages.
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in a good agreement of model predictions and data and a well-identifiable set of parameters. We demonstrated 
how the model can be used to provide verifiable predictions e.g., of repeated infections.

We used a dataset of SARS-CoV-2 infection of Syrian hamsters to have a sufficiently rich data base for 
our modelling efforts. In particular, with the help of single-cell analyses, we established data of the dynamics 
of major immune cell populations and their chemokine expressions relevant to understand the intercellular 
communications between major players of the immune response. To our knowledge, this is the first model of 
SARS-CoV-2 infection in hamsters using single-cell data as primary learning resource. Although there are other 
biomathematical models of SARS-CoV-2 infections proposed in the literature, these models were developed for 
other species, other areas of applications or are based on other data resources so that translation of these models 
to our situation is not straight-forward.

In our modelling framework, we included major physiological players of the immune response and their 
interactions including virus population, affected alveolar cells, activated T cells, macrophages, activated natural 
killer cells and B cells, neutralising antibodies of IgM type, neutralizing antibodies, and the chemokines CCL8 
and CXCL10. Selection of major players and mechanisms was based on proposed major (patho-)physiological 
processes and literature data.

We refrained from considering differentiation of subtypes of CD4+ T cells such as Th1, Tfh, CD4 T and 
CD4-CTL14,38. This differentiation is more likely to take place in the lymph nodes and respective data were 
not available in our experimental setting. In our data, dendritic cells showed no significant dynamics. Thus, 
we decided to neglect them in our model. CXCL10 and CCL8 transcripts displayed the strongest increase in 
pulmonary expression levels in response to SARS-CoV-2 infection39. They are also known to be intensively 

Fig. 4. Model and data. We compare simulations of our model with available data. Blue: data points, red: 
mean and standard deviation of experimental data. Black curves represent model simulations of (a) unaffected 
epithelial cells, (b) infected epithelial cells, (c) virus load, (d) activated CD8+ T cells, (e) activated CD4+ 
T cells, (f) B cells, (g) activated NK cells, (h) monocyte derived macrophages, (i) antibodies of IgM type, 
(j) neutralizing antibodies, (k) CCL8 production by activated epithelial cells, (l) CXCL10 production by 
macrophages. Blue points show data, and 95% confidence bands of model predictions are displayed with green 
dashed lines.
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involved in the recruitment of immune cells. Therefore, we included these two chemokines in the model. To 
avoid increasing the complexity of the model, we do not include further cytokines.

Due to short time series of our data, specific antibody waning parameters could not be identified. We therefore 
performed simulations assuming different values of this parameter demonstrating that it considerably affects 
dynamics after re-infections. Longer time series or repeated infection challenges of the system are required 
to assess antibody waning and effectiveness and to improve our model in this regard. As a notable finding, 
we predict that there is a critical limit of specific antibodies evoking an immune response after re-infections 
while higher values immediately stop the infection. Further experiments are required to validate our long-term 
predictions and to improve our model. In principle, our model can also be used to perform simulations of 
short-term interventions such as medication. This, however, would likely require additional model assumptions 
regarding drug pharmacokinetics and -dynamics.

In our model, we only considered a single variant, namely ancestral SARS-CoV-2 variant B.1 (SARS-CoV-2 
isolate BetaCoV/Germany/BavPat1/2020). Generalization of our model to other variants is not straightforward. 
But, it is likely that this can be achieved by adjusting a limited set of model parameters. We are also interested 
in studying more severe disease conditions of COVID-19 as in14. This would require considering other animal 
models such as the Roborovski dwarf hamster30.

We conclude that we established a comprehensive biomathematical model of SARS-CoV-2 in Syrian 
hamsters. The selected immunologic mechanisms considered in our model proved to be sufficient to explain the 
data of our experiments also allowing estimating a set of physiological parameters. We aim to validate our model 

Fig. 5. Reinfection attempt at day 270 after the first infection simulated with different parameter settings for 
antibody waning dAB. We performed model simulations with a first infection event at day zero with 105 pfu, 
and a reinfection event at day 270 with the same viral load. Lines (waning rates 0.001—green, 0.01—black and 
0.02—blue) represent model simulations of (a) unaffected epithelial cells, (b) infected epithelial cells, (c) virus 
load, (d) activated CD8+ T cells, (e) activated CD4+ T cells, (f) B cells, (g) activated NK cells, (h) monocyte 
derived macrophages, (i) antibodies of IgM type, (j) neutralizing antibodies, (k) CCL8 production by activated 
epithelial cells, (l) CXCL10 production by macrophages. Lower waning rates ameliorate or even prevent the 
secondary infection event.
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on the basis of future experimental data. We also plan to translate the model to more severe disease conditions 
and to include therapy options such as Nirmatrelvir/Ritonavir.

Methods
In the following, we present and briefly discuss our model hypotheses required to derive the model equations.

Model assumptions and equations
The basic model structure is based on the following mechanisms. After infection, type 2 alveolar epithelial cells 
(AT2) are targeted by the virus40. Infection of AT2 cells results in virus production and CCL8 release. Activated 
T cells and natural killer (NK) cells are attracted by CCL8 and destroy virus-infected epithelial cells41. The 
presence of viruses is assumed to activate further T—and NK cells42–45. Virus sensing or phagocytosis of viruses 
by macrophages results in CXCL10 production. In addition to attracting activated T and NK cells, CXCL10 
recruits B cells46, which can differentiate into IgM secreting plasma cells when encountering their cognate 
antigen. With the help of CD4+ T cells, B cells undergo class switch reactions, and affinity maturation, thus 
differentiate into plasma cells producing antibodies neutralizing free viruses6. Based on these assumptions, we 
derive our model equations in the following. Dimensionless parameters are used because most of our data are 
semi-quantitative.

Fig. 6. Reinfection at different time points of antibody waning. We present model simulations of a second 
infection event at different time points after the first infection event at day zero with 105 pfu and dAB = 0.1. 
Reinfection events were modelled at days 270 (green), 300 (blue), and 330 (red), again with 105 pfu. Black lines 
correspond to a simulation without reinfection. Lines represent model simulations of (a) unaffected epithelial 
cells, (b) infected epithelial cells, (c) virus load, (d) activated CD8+ T cells, (e) activated CD4+ T cells, (f) B 
cells, (g) activated NK cells, (h) monocyte derived macrophages, (i) antibodies of IgM type, (j) neutralizing 
antibodies, (k) CCL8 production by activated epithelial cells, (l) CXCL10 production by macrophages.
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Virus dynamics
Infection is initiated by aspirating a certain amount of virus particles modelled as an injection function Vstart. In 
our experiments, we applied an initial dose of 105 infectious virus particles intranasally, which infect epithelial 
cells EI. The dose of 105 plaque-forming units (pfu) of SARS-CoV-2 was already used in other studies25–27,29,30. A 
lower dose of 5,000 pfu of SARS-CoV-2 was tested in dwarf hamsters30. Infected cells produce new virus particles 
with replication rate kV. Free viruses are cleared with rate dV or neutralized by IgM-type and neutralising 
antibodies at rates kV_IgM and kV_AB, respectively.

 
dV
dt

=kV · EI − (kV_AB · AB + kV_IgM · IgM + dV) · V + Vstart  (1)

with

 
Vstart =

N∑
i=1

dose_Vi

tV

(
Hv(t − t̃i) − Hv(t − t̃i − tV)

)
 (2)

where Hv is the Heaviside-function Hv =
{ 0 : x < 0

1 : x ≥ 0 , t̃i are the time points at which viruses at dose 

dose_Vi are administered within time tV. Equation (2) results in function which is constant and non-zero 

Fig. 7. Repeated contact to the virus. We present a model simulation of repeated infections with 105 pfu 
at day zero, and after 50 days repeatedly every 10 days, antibody waning dAB is set to 0.1. Black curves 
represent model simulations of (a) unaffected epithelial cells, (b) infected epithelial cells, (c) virus load, (d) 
activated CD8+ T cells, (e) activated CD4+ T cells, (f) B cells, (g) activated NK cells, (h) monocyte derived 
macrophages, (i) antibodies of IgM type, (j) neutralizing antibodies, (k) CCL8 production by activated 
epithelial cells, (l) CXCL10 production by macrophages. Immune response is predicted to occur only 
occasionally if neutralising antibodies drop below a critical level.
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between the time points t̃i and t̃i + tV, where tV is the application time of the virus. The function is zero outside 
of application windows. The injection dose dose_Vi corresponds to the area under the curve of the given 
application window. This injection function is convenient to simulate multiple infection events. The value of 
dose_Vi was set to 0.1 [×106 pfu], and tV was set to 6 min. The injection time is virtually irrelevant for model 
dynamics and was set, i.e. no additional parameter is introduced by our injection function. The part of viruses 
which is cleared by macrophage phagocytosis is assumed to be very small in comparison to the neutralisation by 
antibodies and therefore neglected in Eq. 1.

Epithelial cells
In our model, we distinguish between unaffected (EU), SARS-CoV-2 infected (EI) and activated epithelial cells 
without SARS-CoV-2 infection (EA). Unaffected type 2 alveolar epithelial cells (EU) are targeted by SARS-
CoV-247, become infected and produce new viruses. Respective transition of EU towards EI is modelled 
proportional to contacts of EU and V. Epithelial cells can be activated by pathogens, cytokines or other 
impairments, and in response, produce several cytokines39. Similar to48,49, we normalize AT2 cells to 100 %, and 
we assume that 1% of AT2 cells are activated in equilibrium, caused by general stress from interferon response 
and apoptosis. We here assume a constant transition of EU towards EA with rate kEU . Loss of epithelial cells 
is caused by damage induced by immune cells invading the alveolus and is assumed proportional to NKA and 
CD8+

A cell counts38,50. Moreover, CD8+
A T cells actively attack infected cells with the help of CD4+

A T cells. We 
also assume an unspecific loss of cells from EI and EA with rates dEI respectively dEA. In our model, there is no 
cell flux from EA to EU, i.e. EA cells are not infectable.

 
dEU
dt

= PEU − kEU_V · EU · V − kEA_CD8+ · EU · CD8+
A − kEA_NK · EU · NKA − kEU · EU  (3)

 

PEU = kEA_CD8+ · CD8+
A0 · EU0 + kEA_NK · NKA0 · EU0 + kEU · EU0

dEI
dt

= kEU_V · EU · V − kEA_CD8+ · EI · CD8+
A · (1 + CD4+

A) − kEA_NK · EI · NKA

− dEI · EI

 (4)

 

dEA
dt

= kEU · EU − kEA_CD8+ · EA · CD8+
A − kEA_NK · EA · NKA − dEA · EA

dEA =
(
kEU · EU0 − kEA_CD8+ · EA0 · CD8+

A0 − kEA_NK · NKA0 · EA0
)

/EA0

 (5)

where PEU represents production of EU balancing cell loss in steady-state. Likewise, dEA is constructed in 
such a way that a constant steady-state is established. The index ”0” always represents steady-state values in the 
following equations.

Inflammatory macrophages in the lung
Pulmonary monocyte-derived macrophages (IM) play a key role in immune defense. Usually, monocytes and 
macrophages are activated by cytokines. According to our data39, infected epithelial cells show low cytokine 
release, while macrophages early and strongly respond to viral RNA by producing pro-inflammatory cytokines. 
Therefore, we assume that activation of macrophages occurs through contact with the virus itself. Detection of 
viral RNA in monocytes and macrophages supports this hypothesis39,51–53.

 
dIM
dt

= dIM · (IM0 − IM) + kIM_V · IM · V  (6)

where kIM_V · IM · V is the recruitment rate of IM due to virus attack, dIM represents the natural decay and 
baseline production rate of IM to ensure a constant steady-state IM0 = 1. For comparison of model and data, 
model output of IM is multiplied by the observed value of inflammatory macrophages in control group.

Activated natural killer cells
Natural killer cells, as part of the innate immune system, are recruited early upon infection. NK cells have the 
task of eliminating infected cells limiting the viral spread50. We assume recruitment of activated NK cells (NK) 
by CXCL1054,55 and CCL856 with rates kNK_CXCL10 and kNK_CCL8 respectively. Several additional activators 
of NK cells are known, e.g., type 1 interferons, IL-2, IL-12 and IL-15, which are produced by a variety of cell 
types in reaction to viral activity42–44. This complex network cannot be modelled here. In our expression data 
in the lungs, CXCL10 and CCL8 show comparatively strong dynamics39, hence we decided to include these two 
chemokines in the model. For the sake of simplicity, we further assume that the presence of viral RNA directly 
activates NK cells. This is motivated by the correlation of gene sets related to response to interferon-gamma with 
the presence of viral RNA39. We include it in our model via an additional virus-induced activation rate kNK_V 
of NK cells, which were also recruited by CCL8 and CXCL10, and contribute to the (activated) NK compartment 
NKA fighting virus-infected EI cells.
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dNKA

dt
= kNK_CCL8 · CCL8 + kNK_CXCL10 · CXCL10 + kNK_V · (kNK_CCL8 · CCL8 + kNK_CXCL10 · CXCL10) · V

− dNK · NKA

dNK = (kNK_CCL8 · CCL80 + kNK_CXCL10 · CXCL100)/NKA0

 (7)

Here, dNK denotes the natural decay rate. Compartment NKA is normalized by NKA0 = 1. To compare the 
simulated time course of activated NK cells with observations, model output of NKA is multiplied by mean of 
Ifng positive NK cells in control group. IFNγ itself is not explicitly modelled.

T cells
T-cells activate innate effector cells, eliminate damaged cells and destroy pathogens by various mechanisms. 
We here consider the classes of T helper cells (CD4+) and cytotoxic T cells CD8+, while their subtypes are 
not distinguished for simplicity. We assume recruitment of activated T cells by CCL857,58 and CXCL1059,60. 
Activated CD8+ T cells express Granzyme A (GzmA), which can induce cell death in target cells45, and activated 
CD4+ T cells express IFNγ. In our model, the compartment CD8+

A describes Gzma positive CD8+ T cells, and 
CD4+

A contains Ifng positive CD4+ T cells. The presence of viral RNA is assumed to activate GzmA expression 
respectively IFNγ expression in T cells45. In analogy to the NK compartment, this additional activation is 
modelled by delayed virus-induced activation compartments CD8+

ViA, respectively CD4+
ViA, whose effluxes 

contribute to the respective T cell compartments.

 

dCD8+
A

dt
= kCD8+_CCL8 · CCL8 + kCD8+_CXCL10 · CXCL10 + kDelay

V · CD8+
ViA − dCD8+ · CD8+

A

dCD8+ = (kCD8+_CCL8 · CCL80 + kCD8+_CXCL10 · CXCL100)/CD8+
A0

 (8)

 
dCD8+

ViA

dt
= kCD8+_V · (kCD8+_CCL8 · CCL8 + kCD8+_CXCL10 · CXCL10) · V − kDelay

V · CD8+
ViA  (9)

 

dCD4+
A

dt
= kCD4+_CCL8 · CCL8 + kCD4+_CXCL10 · CXCL10 + kDelay

V · CD4+
ViA − dCD4+ · CD4+

A

dCD4+ = (kCD4+_CCL8 · CCL80 + kCD4+_CXCL10 · CXCL100)/CD4+
A0

 (10)

 
dCD4+

ViA

dt
= kCD4+_V · (kCD4+_CCL8 · CCL8 + kCD4+_CXCL10 · CXCL10) · V − kDelay

V · CD4+
ViA  (11)

Here, dCD8+  respectively dCD4+  denote respective natural decay rates. T cell compartments are normalized 
by steady state values CD8+

A0 = 1 and CD4+
A0 = 1. To compare model prediction of activated T cells and 

experimental results, we use the data of respective Gzma or Ifng positive T cells from single-cell analysis and 
multiply model output by the respective value observed in control group.

B cells
B cells differentiate into IgM producing plasma cells following antigen recognition by their receptors, and, with 
the help of CD4+ cells, undergo affinity maturation resulting in neutralising antibodies. We assume that B cells 
are recruited into alveolar space by CXCL1046.

 

dB
dt

= kB_CXCL10 · CXCL10 − dB · B

dB = kB_CXCL10 · CXCL10/B0

 (12)

The efflux rate dB includes migration into secondary lymphatic organs to mature into plasma cells, natural decay 
and other processes, where the value of dB results from equilibrium conditions.

Antibodies of IgM type
In the early acute phase of infection, activation of plasma cells results in IgM type antibodies (IgM) production in 
blood and lymph fluid15,61. Here we assume increased production of IgM in the presence of the virus, modelled 
with rate kIgM_V. We also assume that the total IgM production is limited, realized in our model by a sigmoid 
function ZIgM.

 
dIgM

dt
=Zmax

IgM − (Zmax
IgM − Zmin

IgM) · e

[
−

(
ln

( Zmax
IgM −Zmin

IgM
Zmax

IgM
−Znor

IgM

))
·(kIgM+kIgM_V·V)

Zb
IgM

]
− dIgM · IgM  (13)

The decay rate dIgM is calculated from steady state condition.
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Neutralizing antibodies
Signals from CD4+ T cells promote maturation of B cells in secondary lymphatic organs into plasma cells62. 
Simplifying this complex mechanism, we assume in our model affinity maturation by introducing a delay 
compartment CAB, depending on the presence of CD4+

A T cells and the virus. With rate kDelay
AB , mature 

cells transfer into the plasma cell compartment PC. This happens primarily in the germinal center reaction 
in secondary lymphoid organs, such as spleen and lymph nodes, and, only to a very small extent, at sites of 
infection when eventually tertiary lymphoid structures such as bronchus-associated lymphoid tissues are 
formed. Therefore, we refrain from including B cells in alveolar space into the equation of antibody formation.

 
dCAB

dt
= kB_PC · CD4+

A · V − kDelay
AB · CAB  (14)

 
dPC
dt

= kDelay
AB · CAB − dPC · PC  (15)

The compartment PC contains mature plasma cells, which produce neutralizing antibodies AB. dPC denotes the 
degradation rate of plasma cells. Production capacity is limited by a sigmoid function ZAB.

 
dAB

dt
= Zmax

AB − (Zmax
AB − Zmin

AB ) · e

[
−

(
ln

(
Zmax

AB −Zmin
AB

Zmax
AB

−Znor
AB

))
·(PC)Zb

AB
]

− dAB · AB  (16)

Here, dAB denotes the decay rate of neutralizing antibodies.

Chemokine CCL8 (MCP-2)
The chemokine CCL8 (Monocyte Chemoattractant Protein 2 (MCP-2)) is involved in inflammatory processes 
and recruits various immune cells, e.g., T cells or NK cells56–58. CCL8 shows strong changes in the expression 
data in the lungs39. Not only the infected EI cells alone produce CCL8, but also cells surrounding EI, especially 
endothelial cells, are activated and participate in the production. This process is not considered in our model, 
for simplicity, we assume a delayed additional production by EI only. This is modelled by a delay compartment. 
Furthermore, we assume secretion of CCL8 by activated alveolar cells EA39.

 

dC
(1)
CCL8

dt
= kCCL8_EI_V · EI − kDelay

CCL8 · C
(1)
CCL8

C
(1)
CCL8_out = kDelay

CCL8 · C
(1)
CCL8

dCCL8
dt

= kCCL8_EA · EA + C
(1)
CCL8_out − dCCL8 · CCL8

dCCL8 =
kCCL8_EA · EA0

CCL80

 (17)

Due to insufficient availability of antibodies in hamsters, ELISA or FACS are not possible. Outside of proteomics, 
no protein measurement was carried out. From our single-cell data, we retrieved normalized CCL8 gene 
expressions of alveolar epithelial cells type 2. This gene-expression was related to the modelled relative CCL8 
production as described by the following equation.

 
CCL8prod =

kCCL8_EA · EA + C
(1)
CCL8_out

kCCL8_EA · EA0
 (18)

CXC chemokine ligand 10 (CXCL10, IP-10)
Chemokine CXCL10 is produced by a wide spectrum of cell types54. CXCL10 shows strong changes in the 
expression data in the lungs and can serve as a marker for pulmonary inflammatory processes39 and attracts 
different immune cells, e.g., NK cells54 or B cells46. In our model, CXCL10 is only produced by IM. The production 
is increased due to virus contacts (including phagocytosis63) with some delay. The delay is again modelled by 
a compartment. Epithelial cells are assumed irrelevant for CXCL10 production due to a weak reaction of these 
target cells as described in39.

 

dC
(1)
CXCL10

dt
= kCXCL10_IM_V · IM · V − kDelay

CXCL10 · C
(1)
CXCL10

C
(1)
CXCL10_out = kDelay

CXCL10 · C
(1)
CXCL10

dCXCL10
dt

= kCXCL10_IM · IM + C
(1)
CXCL10_out − dCXCL10 · CXCL10

dCXCL10 =
kCXCL10_IM · IM0

CXCL100

 (19)
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As for CCL8, we used single-cell gene-expression of CXCL10 in macrophages as comparative data for the 
modelled CXCL10 production. This is achieved by the following equation.

 
CXCL10prod =

kCXCL10_IM · IM + C
(1)
CXCL10_out

kCXCL10_IM · IM0
 (20)

Numerical methods for simulation
Differential equations are implemented in MATLAB 9.6.0.1072779 (R2019a) using the SIMULINK toolbox (The 
MathWorks Inc., Natick, MA, USA). Numerical solutions of the differential equation system are obtained using 
the variable step solver from Adams and Bashford (ode113, SIMULINK toolbox).

Data
Model simulations are compared with data from Syrian hamsters comprising time series of monocytic 
macrophages, activated T/NK cells, B cells, type 2 alveolar epithelial cells, single-cell derived CXCL10 gene-
expression by macrophages, CCL8 gene-expression by epithelial cells, neutralizing serum antibodies, pulmonary 
IgM levels, virus titers in lung homogenates, and viral RNA content in epithelial cells.

Experiments
Ethics statement
The here described animal studies, including all animal protocols were approved by the regulatory state authority 
named “Landesamt für Gesundheit und Soziales” from Berlin in Germany (permit number 0086/20). All animal 
experiments were performed in accordance with appropriate guidelines. In agreement with the 3R principle, no 
additional animal experiments were conducted solely for this study. All experimental data were derived from our 
previous publications and are reported in accordance with the ARRIVE guidelines29,39.

Animal husbandry
Female and male Syrian hamsters (Mesocricetus auratus; RjHan:AURA, Janvier Labs, Saint-Berthevin, France) 
were housed in a BSL-3 facility in individually ventilated cages (IVCs; Tecniplast, Buguggiate, Italy) with bountiful 
enrichment (Carfil, Oud-Tunrhout, Belgium) and ad libidum access to food and water. Cage temperature and 
relative humidity were recorded daily and ranged from 22 to 24 °C and 40–55%, respectively. A minimum of 7 
days was allowed for acclimatization of animals prior to start of experiments.

Virus stocks and PFU determination
SARS-CoV-2 isolate (BetaCoV/Germany/BavPat1/2020)64, was kindly provided by Drs. Daniela Niemeyer und 
Christian Drosten, Charité Berlin, Germany. Virus stocks for animal experiments were obtained by propagating 
virus under BSL-3 conditions on Vero E6 cells (ATCC CRL-1586) in minimal essential medium (MEM; PAN 
Biotech, Aidenbach, Germany) supplemented with 10% fetal bovine serum (FBS, PAN Biotech), 100 IU/mL 
penicillin G and 100 μg/mL streptomycin (Carl Roth, Karlsruhe, Germany). Prior to animal experiments, low 
passage stocks were titrated on Vero E6 cells under semi-solid overlay medium as described65. Briefly, Vero E6 
cells were incubated with serial 10-fold virus stock dilutions for 2 hours. Following this, the virus inoculum 
was replaced by an overlay medium comprised of Dulbecco’s modified Eagle’s medium (DMEM, PAN Biotech, 
Aidenbach, Germany), 2.5% microcrystalline cellulose (Avicel RC-591, DuPont, Wilmington, DE, USA) and 
10% FBS. After seventy-two hours of incubation at 37 °C in 5% CO2 atmosphere, cells were fixed with 4% 
formaldehyde for 24 hours and plaques were visualized by crystal violet counterstaining. Sequence integrity 
of virus stocks was determined by Illumina sequencing as described66 and aligned against the isolate reference 
sequence (GenBank: MT270101 and GISAID: EPI_ISL_406862). To determine viral burden, lung homogenates 
were stained with crystal violet and plaques are counted by eye as described in39.

Animal infection and collection of materials
10- to 12-week old female and male Syrian hamsters (Mesocricetus auratus; breed RjHan:AURA, Janvier Labs, 
France) were intranasally infected with 1 × 105 plaque forming units (pfu) SARS-CoV-2 (variant B1, isolate 
BetaCoV/ Germany/ BavPat1/ 2020) under anesthesia as described previously67. Twice-daily clinical scoring 
of hamsters was performed to prevent any prolong suffering. Animals with >15% body weight loss for over 48 
h were euthanized in accordance with the animal use protocol. A total of 39 hamsters were evaluated for our 
modelling distributed over the following experimental groups: (1) Control subjects (n=3), (2) SARS-CoV-2 
infected subjects at four time points (2-, 3-, 5- and 14 p.i.), six animals per time point (n=24), (3) Mock-infected 
subjects at these time points, three animals per time point (n=12).

Timepoints of measurements were chosen to capture the early immune response as best as possible but 
also limiting the number of animals. We focussed on the earlier inflammatory phase characterized by higher 
dynamics of viral load, cell recruitment and activation. Viral load already dropped at d5, while re-convalescence 
was achieved at d14. Details of the choice of measurement points are explained in39. Euthanasia prior analysis 
occurred by cervical dislocation and exsanguination under anesthesia as previously described29. Among other 
materials, 1 ml cardiac blood (anticoagulated with EDTA) and lung lobes were collected for down-stream 
analyses. Specifically, the left lobe was used for histopathology, the right caudal lobe for single-cell analysis, the 
right cranial lobe for virological measurements and the right medial lobe for bulk RNA and proteomics analysis 
as described39. 3 naive and 12 mock-infected animals were combined for IgM measurements at t=0. Additional, 
proteomics measurements of 22 animals (d2:6, d3:5, d5:6, d14:5) were performed. For viral load determination, 
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material of 6 infected hamsters per time point (2,3,5,14) was included. For scRNAseq and serum neutralization 
experiments, only 3 hamsters per time point (0,2,3,5,14) were analysed.

Single cell isolation from hamster lungs
Established cell isolation protocols were modified to suit BSL3 facility regulations. Lobus caudalis of the right 
lung was stored in 1× PBS, 0.5 % BSA containing 2 μg/ml ActinomycinD for single cell isolation. The lobes 
were dissociated mechanically and enzymatically, 2 min of clapping with tweezer in specific digestion medium 
(3,4 mg/ml Collagenase Cls II (Merck), 1 mg/mL DNase I (PanReac AppliChem), in 2 mL Dispase medium per 
lung lobe (Corning), 50 Caseinolytic Units/mL was executed, followed by 30 min incubation at 37 °C and 5% 
CO2. Next the cell suspension were further dissociated by pipetting and filtered through 70 μm cell strainers. 
Suspensions were spun at 350 × g for 6 min at 4 °C, pellets were subjected to red blood cell lysis by resuspension 
in corresponding buffer (BioLegend). The reaction was interrupted by washing with PBS/BSA buffer and cells 
were spun down by centrifugation. Prior subjection to 10× chips, cells were resuspended in low-BSA buffer 
(1× PBS, 0.04 % BSA), followed by filtration with 40 μm FloMi filters (Merck), cell number and viability 
determination was performed microscopically in trypan blue.

Single cell RNA expression quantification and assignment of cell types and proteomics
RNA isolation, sequencing and processing of and quantification of gene expression was done as described 
previously39. Filtered cells were adjusted to a final concentration of ca. 1000 cells/μL in 1× PBS with 0.04% 
BSA. 3’ GEM, Library & Gel Bead Kit v3.1 was used to partition cells into Gel-Beads-in-Emulsions (GEMs), 
aiming to recover 6000 single cells per hamster and organ. These single-cell libraries (quantified with Qubit, 
ThermoFisher, quality check with Agilent) were then sequenced on a Novaseq 6000 device (Illumina), with SP 
or S1 flow cells (read1: 28 nucleotides, read2: 64 nucleotides). Raw single-cell sequencing data were processed 
using CellRanger 3.1.0, and raw feature barcode matrices were read into Seurat. Cells were subjected to quality 
control, normalized, and integrated via function IntegrateData to eliminate batch effects, then subjected to PCA 
and UMAP dimensional reduction analyses, as well as Louvain clustering. Cell types were assigned through a 
combination of marker expression and label transfer from available mouse and human datasets. The expression 
of cell type-specific activation markers was quantified using Seurat’s DotPlot function with scaling of the data.

Marker genes of CD4+ T cells (Cd3e+Cd4+), CD8+ T cells (Cd3e+Cd8a+), NK cells (Cd3e-Nkg7+), 
monocytic macrophages (Ccr2+, Ccr5+, Arg1+), B cells (Cd79b+, Ms4a1+), and alveolar epithelial cells type 2 
(Lamp3+) defined the Seurat cluster and thus the proportion of individual cell types. Cell counts of monocytic 
macrophages, activated (Gzma+ or Ifng+) T—and NK cells, B cells and type 2 alveolar epithelial cells are 
calculated as proportion of total cell number per lung lobe. Thereby, GZMA positive CD8+ and IFNG positive 
CD4+ cells are considered as proxies to assess immune response. Production of chemokines CCL8 and CXCL10 
was determined as percent expressed in cluster.

IgM heavy chain was determined by using LC-MS/MS proteomics. Lung tissue was added to lysis and 
inactivation buffer (RIPA) and boiled at 95 °C for 10 min. The samples were then stored at − 80 °C. The samples 
were thawed on ice, the volume was adjusted to 50 μl with water and 25 μl of 50 U benzonase, 50 mM ABC, 
and 2 mM MgCl2 were added. This was followed by a 30-min incubation at 37 °C. Lysates were handled on a 
Biomek i7 workstation using the SP3 protocol with one-step reduction and alkylation. The samples were used 
for LC-MS/MS analysis.

Neutralizing antibodies
Serum neutralization was tested with serial dilutions (1:4 to 1:512) of inactivated serum, plated on sub-confluent 
monolayers of Vero E6 cells. 50 pfu SARS-CoV-2 were added per well and incubated for 72 h at 37 °C, fixed with 
10% formalin for 24 h and stained with crystal violet. The highest effective dilution without cytopathic effect 
was counted.

Estimation of parameters
We estimated 39 free model parameters by optimizing the agreement of simulation results and experimental 
data with the help of the following objective function.

 

m∑
i=1

{ l∑
j=1

(
fdatai (tj) − ln(fmodeli (tj , k) · Cinor)

σi

)2}
→ min

k
 (21)

Here, fmodeli (tj , k)) denotes simulation results of variable i; fdatai (tj) are the means of logarithmized 
measurements of quantity i at time points tj . Since we see no connection between signal strength and standard 
deviation, we average the standard deviation of the individual variables over the measurement points, where 
σi is the mean of standard deviations of the logarithmized measurements of variable i at time points tj . 
k = k1, . . . kn are the model parameters. Fitness function results of the different variables are summarized. For 
calculation of the fitness function of EU and EI, the same data of frequencies (%) of SARS-CoV-2 positive cells 
amongst alveolar epithelial cells type 2 were used. Since we want to avoid the same data contribute twice in the 
calculation of the summarized objective function, we use weighting factors of 0.7 for EI respectively 0.3 for EU. 
Cinor are geometric means of measured quantities that resulted from data of pooled control groups. As in our 
previous work49, the optimization problem is approximately solved using (1+3)-evolutionary-strategies with 
self-adapting mutation step size68,69. Opimization was stopped after 200 generations without improvements. To 
increase the chance of finding the global optimum, we started optimization multiple times with different initial 
parameter settings.
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Confidence intervals of parameter estimates are determined with the bootstrap method described in70–72. In 
brief, for each data point, we created a virtual random data point using the distribution of measurements and 
fitted parameters to these virtual time series data. Based on 1000 repetitions, we determined confidence ranges 
of the resulting parameter estimates. We consider parameters as well identifiable if the 95%-confidence interval 
is confined within a range less than one order of magnitude.

We estimated the sensitivity of each parameter by modifying their individual values by ±10% keeping all 
other parameters constant. Then, deteriorations of the objective function were studied. Results are shown in S1_
File, Figure S1. Sensitivity is interpreted in a relative way, i.e., by comparing them between parameter estimates. 
Figure S2 in S1_File shows changes in the objective function, if two parameters are deflected simultaneously by 
±10%.

We determined bivariate correlations between parameter estimates by drawing from their univariate 95% 
confidence intervals (N=200 repetitions) and discarding values resulting in a significant deterioration of the 
likelihood (likelihood ratio test). Remaining parameter combinations were used to calculate the correlation of 
the respective parameter estimates.

Finally, to assess overall model fitting, we simulated scenarios with and without infective event and calculated 
values of the fitness function, Bayesian information criterion and Akaike information criterion using the same 
data of infected animals (Table S3 in S1_File).

Data availability
All relevant data are within the manuscript and its Supporting Information file S2_File.xlsx. Sequencing data are 
available at https://www. ncbi.nlm.nih .gov/geo/que ry/acc.cgi? acc=GSE162208.

Code availability
The R code for initial sequencing analysis is available at github.com,  h t t p s :  / / g i t h  u b . c o m  / B e r l  i n - H a m  s t e r - S  i n 
g l e -  C e l l -  C o n s o r t i u m / S i n g l e - c e l l - s e q u e n c i n g - o f - C O V I D - 1 9 - p a t h o g e n e s i s - i n - g o l d e n - H a m s t e r s     . Code of our 
model will be made publicly available after acceptance.
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