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Closely related host species share similar symbionts, but the effects of host
genetic admixture and environmental conditions on these communities
remain largely unknown. We investigated the influence of host genetic
admixture and environmental factors on the intestinal prokaryotic and
eukaryotic communities (fungi, parasites) of two house mouse subspecies
(Mus musculus domesticus and M. m. musculus) and their hybrids in
two settings: (i) wild-caught mice from the European hybrid zone and
(ii) wild-derived inbred mice in a controlled laboratory environment
before and during a community perturbation (infection). In wild-caught
mice, environmental factors strongly predicted the overall microbiome
composition. Subspecies' genetic distance significantly influenced the
overall microbiome composition, and each component (bacteria, parasites
and fungi). While hybridization had a weak effect, it significantly
impacted fungal composition. We observed similar patterns in wild-
derived mice, where genetic distances and hybridization influenced
microbiome composition, with fungi being more stable to infection-
induced perturbations than other microbiome components. Subspecies'
genetic distance has a stronger and consistent effect across microbiome
components than differences in expected heterozygosity among hybrids,
suggesting that host divergence and host filtering play a key role in
microbiome divergence, influenced by environmental factors. Our findings
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offer new insights into the eco-evolutionary processes shaping host–microbiome interactions.

1. Introduction
Microbial biodiversity is recognized as a focus of research with medical and veterinary implications, particularly in relation
to host–symbiont associations. The intestinal microbiome comprises taxonomically diverse bacteria, viruses and micro- and
macroeukaryotic organisms, which interact with the host either directly (e.g. by activating immunity) or indirectly (e.g.
by metabolite production) [1,2]. This complex community contains host-associated residents and environmental-transient
components. While bacteria dominate this ecosystem in species number and biomass [3]; other components, such as fungi
and eukaryotic parasites also profoundly affect the host [4], particularly on the maturation and activation of the immune system
[5,6] and the overall structure of the community [7]. Although not part of the microbiome, diet significantly influences all
components of the microbiome [8,9]. Diet depends on the host’s environment, and diet-derived DNA in the intestine can be
used to approximate the host’s diet through molecular assessments.

Phylosymbiosis represents the similarities between host-associated microbial communities and their congruence with the
evolutionary relatedness of their respective host organisms [10–12]. It arises from different ecological and evolutionary
processes occurring simultaneously, particularly deterministic selection by host filtering (i.e. promotion or suppression of taxa
mediated by host traits [13]). The diversification of symbionts in parallel with their hosts (co-diversification), microbial random
transmission by conspecifics (dispersal) and ecological drift have also been proposed as neutral processes that contribute to
phylosymbiosis [14,15]. Phylosymbiosis has been mainly explored within the context of reproductively isolated species [14,16].
Studies of hosts in the early stages of speciation provide a window into the potential divergence of host-associated symbiont
communities. In particular, the study of intestinal communities within incipient species or populations with permeable species
barriers offers a unique opportunity to decipher the complex relationships between divergent and diverse host genetics and
the evolution and ecology of these communities [10,17]. Hybrid zones, especially tension zones stabilized by migration and
selection against hybrids [18], serve as a natural laboratory, providing insights into the influence of genetic divergence of
parental species and hybrid admixture.

The house mouse hybrid zone (HMHZ) was established at secondary contact between two subspecies of the house mouse,
Mus musculus musculus (Mmm) and M. m. domesticus (Mmd), which diverged in Asia 0.5 million years ago [19]. This tension
zone, approximately 20 km wide [20,21], contains advanced (multi-generation) hybrids between parental subspecies [22].
Hybrids can exhibit transgressive segregation [23], displaying ‘extreme’ traits compared with their parental genotypes, such
as increased host resistance to parasites [24,25]. Microbiome composition could be one such a transgressive trait. The HMHZ
is ideal for studying the effect of genetic divergence and admixture (hybridization) on the microbiome due to the gradient
of genetic variability and environmental heterogeneity [26]. We leveraged a natural population within the HMHZ and wild-
derived inbred mice to investigate the effects of subspecies genetics and hybridization on the microbiome, and building on
previous studies [17,27], emphasized spatial and temporal ecological determinants. Environmental filtering, represented by
spatial distances between hosts can significantly influence microbiome structure, sometimes more than host-associated factors
[28,29]. This spatial heterogeneity can result from microbial transmission through host social interactions [30,31] and unevenly
distributed environmental factors [32].

Our study aimed to disentangle the relative importance of host filtering, mediated by subspecies’ genetic differentiation
and hybridization effects against environmental filtering considering spatial and temporal distribution in shaping the house
mouse microbiome. We profiled the components of the intestinal microbiome (bacteria, fungi and parasite communities), and
the diet component of wild-caught mice from their natural environment at the HMHZ. We used wild-derived mice in a
controlled environment, from both subspecies and their first-generation hybrids to confirm the genetic effects on the intestinal
microbiome. Similarly, we profiled the intestinal microbiome before and at the peak of infection with Eimeria ferrisi, a common
parasite [33] with significant intestinal disruption [34]. Such community perturbation provides a comprehensive understanding
of effect robustness. We tested whether intestinal community composition, as a whole or each of its prokaryotic and eukaryotic
components, could be differentially defined by host filtering, using as proxies i) host genetic differences between subspecies
and (ii) genetic incompatibilities between hybrids leading to aberrant microbiomes. Whether host filtering would lead to (iii)
interspecies interactions that shape the microbiome and finally whether (iv) host filtering could be detected independently
of environmental filtering, assessed by geographical and temporal distances. Using a combination of wild and wild-derived
captive mice, we studied the effect of host genetic admixture and environmental conditions on these communities to test
whether host filtering would strongly affect the microbiome components in different ways.

2. Material and methods
(a) Sampling of wild-caught and wild-derived inbred mice
This study utilizes previously published datasets [35,36], which assessed the differential detection and quantification of Eimeria
spp. using qPCR and single- and multi-amplicon sequencing.
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The wild mice dataset comprises samples from 672 wild mice captured from 182 locations between 2015 and 2018 (figure
1a). Mice within our study area represent two different subspecies (Mmm and Mmd) or their hybrids, produced through
multiple generations of interbreeding. Colon content and tissue samples (muscle and spleen) were collected, preserved in liquid
nitrogen and stored at −80°C for microbiome analysis and host genotyping, respectively. Mice were genotyped to estimate
the admixture of subspecies genomes, i.e. the hybrid index (HI; table 1), using 14 diagnostic markers as previously described
[24,25]. Ninety-nine per cent of the mice had over 10 loci amplified. For three of the mice, fewer loci were amplified, and the
hybrid index was imputed by predictive mean matching using the R package ‘mice’ v. 3.16.0, setting meth=‘pmm’ [37].

The wild-derived dataset includes 22 mice of four inbred mouse strains and their F1 hybrids raised under laboratory
conditions in the Institute of Vertebrate Biology of the Czech Academy of Science in Studenec (licence: 61974/2017MZE−17214)
[38]. Parental genotypes were represented by mice from two allopatric strains: Mmd by SCHUNT (n = 3 mice) and STRA (n
= 3 mice) [39], and Mmm by BUSNA (n = 3 mice) and PWD (n = 3 mice) [40]. Two intra-subspecies F1 crosses were also
included: Mmm PWD × Mmm BUSNA (n = 3 mice), and Mmd SCHUNT x Mmd STRA (n = 2 mice). Hybrids were represented
by two inter-subspecies crosses (Mmd STRA × Mmm BUSNA, n = 2 mice; Mmd SCHUNT × Mmm PWD, n = 3 mice). To ensure
a full range of sex combinations, parental strains represent full inbred over 20 generations with maternal and paternal lines
alternated. At the animal facility, all mice are kept in Perspex cages at 21–23°C on a 14/10 h light/dark cycle with water and
food (pellets, Myška, Pohledští Dvořáci, CZ) available ad libitum. Cages are cleaned and bedding is exchanged every 5 days.
The neonate mice were co-housed with both parents until the end of weaning. At the age of 20 days, the youngest mice were
separated into individual cages. In total, there were eight mice belonging to Mmd, nine mice belonging to Mmm and five
hybrids.

Mice were infected with E. ferrisi and samples were collected before infection (day 0) and at the peak of infection (day
6), (experiment licence: 0431/17 issued by Landesamt für Arbeitsschutz, Verbraucherschutz und Gesundheit, Brandenburg).
We used the Brandenburg64 isolate of E. ferrisi, which had been isolated from the faeces of a wild Mmd mouse captured in
Brandenburg, Germany. We acclimatized mice to the animal experiment facilities of Humboldt University for at least 1 week
before infection. We housed mice in individual cages equipped with tunnels and bedding material for behavioural enrichment
and provided them with food and water ad libitum during the experiment. We collected three to four faecal pellets from
individual mice for DNA extraction.

(b) DNA extraction, library preparation and sequencing
We extracted genomic DNA from faeces and colon content using the NucleoSpin Soil kit (Macherey-Nagel GmbH & Co. KG,
Düren, Germany) following the manufacturer’s protocol with the following modifications: we performed mechanical lysis of the
sample in the Precellys 24 high-speed benchtop homogenizer (Bertin Technologies, Aix-en-Provence, France) using two cycles
of disruption at 6000 rpm for 30 s, with 15 s delay between cycles. We eluted DNA in 40 µl TE buffer. We assessed the quality
and integrity of the DNA using a full-spectrum spectrophotometer (NanoDrop 2000c; Thermo Fisher Scientific, Waltham, MA
USA). We quantified the concentrations of double-stranded DNA using a Qubit Fluorometer and the dsDNA BR (broad-range)
Assay Kit (Thermo Fisher Scientific). We adjusted DNA extracts to a final concentration of 50 ng µl−1 with nuclease-free water
(Carl-Roth GmbH+Co. KG) and stored them at −80°C until further processing.

We used faecal DNA preparations for multi-marker amplification using the microfluidics PCR system Fluidigm Access
Array 48 × 48 (Fluidigm, San Francisco, California, USA). We randomized sample order and amplified them in parallel with
non-template negative controls using a microfluidics PCR. This allows the amplification of multiple fragments (amplicons)
for prokaryotic and eukaryotic different hypervariable regions on the ribosomal genes (16S, 18S and 28S), intergenic regions
(ITS1 and ITS2), mitochondrial genes (COI and COIII) and apicoplast genes (tRNA and ORF470). The list of primer pairs,
target genes and regions are described in electronic supplementary material, additional file 1. We integrated PCR setup library
preparation into the amplification procedure according to the protocol for Access Array Barcode Library for Illumina Sequenc-
ers (single direction indexing) as described by the manufacturer (Fluidigm, San Francisco, California, USA). The amplicons
were quantified using the Qubit fluorometric quantification dsDNA High Sensitivity Kit (Thermo Fisher Scientific, Waltham,
USA) and pooled in equimolar concentrations. The final library was purified using Agencourt AMPure XP Reagent beads
(Beckman Coulter Life Sciences, Krefeld, Germany). The quality and integrity of the library were confirmed using the Agilent
2200 TapeStation with D1000 ScreenTapes (Agilent Technologies, Santa Clara, California, USA). Sequences were generated at
the Berlin Center for Genomics in Biodiversity Research (BeGenDiv) on the Illumina MiSeq platform (Illumina, San Diego,
California, USA) using v2 chemistry with 500 cycles.

(c) Sequencing data processing and decomposition of intestinal community
Data processing and statistical analysis were performed in R v 4.3.1 (R Core Team, 2023). Sequencing reads were filtered,
sorted, merged, denoized and chimaeras removed for each run separately and for each amplicon using the R packages dada2
v. 4.3.1 [41] and MultiAmplicon v. 0.1.1 [42]. Contaminants and sequencing errors were removed using the package decontam
v. 1.21.0 [43]. We further removed amplicon sequence variants (ASVs) that had less than 1% prevalence, less than 0.005%
relative abundance [44] and samples with fewer than 100 reads. Filtering was performed individually for each amplicon in the
multi-amplicon datasets, followed by total sum scaling for relative abundances. All amplicon products were collated into one
‘phyloseq’ object [45], resulting in 619 samples in the wild mice dataset and 42 samples in the wild-derived inbred mice dataset.
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Taxonomic assignment was performed using the RDP classifier [46] through the dada2 R package [41]. Sequences targeting
the 18S, 16S, 28S and ITS rRNA genes were classified against the SILVA 138.1 SSU Ref NR 99, the SILVA 138.1 LSU Ref
NR 99 [47], the UNITE [48] databases, respectively. All other sequences from targeted regions without publicly available
curated databases were classified against sequences downloaded from NCBI using RESCRIPt [49]. Taxonomy annotation for
known parasite genera was refined as developed for coccidians of the genus Eimeria in [35] (electronic supplementary material,
additional file 2).

Our dataset contained ASVs from different amplicons targeting different marker loci of the same taxon. This resulted in
multiple ASVs being assigned to the same taxon, but potentially representing either the same or different variants. To account
for this, we merged ASVs likely belonging to the same taxon based on their co-abundance patterns within the same genus.
To merge ASVs into cASVs, we constructed a co-abundance network of each genus, consisting of all ASVs annotated within
that genus (n = 218 co-abundance networks for the wild dataset and n = 146 for the laboratory datasets). We calculated
Spearman correlations between ASVs and considered only positive correlations (Spearman coefficient >0) that were significant
(p < 0.01) after multiple testing corrections using the Benjamini–Hochberg method. ASVs with strong co-abundance patterns
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Figure 1. Geographical location of the study area and relationship between genetic measures derived for our analyses. (a) Map of the 173 sampling locations
within the HMHZ, showing 619 sampled house mice as points, coloured by hybrid index (HI). The HI represents the proportion of Mmm alleles genotyped at 14
subspecies-diagnostic loci. The green line marks the HMHZ across Germany. (b) Expected hHe represents the degree of admixture in the hybrid genotypes, calculated as
2HI × 1 − HI . Both parental genotypes have an expected hHe of 0, while hybrids with equal admixture between the two subspecies have a maximal hHe of 0.5.
(c) The relationship between subspecies’ genetic distances (distance between HI values) and differences in hybridization (hHe-dist) shows constrained covariance. High
hHe-dist values are only observed when comparing strongly admixed hybrids with pure parental genotypes. Comparisons between two highly admixed hybrids or two
pure subspecies individuals lead to low hHe-dist values. (d) Mean admixture (mean–hHe) measures the average admixture in the compared pair. This genetic term is
also constrained with subspecies’ genetic distance. Mouse pairs with large subspecies’ genetic distances tend to have low mean-hHe and thus indicate pure subspecies
origin.

Table 1. Definition of genetic terms.

name description

HI value for each mouse calculated as the proportion of Mmm alleles in a set of 14 diagnostic markers

expected hybrid heterozygosity (hHe)

value ranging between 0 and 1 for each mouse that reflects the degree to which new gene
combinations are brought together compared with the pure subspecies, estimated with the
expected heterozygosity function: 2HI × 1 − HI ; parentals have hHe of 0 and hHe is 1 when a
hybrid’s genome is estimated to come equally from both subspecies [24]

subspecies’ genetic distance pairwise difference between HI

expected hybrid heterozygosity distances (hHe-dist) pairwise difference between hHe

mean expected hybrid heterozygosity of the comparison
(hHe-mean)

pairwise sum of hHe; measures how admixed the pair is as a whole; as a predictor of community
differences, this variable captures whether hybrids have different variance in gut community
composition
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were clustered together using the ‘cluster_fast_greedy’ function from the R ‘igraph’ package [50]. ASVs within each cluster
were merged by summing their relative abundances, resulting in combined ASVs (cASV). The approach, previously applied for
the intracellular parasite Eimeria spp. [35], was expanded to all other genera in our dataset (electronic supplementary material,
additional file 2).

The intestinal community composition was decomposed into four components of cASVs: (i) bacteria including the phyla
Firmicutes, Bacteroidota, Deferribacterota, Proteobacteria, Desulfobacterota, Verrucomicrobiota, Actinobacteriota, Campylobac-
terota, Cyanobacteria, Fusobacteriota, Patescibacteria and unclassified bacteria; (ii) fungi, including the phyla Mucoromycota,
Ascomycota and Basidiomycota; (iii) plants (diet), including the phyla Anthophyta, Phragmoplastophyta, Charophyta and
Ochrophyta; and (iv) parasites, including the known parasitic genera Eimeria, Cryptosporidium, Syphacia, Aspiculuris, Mastopho‐
rus, Trichuris, Hymenolepis, Tritrichomonas and order Ascaridida. The models were recapitulated for each component.

(d) Statistical modelling of community dissimilarity
We calculated the expected hHe (table 1), a variable that captures the nonlinear effect of hybridization [23]. hHe is the expected
heterozygosity, specifically for hybrid allele combinations, and represents the degree of admixture in hybrids (figure 1b).

Biological communities can be compared using the overall differences between the occurrence and abundance observed
in each individual. To quantify the intestinal community variation (β-diversity) among mice, we calculated Jaccard distances
(occurrence: presence/absence) with the function ‘distance’ (binary = T) of the R package ‘vegan’ [51]. We repeated the analysis
with Aitchison dissimilarity distances (abundance: quantitative), appropriate for use in relative abundances of taxa [52], using
the function distance (pseudocount = 1). We transpose both to similarity distances (1 − Jaccard distance; 1 − Aitchison distance).

To test the effects of spatial and temporal distances, species barriers and hybridization on the β-diversity of the intestinal
community, we applied Bayesian generalized linear multilevel models using the Markov chain Monte Carlo algorithm No-U-
Turn Sampler (NUTS) [53] implemented in Stan through the ‘brms’ R package v. 2.19.0 [54]. The models had intestinal commun-
ity similarity as the response, and we modelled all possible pairwise distances among mice (excluding comparisons between
the same individuals) as previously described [31,55]. We used a multi-membership random effects framework that allows us
to account for the individuals in each pairwise comparison (e.g. individuals A and BB). We expressed all predictors as pairwise
distances: subspecies’ genetic distance (see table 1; figure 1c), distance expected hybrid heterozygosity (hHe-dist; see table 1;
figure 1d), mean expected hybrid heterozygosity (hHe-mean; see table 1), spatial distance (Euclidean distances calculated from
localities’s spatial coordinates) and temporal distance (difference of time a mouse pair was sampled in years). We included
an interaction between subspecies’ genetic distances and hHe-dist to allow hHe-dist to have different effect strength along
the gradient of subspecies’s genetic distances. We scaled all predictors to values ranging from 0 to 1 to allow comparison of
standardized estimates of the predictors. We used four Markov chains, with 4 chains, 3000 iterations and 1000 burn-in iterations
(warmup) to calibrate the Sampler, and default, uninformative priors. We visually inspected convergence and assessed the
relevance of each predictor by analysing R-hat and the 95% credible intervals. A similar model was constructed using the
wild-derived inbred mice dataset to test the effects of subspecies’ genetic distance, expected hHe-dist and infection status
distance (non-infected pairs and infected pairs = 0; non-infected − infected pairs = 1) on the overall microbiome composition and
the different components.

(e) Fungi–bacterial interaction assessment
We investigated the associations between the fungal and bacteria components by modelling the bacterial composition (Jaccard
and Aitchison) as a response to the fungal composition (Jaccard and Aitchison, respectively) while controlling for subspecies’
genetic distance, hHedist, hHe-mean, spatial distance, and temporal distance. We explored inferred interactions among taxa
with prevalence above 5% (present in at least 31 samples).

Co-occurrence networks were created with 171 bacteria, 13 fungi and 6 parasites in a co-occurrence network. Using the R
package ‘SpiecEasi’ [56] with the method ‘mb’ neighbourhood selection. We used the extended method for multiple microbial
domains (eukaryotes and bacteria) [57]. An optimal lambda value was observed at 0.328, and visualization was performed using
the ‘igraph’ R package [50]. Nodes with no edges were excluded from the network for visualisation.

3. Results
(a) Intestinal community profiling in the house mouse hybrid zone
We profiled the intestinal community of 619 wild house mice, captured at 173 localities (figure 1a), using a multi-marker
approach targeting both prokaryotes and eukaryotes. The final dataset used for the analysis included 588 cASVs (see §2)
taxonomically annotated as 106 genera of Bacteria and 77 genera of Eukaryotes, corresponding to eukaryotic parasites (11
cASVs), fungi (65 cASVs) and bacteria (383 cASVs), and also the plant components (45 cASVs) as a proxy of diet.

5

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20241970



(b) Subspecies’ genetic distances and hybridization suggest host filtering as driver in the selection of the intestinal
microbiome components in the house mouse hybrid zone

First, we investigated the effects of host filtering in the selection of the overall microbiome and each of the community compo-
nents in wild mice employing two proxies: (i) the subspecies’ genetics and (ii) hybridization (figure 2; electronic supplementary
material, tables S1 and S2).

An increase in the subspecies’ genetic distances was associated with differences within the occurrence (Jaccard distances)
and abundance (Aitchison distances) of the overall intestinal microbiome (table 2), but also parasites, fungi and bacteria
communities independently (figure 2a; electronic supplementary material, tables S1 and S2). The similarity within the diet
components was not affected by subspecies’ genetic distances. Hybridization had a detectable effect on the overall intestinal
microbiome, as the microbiome similarities decreased with increasing hHe-dist, but only when abundance-based community
distances were assessed (table 2; figure 2b). Similarly, differences in hybridization (hHe-dist) were significantly associated with
reduced fungal community similarities: mice with similar genetic admixture share more similar fungi. As an illustration, two
mice from the same parental subspecies (either Mmm: HI = 0 or Mmd: HI = 1, which form a similarly admixed pair: hHe-dist = 0;
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Figure 2. Hybridization leads to aberrant fungal microbiomes. Estimated compositional differences (Jaccard and Aitchison distances) within the overall intestinal
communities (overall microbiome, 588 cASVs, red) decomposed community components and plant components (diet) were analysed. Further colours represent the
models for the community components fungi (65 cASVs, yellow), parasites (11 cASVs, light blue), bacteria (383 cASVs, dark blue) and diet (45 cASVs, green). The
figure shows posterior distributions of the predictor variables: (a) subspecies effects measured as subspecies’ genetic distances; (b) hybridization effect measured as
difference in hybridization (hHe-dist); (c) hybridization effect measured as mean admixture of the compared pairs (hHe-mean); (d) environmental effects measured as
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differences, only the fungal component is affected by variables related to hybridization. Dots represent the mean effect size, and estimates and bars represent their
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Table 2. Distance-based models of the overall intestinal microbiome composition among pairs of individuals (n = 191 271) for occurrence-based (Jaccard similarity
distances) and abundance-based (Aitchison similarity distances). Shown are the mean estimates of the posterior distribution for each parameter and its associated
95% credible intervals (95% CI), and R-hat value that provides information on the chain convergence (if considerably greater than 1.01, the parameter estimate is not
reliable). Bold highlights significant effects (credible intervals do not overlap 0).

Jaccard similarity distances Aitchison similarity distances

estimate 95% CI Rhat estimate 95% CI Rhat

intercept −1.263 −1.341: −1.150 1.25 −2.008 −2.105: −1.919 1.04

spatial distances −0.122 −0.130: −0.113 1.00 −0.383 −0.399: −0.367 1.00

subspecies’ genetic distance (divergence) −0.022 −0.029: −0.015 1.00 −0.057 −0.069: −0.045 1.00

hHe-dist (admixture) −0.002 −0.012: 0.008 1.00 −0.029 −0.047: −0.011 1.00

hHe-mean (admixture) −0.015 −0.212: 0.141 1.49 0.009 −0.152: 0.162 1.03

temporal distance −0.070 −0.074: −0.066 1.00 −0.062 −0.069: −0.055 1.00

subspecies’ genetic distance: hHe-dist 0.008 −0.012: 0.028 1.00 0.047 0.010: 0.082 1.00
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figure 1b) have more similar overall microbiomes and fungi communities than a ‘pure hybrid’ (HI = 0.5) and a parental (HI = 0),
which have the biggest differences in admixture (hHe-dist = 1, figure 1b).

We observed that occurrence-based fungal community similarity decreased with increasing mean admixture (hHe-mean),
indicating an increase in variance in the fungal community composition with hybridization. Comparisons among ‘pure
hybrids’ (highest hHe-mean; figure 1d) showed higher variance within their fungal compositions compared with pairs of
pure parentals (lowest hHe-mean). In contrast, mean admixture (hHe-mean) did not significantly affect abundance- or occur-
rence-based community similarities among the overall microbiome, parasite and bacteria communities, and neither among the
diet components (table 2; figure 2e,f). Thus, we did not detect effects of hybridization on the variance of these microbiome
components and diet compositions.

We found a positive interaction effect between hybridization differences (hHe-dist) and subspecies’ genetic distance on the
overall microbiome and fungal composition. This suggests that the strength effect of the hybridization decreases as subspecies
genetic distance increases (electronic supplementary material, figure S3). In natural populations, we observed that genetic
effects associated with both house mice subspecies and hybridization strongly influence different components of the micro-
biome, suggesting that host filtering processes linked to host genetics play an important role in shaping different communities
within the microbiome, particularly for fungi communities.

(c) Environmental filtering driven by geography determine the bacterial composition within the intestinal microbiome
in the house mouse hybrid zone

To determine environmental filtering for selection of the microbial composition structure in natural populations of mice, we
use geographical and temporal distances as predictors of the microbial community. Overall, intestinal communities were more
similar when mice were captured from geographically closer sites and within shorter timeframes (table 2; figure 2d,e). Spatial
proximity was the strongest predictor of overall microbiome composition similarities among pairs of mice (table 2; figure 2d).
We also observed that microbiome similarity decreased with increased temporally distances between sampling years (table 2;
figure 2e). For bacteria, both occurrence- and abundance-based composition showed decreased similarity with greater spatial
distances. Similarly, fungi and diet-derived occurrence-based, as well as parasite abundance-based compositions, also decreased
in similarity with increased spatial distances (figure 2d). Increased temporal distances reduced the similarity of bacteria and
diet composition, as well as fungi occurrence- and parasite abundance-based compositions (figure 2e). Suggesting an additional
selection driven by the environment, which is independent from the host filtering effect.

(d) Fungi composition predicts bacterial composition in the house mouse hybrid zone
Effects on different components of the intestinal community may not be independent, so we tested whether differences in
the fungal community predict differences in the bacterial community. We did this while controlling for subspecies’ genetic,
temporal and spatial effects and found that the fungal community composition predicted bacterial composition in both
occurrence- (posterior mean estimate of 0.008, CI from 0.007 to 0.009) and abundance-based measures (posterior mean estimate
of 0.027, CI from 0.026 to 0.028; figure 3a,b; electronic supplementary material, table S3). To explore whether the selection of
specific fungi would impact other bacteria, we looked for direct associations between taxa. We used a co-occurrence network
and found 239 significant associations (edges) within 127 taxa (nodes) (figure 3c). We found only two associations between
bacteria and fungi, as the bacteria Erwinia and Planococcus were associated with the fungi Kazachstania and Blumeria and one
edge between the parasite Cryptosporidium and the fungi Kazachstania, and a member of the family Saccharomycetales. These
results indicate that host filtering on fungal communities appears to be independent of fungi-bacteria interactions, with only a
few direct interactions being affected.

(e) Host filtering driven by subspecies and hybridization affects the intestinal community independently of the
environment and community perturbation under experimental setups

We tested whether host filtering driven by subspecies differences is reflected in the intestinal microbiome composition
controlling for environmental effects but inducing a microbiome perturbation through a parasite infection. Using a controlled
laboratory setting, we profiled 22 ‘wild-derived’ inbred house mice before and at the peak of E. ferrisi infection (day 0 and
day 6, respectively), applying the same multi-marker approach. From 597 ASVs across 12 amplicons, we obtained 318 cASVs.
We taxonomically annotated 36 genera of Eukaryotes and 81 genera of Bacteria, and performed further analysis of the cASVs
communities, as described for the wild mice (§2). Of the cASVs, 207 were bacteria, 29 were Fungi, six were parasites and 30 were
diet-related plants.

Our findings confirm those observed in the wild mice: (i) the similarity of the overall intestinal community decreased as
subspecies genetic distances increased (figure 4a,d; electronic supplementary material, table S4), and (ii) both fungi occurrence-
based composition and parasite abundance-based composition decreased with increasing hybridization differences (hHe-dist)
(figure 4b,e; electronic supplementary material, table S3). Furthermore, experimental infection with E. ferrisi strongly perturbates
the overall intestinal community, particularly affecting the bacteria and parasite communities and diet components (figure
4c). These results highlight that host genetic differences, even under controlled environmental conditions and perturbation,
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play a significant role in shaping microbial community composition, suggesting that in house mice microbiomes are under
deterministic selection through host filtering mechanisms.

4. Discussion
The evolutionary history of hosts influences the similarity of their microbiomes, suggesting that differences in intestinal
community are established during the speciation process [11,12]. In house mice particularly, both subspecies divergence and
hybridization have been shown to affect the bacterial microbiome [17] and specific eukaryotic parasites [24,25,58]. Our results
show that genetic differentiation between the two subspecies of house mouse significantly affects the microbial composition
of the intestinal community. This was shown in natural populations, taking into account spatial and temporal variation,
complementing recent independent work [27]. We extended these findings to a laboratory setting where subspecies genetic
differentiation was detectable in wild-derived inbred mice, both with and without community perturbation. Although the
overall effect of hybridization was small, it significantly influenced the fungal community: hybrids exhibited a distinct fungal
composition compared with parental mice in both natural populations and wild-derived inbred mice. Our study provides new
insights into non-neutral processes and highlights the role of host genetics and environmental factors in shaping microbiome
and symbiont communities.

The neutral assembly model suggests that community composition is driven solely by stochastic processes, including
random dispersal, speciation, extinction and ecological drift [59,60]. In contrast, non-neutral assembly models propose that
selective pressures such as niche, diet and host genetics shape microbial communities [15]. Our results show that genetic
differences between house mouse subspecies are associated with variation in the intestinal microbial community under both
natural (uncontrolled) environmental and laboratory (controlled) conditions. Our findings are consistent with previous work
showing the strong effects of host phylogenetic relationship in wild and captive animals from several rodent species [61]. We
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suggest that other deterministic processes, in particular host filtering, explain our results, where host traits promote or suppress
certain taxa in the community [13].

Host genetic differences may influence the intestinal environment through mechanisms such as genotype-specific immune
responses, metabolism and behaviour [62–64]. These mechanisms shape both the abiotic and biotic host environment of each
subspecies, creating distinctive niches that support specific microbial communities [65]. Beyond the genetic effect, we need
to acknowledge that both parental subspecies and hybrids may be exposed to different microbial pools, adding a layer of
complexity that could confound the genetic effects. To disentangle environmental and genetic effects, we used wild-derived
mice bred under controlled laboratory conditions, using strains from different locations and different genetic backgrounds.
We showed that these wild-derived mice also have species-specific microbiome compositions: strains from different subspecies
have greater differences in overall microbial composition. Our results are consistent with the observed differences in the
intestinal bacterial community between subspecies of captive mice bred under a common garden approach [26], and support
the idea of host filtering as a predictor of microbial composition. This present-day association of intestinal communities with
their hosts does not necessarily indicate co-adaptation or its relevance in the speciation process [13]. During the early divergence
of house mouse subspecies, ecological drift and changes in the host’s environment [30] may have been the predominant force
of community divergence. Our results confirm that host genetic differentiation has an effect on the maintenance of distinct
microbial communities.

Hybridization effects can indicate species barriers, as genetic incompatibilities might induce transgressive traits that
negatively affect hybrid fitness [66]. A previous study showed a differentiation in the intestinal bacterial community between
wild-derived second-generation (F2) hybrids and pure subspecies in a laboratory setting and in a wild population [17]. In
contrast to this study, we could not confirm the hybridization effect on the bacterial community considering hybridization as
a nonlinear gradient ranging between the two subspecies, although we found changes in the fungal microbiome associated
with hybridization, as did a recent study [27]. Interestingly, we observed that the strength of the hybridization effect varies
along the gradient of subspecies’s genetic distances, suggesting that the extent of these effects on the fungal microbiome may
depend on the specific levels of hybridization between the subspecies. We also detected an increase in the variance of the
fungal occurrence, indicating that aberrant fungal microbiome compositions are found among pairs of hybrids within natural
populations.

We confirmed that the aberrant fungal composition in hybrids was independent from the environmental conditions. The
first-generation hybrids of wild-derived mice also had a fungal microbiome composition distinct from that of parentals in
the laboratory. Hybrids at the animal facility are exposed to a microbial pool from both subspecies’ genotypes in early life,
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which could result in compositional differences due to foundational effects from pioneer taxa transmitted from both parents
[67]. It is possible that these differences could persist to adulthood and contribute to the patterns observed in the laboratory
setting. Community perturbations can change species composition within a community [68] and reduce founder effects [69]. We
exposed wild-derived mice to a community perturbation through infection with E. ferrisi and tested the stability of the intestinal
microbiome. Independently from the community perturbation, fungal symbionts were affected by hybridization. Although we
cannot rule out founder effects, our results suggest that these effects are unlikely to define fungal communities in hybrid mice
and hybridization has a greater influence.

In addition to the resilience of fungal communities to community perturbations, we also observed that fungal symbionts
were less affected by external environmental filtering in the wild compared with other microbiome components. These
observations suggest that fungal intestinal communities are more stable in response to changes in the external environment (e.g.
geography) and internal short-term perturbations (e.g. parasite infections). However, they are still subject to other significant
continuous selection pressures within the internal host environment, as indicated by our results on genetic distances and
hybridization. Host filtering, mediated by aberrant immune-related gene expression leading to higher inflammation in the
gut of hybrids [17] imposes strong selective pressure on both the prokaryotic and eukaryotic components of the microbiome.
Nevertheless, our results suggest that host filtering specifically selects the composition for fungal communities, despite their
resilience to environmental filtering. The ‘unfavourable’ conditions inside the host, while impacting the overall fungal com-
munity in the long term, may favour other specific microbial populations that are metabolically independent and resilient to
continuous stress, and can self-sustain in the absence of the ecological services associated with a homeostatic environment [70].

Bacteria–fungi interactions are widespread in various communities, including intestinal ones [7,71]. The fungal component
is a primary source of secondary metabolites, such as natural antimicrobial compounds, which could affect the presence and
abundance of bacteria and shape microbial communities at taxon level, influencing the gene content like virulence factors and
antimicrobial resistance genes (ARGs) [6,72]. We found that mice with similar fungal compositions also had similar bacterial
compositions. However, we detected very few bacteria–fungi associations. The current study cannot define the mechanistic
interactions between these two components that lead to few direct associations. Transmission, colonization and host filtering
of the fungal component of the microbiome are a frontier for further research both in the laboratory and in the natural
environment.

Our findings indicate that host genetic differences impact the intestinal symbiont communities in the two house mouse
subspecies and reflect host–symbiont interactions. We observed that while fungi communities are the most affected component
of the microbiome by hybridization, both in natural or laboratory conditions, they are highly resilient to spatial or short-term
community perturbations. Aberrant effects of hybridization on symbionts could suggest the involvement of symbiont interac-
tions earlier in the process of speciation. In the wild, host filtering (e.g. immune regulation and control of susceptibility or
due to slight divergence of the species’ environmental niche) cannot be completely distinguished from environmental filtering
(geographical and temporal effects). However, our laboratory results under more environmentally controlled conditions suggest
direct host-mediated filtering of the microbiome and stability of hybrid-differences, especially in fungi against community
perturbation. Future studies should combine immune measures and detailed environmental characterisation (e.g. microclimate,
agricultural practices or general land-use) to disentangle these contributions. Experimental set-ups of wild-derived parentals
and hybrids should have a particular focus on fungal communities, while also playing attention to interactions between taxa
within the microbiome.
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