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Abstract

Genome-wide association studies (GWAS) traditionally analyze single traits, e.g., disease

diagnoses or biomarkers. Nowadays, large-scale cohorts such as UK Biobank (UKB) collect

imaging data with sample sizes large enough to perform genetic association testing. Typical

approaches to GWAS on high-dimensional modalities extract predefined features from the

data, e.g., volumes of regions of interest. This limits the scope of such studies to predefined

traits and can ignore novel patterns present in the data. TransferGWAS employs deep neu-

ral networks (DNNs) to extract low-dimensional representations of imaging data for GWAS,

eliminating the need for predefined biomarkers. Here, we apply transferGWAS on brain MRI

data from UKB. We encoded 36, 311 T1-weighted brain magnetic resonance imaging (MRI)

scans using DNN models trained on MRI scans from the Alzheimer’s Disease Neuroimaging

Initiative, and on natural images from the ImageNet dataset, and performed a multivariate

GWAS on the resulting features. We identified 289 independent loci, associated among oth-

ers with bone density, brain, or cardiovascular traits, and 11 regions having no previously

reported associations. We fitted polygenic scores (PGS) of the deep features, which

improved predictions of bone mineral density and several other traits in a multi-PGS setting,

and computed genetic correlations with selected phenotypes, which pointed to novel links

between diffusion MRI traits and type 2 diabetes. Overall, our findings provided evidence

that features learned with DNN models can uncover additional heritable variability in the

human brain beyond the predefined measures, and link them to a range of non-brain

phenotypes.

Author summary

Genome-wide association studies are a popular framework for identifying regions in the

genome influencing a trait of interest. At the same time, the growing sample sizes of medi-

cal imaging datasets allow for their incorporation into such studies. However, due to high

dimensionalities of imaging modalities, association testing cannot be performed directly

on the raw data. Instead, one would extract a set of measurements from the images, typi-

cally using predefined algorithms, which has several drawbacks—it requires specialized
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software, which might not be available for new or less popular modalities, and can ignore

features in the data, if they have not yet been defined. An alternative approach is to extract

the features using pretrained deep neural network models, which are well suited for com-

plex high-dimensional data and have the potential to uncover patterns not easily discov-

erable by manual human analysis. Here, we extracted deep feature representations of

brain MRI scans from UK Biobank, and performed a genome-wide association study on

them. Besides identifying genetic regions with previously reported associations with brain

phenotypes, we found novel regions, as well as ones related to several different traits, such

as bone mineral density or cardiovascular traits.

1 Introduction

Genome-wide association studies (GWAS) of imaging modalities pose a challenge due to the

high dimensionality of the data—for example, structural brain MRI data scans are typically

comprised of over 7 million voxels. The naive approach of testing for associations with all ele-

ments in an image is infeasible due to both the computational cost and the loss of statistical

power when adjusting the p-value thresholds to account for multiple testing against all voxels.

One solution is to extract predefined image-derived phenotypes (IDPs) [1–3], which aggre-

gate spatial information from imaging data into single variables, e.g., volumes or intensities of

particular brain regions of interest (ROIs), reducing the number of phenotypes to test against.

While being interpretable, such analyses require the availability of automated tools for IDP

extraction for the modality of interest and are limited to traits defined a priori, potentially pre-

venting novel genetically-driven phenotypes from being discovered.

Another approach considers all voxels for genetic association testing. However, instead of

performing Nvariants × Nvoxels independent univariate tests, all genetic variants and all pheno-

types are modelled jointly in order to increase statistical power and decrease the number of

computations. vGWAS proposed by [4] is a voxel-wise method which retains only the genetic

variant with the lowest p-value per-voxel and estimates the effective number of tests using link-

age disequilibrium (LD) information to relax the significance thresholds. The Multivariate

Omnibus Statistical Test (MOSTest) [5, 6] additionally accounts for polygenicity, and is able to

detect variants with smaller effect sizes. While improving statistical power, both of these

approaches require performing computations for each variant-voxel pair. [7] apply a projec-

tion into a lower-dimensional space on both the variants and voxels, reducing the computa-

tional burden, and allowing to employ permutation testing instead of parametric testing as a

means of controlling the familywise error rate.

A recent line of work employed deep learning (DL) to extract imaging features using pre-

trained DNN models to perform GWAS on, which has been demonstrated to be successful in

a range of imaging modalities, including retinal fundus images [8, 9], cardiovascular magnetic

resonance (CMR) images [10, 11], or brain MRI scans [12]. This can be seen as a compromise

between the IDP and voxel-wise approaches, reducing the dimensionality of the imaging data,

while not being limited to a priori defined IDPs.

Here, we employed the transferGWAS method of [8], which consists of 1) training DNN

feature extractors on auxilliary datasets 2) extracting features from imaging data in the “target”

GWAS dataest using the trained DNN models 3) further reducing the feature dimensionality

using principal component analysis (PCA) 4) conducting GWAS on the resulting feature prin-

cipal components (PCs). We used transferGWAS to perform an imaging GWAS on N = 36,

311 T1-weighted brain MRI scans from UKB. We encoded the brain scans from UKB using
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DNN models trained on the ImageNet [13], and the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) datasets [14], with the former extracting “general” image features, and the latter

focusing on brain MRI and dementia-specific ones. We note that a similar study has been per-

formed on the UKB brain MRI data by [12] using the ENDO approach [9], which reserves a

subset of the target dataset for training of the DNN model, therefore reducing the sample size

available for GWAS. By employing the transferGWAS method we were able to utilize the full

sample size for genetic testing, due to the DNN models being trained on auxilliary datasets.

Our GWAS of 20 DNN features identified 289 associated genetic loci. 21% of them were

not previously reported in brain studies, and corresponded to traits such as bone mineral den-

sity (BMD), body size, or blood cell counts, indicating connections between these phenotypes

and brain structure, while 11 had no previously reported phenotypic associations. A number

of the discovered regions was not detected in either the IDP [2] or ENDO [12] brain MRI stud-

ies. We further conducted downstream analyses using the discovered genetic variants, demon-

strating their utility in creating more predictive PGS, and pointing to novel genetic

correlations between type 2 diabetes (T2D) and diffusion magnetic resonance imaging (dMRI)

traits (see Fig 1 for an overview of our workflow).

2 Results

2.1 Extraction of deep features from the T1-weighted UK Biobank brain

MRI scans

To obtain the low-dimensional feature representations of the brain MRI scans, we encoded

each of the 36, 311 MRI samples using two pretrained DNN models (we will refer to them

throughout the text as the ImageNet and the ADNI model). To reduce their dimensionality,

we applied PCA on the extracted features, retaining the first 10 PCs for each model, resulting

in 20 PCs in total. The choice of 10 PCs was motivated by [8], who found that a larger number

of PCs did not lead to substantial improvements in term of discovered variants, and by the fact

that the 10 PCs explained 81% and 92% of variance in the ADNI and ImageNet models

respectively.

2.2 Interpretation of the DNN features

In order to interpret the signal carried by the DNN PCs, we performed a phenome-wide asso-

ciation study (PheWAS) against each PC and 7, 744 UKB phenotypes (S2 Table). We found 2,

408 and 2, 622 significantly associated phenotypes for the ImageNet and ADNI PCs respec-

tively, having p-values below the Bonferroni-corrected threshold of� 6.5 � 10−7. Fig 2 shows

the percentage of significantly associated traits per category. The top 35 categories with the

highest ratio of significant hits contained 17 brain-related categories, with the other ones being

bone density, body composition, or blood-related categories. In almost all cases the ADNI PCs

were associated with a higher number of distinct phenotypes than the ImageNet PCs.

Furthermore, we analyzed how the features correlate with different brain ROIs, using brain

segmentation masks obtained with the Synthseg software [15]. For each brain ROI, we com-

puted the fraction of voxels correlated with a given PC (Fig 3), the ratio of explained variance

per ROI (Fig I in S1 Text), and per-voxel heatmaps (Figs E, F, G, H in S1 Text). Most PCs were

correlated with voxels of most ROI, although at different ratios. The ImageNet PC were corre-

lated on average with a higher number of voxels than the ADNI ones. In particular, the first

two ImageNet PCs were correlated with 99% of all ROI voxels, and explained 30% and 7% of

the total variance. These two PCs, as well as several other ImageNet PCs seemed to be encod-

ing the overall scan brightness (Fig F in S1 Text). While the ADNI PCs were explaining a
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smaller amount the total variance in voxel intensity (8% of total variance compared to 42% of

the ImageNet model), they seemed to be focused on particular brain structures—e.g., PC 5 cor-

responding to the lateral ventricles—rather than the overall scan intensity (Figs G, E in S1

Text).

Fig 1. Overview of our study and workflow. (a) A general overview of the study: (1)—we trained 2 DNN models on external datasets of natural images, and of brain

MRI scans (2)—encoded brain MRI data from the target datasets and performed GWAS on the DNN-derived phenotypes (3) performed a series of downstream

analyses using the learned DNN features and discovered genetic variants. (b) Description of each step involved in the complete workflow of our study.

https://doi.org/10.1371/journal.pgen.1011332.g001
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2.3 GWAS results

At the Bonferroni-corrected significance threshold of 2.5 � 10−9, we found 4, 665 peak associa-

tions for the ImageNet and 5, 291 for the ADNI pretrained models, resulting in 4, 382 and 4,

360 distinct variants for ImageNet and ADNI. The clumping procedure then identified 194

and 165 independent regions for the ImageNet and the ADNI models respectively, with 70

regions being shared between the two models (see Fig A in S1 Text for a per- chromosome

comparison). This amounted to 7, 458 distinct variants and 289 distinct regions across all 20

features of both DNN models. Figs 4 and 5 show the Manhattan plots for both models, aggre-

gated over each of the 10 PCs per model. We estimated the heritability of each PC using link-

age disequilibrium score regression (LDSC) (Section 4.5), and found all PCs to be significantly

heritable (p-values below 10−8), with the ADNI-pretrained PCs having a mean h2 = 0.19, and

the ImageNet PCs having a mean h2 = 0.13 (Fig 6). The summary statistics for all PCs are

made publicly available as a figshare resource under https://doi.org/10.6084/m9.figshare.

25933717.v1.

2.3.1 GWAS catalog associations. For each independent locus, we queried associations

reported in previous GWA studies from the NHGRI-EBI GWAS Catalog [16] (Fig 7). The

dominating phenotype categories included BMD-related traits and a range of brain traits, such

as cortical thickness, diffusion, or volumes of brain ROI. We note that the ADNI-pretrained

Fig 2. Results of the PheWAS performed on the principal components (PCs) of the ImageNet (blue) and ADNI (yellow) pretrained models. For each phenotype

category from UK Biobank (UKB) we plot the number of significant associations per model divided by the total number of traits in that category—in case of multiple PCs

being associated with a phenotype, we only count them once. Shown are the top 35 phenotype categories with the highest ratio of significant associations.

https://doi.org/10.1371/journal.pgen.1011332.g002
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features tagged more regions corresponding to brain-related traits, whereas the ImageNet

model tagged more regions related to “general” body structure, such as BMD, height, or body

mass index (BMI). Overall, out of the 289 independent loci, 62 did not have brain-related asso-

ciations reported in the catalog.

Among neuropsychiatric disorders with the highest number of distinct regions, 47 were

associated with schizophrenia, 37 with neuroticism, 36 with attention deficit hyperactivity dis-

order, 35 with bipolar disorder, 33 with depression, 32 with Alzheimer’s disease, 30 with

autism, 22 with anorexia nervosa and 21 with anxiety.

3 out of the 10 first traits were not directly brain-related: heel bone mineral density

(HBMD) (144 regions), total BMD (125 regions), and height (113 regions). The associations

between BMD and the brain have been investigated in the context of neurological disorders

[17–19], as well as in samples of healthy subjects [20]. [17, 18] reported a correlation between

BMD and an early onset of Alzheimer’s disease (AD), as well as with several brain volumes.

HBMD is postulated to be a causal factor for multiple sclerosis (MS) through an increased risk

of fractures [19]. [20] showed that osteoporosis increases the pace of parenchymal atrophy and

ventricular enlargement during aging of healthy individuals.

Fig 3. Fraction of significantly correlated voxels in each brain region of interest (ROI) for each principal component of the neural network

models features. Values are computed as the total number of significantly associated voxels in each ROI divided by the total number of voxels in that

ROI.

https://doi.org/10.1371/journal.pgen.1011332.g003
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Another prevalent category were blood-related traits, such as cell counts: white (67), red

(32), monocyte (45), neutrophil (41), eosinophil (40), lymphocyte, (25) reticulocyte (23), blood

pressure (95) or hypertension (45), or hemoglobin (68). Blood pressure and hypertension are

known factors influencing brain morphology, as well as cognitive performance or dementia

[21–24], while aenemia is a causal factor for cognitive decline and AD [25, 26].

2.3.2 Loci without previously reported GWAS catalog associations. In total, we found

existing phenotypic associations in the GWAS Catalog for 275 regions in studies conducted on

the white British population, and 278 regions among all populations, whereas 11 loci had no

previously reported associations. 8 of these loci were located inside 6 distinct gene regions:

CPED1, WNT16, TSPAN12, RP11–161H23.9, WNT1, and C16orf95. CPED1, WNT16, and

TSPAN12 have recently been identified as a region of BMD genes [27]. WNT1 is protein-cod-

ing gene with variants associated with BMD or cognitive function [28, 29]. C16orf95 is a pro-

tein-coding gene with associations with a range of brain measurements and BMD [30, 31].

RP11–161H23.9 is a differential expression long non-coding RNA gene whose expression was

associated with glioblastoma survival [32]. The remaining 3 loci not residing within genes

were located in regions identified as enhancers in the Enhancer Atlas [33]. In particular, the

Fig 4. Manhattan plot of GWAS (n = 36, 311 individuals, 16, 472, 121 SNPs) performed on features of the ImageNet-pretrained model aggregated over all 10

features of the model. The horizontal lines mark the initial significance threshold of 5 � 10−8 (dashed line) and Bonferroni-corrected threshold of 2.5 � 10−9 (solid line).

We plot gene names for leading variants in each locus. For visualization purposes we truncate p-values below 10−40 and plot only the minimal p-values across the 10

features.

https://doi.org/10.1371/journal.pgen.1011332.g004
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loci around 6:156060806 and 7:121093894 had markers for enhancer activity in human den-

dritic, fetal brain, and neural stem cells.

As a further means of interpreting the novel regions, we computed per-voxels correlations

for each leading single-nucleotide polymorphism (SNP) (Fig 8), and the fractions of volume of

each brain region correlated with each lead variant (Fig 9). All SNPs were correlated with the

left cerebral cortex and cerebrospinal fluid. Most notable was the variant rs111469125

(16:87268090) located inside the C16orf95 gene, being correlated with 19 out of 22 brain

regions, in particular with several ventricle structures: the 3rd and 4th ventricles (3% of total

voxels), and the left and right lateral ventricles (1% and 1.5% of total voxels). It was also corre-

lated with 3% of the voxels of cerebrospinal fluid, and was the only new variant correlated with

the left cerebellum white matter, the left thalamus, and the right caudate. On the other hand,

rs546521618 (6:156060806) might be a potential false positive, being the only variant in its loci,

and having a minor allele frequency (MAF) below 1.3%

2.3.4 Comparison with previous studies. We performed another GWAS on the UKB

sample, splitting it into discovery and replication cohorts (23,604 and 12,709 samples), repli-

cating 1,631 hits over 1,510 unique variants, which amounted to 70 replicated loci. We com-

pared our results with two GWA studies on UKB brain MRI data—the first one using 3,144

Fig 5. Manhattan plot of GWAS (n = 36, 311 individuals, 16, 472, 121 SNPs) performed on features of the ADNI-pretrained model aggregated over all 10

features of the model. The horizontal lines mark the initial significance threshold of 5 � 10−8 (dashed line) and Bonferroni-corrected threshold of 2.5 � 10−9 (solid line).

We plot gene names for leading variants in each locus. For visualization purposes we truncate p-values below 10−40 and plot only the minimal p-values across the 10

features.

https://doi.org/10.1371/journal.pgen.1011332.g005
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brain imaging-derived phenotypes [2] and the second study using 256 DL-based features [12],

which yielded 692 and 43 replicated loci respectively. Out of our 70 replicated loci, 9 were not

present in the 692 of [2], and 28 were not present in the 43 loci of [12].

2.4 TransferGWAS polygenic scores

Here, we evaluated the potential of variants discovered in our study for downstream prediction

of phenotypes using 20 PGS fitted for each of the 20 DNN PCs with the summary statistics

from our GWAS. In order to compute the features of the DNN models, imaging data need to

be present, which constitutes less than a tenth of all UKB samples. On the other hand, genotyp-

ing data were available for all participants. This allowed us to calculate the PGS for all remain-

ing N = 424, 609 white British participants not included in the GWAS sample. The

corresponding methods are described in Section 4.4, while the weights of the fitted scores are

made publicly available as a figshare resource under https://doi.org/10.6084/m9.figshare.

25933663.v1.

Fig 6. h2 heritability estimates of principal components (PCs) of the ImageNet (blue) and ADNI (yellow) pretrained models,

obtained using linkage disequilibrium score regression (LDSC). Black lines indicate the standard error of the estimates.

https://doi.org/10.1371/journal.pgen.1011332.g006
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2.4.1 PGS PheWAS. To gain insights into which traits the PGS might be predictive of, we

performed a PheWAS on the 20 PGS and the 7, 744 UKB phenotypes (S1 Table). Note that

while the “raw” DNN PCs can encode both genetic and environmental signals, the PGS should

capture only the former, and thus we expected the associations between the phenotypes to dif-

fer from the PheWAS performed on the PCs. The total number of significant PC-phenotype

associations and the effect sizes were higher for the original PCs than for the PGS: 28, 767 vs.

13, 199 significant associations in total, 2, 928 vs. 1, 537 distinct associated traits, with mean

effect sizes of �b ¼ 0:08 vs. �b ¼ 0:04. We identified 3 potentially interesting groups of associa-

tions (Fig C in S1 Text):

• traits related to BMD or bone fractures

• height, weight, BMI

• cardiovascular traits, and blood biomarkers

which we decided to investigate further in a prediction setting.

2.4.2 Predictive performance compared to trait-specific PGS. We tested the utility of

our developed PGS by evaluating whether they can improve predictions of phenotypes from

UKB over PGS designed specifically for particular traits in a multi-PGS setting [34]. We chose

a set of 9 phenotypes based on the PheWAS results and computed their corresponding scores

using PGS available in the PGS Catalog [35]. For each phenotype, we then fitted and evaluated

two linear models: one fitted using only the trait-specific PGS, and one additionally using our

transferGWAS PGS. While there were statistically significant improvements in predictions for

6 out of 9 traits, they yielded arguably small performance increases (*1.5% of relative

Fig 7. Number of independent loci per trait with associations reported in previous studies included in the NHGRI-EBI GWAS Catalog [16]. Shown are the top 35

traits with the highest number of associated regions.

https://doi.org/10.1371/journal.pgen.1011332.g007
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improvement), with the exception of predicting HBMD using a (general) BMD PGS, where

the relative improvement was over 24% (Table 1). We decided to further investigate the

HBMD results. Since the improvement could have been stemming from a lower signal in the

dataset of the external PGS, compared to the UKB, we conducted a further comparison within

Fig 8. Brain MRI voxels corresponding to genetic regions with no previously reported GWAS associations. Plotted are values of the t-statistics of the correlation

coefficients between lead variants of each region and each single voxel in the MRI scans. We plot values below the Bonferroni-corrected significance threshold

accounting for the total number of voxels tested.

https://doi.org/10.1371/journal.pgen.1011332.g008
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the UKB. We performed a GWAS on HBMD using 19, 909 samples from our GWAS data

which had HBMD measurements available, and 16, 404 randomly drawn from the remaining

samples of the white British participants, to match the sample size and population of our

GWAS, and fitted a new PGS on the resulting summary statistics. We then evaluated the

Fig 9. Fractions of volume of brain regions correlated with genetic regions with no previously reported GWAS associations.

The values are computed as the total number of voxels in a given brain region significantly correlated with a lead variant, divided by

the total number of voxels in that brain region. White cells indicate no voxels being significantly correlated for a given brain region-

genetic region pair.

https://doi.org/10.1371/journal.pgen.1011332.g009

Table 1. Comparison of predictive performance of Multi-PGS models on the white British population of UK Bio-

bank (UKB) using only trait-specific polygenic scores (PGS) (2nd column) and including our TransferGWAS PGS

(3rd column) for a set of selected phenotypes from UKB, measured with the R2 coefficient of determination. Sig-

nificant differences are marked with (*). Heel bone mineral density (1) and (2) correspond to results of using PGS for

heel bone mineral density, or (general) bone mineral density respectively. Statistical significance was estimated using

pairwise permutation tests with 1, 000 permutations.

Trait PGS Catalog Our PGS + PGS Catalog Δ

Height 0.760 0.760 0.00008*
BMI 0.286 0.286 0.000

Heel bone mineral density (1) 0.274 0.277 0.002*
Heel bone mineral density (2) 0.062 0.077 0.015*
Red blood cell count 0.389 0.389 0.000

White blood cell count 0.097 0.099 0.002*
Systolic blood pressure 0.283 0.283 0.0002*
Diastolic blood pressure 0.175 0.176 0.001*
Ventricular rate -0.001 -0.005 -0.004

https://doi.org/10.1371/journal.pgen.1011332.t001
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newly-created HBMD PGS with and without our transferGWAS PGS on the remaining UKB

data and observed the same relative improvement of 1% in performance (p< 0.001). This indi-

cates that transferGWAS has the potential to identify additional variants for related traits while

using the sample size. We hypothesize that this might be due to certain pleiotropic variants

having a larger effect on the DNN PCs than on HBMD, and thus being able to be detected

with our DL GWAS and not with the HBMD-dedicated GWAS.

2.5 Genetic correlations

The results of the PheWAS conducted on the learned PCs led us to a set of traits that we

decided to investigate further. In order to analyze the genetic components of the PCs, we com-

puted genetic correlation coefficients between 102 selected traits and each of the 20 PCs (see

Section 4.5 for details). 39 traits were significantly genetically correlated, surpassing the Bon-

ferroni-corrected threshold of� 2.5 � 10−5. We grouped the traits into 3 groups:

• (volumes of) brain ROI (e.g., ventricles, brain stem, cerebrospinal fluid (CSF))

• dMRI traits (e.g., fractional anisotropy (FA), orientation dispersion index (ODI))

• “general” traits: Height, T2D, BMI, HBMD

Additionally, we tested for correlations with AD, educational attainment, and unipolar

depression, finding no significant correlations when corrected for multiple testing (p> 0.001).

The significantly associated traits are shown in Fig 10, where we observed several “clusters” of

PC-trait associations.

Several PCs were genetically correlated with volumes of multiple brain ROI. The first two

PCs of ImageNet (IMGNET0, IMGNET1) seemed to capture the overall body size, as they

were negatively genetically correlated with height and white matter volume, and positively

with ventricular ROI and CSF.

PCs ADNI2, ADNI3, and IMGNET4 were genetically associated with volumes of several

brain ROI, e.g., cerebral white matter, putamen, or thalamus. ADNI2 and ADNI3 were also

genetically associated with volumes of CSF and the lateral ventricle. Interestingly, ADNI2 had

a positive genetic correlation both for CSF and the lateral ventricle, as well as for gray and

white matter structures, whereas one might expect the ventricular volumes (and thus CSF) to

grow with the shrinkage of brain structures.

PCs genetically associated with HBMD seemed to capture different aspects of brain anat-

omy. IMGNET2 had a negative genetic correlation with HBMD, BMI, and cerebral white mat-

ter, but also with multiple ventricular volumes. On the other hand, ADNI8 and IMGNET4

also had negative genetic correlations with HBMD, but positive ones with cerebral white

matter.

ADNI0 and ADNI4 were genetically associated with a range of Diffusion MRI traits, as well

as with several ventricular ROI. Furthermore, ADNI4 was genetically correlated with HBMD

and BMI, and was the only PC genetically associated with T2D, which we further discuss

below.

2.5.1 ADNI4 and T2D. BMI was shown to increase the risk of developing T2D [36, 37],

as well as being genetically correlated to T2D [36]. The signs of genetic correlations between

ADNI4, and BMI and T2D were also matching. ADNI4 was also positively genetically associ-

ated with HBMD. T2D patients have been shown to have a higher bone density [38, 39]. Evi-

dence also exists for shared heritability between BMD and T2D, albeit relatively small [40, 41].

As with BMI, the sign of the genetic correlation between ADNI4 and HBMD was positive.

Regarding the brain ROI, ADNI4 was positively genetically correlated with volumes of the
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lateral, 3rd, and 4th ventricles, as well as with the CSF. Ventricular enlargement and increase

in CSF are associated with several neurodegenerative diseases, such as AD, MS, or schizophre-

nia [42, 43]. Several studies showed an association between T2D and volumes of white matter

structures (whole brain volume, frontal lobe), gray matter (overall trend in all structures), as

well as CSF and ventricular volumes [44]. Furthermore, ADNI4 was genetically correlated

with 35 different dMRI traits:

Fig 10. Genetic correlation coefficients between the 20 deep neural network (DNN) principal components (PCs) (rows) and 23 significantly

associated phenotypes (columns), out of 27 candidate traits from the UK Biobank (UKB). Cell colors represent the magnitudes and the signs of the

estimated genetic correlation coefficients between each PC and phenotype combination.

https://doi.org/10.1371/journal.pgen.1011332.g010
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Mean diffusivity (MD) traits. 4 MD traits were positively genetically correlated with

ADNI4: fornix, superior serebellar peduncle (both sides), and the superior fronto-occipital fas-

ciculus (left). Positive associations between T2D and MD have been found in observational

studies [45, 46].

Fractional anisotropy (FA) traits. FA traits have been found to be negatively correlated

with T2D in literature [44–46]. We found 4 traits to be negatively genetically correlated with

ADNI4, however the posterior limb of left internal capsule was positively genetically correlated

with the PC. The direction of this correlation seemed to be in opposition to the associations

found in observational studies [44]. On the other hand, it is postulated to be causal with the

same sign for fasting insulin [47], an increase of which is an indicator of T2D. We identified

two regions containing shared variants located at Chr2:27766284 and Chr14:91881387. The

first region contains missense and intron variants for GCKR gene (ENSG00000133962), a glu-

cokinase regulator, with no previously reported associations for brain phenotypes, missense

and intron variants for C2orf16 (ENSG00000221843) and intron variants for ZNF512

(ENSG00000243943) both protein coding genes with association with neurodegenerative dis-

eases, T2D, and blood measurements. The second region contains intron variants for the

CCDC88C (ENSG00000015133), a protein coding gene, with associations with glucose metab-

olism, brain measurements, and neurodegenerative diseases, and CCDC88C-DT

(ENSG00000258798), an RNA gene that is a divergent transcript for CCDC88C, with associa-

tions with brain measurements and hypertension. The above may be another indicator of a

non-trivial relation between FA of limb of internal capsule and T2D, with potentially different

shared heritability and environmental effects.

Orientation dispersion index (ODI) traits. 7 ODI traits were positively genetically corre-

lated with ADNI4, while 3 traits were correlated negatively. ODI of white matter tracts was

reported to be positively correlated with duration of T2D and with levels of HbA1c, a marker

for T2D, while ODI of internal capsule was reported to have a negative correlation [48], which

is consistent with 9 out of 10 of our findings. We found a negative genetic correlation for the

posterior right corona radiata, which had shared variants in regions located at chr8:119486034

and 11:27465591. The first region has intron variants for SAMD12 (ENSG00000177570), a

protein coding gene with associations with brain measurements, MS, bone density, and blood

measurements. The second region has intron variants for LGR4 (ENSG00000205213), a pro-

tein coding gene with associations with brain measurements, bone density, and body mass

traits.

Mode of anisotropy (MO) traits. 5 MO traits were genetically positively correlated with

ADNI4, and 6 negatively. Fasting insulin, a marker for T2D was reported to be negatively asso-

ciated with anterior corona radiata [47]. We found positive genetic correlations between both

sides of the posterior and superior corona radiata and ADNI4, with shared variants with T2D

located in the region chr2:27766284 for the superior, and in chr8:119486034 for the posterior.

The first region contains missense and intron variants for the GCKR and C2orf16 genes, and

an intron variant for ZNF512 (see the FA regions), and the second region has intron variants

for SAMD12 (see the ODI regions above). The correlations between the other 7 traits are

reported in S3 Table.

3 Discussion

Using the transferGWAS approach we performed a GWAS on 20 DNN feature representations

of 36, 311 T1-weighted brain MRI scans from the UKB, identifying 289 loci, 11 of them with-

out any previously reported associations, and 72 without any associations for brain-related

traits. Similar to the findings of the initial transferGWAS study of retinal fundus images of [8],
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the features of an ImageNet-trained model were associated with a higher number of loci

related to “general” body structure traits, such as BMD or BMI, whereas features from a model

trained directly on brain MRI data identified more loci corresponding to brain measurements

and neurodegenerative diseases. Overall, features of both DNN models were associated

directly, through PheWAS, or genetically, through GWAS-identified loci, with a large number

of BMD traits. For example, the ImageNet and ADNI-derived features were significantly asso-

ciated with over 50% and 70% of phenotypes under the UKB category 125 “Bone size, mineral,

and density by DXA”, and with over 120 and 40 distinct loci associated “Total body bone min-

eral density” in the NHGRI-EBI GWAS Catalog. Detecting these genetic regions in features

derived from brain MRI data seems to confirm the connections between BMD and brain mea-

surements, as well as with neurodegenerative diseases previously reported in the literature (as

discussed in Section 2.3.1), which we further investigated with an analysis of genetic correla-

tions (Section 2.5), highlighting particular brain ROI genetically associated with BMD. Fur-

thermore, the genetic correlations identified by our study shed more light on the relations

between dMRI measurements and T2D, BMI, as well as cardiovascular traits, also reported in

several studies (Section 2.5.1). Finally, we demonstrated a practical application of our findings

by constructing PGS of our DNN-derived phenotypes, which improved predictions of existing

PGS of BMD, white cell blood count, or diastolic blood pressure. In a further analysis, we fitted

a PGS directly to HBMD measurements on a UKB sample of the same size as our GWAS and

observed the same improvement in performance when augmented with our DNN PGS, indi-

cating that the transferGWAS approach can identify additional variants for a trait of interest,

being complementary to conducting a trait-dedicated GWAS.

We demonstrated how transferGWAS can be applied to discover new variants and in turn,

lead to better phenotype predictions. However, a drawback of using features of pretrained

DNN models as traits of interest is their reduced interpretability compared to predefined phe-

notypes. While we analyzed both the DNN-derived traits and the discovered loci with a range

of techniques (PheWAS, querying the GWAS Catalog, statistical parametric mappings

(SPMs)), we highlight the need for further developing apossibly automated pipeline for

interpretability of the DNN features, to foster their utility for consecutive research and clinical

applications.

4 Materials and methods

4.1 Training of the neural network models

The first model used for feature extraction was trained on 4,480 T1-weighted scans from the

ADNI dataset [49]. The network architecture was a 3D convolutional variational autoencoder

(VAE) [50], trained in a multi-task manner. The model consisted of 3 sub-networks: an

encoder, a decoder, and a prediction head. The 128-dimensional outputs of the encoder net-

work constituted the latent representations of the input data. The first task was the standard

VAE objective, i.e., reconstructing the input scans from the latent representations, while regu-

larizing the representations to match a standard normal prior distribution with a Kullback-Lei-

bler divergence (KLD) loss term. The second task was to predict the clinical dementia rating

(CDR) from the latent representations. The aim of the VAE objective was to learn general

structural features describing an MRI scan, while the prediction task should promote neurode-

generative features associated with the presence of dementia. Additionally, we input the age

and sex of each participant into the decoder and prediction networks, forcing the model to

learn latent representations invariant to age and sex, and thus potentially increasing the statis-

tical power of the GWAS. We trained the model for 500 epochs with the Adam optimizer [51],

with a mini-batch size of 128. The weights of the reconstruction, KLD, and the predictions loss

PLOS GENETICS TransferGWAS of T1-weighted Brain MRI Data from UK Biobank

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011332 December 13, 2024 16 / 22

https://doi.org/10.1371/journal.pgen.1011332


terms were 1, 10−4 and 10−2 respectively. For data preprocessing, we skull-stripped each scan

using using the HD-BET tool [52], performed a non-linear registration to the MNI152 tem-

plate with a 1mm3 resolution using the FLIRT and FNIRT commands from the FSL software

[53], and finally downsampled the scans to a size of 96×96×96 voxels each.

Following [8], we also employed a 2D ResNet50 [54] model trained on ImageNet, a non-

medical dataset of natural images [13]. We used a readily available trained model from the

PyTorch library [55]. We selected the 2048-dimensional output of the penultimate layer as the

latent features used for the GWAS. Since the model was trained on 2D data, we could not

directly extract features from the 3D MRI scans. Instead, for each scan, we computed the fea-

tures over each single slice across the axial axis and averaged the results into a single vector.

4.2 GWAS

We selected a sample of N = 36, 311 UKB participants who “self-identified as white British and

have very similar genetic ancestry based on a principal components analysis of the genotypes”

(UKB field 22006). We performed the association testing within the linear mixed model

(LMM) framework using the BOLT-LMM software [56]. We adjusted for confounding using

age, sex, the identifiers of the genotyping array and UKB assessment center, and the first 10

genetic principal components. We filtered the SNPs with the following criteria: MAF�0.1%,

Hardy-Weinberg Equilibrium with a significance level of 0.001, pairwise LD-pruning with R2

= 0.8, and maximum missingness of 10% per SNP and participant, which resulted in 577, 570

directly genotyped SNPs. Including imputed genotype data resulted in 16,472,121 variants in

total, on which we performed the GWAS. We clumped the variants into independent loci

using the PLINK software [57], with a physical distance threshold of 250kb and a significance

threshold of 10−9 for the index SNPs. We queried the NHGRI-EBI GWAS Catalog [16] using

the LDtrait web application [58], with an R2 cutoff of 10−1 and a 250kb window.

4.3 PheWAS

We performed the PheWAS on the PCs of both DNN models using the PHESANT software

[59], with a P-value threshold of� 6.5 � 10−7 from the Bonferroni correction to account for 20

PCs and 7, 744 different phenotypes from UKB, adjusting for age and sex. We note that Phe-

WAS automatically determines the choice of the appropriate regression model (e.g., linear

regression for continuous variables or logistic regression for categorical ones) based on the

phenotype metadata.

4.4 Polygenic scores

We fitted the DNN PGS and the custom HBMD PGS using the PRScs method [60], with the

prspipe software [61, 62]. For the predictive performance comparison, we queried the PGS

Catalog [35] API for a list of PGS developed for each of the 9 phenotypes, ignoring scores that

used the UKB for development, to avoid data leakage. We then computed scores for the

N = 451, 450 participants who were not in our GWAS sample using the PGS Catalog Calcula-

tor [63]. For each phenotype, we fitted a baseline linear model using all corresponding trait-

specific PGS and covariates (age, sex, UKB assessment center, UKB genotyping batch, all UKB

genetic PCs) and another linear model which additionally included our 20 DNN PGS. We

used 60% of the data for model fitting and evaluated it on the remaining 40%. We computed

P-values for differences between achieved R2 scores of the two linear models using permuta-

tion tests with 1, 000 permutations, randomly selecting predictions from either model for each

test sample in each permutation.
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4.5 Genetic correlations

To compute the genetic correlation scores between the PCs and selected traits, we used the

LDSC method [64, 65]. We used the provided LD scores precomputed on 1000 Genomes data

[66] over HapMap3 [67] SNPs, and used the default values for other parameters of the LDSC.

In order to find regions potentially contributing to the genetic correlations between ADNI4,

T2D, and dMRI traits (Section 2.5.1), we selected SNPs with a P-value below 0.0001 for which

the magnitude of the product of the z-scores between both ADNI4 and T2D, and ADNI4 and

a dMRI trait exceeded a threshold of 15. For the dMRI traits, we selected pairs where the sign

of the product of the z-scores matched the sign of the genetic correlation with ADNI4. We

consider a region a set of variants within 250, 000 base pairs from a “central” variant.
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